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Abstract

The objective of this work is to conduct robustness evaluations on the re-
liability assessment of penstocks using the info-gap framework. In order to
improve the induced optimization searches, three original line sampling pro-
cedures are proposed in order to address the complex limit-state function on
which the failure probability depends. The proposed algorithms are proven
to be well suited for the search of the multiple roots involved in the line
sampling technique. Then, a classification and a regression artificial neural
network are combined for predicting the roots in order to reduce the compu-
tational time engendered by robustness evaluations.

Keywords: structural reliability, line sampling, info-gap, neural networks,
robustness

1. Introduction1

Structural reliability [1] is of particular interest for risk-sensitive indus-2

trial applications such as power generation [2] where system performance,3

and therefore safety, is subject to uncertainty. In this context, the safety4

is assessed by estimating reliability-oriented quantities of interest such as a5

low failure probability or a high-order quantile on a specific output variable6

of interest. Two types of uncertainty are commonly distinguished, namely7

aleatory and epistemic [3]. Aleatory uncertainty is associated with natural8

randomness while epistemic uncertainty is understood as ignorance due to a9

lack of knowledge and is therefore potentially reducible. High-risk systems10
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models are typical cases where epistemic uncertainty can be encountered as11

they often represent events that are rarely or never realized. However, the12

potential impact of lack of knowledge must still be accounted for in order to13

improve information for a more reliable decision-making process regarding14

the safety of the system.15

The notion of robustness has many interpretations and possible mathe-16

matical representations [4]. In the present paper, it is defined as the capacity17

of the system to fulfill a criterion despite differences between its predicted and18

operational behaviors which is a key point in engineering and more specifi-19

cally in safety assessment. The info-gap framework [5] proposes a metric that20

quantifies the robustness of a possible decision with respect to (w.r.t.) epis-21

temic uncertainty by calculating its worst performance at increasing levels22

of uncertainty in order to privilege tolerance to unexpected situations over23

performance at a poor estimate of the system’s environment [6]. Info-gap24

has been applied in a wide range of fields where decisions under severe un-25

certainty need to be made such as in structural design [7], climate policies26

[8] or water resource planning [9]. In [10], the probabilistic framework and27

the info-gap framework are combined considering uncertainty on a covariance28

matrix. However, its application to reliability quantities of interest such as29

failure probabilities has been less studied although an example can be found30

in [11] in the context of hybrid reliability analysis. Yet, the info-gap frame-31

work is particularly relevant in the context of rare event analysis [12] in which32

this work falls.33

In this paper, the info-gap method is applied to a real world industrial re-34

liability model assessing the mechanical integrity of penstocks by evaluating35

a failure probability. As the uncertain parameters involve probabilistic distri-36

bution parameters, assessing the info-gap robustness of the model reduces to37

evaluating maximum failure probabilities for a series of increasing parametric38

probability boxes problems [13]. This requires an efficient failure probability39

estimator, both in terms of global precision over the uncertainty space and40

computational time. The former requirement is challenging when assessing41

the reliability of penstocks as the failure event corresponds to a restricted42

intersection domain of complex geometry. A wide range of approximation43

and sampling methods are available for estimating failure probabilities [14]44

and some of them are already used for assessing the reliability of penstocks.45

In the present paper, the technique known as line sampling [15] is applied46

to better target the intersection domain. Three adapted line sampling algo-47

rithms considering three equivalent formulations of the intersection failure48
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event are proposed in order to efficiently evaluate the associated roots which49

constitutes the main challenge induced by this technique. The performances50

of these algorithms are analyzed through info-gap robustness curves. Sec-51

ondly, a methodology based on two deep neural networks is considered in52

order to predict the roots involved in the line sampling algorithms consider-53

ing the aleatory and epistemic spaces jointly. This enables to considerably54

reduce the computational burden that may be caused by an info-gap analysis.55

This work shows how customized line sampling algorithms may be com-56

petitive even for reliability problems with complex limit-state functions.57

Moreover, it provides an example on how neural networks can be used to58

help assess failure probabilities based on line sampling as soon as the com-59

puter model is affordable to run.60

The paper is organized as follows: Section 2 reviews the formulation61

of a reliability analysis and presents the specific case of the reliability of62

penstocks; Section 3 presents the three proposed line sampling algorithms;63

Section 4 describes the methodology applied for building robustness curves64

and validates the line sampling algorithms; finally Section 5 proposes a com-65

bination of two artificial neural networks with the line sampling algorithm66

to reduce computational time. Conclusions and perspectives are drawn in67

Section 7.68

2. Reliability assessment of penstocks for hydroelectric facilities69

2.1. General formulation of a reliability problem70

The objective of a reliability analysis is to assess the safety of a system71

subject to uncertainty. The safety is evaluated through the limit-state func-72

tion g (x) defined such that the event g(x) ≤ 0 represents a failure state of73

the system. Hence the failure domain is given by F = {x ∈ DX, g (x) ≤ 0}.74

Probability theory offers a framework to propagate aleatory uncertainty on75

the input vector through the model. The input vector of uncertain vari-76

ables is modeled as a random vector X to which a supposedly known joint77

probability density function (pdf) fX is attributed. After propagating the78

uncertainty through the limit-state function, the output Z = g (X) is also79

a random variable. The exact pdf fZ is generally inaccessible but reliability80

quantities of interest can be estimated such as moments or quantiles. In this81

work, the failure probability Pf is of interest:82

Pf = Pr [g (X) ≤ 0] =

∫

F
fX (x) dx. (1)
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Generally in complex systems, techniques are needed to evaluate Eq. (1) such83

as sampling methods (Monte Carlo, importance sampling) or approximation84

methods (first/second-order reliability method) [14]. In this work, the line85

sampling (LS) method [15, 16] is investigated to better reach a geometrical86

complex limit-state function. This algorithm will be presented in details in87

Section 3.88

2.2. Presentation of the penstock model89

This work focuses on an industrial use-case relevant to the French elec-90

tricity company EDF which concerns the reliability study of penstocks [17].91

EDF operates more than 500 penstocks having a total length of over 30092

km. Penstocks are pipes made of steel used to transport water under pres-93

sure from the water dam to the hydroelectric turbine. Due to thickness loss94

resulting from corrosion, their mechanical integrity must be justified. The95

usual justification relies on diagnoses involving thickness measurements and96

the evaluation of a deterministic margin factor (MF) which is a ratio of an97

allowable mechanical stress over the current mechanical stress present in the98

pipe during operation. If this ratio is greater than one, then the penstock is99

considered as fit for service. The evaluation of MF depends on many vari-100

ables which mainly pertain to mechanical and geometrical properties. The101

integrity needs to be justified for a very large panel of penstocks with differ-102

ent properties (e.g., geometry, mechanical properties) which justifies the use103

of a predictive mechanical model. Uncertainty on some variables may affect104

a deterministic evaluation of this model. A historical conservative approach105

consists in evaluating the MF when attributing penalized values on the un-106

certain variables. The next section presents another approach which treats107

uncertainty with probabilistic distributions.108

2.3. Reliability model of penstocks109

To optimize the MF, a general reliability approach was developed to assess110

the failure probability at year N + 1 of a given penstock. Two major failure111

modes have been identified and investigated: plastic collapse (affecting parent112

metal) and brittle failure (affecting welds), due to the presence of cracks113

appearing during the welding process. In the present application, only the114

second failure mode is considered since its reliability analysis is the most115

complex one:116

• the limit-state function is locally non-differentiable and can be discon-117

tinuous;118
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• the annual failure probability estimated here is a conditional probability119

considering that the penstock passed a hydraulic pressure test (HPT)120

after its production in the workshop.121

For the sake of simplicity, the dependence w.r.t. X is omitted in Gi = Gi (X).122

The conditional failure probability at year N + 1 can be expressed as:123

Pf = Pr (GN+1 < 0 ∩GN ≥ 0 | GHPT ≥ 0) (2)

which leads to (using Bayes theorem):124

Pf =
Pr (GN+1 < 0 ∩GN ≥ 0 ∩GHPT ≥ 0)

Pr (GHPT ≥ 0)
(3)

where GN+1 is the limit-state function at the beginning of year N + 1, GN125

is the limit-state function at the beginning of year N and {GHPT ≥ 0} is the126

event meaning that the penstock successfully passed the hydraulic pressure127

test. In the following, only the numerator in Eq. (3) is of interest as it is the128

most challenging one to estimate. As the G-functions decrease over time due129

to the monotonic corrosion degradation, the following expression holds:130

Pr (GN+1 < 0 ∩GN ≥ 0) = Pr (GN+1.GN < 0) . (4)

The numerator in Eq. (3) corresponds to the probability of an intersection131

of three events which is depicted as the red hatched band in Figure 1. This132

probability is usually very small (e.g., smaller than 10−6). In the following,133

the double intersection will be handled with three equivalent events:134

E1 = {max (GN+1,−GN ,−GHPT) ≤ 0},
E2 = {GN+1.GN ≤ 0 ∩GHPT > 0},
E3 = {GN+1 ≤ 0 ∩GN > 0 ∩GHPT > 0}.

(5)

Although being equivalent (due to a monotonic decreasing behavior of the135

limit-state functions w.r.t. time), these different formulations will induce dif-136

ferent strategies on the failure probability estimation as it will be seen in Sub-137

section 3.3 for the root search involved with line sampling. The following no-138

tations are used: Gmax = max (GN+1,−GN ,−GHPT) and Gprod = GN+1.GN .139

The expressions of GN+1, GN and GHPT depend on quite a lot of parameters140

and functions describing the mechanical behavior of the penstock under hy-141

draulic pressure. The reader is referred to [18] for a more detailed overview142
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Figure 1: Illustration of a possible failure domain and the basic principle of the multi-
constraint FORM (MCF) algorithm used in the FISTARR algorithm.

of the mechanical model. However, the most important feature about these143

functions is that they remain analytical which allows them to be computed144

rapidly.145

The probabilistic vector X is of dimension nX = 6 and its components are146

detailed in Table 1 where Rm is the ultimate tensile strength, ε a parameter147

used to linearly express the yield strength as a function of Rm, ∆ecorr the148

thinning due to water and atmospheric corrosion, ∆eextra the extra thickness149

added to the design thickness, a is the height of the crack and KIC the150

tenacity of the material.

Table 1: Input probabilistic modeling of X for the penstock use-case.

Xi Distribution param. 1 param. 2 param. 3
X1 = Rm (MPa) Lognormal µRm σRm -
X2 = ε (MPa) Normal µε σε -
X3 = ∆ecorr (mm) Normal µ∆ecorr σ∆ecorr -
X4 = ∆eextra (mm) Normal µ∆eextra σ∆eextra -
X5 = a (mm) Uniform 0 amax -
X6 = KIC (MPa.

√
m) Weibull Min βKIC

αKIC
γKIC

151

Standard penstock reliability assessments have been performed for some152
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years and, unlike info-gap robustness evaluations of reliability assessments,153

consider large variations of parameters to reproduce the variety of operating154

penstocks. They resort to a panel of reliability assessment methods cap-155

italized in the OpenTURNS library-based [19] Persalys-Penstock software156

[18]. The most efficient method in the context of standard penstock relia-157

bility assessments is the so-called FISTARR method (for FORM-IS-Tested158

Automatically-Rapid seaRch [18]), an extended adaptation of FORM-IS for159

multiple intersection events. More precisely this adaptation consists in a se-160

lection of FORM-IS algorithms including MCF-IS algorithms, an importance161

sampling around the design point obtained by performing a multi-constraint-162

FORM (MCF) analysis as shown in Figure 1.163

In the present paper, only the MCF-IS algorithm from FISTARR, ap-164

plied with the LD MMA optimization algorithm from the NLopt Python165

Library, is used and will be simply referred as “IS” in order to simplify the166

notation. Despite this method being globally robust in its current version,167

that could be further optimized, it may not always converge rapidly for a168

few configurations of input probabilistic parameters. In the following sec-169

tion, a LS procedure based on the MCF design point is presented in order170

to investigate a new technique for the estimation of the failure probability171

of penstocks in the context of info-gap robustness assessments of penstock172

reliability assessments.173

3. A new line-sampling-based procedure adapted to multiple roots174

3.1. Generalities on line sampling175

This algorithm, also known as “Axis-Orthogonal Simulation” [20], con-176

sists in, firstly, generating samples in a hyperplane orthogonal to a direction177

α that points towards the limit-state surface, and then, solving several line178

searches in that direction. A first preliminary step is to apply an isoprob-179

abilistic transformation T : RnX −→ RnX which maps the original random180

variables X with the standard normal random variables U where nX is the181

number of random variables. By applying the rotationR such thatV = RU,182

where V1 is a standard random variable whose outcome is parallel to α and183

V2:nX
= U⊥

α is a random vector (of size (nX − 1)) whose realization lies in184

the hyperplane orthogonal to α, the failure probability can be expressed as185

follows:186

Pf =

∫

RnX−1

∫

G⊥≤0

φ (v1) dv1φU⊥
α

(
u⊥
α

)
du⊥

α (6)
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Figure 2: Graphical representation of the LS procedure.

where G⊥ ([
v1,u

⊥
α

])
is the limit-state function in the rotated space and φ (·)187

is the pdf of the standard normal distribution. A graphical representation of188

the LS procedure is given in Figure 2. Assuming that, for any u⊥
α, r

(
u⊥
α

)
is189

the unique solution of G⊥ (
v1;u

⊥
α

)
= 0 , the failure probability can finally be190

expressed as:191

Pf =

∫

RnX−1

Φ
(
−r

(
u⊥
α

))
φU⊥

α
(u⊥

α)du
⊥
α (7)

where Φ (·) is the cdf of the standard normal distribution. When sampling192

nLS orthogonal points, the estimation of the failure probability and its cor-193

responding variance can be estimated as follows:194

P̂f =
1

nLS

nLS∑

i=1

p
(i)
f (8)

195

Var
(
P̂f

)
=

1

nLS (nLS − 1)

nLS∑

i=1

(
p
(i)
f − P̂f

)2

(9)

where p
(i)
f = Φ

(
−r

(
u
⊥,(i)
α

))
is the failure probability along the (i)th-line.196

3.2. Challenge for applying line sampling to the penstock reliability problem197

As the limit-state function defined in Subsection 2.3 for the reliability198

model for penstocks represents the intersection of three events, an adaptation199
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of the LS procedure presented in Subsection 3.1 is required. Indeed, the200

assumption of unicity of the root r∗ (v2:n) is not met here. Applications of201

LS to such cases can already be found such as in [21] in the context of linear202

limit-state functions and Gaussian random variables.203

In the particular case of the reliability of penstocks, Figure 1 illustrates204

the fact that, depending on the sample u⊥
α and the direction α, two cases205

can be encountered:206

• either the failure band is not reached, which results in the fact that207

there is no root;208

• or the failure band is reached in which case there are two roots denoted209

r1 and r2.210

Figures 3 and 4 represent the several limit-state functions G⊥
N+1 (v1), G

⊥
N (v1),211

G⊥
HPT (v1) andG⊥

max (v1) for two different samples u
⊥,(i)
α whereG⊥

j = Gj

(
u
⊥,(i)
α , v1

)
.212

As the functions G⊥
N+1, G

⊥
N and G⊥

HPT are decreasing, the composed func-

0.0 2.5 5.0 7.5 10.0
v1

−0.5

0.0

0.5
G
⊥,(1)
N

G
⊥,(1)
N+1

G
⊥,(1)

HPT

G
⊥,(1)
max

r
(1)
1,2

(a)

5.0 5.5 6.0 6.5 7.0
v1

0.0

0.2

0.4
G
⊥,(1)
N

G
⊥,(1)
N+1

G
⊥,(1)

HPT

G
⊥,(1)
max

r
(1)
1,2

(b)

Figure 3: Values of G
⊥,(i)
j in function of v1 for a case with two roots (a) on which a zoom

is performed (b).

213

tion G⊥
max first decreases with G⊥

N+1 and then increases either with −G⊥
N or214

−G⊥
HPT. Actually, there are three distinguishable cases:215

1. the two roots correspond to G⊥
N+1 = 0 and G⊥

N = 0 as in the example216

in Figure 3;217

2. the root of G⊥
HPT = 0 is smaller than the root of G⊥

N+1 = 0 which218

implies no solution for G⊥
max = 0 as in the example in Figure 4,219
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0.0 2.5 5.0 7.5 10.0
v1

−0.5

0.0

0.5

G
⊥,(2)
N

G
⊥,(2)
N+1

G
⊥,(2)

HPT

G
⊥,(2)
max

Figure 4: Values of G
⊥,(i)
j in function of v1 for a case with no roots (see the G

⊥,(2)
max curve).

3. the two roots correspond to G⊥
N+1 and G⊥

HPT (much rarer). Typically,220

this happens when the root of G⊥
HPT = 0 is between the roots of G⊥

N+1 =221

0 and G⊥
N = 0.222

When performing LS with two roots r1 and r2 (such that r1 < r2) involved223

at each iteration, p
(i)
f from Eq. (8) becomes:224

p
(i)
f = Φ

(
−r(i)1

)
− Φ

(
−r(i)2

)
. (10)

In such case where no roots exist, p
(i)
f is equal to 0. In the following section,225

three algorithms constructed in accordance with the events E1, E2 and E3226

are proposed in order to efficiently solve this multiple root search problem.227

3.3. Proposition of three adapted line sampling procedures228

Algorithm 1 presents the general LS procedure (in the standard normal229

space) used to estimate the failure probability which is very common, except230

for the fact that the initial direction α is obtained with a MCF algorithm231

and that there are two roots to search for (which may not always exist). If232

valid roots are found and if the point corresponding to the first root has233

a smaller distance to the origin than the previous optimal point u∗, then234
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Algorithm 1 – General LS procedure (for possible two roots).

Pf ← 0
Find α,u∗

MCF # MCF results

Generate u ∼ N (0, 1)
for i : 1→ nLS do

uα
⊥,(i) ← u(i)−

(
u(i).α

)
α # projection on the orthogonal hyperplane

Search for r
(i)
1 and r

(i)
2 # see Algorithms 2 and 3

if r
(i)
1 and r

(i)
2 exist then

p
(i)
f = Φ

(
−r(i)1

)
− Φ

(
−r(i)2

)
# failure lies in

[
r
(i)
1 , r

(i)
2

]

if ∥uα
⊥,(i) + r

(i)
1 α∥ < ∥u∗

MCF∥ then # active line sampling

u∗ ← uα
⊥,(i) + r

(i)
1 α

α← u∗/∥u∗∥
end if

else
p
(i)
f = 0 # failure is never reached

end if
Pf ← Pf + p

(i)
f

end for
Pf ← Pf/nLS

u∗ and the optimal direction α are updated. This is a feature of the so-235

called “active line sampling” [22] which is useful in this case as the MCF236

algorithm may not always give the best possible direction. The procedures237

used to find the roots when considering the events E1 (related to Gmax) and238

E2 (related to Gprod) are both presented in Algorithm 2 as they are quite239

similar. Algorithm 3 is proposed to find the roots when considering only the240

event E3. It is important to keep in mind that the choice of the event does241

not impact the position of the roots but only the procedure to find them.242

Indeed, the event E1 is only composed of one function which is supposed to243

be always decreasing first and then always increasing. As it is formulated as244

the maximum value of three different functions, its shape may not be smooth.245

The corresponding procedure in Algorithm 2 (in blue) aims at estimating the246

minimum value of the function. If the minimum value is negative, then the247

first root and the second root are searched in its neighborhood (before and248

after). If the minimum value is positive, then no root exists and pf is set to249
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Algorithm 2 – Roots search with the events E1 and E2.

m(i) = min
v1

G⊥
max (v1)

m(i) = min
v1

G⊥
prod (v1)

if m(i) < 0 then # else case 2

Find r
(i)
1 < m(i) s.t. G⊥

max

(
r
(i)
1

)
= 0

Find r
(i)
2 > m(i) s.t. G⊥

max

(
r
(i)
2

)
= 0 # case 1 or 3

Find r
(i)
1 < m(i) s.t. G⊥

prod

(
r
(i)
1

)
= 0

if G⊥
HPT

(
r
(i)
1

)
> 0 then # else case 2

Find r
(i)
2 > m(i) s.t. G⊥

prod

(
r
(i)
2

)
= 0 # case 1

if G⊥
HPT

(
r
(i)
2

)
< 0 then

Find r
(i)
2 s.t. G⊥

HPT

(
r
(i)
2

)
= 0 # case 3

end if
end if

end if

Algorithm 3 – Roots search with the event E3.

Find r
(i)
1 s.t. G⊥

N+1

(
r
(i)
1

)
= 0

if G⊥
HPT

(
r
(i)
1

)
> 0 then # else case 2

Find r
(i)
2 > r

(i)
1 s.t. G⊥

N

(
r
(i)
2

)
= 0 # case 1

if G⊥
HPT

(
r
(i)
2

)
< 0 then

Find r
(i)
2 s.t. G⊥

HPT

(
r
(i)
2

)
= 0 # case 3

end if
end if

0. The procedure applied for the event E2 and described in Algorithm 2 (in250

red) is quite similar to the one for the event E1. E2 is composed of the two251

functions GHPT which is supposed always decreasing and Gprod = GN+1.GN252

which is supposed always decreasing first and then always increasing. It is253

necessary, in this case, to verify the position of the root of GHPT. If it appears254
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before the first root of Gprod then there is no solution. Otherwise, the second255

root to be kept is the smallest one between the root of GHPT and the second256

root of Gprod.257

The event E3 is composed of the three supposed decreasing functions258

GN+1, GN and GHPT. These functions taken one by one are generally259

smoother but may still present discontinuities in some cases. If the root260

of GHPT is smaller than the root of GN+1 then there is no solution. Other-261

wise, the second root to be kept is the smallest one between the root of GHPT262

and the root of GN . The algorithms corresponding to the events E1, E2 and263

E3 are respectively denoted by AE1 , AE2 and AE3 .264

3.4. Numerical comparison of the three LS algorithms265

The numerical tools used to perform the minimization and the roots266

search are taken from the Python optimization package in SciPy (scipy.optimize).267

The minimization is conducted with the “bounded” algorithm which uses the268

Brent method to find a local minimum in an interval. The root search is269

conducted either with the “toms748” algorithm [23] in AE1 and AE2 or the270

“newton” algorithm in AE3 as the functions involved are more regular. Each271

algorithm must be able to treat the three cases mentioned in Section 3.2.272

The first two cases are frequent while the third case is rarer. Depending on273

which algorithm is used, the efforts needed to find the roots (or to find out274

that there is no root) to deal with each case will differ. This is presented275

in Table 2 where “Minimization” corresponds to the search of a minimum276

either for Gmax or Gprod, “Roots search” corresponds to the number of times277

a root is searched and “GHPT evaluations” is the number of evaluations of278

GHPT at a given root.279

From Table 2, one can expect the algorithm AE3 to be the least demand-280

ing in number of code evaluations and the algorithm AE2 to be the most281

demanding one. This conjecture is verified by estimating 500 failure proba-282

bilities corresponding to different input probabilistic distribution parameters283

with each LS algorithm for a total number of iterations nLS = 1× 103. The284

averages #GN+1-calls, #GN -calls and #GHPT-calls of the number of evalu-285

ations #Gi of each single limit-state function are calculated as well as the286

average time t required for estimating one failure probability. The number of287

evaluations that come from the MCF algorithm used for both the LS method288

and the IS method is not given here as it is the same for all the methods289

and as it is negligible compared to the total number of evaluations. The290

results are presented in Table 3 and confirm what was expected from Table291
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Table 2: Operations performed for each event.

Algorithm Minimization Roots search GHPT evaluations

AE1

Case 1
Case 2
Case 3

1
1
1

2
0
2

0
0
0

AE2

Case 1
Case 2
Case 3

1
1
1

2
1
3

2
1
2

AE3

Case 1
Case 2
Case 3

0
0
0

2
1
3

2
1
2

2. AE3 requires more than three times less total evaluations than AE2 and

Table 3: Performances of each LS algorithm (AE1 , AE2 , AE3).

AE1 AE2 AE3 IS

#GN+1-calls 19162 22524 8484 5× 104

#GN -calls 19162 22524 3062 5× 104

#GHPT-calls 19162 1516 996 5× 104∑
#Gi 57486 46564 13530 1.5× 105

t(s) 4.13 3.90 2.21 6.10

292

more than four times less than AE1 . The ratios in terms of computational293

time are not the same as for the number of total evaluations as it depends on294

other factors such as the different functions that are used. Nevertheless, one295

failure probability estimation with AE3 seems to be almost twice as fast as296

the two others. It cannot yet be said if the LS algorithms are more efficient297

than the IS algorithm as it depends on the numbers of iterations nLS and nIS.298

What can be said is that one IS iteration implies (in the current version of299

FISTARR) three limit-state evaluations (one for each single limit-state func-300

tion) and one LS iteration implies roughly an average of 57 total evaluations301

with AE1 , 46 total evaluations with AE2 and 13 total evaluations with AE3 .302

The comparison is now made by looking at the evolution of the estimated303

failure probability using the three proposed LS algorithms with the IS algo-304

rithm and the reference value, denoted as “IS ref.” obtained by performing305

the MCF importance sampling with nIS = 106 samples. The IS algorithm306
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is performed using OpenTURNS, an open-source Python library [19]. The307

results are presented in Figure 5. The comparison is presented on four dif-
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Figure 5: Comparison of Pf estimation obtained with each LS algorithm and the IS algo-
rithm.

308

ferent configurations of penstocks. The abscissa axis represents the number309

of LS iterations nLS and the number of IS iterations nIS divided by 25. This310

means, for example, that 2× 103 LS iterations correspond to 5× 104 IS iter-311

ations (where one IS iteration evaluates each limit-state function once). One312

first interpretable result is that the three LS algorithms give identical curves313

for all four probabilities. The seed of the random generator being the same,314

this means that the three algorithms find exactly the same roots which is315

what is expected. The comparison with the IS curve shows that the three316

LS algorithms are efficient. Indeed, while the IS curve seems to converge317

rapidly towards the reference value for some configurations (see the middle318

probabilities), it also seems that the convergence is slower in some cases (see319

the lowest curve and especially the highest curve). From this initial com-320

parison whose number of samples is too small to draw any final conclusion,321

the LS algorithms seem relevant for applying info-gap. In the following, AE3322

is the only LS algorithm kept as it performs faster. The following section323

strengthens the comparison by analysing robustness curves obtained using324
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the different failure probability estimators.325

4. Methodology for robustness evaluation326

4.1. Info-gap method applied to the reliability of penstocks327

Robustness analysis is of particular interest in engineering applications.328

Classically, a system is considered robust if small variations in an expected329

state of operation do not considerably deteriorate the expected performance.330

A robust solution may be preferable over a non-robust optimal solution.331

The info-gap framework [5] aims at quantitatively measuring the notions of332

robustness and opportunity in the context of decision making by introducing333

the following robustness function h∗
IG and opportuneness function β∗

IG:334

h∗
IG = max

h

{
max

u∈U(h,
∼
u)

R (q,u) ≤ rcr

}
(11)

335

β∗
IG = min

h

{
min

u∈U(h,
∼
u)

R (q,u) ≤ rrw

}
(12)

where h ∈ R+. Robustness is therefore defined as the maximum amount of336

uncertainty that can be tolerated, i.e. for which the worst possible perfor-337

mance is still acceptable while opportunity is defined as the minimum amount338

of uncertainty needed for a reward performance to become possible. Exam-339

ples of robustness and opportunity curves are shown in Figure 6 (right). The340

notion of opportunity applied to small failure probabilities is less relevant341

for safety assessment than the notion of robustness. Therefore, it will not be342

further discussed in this paper.343

Three components appear in the info-gap robustness function in Eq. (11):344

• the performance function R (q,u) that evaluates the quantity of in-345

terest of a system of characteristic vector q at specific values of the346

uncertain vector u;347

• the critical performance rcr ∈ R which is the value that the quantity348

of interest must not exceed. Its value may be determined or not in an349

info-gap analysis;350
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• the uncertainty model U
(
h,

∼
u
)

which is usually a non-probabilistic351

convex set [24] of horizon of uncertainty h ∈ R+ containing the best352

estimation ũ (nominal value of u) of the uncertain vector u. For h = 0,353

U (h, ũ) reduces to ũ.354

A key feature of the convex uncertainty models is that they are nested as355

shown in the illustrative example depicted in Figure 6 (left):356

U
(
h1,

∼
u
)
⊆ U

(
h2,

∼
u
)

for h1 ≤ h2. (13)

Therefore, the robustness function is monotonous with respect to the horizon357

of uncertainty and to the performance level.358

The general formulation given in the previous section can be applied to359

the reliability analysis of penstocks. Indeed, the performance function in this360

case is the failure probability Pf (q,u) where q represents the characteristic361

vector of one specific penstock and u = θ the vector of uncertain distribution362

parameters. The critical performance is a target failure probability P cr
f that363

must not be exceeded. Its value may be determined before the robustness364

analysis but may also be chosen after having built the robustness curve.365

The uncertain distribution parameters vector θ considered in this study is366

θ = [µ∆ecorr , µ∆eextra , amax, βKIC
]⊤. It is noted that the choice of epistemic vari-367

ables is illustrative in order to apply the info-gap framework. The uncertainty368

model U
(
h,

∼
θ
)
considered is the basic hyperrectangle convex model defined369
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as the Cartesian product of all intervals of each uncertain parameter. For370

a given horizon of uncertainty h, the interval of the parameter θi is defined371

as Iθi =
[
θ̃i (1− h) , θ̃i (1 + h)

]
if θ̃i is non-negative or Iθi = [1− h, 1 + h]372

otherwise. Moreover, the nominal values are set to θ̃ = [1, 0, 4, 90]⊤. The373

robustness function in Eq. (11) can be rewritten as follows:374

h∗
IG = max

h





max
θ∈U

(
h,

∼
θ

)Pf (θ) ≤ P cr
f




. (14)

4.2. Comparison of robustness curves375

This section presents the methodology used to estimate the robustness376

curve of a given nominal configuration of penstock. When applying info-gap377

in practice, it is generally not necessary to solve the double optimization378

problem as in Eq. (14) in order to find the unique value h∗
IG. Instead, it is379

less time consuming and more informative to estimate the robustness curve380

by estimating the highest failure probability Pf(hi) = max
θ∈U

(
hi,

∼
θ

)Pf (θ) at the381

discretized values hi ∈ [0;hmax]. Therefore, it is up to the analyst to choose382

the number of horizons of uncertainty and its maximum value.383

For this application, it has been chosen to construct the robustness curves384

with 10 values hi ∈ [0; 0.2]. To find the maximum of the failure probabil-385

ity, the global optimization algorithm “GN ORIG DIRECT L” adapted from the386

original DIRECT algorithm [25, 26] and implemented in the NLopt Python li-387

brary is used with a maximum number of 500 evaluations. This algorithm388

searches for the optimal value by iteratively dividing the hypercube opti-389

mization space into optimal hyperrectangles.390

The objective is to compare on one nominal configuration of penstock the391

robustness curves obtained using the AE3 and IS algorithms as failure proba-392

bility estimators with the reference curve. The comparison is made in terms393

of robustness curves (see Figure 7), relative error ηPf
with the reference curve394

(see Figure 8) and cumulative calculation time (see Figure 9) considering395

nIS ∈ {2.5× 104, 5.0× 104, 1.0× 105} and nLS ∈ {1.0× 103, 2.0× 103, 3.0× 103}.396

It appears from Figures 7 and 8 that the IS algorithms perform rather well397

in general, except for the three last values of h for which the robustness398

curves deviate from the reference curve. However, even in this less favor-399

able case, the optimization process will automatically provide conservative400
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results (P f is overestimated) and the confidence intervals contain the refer-401

ence curve: their performance remains acceptable even in this case. Note402

that these non adaptive IS algorithms could be further optimized; moreover,403

other optimization algorithms than LD MMA in the multi-constraint design404

point may converge better. This deviation does not seem to happen with the405

proposed algorithm AE3 for which the robustness curves remain close to the406

reference curve. Moreover, the proposed LS algorithms seem also efficient in407

terms of cumulative computational time as shown in Figure 9. Although no408

definitive conclusion can be made regarding the comparative efficiency of the409

proposed algorithms with the IS ones, the adapted LS algorithms seem to be410

well suited in this context of robustness analysis.411

4.3. Synthesis412

Drawing robustness curves requires an efficient failure probability estima-413

tor over the whole uncertainty space. Indeed, as optimization is performed414

repeatedly, only a few bad estimations suffice to make the robustness curve415

deviate. In addition to a general trend to provide conservative results that416

could be observed from FORM-IS in standard penstock reliability evalua-417

tions, the fact that the optimization algorithm used is global and that it418
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searches for a maximum value will generally tend to make the errors conser-419

vative which is preferred for safety assessments. Moreover, a criterion based420

on the coefficient of variation of each failure probability estimation could be421

used to insure a sufficient convergence at each evaluation.422

However, the info-gap robustness analysis is therefore very instructive on423

the efficiency of the failure probability estimator in the considered uncer-424

tainty space. The proposed adapted line sampling algorithms represent an425

interesting alternative as they manage to better target the restricted failure426

domain and correctly estimate the roots. In this reliability application, the427

partial knowledge on the behaviors of each limit-state function is helpful for428

adapting the root search. Nevertheless, each LS iteration still requires a large429

number of G-functions evaluations. The following section presents a method430

that aims at training artificial neural networks (ANN) in order to predict431

the roots for any sampled line and for any uncertain vector θ during the432

robustness analysis.433

5. Combination of two artificial neural networks for the LS roots434

prediction435

5.1. Problem statement436

As the G-functions involved in Eq. (3) are a series and a combination437

of analytical expressions, a single failure probability estimation may be ob-438

tained within a few seconds. Nevertheless, when considering no information439

that could simplify the optimization process such as a monotonous behavior440

with respect to the epistemic distribution parameters, applying the info-gap441

method as it is done in the previous section requires the evaluation of sev-442

eral thousands of failure probabilities. Therefore, being able to reduce the443

computational time of one probability evaluation remains relevant. To do444

so, the literature offers a wide variety of methods in the case of parametric445

p-boxes [27]. Among them, some methods aim at substituting the expen-446

sive G-function with a surrogate model [28, 29]. This is not relevant in the447

present application as the G-functions are not expensive to evaluate. It is448

considered here to use the surrogate models in order to directly evaluate the449

existence and (when they exist) the values of the roots for any joint vector450

(u,θ). As the G-functions are relatively fast to compute, several thousand451

training samples may be considered for building predictive surrogate mod-452

els. Therefore, the choice made in the present paper is to use ANNs rather453
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than other types of surrogate models such as kriging or polynomial chaos454

expansions.455

Other methods exist such as those based on evaluating many failure prob-456

abilities using a unique input dataset. In [30, 31], failure probabilities (or457

more precisely predicted failure probabilities in [31]) are estimated from a458

unique set of samples generated in the augmented space (X,Θ) where Θ459

is an instrumental probabilistic distribution on the distributional parame-460

ters θ. However, the mathematical formulations involved in this method are461

expected to increase the computational time in the present application. In462

[32], the line sampling roots obtained given one input distribution parame-463

ters are transformed in order to estimate failure probabilities with different464

input distribution parameters without having to search for the new roots.465

Nevertheless, this method does not seem directly applicable in the present466

case where some iterations do not have any roots. In [33], the method called467

“weighted importance sampling” (WIS) enables to evaluate failure probabil-468

ities from a single dataset very easily as it only requires the calculation of a469

ratio of densities. This method is also considered in this work and will be470

part of the comparison when computing robustness curves. Its application is471

shortly described in Appendix A.472

5.2. Generalities on artifical neural networks473

This part does not aim at giving an extended description of ANNs but474

only at presenting the basic notions necessary to understand how they may475

be of use for reliability analysis. ANNs represent a mathematical structure476

that processes information from an input layer to an output layer through477

hidden layers [34]. The information is passed from one layer to another with478

some specific functions called “artificial neurons” as illustrated in Figure479

10. Each neuron belonging to the layer l(i) receives as an input, a linear480

combination on the outputs s
(i−1)
k of the neurons of the previous layer l(i−1)

481

with weights w
(i)
k,j and a bias term b

(i)
j . The input is then processed with482

an activation function f (i) whose output s
(i)
j is passed to the neurons of the483

next layer. This simple mechanism is depicted in Figure 10. In this paper,484

fully connected feedforward ANNs are considered which simply corresponds485

to architectures where the information only goes from all the neurons of layer486

l(i−1) to all the neurons of layer l(i) (but not between neurons of a same layer487

which is the case for recurrent neural networks).488

An ANN may learn complex relationships between inputs and outputs by489
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Figure 10: Representation of a single artificial neuron.

training it with an available dataset (e.g., composed of inputs-output real-490

izations). Indeed, by performing backpropagation through gradient descent491

[35], the ANN is able to update the values of the weights wk,j and the biases492

bj such that the errors (defined through a loss function) between the output493

dataset and the ANN outputs are minimized. The application range of such494

networks is very wide as ANNs may be used for classification and regression495

problems. Moreover, it is able to treat all sorts of information [36]. There-496

fore, ANNs also find their use in reliability analyses as surrogate models,497

most often to replace an expensive limit-state function. In [37], [38] and [39],498

ANNs are combined with Monte Carlo simulation, subset simulation and line499

sampling respectively. A review of their use in the context of reliability anal-500

ysis is proposed in [40]. In the present work, ANNs are combined with LS in501

order to directly predict the roots associated to each u⊥
α drawn from the LS502

algorithm.503

5.3. Proposed methodology based on artificial neural networks504

ANNs are combined to the LS-based AE3 algorithm, which has been iden-505

tified as the most efficient in Subsection 4.2, in order to reduce the computa-506

tional time required for obtaining a robustness curve. What makes the AE3507

still time consuming is that it requires a large number of evaluations of the508
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G-functions, first to assess the existence of roots and, second, to evaluate509

their values. The objective here is to be able, for any joint sample (u,θ),510

to predict the answers of the two previous problems based on training sam-511

ples (u,θ)train. The fact of considering the probabilistic standard vector u512

together with the epistemic uncertain vector θ as the input of the ANN en-513

ables to create a single surrogate model applicable during the whole info-gap514

analysis.515

Two types of ANNs are jointly proposed. First, a classification ANN,516

denoted by ANN1, is necessary in order to predict if roots exist or not for a517

given sample (u,θ)(i). Then, a regression ANN, denoted as ANN2, is used518

to predict the values of both roots when they exist. The procedure that is519

followed to build both ANNs is presented hereafter:520

1. Generate ntrain training and nval validation samples of u according to521

the independent standard Gaussian distribution ;522

2. Generate ntrain training and nval validation samples of θ according to523

the uniform distribution with the bounds
[
θ (hmax) ,θ (hmax)

]
with a524

user-defined hmax ;525

3. For each
(
u(i),θ(i)

)train

and
(
u(i),θ(i)

)val

, assess the existence or not526

of roots using algorithm AE3 . Any joint vector for which no root exists527

is denoted (u,θ)(0) while the others are denoted (u,θ)(1) ;528

4. Build and learn the surrogate model ANN1 with the samples (u,θ)train529

and validate its performance with the samples (u,θ)val ;530

5. Build and learn the surrogate model ANN2 with the samples (u,θ)(1),train531

and validate its performance with the samples (u,θ)(1),val.532

A lot of parameters may be tuned when building ANNs such as the num-533

ber of layers, the number of neurons per layer or the type of loss and accuracy534

metrics. Both ANNs are built using the Python libraries Keras and Tensor-535

flow. More information about the architectures and parameters of ANN1 and536

ANN2 for the penstock use-case is given in Appendix B.537

A small number of errors in the roots classification may lead to unfixable538

errors especially as less compensation will take place with highly efficient539

ANNs. One way of treating this issue is to consider a multi-fidelity approach540

and to combine the classification surrogate model ANN1 with the initial al-541

gorithm AE3 for estimating Pf (θ). Indeed, for a given joint vector (u,θ), the542

output of ANN1 corresponds to the probability that roots exist. Therefore,543

if the output is close to 0, one can have strong confidence that no root exists.544
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On the contrary, if the output is close to 1, one can have strong confidence545

that some roots exist. However, if the output takes a value close (where546

close might be quantified by the analyst) to 0.5, then one might want to547

check the correct answer with the AE3 algorithm. Consequently, by defining548

the security value s ∈ [0, 0.5], the hybrid multi-fidelity method denoted by549

“AE3-ANN” is proposed. Thus, it simply adds the following operation:550

• if the output ANN1

(
u(i),θ(i)

)
∈ [0.5− s; 0.5 + s], one can estimate551

the roots using AE3 ;552

• otherwise, one can reasonably trust the result obtained from ANN1.553

The complete procedure is depicted in Figure 11.554

6. Application cases555

6.1. Rosenbrock function556

The methodology is first applied to a limit-state function based on the557

Rosenbrock function in two dimensions:558

g (X1, X2) = 100
(
X2 −X2

1

)2
+ (X1 − 1)2 − 0.01 (15)

where X1 ∼ N (θ1, 1) and X2 ∼ N (θ2, 1). Indeed, this numerical case has559

a similar problematic as the penstock reliability problem in terms of root560

search. As depicted in Figure 12.(a) for θ1 = 1.5 and θ2 = 0, the limit-state561

function takes on a very narrow elliptic shape. Due to this geometry and to562

the fact that the limit-state function is not formulated as an intersection, the563

LS algorithm AE1 is best suited. However, Figure 12.(b) shows that a large564

number of LS iterations and IS samples are needed in order to converge to565

the reference failure probability.566

The ANN-based methodology is applied by considering ntrain ∈ [1× 103, 3× 104],567

nval = 0.2ntrain, Θ1 ∼ U (0, 3) and Θ2 ∼ U (−1, 1). The four following metrics568

relevant to the performance of ANN1 and ANN2 are defined:569

• “false root” is the proportion of wrongly declared existing roots from570

ANN1 ;571

• “forgotten root” is the proportion of existing roots forgotten by ANN1572

;573
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with AE1
and with importance sampling (b) for the Rosenbrock function.

• Q2(r1) is the coefficient of preditivity calculated on the first root r1 in574

common between ANN1 and AE1 ;575

• Q2(r2) is the coefficient of preditivity on the second root r2 in common576

between ANN1 and AE1577

where the coefficient of predictivity has the following expression:578

Q2(ri) = 1−
∑nri

j=1

(
r
(j)
i − r̂i

(j)
)2

∑nri
j=1

(
r
(j)
i − ri

(j)
)2 (16)

where nri is the number of real roots predicted by ANN1, r
(j)
i the roots579

obtained with AE1 , r̂i
(j) the roots obtained with ANN2 and ri

(j) the mean on580

all roots.581

The values of these metrics are calculated on 3× 103 new testing samples582

(u,θ)test. Note that the availability of such testing samples is not always583

present for more time-demanding applications. Figure 13 presents the impact584

of the number of training samples on the four metrics. Except for ntrain =585

1000 where the proportion of forgotten roots is high (actually is is equal to586

the true proportion of existing roots meaning that ANN1 misjudged every587

single existing root), the proportions of wrong classifications quickly become588

very low (typically lower than 1%). It also appears that the coefficients of589
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Figure 13: Illustration of the performances of ANN1 (a) and ANN2 (b) on testing samples
in function of the number of training samples on the Rosenbrock function.

predictivity of both roots are very high (typically greater than 99%) even for590

ntrain = 1000.591

The methodology is now tested with ntrain = 3 × 104 at three randomly592

chosen uncertain vectors θ(i): θ(1) = [2.37, 0]⊤, θ(2) = [0.84,−0.99]⊤ and593

θ(3) = [0.88,−0.08]⊤. One can see in Figure 14.(a) that ANN1 manages594

very well to predict the orthogonal points for whtch roots exist and that595

ANN2 is very precise on the estimation of r1,2 although the zoom in Figure596

14.(b) seems to show that the elliptic shape is simplified by two lines. These597

good visual performances are confirmed with the comparison of the failure598

probabilities estimations presented in Figure 15. In this case, the proportions599

of forgotten roots (0.44%, 0.1% and 0.18%) and the proportions of false roots600

(0.02%, 0.04% and 0%) are very low such that there is no need to apply the601

security value s.602

6.2. Reliability of penstocks603

The ANN methodology is now applied to the reliability assessment of604

penstocks. As already defined in Subsection 4.1, the vector of uncertain605

distribution parameters is θ = [µ∆ecorr , µ∆eextra , amax, βKIC
]⊤ with the follow-606

ing nominal vector θ̃ = [1, 0, 4, 90]⊤. The maximum value of the horizon607

of uncertainty having been set at hmax = 0.2, the training is performed608

considering Θ1 ∼ U (0.8, 1.2), Θ2 ∼ U (−0.2, 0.2), Θ3 ∼ U (3.1, 4.9) and609

Θ4 ∼ U (71, 109). Again, the values of the four testing metrics are cal-610

culated on 3 × 103 new testing samples for ntrain ∈ [1× 103, 3× 104] and611
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Figure 14: Illustration of the performances of ANN1 and ANN2 for three distribution
parameters vectors (a) with a zoom on one limit-state (b) for the Rosenbrock function.
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nval = 0.2ntrain. The results shown in Figure 16 reveal good performances612

but for a higher number of training samples compared to the results ob-613

tained on the Rosenbrock function. One may notice that the coefficient of
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4
false roots (%)
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(a)
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97
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Figure 16: Illustration of the performances of ANN1 (a) and ANN2 (b) on testing samples
in function of the number of training samples on the penstock use-case.

614

predictivity related to r2 is always lower than the one related to r1. A pos-615

sible explanation is that the first root always corresponds to the limit-state616

function GN+1 whereas the second root either corresponds to GN (in most617

cases) or to GHPT which may be a more challenging feature to understand618

for ANN2.619

The procedure is now tested on the two samples θ(1) = [1, 0, 4, 90]⊤ and620

θ(2) = [1.2, − 0.2, 4.8, 108]⊤ as they both represent the nominal point and621

one of the vertex points respectively. The results with the AE3 algorithm and622

the ANNs are compared for ntrain = 3 × 104. The values of the four testing623

metrics are given in Table 4 for nLS = 3× 103.

Table 4: ANNs metric values on θ(1) and θ(2).

false roots (%) forgotten roots (%) Q2(r1) (%) Q2(r2) (%)
θ1 0.16 0.63 99.8 99.7
θ2 1.6 0.06 99.7 99.7

624

Figure 17 compares the values of p
(i)
f obtained from the ANN and from625

AE3 at both distribution parameters vectors θ(1) and θ(2). The comparisons626
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Figure 17: Comparison between the values of p
(i)
f from AE3

and from the ANN at θ(1) (a)

and θ(2) (b).

of the evolution of Pf

(
θ(1)

)
and Pf

(
θ(2)

)
with the two algorithms are pre-627

sented in Figure 18. The evolution of Pf (θ1) with both algorithms is almost
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Figure 18: Evolution of Pf

(
θ(1)

)
and Pf

(
θ(2)

)
with AE3

and the ANNs.

628

identical. Indeed the number of wrong classifications from ANN1 is very low629

and ANN2 seem to predict both roots with high precision. The evolution of630
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Pf (θ2) with the ANNs is slightly overestimated which may be caused either631

by the evaluation of many false roots or by an overestimation of each single632

p
(i)
f . It is hard to tell from Figure 17.(b) if the single failure probabilities633

are overestimated as most predictions seem slightly underestimated but the634

worst predictions correspond to a few overestimated predictions. However,635

Figure 18 clearly shows a relatively large proportion (1.6%) of false roots636

which will automatically increase the estimated failure probability. To im-637

prove the estimation of Pf (θ2), the security value s may be used to reduce638

the number of false roots. Figure 19 presents the evolution of Pf (θ2) for639

three different values of s. As expected, increasing the value of s brings the
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P
f
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Figure 19: Evolution of Pf (θ2) for different security values.

640

probability estimation curve closer to the one obtained with AE3 . The side641

effect is that increasing s automatically increases the number of G-functions642

evaluations. However, Figure 20 reveals that a very large proportion of the643

output of ANN1 is either very close to 0 or very close to 1 meaning that the644

verification process remains occasional.645

6.3. Application to the estimation of robustness curves646

The proposed methodology is used for estimating the robustness curves.647

The comparison is made by considering the following failure probability es-648
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Figure 20: The pdf of the probability output p1 of ANN1 compared to its pdf conditioned
to bad classifications for θ(2).

timators: “AE3 2 × 103” which estimates Pf with AE3 for nLS = 2 × 103,649

“AE3-ANN” which uses ANN1 and ANN2 applying the security value s = 0.3650

for nLS ∈ [1× 103, 2× 103], “WIS 1× 105” which uses the Weighted Impor-651

tance Sampling algorithm in [33] with a unique importance sampling of 105652

samples considering θ = θ̃ and “IS ref” as the same reference curve as in the653

previous robustness comparisons. Again, the comparison is made in terms of654

robustness curves (see Figure 21), error with the reference curve (see Figure655

22) and cumulative computational time (see Figure 23).656

Figures 21 and 22 reveal accurate estimations of the robustness curves657

using the ANNs and using the WIS approach. Actually, it shows that using658

the WIS approach by using a unique importance sampling of 1×105 samples659

reduces the errors that were obtained when repeatedly using the IS algorithm.660

A further reduction could be achieved by combining WIS with optimized661

FORM-IS algorithms leading to a lower sample size. In Figure 23, it can be662

seen how the use of ANNs considerably reduces the computational time even663

when considering a security value s = 0.3.664

7. Conclusion665

In this paper, two original and complementary methodologies are pro-666

posed in order to efficiently apply the info-gap framework to the reliability667

assessment of penstocks.668
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Firstly, the inner challenging reliability problem is tackled by the use of669

three customized LS algorithms (AE1 , AE2 andAE3) based on three equivalent670

formulations of a complex limit-state function made of intersection of events.671

While considering the root search differently, each algorithm yields similar672

estimations of the failure probability. The good performances of the proposed673

algorithms are enhanced with their use for estimating robustness curves.674

However, no definitive conclusion can be drawn about their relative efficiency675

compared to FORM-IS algorithms that perform rather well and could be676

further optimized.677

Secondly, the root search procedure is improved in terms of computational678

time with the use of two artificial neural networks. The first one enables to679

predict the existence (or not) of roots for any given line search and for any680

value of the epistemic uncertain vector θ. The second one predicts the values681

of both roots when they exist. Although the ANNs performance metrics are682

very good, a few bad predictions may lead to non-negligible errors on the683

failure probability. Therefore, a security value is proposed in order to decide684

whether the classification ANN should be trusted or whether the initial al-685

gorithm should be used. The methodology is then tested and proven to be686

very efficient for estimating info-gap robustness curves. However, the security687

value calibrated for the tested configuration may not be generic and a small688
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remaining estimation bias may exist anyway. Moreover, info-gap robustness689

analyses consist in local reliability analyses around a nominal configuration,690

and surrogate-based techniques like ANN may be less appropriate for stan-691

dard penstock reliability assessments where large variations of parameters692

are considered.693

The use of neural networks is motivated by the fact that the limit-state694

functions involved in the industrial use case are relatively fast to evaluate695

which enables a large dataset for the training process. In many practical696

applications, such a large dataset may not be available due to time-consuming697

numerical models. In this case, it would be necessary to consider other types698

of surrogates models such as Gaussian process regression. In particular,699

methods based on active learning such as in [41] may present a high interest700

especially if there is a way to apply it in the augmented space which includes701

the uncertain distribution parameters.702

Moreover, the high computational cost for estimating info-gap robustness703

curves is due to the choice of not making any assumption when successively704

searching for the maximum failure probability at each horizon of uncertainty705

h. Valuable information, such as monotonic behavior of the failure proba-706

bility with respect to distribution parameters, may be assessed from a pre-707

liminary study. For example, dedicated sensitivity measures may guide the708

optimization process especially as they might be obtained simultaneously709

with the failure probability estimation such as classical FORM importance710

factors when using FORM-IS or such as in [42] in the context of line sampling.711
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Appendix A. Presentation of the Weighted Importance Sampling712

technique713

In [33], the objective is to use the failure probability result obtained at714

a nominal value of the distribution parameters θ̃ to estimate failure proba-715

bilities at different values θ without the need to generate new samples. This716

general framework is referred as weighted approach and is applied to Monte717

Carlo simulation, importance sampling and subset simulation. In the present718

paper, only its combination with importance sampling is analyzed.719

The basic idea is similar to classical importance sampling. For any θ, the720

failure probability is expressed as follows721

Pf (θ) =

∫
IF(x)

f (x|θ)
H (x)

H(x)dx (A.1)

where f (x|θ) is the conditional pdf of the random vector X and H(x) is the722

importance sampling instrumental pdf to be defined by the user. Eq.(A.1)723

may be rewritten as an expectation under H(x)724

Pf (θ) = EH

[
IF(x)

f (x|θ)
H (x)

]
(A.2)

which may be estimated by generating N samples x(j) from H(x) as follows725

Pf (θ) =
1

N

N∑

j=1

IF(x
(j))

f
(
x(j)|θ

)

H (x(j))
. (A.3)

Therefore, it can be seen that, no matter the value of θ, the indicator function726

(which is generally expensive to evaluate as it involves the computer model)727

is calculated with the same samples x(j) generated from H(x). Only the728

conditional pdf f
(
x(j)|θ

)
needs to be reevaluated for each θ.729

The performance of the method highly depends on the choice of the in-730

strumental pdf. Indeed, the estimation in Eq.(A.3) is considered as a local731

approximation as a better convergence will be achieved for values of θ that732

are representative of the instrumental pdf H(x). However, such framework is733

compatible with the info-gap robustness analysis for relatively small horizons734

of uncertainty h as maximum failure probabilities are searched for around a735

nominal value θ̃. Therefore, the method is considered for the robustness736

analysis of the reliability of penstocks. The instrumental pdf is constructed737
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based on the MCF design point u∗
MCF. As WIS is defined in the physical738

space, the corresponding design point x∗ is obtained by applying the inverse739

isoprobabilistic transformation: x∗ = T−1 (u∗
MCF). The instrumental pdf is740

then defined with normal distributions for which the means and standard741

deviations are given in Table A.5.

Table A.5: Instrumental pdf HX for applying WIS on the penstock use-case.

Xi Distribution µ σ
X1 = Rm (MPa) Normal x∗

Rm
σRm

X2 = ε (MPa) Normal x∗
ε σε

X3 = ∆ecorr (mm) Normal x∗
∆ecorr

σ∆ecorr

X4 = ∆eextra (mm) Normal x∗
∆eextra

σ∆eextra

X5 = a (mm) Normal x∗
a 0.25x∗

a

X6 = KIC (MPa.
√
m) Normal x∗

KIC
0.25x∗

KIC

742

Appendix B. Artificial neural networks architectures743

The first tuning parameters to be set when constructing ANNs are the744

number of hidden layers, the corresponding number of neurons and the ac-745

tivation functions to be used. There is no precise rule for assessing the746

right numbers of hidden layers and neurons. Generally, the higher the input747

dimension and the complexity of the response behavior, the more hidden748

layers and neurons are needed. Table B.6 presents the chosen architectures749

for ANN1 and ANN2 which are the same except for the output layer as the750

output of ANN1 is a single classification probability (p1 ≤ 0.5 means that751

there is no root and p1 > 0.5 means that are roots) and the output of ANN2752

corresponds to the two predicted roots. The activation functions are also the753

same with the use of “ReLU” except for the output layer where “sigmoid”754

is used for generating the classification probability and “linear” is used for755

the regression problem. Different architectures have not been tested as high756

performances of both ANNs were quickly achieved.757

The next parameters to define are the ones directly involved for the train-758

ing process, namely the loss function, the loss function optimizer, the metric759

used for validation and the number of epochs. The choices made in the760

present paper are given in Table B.7. Both loss functions “binary crossen-761

tropy” and “mean squared error” are the most considered ones for classi-762

fication and regression problems respectively. The loss optimizer “Adam”763
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Table B.6: Architectures of ANN1 and ANN2.

Layer Number of neurons Activation function
ANN1 ANN2 ANN1 ANN2

Input layer 10 10 − −
Hidden layer 1 64 64 ReLU ReLU
Hidden layer 2 32 32 ReLU ReLU
Hidden layer 3 16 16 ReLU ReLU
Output layer 1 2 sigmoid linear

Table B.7: Training parameters of ANN1 and ANN2.

Parameters ANN1 ANN2

Loss function binary crossentropy mean squared error
Loss optimizer Adam Adam
Validation metric accuracy mean squared error
Epochs 50 50

is very common in deep learning and is known to converge efficiently. The764

validation metric is used to quantify the quality of the trained ANNs on the765

validation samples. It is very important as the trained ANNs that are saved766

are the ones that correspond to the epoch with the best validation metric.767

“Accuracy” (the proportion of correct classifications) and “mean squared er-768

ror” are very common for classification and regression purposes respectively.769

The number of epochs plays an important role on the learning process. Too770

few epochs might lead to an underfit model which means that the training771

process did not enable the model to understand well all the features. Con-772

versely, too many epochs might lead to an overfit model which means that it773

only performs well on the training inputs but not on new inputs. However,774

there are ways to circumvent this issue. In the present paper, a checkpoint is775

applied so that the model that is saved is the one that performs best on the776

validation data. Figures B.24 and B.25 present the convergence of the accu-777

racy of ANN1 and of the loss of ANN2. The fact that the best configuration778

of ANN2 is obtained at the last epoch suggests that more epochs might have779

improved the metric. However, both metrics are satisfactory.780
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