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Abstract. A new cooperation-based metaheuristic is proposed for search-
ing gobal optima of functions. It is based on the assumption that the dy-
namics of the objective function does not change significantly between
iterations. It relies on a local search process coupled with a coopera-
tive semi-local search process. Its performances are compared against
four other metaheuristics on unconstrained mono-objective optimization
problems. Results show that the proposed metaheuristic is able to find
the global minimum of the tested functions faster than the compared
methods while reducing the number of iterations and the number of
calls of the objective function.

Keywords: local cooperation · collective decision · metaheuristic opti-
mization · local search

1 Introduction

The simulation of systems is a powerful tool to understand their behaviors and
underline their advantages and limits. Several studies aim at reconstructing vir-
tual systems called digital twins to simulate and verify the behavior of specific
systems. Such systems can be used in mobility or natural disaster studies to re-
produce specific simulation conditions and understand the reasons of such phe-
nomena [4]. Building a digital twin that reproduces the exact behavior of a real
system is not an easy task. As real systems are generaly complex systems with
non-linear interdependencies among their parameters, finding the best modeling
functions and adapting in real-time their parameters to keep a simulation close
to the real behavior of the system is not trivial. Many studies have formalised
the calibration problem as an optimization problem where the parameters of the
modeling functions are tuned by optimizing an objective function: simulation
parameters become decision variables and relevent model outputs are integrated
into objective functions [2,8]. This implies the need for a fast optimization system
that is able to rapidly adapt to changes that may occur in the real system.

Multiple optimization methods exist that could be used to solve this problem
but they present important drawbacks such as a tendency to converge towards
local optima or are too slow [6,11,14].

In this paper we propose a new metaheuristic local optimization method
named CoBOpti, which stands for Cooperation-Based Optimization. It is
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based on an hypothesis of local continuity of the objective function, i.e. the
value of the objective function does not vary dramatically when the value of
decisions variables varies little. Compared to standard state of the art methods,
CoBOpti reaches optimal solutions while reducing the number of iterations and
objective function evaluation.

The main contributions of this paper are as follows:

– We introduce a new local optimization metaheuristic based on an
hypothesis of local continuity and cooperation. This hypothesis allows
to model the problem of searching for a global optimum as a cooperation
problem where a point determines the next point to explore by exploiting
the information of its neighbours.

– We experiment and compare our approach on unconstrained mono-objective
optimization problems with a single decision variable to demonstrate that
the proposed approach allows to reach a global optimum while
minimizing the number of evaluation of the objective function.

The paper is organised as follow : section 2 discusses the limitations of exist-
ing metaheuristics. Section 3 presents our approach and how it gives an answer
to these limitations. In section 4, we introduce the results of our experimenta-
tion, which is then discussed in section 5 before concluding with limitations and
suggest further research.

2 Literature Review

Optimization problems are defined by [3] as finding a vector x̄∗
n = (x∗

1, ..., x
∗
n)

that optimizes an objective function

f̄k(x̄n) = (o1(x̄n), ..., ok(x̄n)) (1)

where x̄n = (x1, ..., xn) is a vector of n decision variables.
Many methods exist to solve optimization problems, each making some as-

sumptions on the nature of the problem. One category of such optimization
methods is called metaheuristics. [6] defines metaheuristics as methods that per-
form local and higher level search procedures that are capable of escaping local
optima. This definition notably includes methods that employ the notion of
neighborhood. The neighborhood of a solution s is the set of all solutions that
can be reached from s.

Metaheuristics are interesting for solving optimization problems as they are
designed to efficiently explore complex search spaces [6]. Sörensen et al. [12]
further state that the large majority of real-life optimization problems are more
easily solved by metaheuristics, hence our focus on these methods in this paper.

Metaheuristics rely on two important notions: intensification and diversi-
fication. Intensification is a process through which portions of the search space
that seem “promising” are explored more thoroughly, i.e. in the neighborhood
of the best solutions found yet. Diversification, on the other hand, is a process
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aimed at exploring unexplored parts of the search space in hopes to find better
solutions. It usually relies on a some form of memory of visited solutions [5].

There are numerous metaheuristics, each with their own hypotheses. As the
goal of our proposition is to be used to perform on-line calibration, it needs to
rely on fast algorithms and and to be able to handle the set of visited solutions.
The presented methods are thus focused around local search and population-
based meta-heuristics.

Local search algorithms explore the search space by exploring the immedi-
ate neighborhood of the current solution s and selecting the neighbor solution
that has a lower objective value than s. In order to escape from local optima,
they feature some sort of hill-climbing process that allows degrading the objec-
tive value. Such methods include Simulated Annealing (SA), Generalized Sim-
ulated Annealing (GSA), Iterated Local Search, Guided Local Search, etc. [6].
The main advantage of these methods is their rapidity, but an important limi-
tation is their tendency to get stuck in local optima [11]. Somes types of local
search metaheuristics rely on some kind of memory of visited solutions to try
circumvent this limitation such as Tabu Search [6].

Another category of metaheuristics is the population-based algorithms.
These methods rely on a set of solutions, called the population. The search
space is explored by evaluating each solution and modifying them using a set of
simple rules. There are two sub-groups in this category: evolutionary and other
nature-inspired methods.

Evolutionary algorithms (EA) are iterative methods centered around the
notion of fitness. The fitness of a solution represents the quality of this solution
based on the objective function. During each iteration, called a generation, the
fitness of each solution is evaluated. Solutions that feature a high enough fitness
value are kept for the next generation, all other are discarded. New solutions are
generated by stochasticaly crossing over and modifying (mutating) the solutions
that were kept after the selection process. This category includes methods such
as Genetic Algorithms, Differential Evolution (DE) and Genetic Programming
[6,9]. Contrary to local search methods, EAs explore the search space more
thoroughly with bigger population sizes and thus are a lot less susceptible to get
stuck in local optima. However, they require more computing power and show
slower resolution times.

Other population-based methods behave differently from EAs. They still rely
on a set of solutions but draw inspiration from complex biological systems such as
bird flocking or ant colonies. They feature the same advantage as EAs, i.e. a more
thorough exploration of the search space than local search, but still suffer from
the same drawbacks of longer computation times and high computing power
requirements [6]. Some methods such as Particle Swarm Optimization (PSO)
also suffer from a tendency to converge towards local optima because of a poor
distribution of information in the population [14].

In our method we propose to combine the speed of local search approaches
and the distribution of information of population-based methods. To achieve
this goal we borrow the notions of neighborhood and collective reasoning from
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these methods. Based on the assumption that the dynamics of the objective
function do not change significantly between two very close points,
we propose a system that searches for a global optimum through the
collective reasoning of already visited solutions.

Local search and population-based metaheuristics were presented with some
of their limitations in the context of optimization for on-line calibration. The
next section describes our method, CoBOpti, which is evaluated in section 4.

3 CoBOpti: Cooperation-Based Optimization

In this section, we introduce CoBOpti, a Cooperation-Based Optimization meta-
heurtistic. The method we propose combines the advantages of both local search
and population-based algorithms: the speed of the former and the information
distribution of the latter.

Section 3.1 describes the general principle of the approach by giving an
overview of the different search phases; section 3.2 details the local search pro-
cess; section 3.3 details the semi-local search process and how it enables getting
out of local minima; finally, section 3.4 describes how points cooperate to solve
specific situations.

3.1 General Principle

The goal of CoBOpti is to iteratively explore the surface of an objective function
in order to reach a global optimum. During each iteration, the system has to
determine the next point to explore. A point pi is defined as a pair pi = (xi, oi)
where xi is the value of the single decision variable and oi is the value of the
objective function at xi. The succession of visited points is called a chain. The
algorithm is composed of 4 phases (Figure 1).

The algorithm combines two different heursitics: a local one (phases 1, 2
and 3), which objective is to discover a local minimum, and semi-local one
(phase 4), which uses the set of local minimum already discovered to look for
a global minimum.

The goal of local search (phase 1) is to find a local minimum. Each itera-
tion t starts with a chain containing some already visited points p(t), p(t−1), etc.
Among all the points in the chain, the system choose two points to determine in
which direction it needs to go (phases 2 and 3). This process continues until
a local minimum has been found, i.e. the distance along the x axis between the
two points with the lowest objective value of the chain is less than εdist.

The objective of semi-local search is to explore the function towards a
global minimum. This process has to decide which point p(t + 1) to explore
based on already visited local minima (phase 4). Every time the semi-local
search has decided on which point to explore next, a new chain is created and
the local search continues from this new point.

The search stops when a visited local minimum has an objective value less
than a predefined threshold εobj .
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The notion of chains is important as it isolates clusters of points (black and
red dots in figure 1). It is not desirable that distant points interact during the
local search process because of potential higher discrepencies between the actual
function value and its estimation. Using chains implies that distant points cannot
be used together to compute linear approximations during local search and thus
mitigates potential errors. Several chains are created during the optimization
process.

Fig. 1. The search phases of CoBOpti: point selection, local search, higher level search

The following sections detail how points are selected and how p(t + 1) is
computed. Section 3.2 describes how the local search process selects points to
reach a local minima; section 3.3 describes how the system gets out of local
minima and searches for a global optimum; finally, section 3.4 describes how
points cooperate to solve some difficult situations.

3.2 Local Search

The objective of local search is to follow the curve of the objective function to
find a local minimum. At each iteration t, the next point p(t + 1) to explore is
determined by computing linear approximations of the objective function using
two points of the current chain.

Therefore, at each iteration t, two points need to be selected among those in
the current chain. The first selected point is the one with the lowest objective
value of the chain at time t, noted pmin. The second selected point is one of the
neighbors of pmin. Two points p1 and p2 of a chain are said to be neighbors if
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they are immediately next to each other, i.e. there is no third point p3 between
them along the x axis. A point can have a maximum of two neighbors. For
example, in figure 1, points p1 and p2 are neighbors but points p2 and p4 are
not.

As pmin is the point with the lowest objective value of its chain, it has either
one or two neighbors at any given time.

Phases 2 and 3 of figure 1 illustrate the first situation, where p(t) = pmin

(green point) has a single neighbor p(t− 1). The x component of the next point
p(t+1) is computed by a linear approximation of the objective function between
pmin = (xmin, omin) and its only neighbor p(t− 1) = pn = (xn, on):

x(t+ 1) = xn +
−on(xmin − xn)

omin − on
(2)

This equation returns the x component of the point that would have an objective
value of 0 according to the linear approximation of the objective function.

To ensure that the initial assumption on the function’s dynamics stays true,
the next point cannot be farther than kdist times the distance between pmin and
pn. If it is the case, x(t+1) is set to xmin+kdist(xmin−xn). In our experiments,
kdist = 5 was used.

In the second situation, where pmin has two neighbors pl and ph, as pmin is
the point with the lowest known objective value, both neighbors have a higher
objective value. This implies that a local minimum is somewhere between pl and
ph. x(t+ 1) is thus determined by:

x(t+ 1) =
xmin + xn

2
(3)

where xn is the x component of either pl or ph alternatively. Figure 1 shows an
example of this situation (black points). The point p6 was computed this way,
using points p4 as pmin and p5 as its lowest neighbor.

It should be noted that the objective function value does not need to be
re-evaluated at the location of the selected neighbor as it is assumed that it has
not changed since it was first evaluated.

This whole process repeats until a local minimum is found. The point pmin

is considered to be a local minimum when the distance to one of its neighbors
is less than εdist.

3.3 Semi-Local Search

The goal of the semi-local search is to find a global minimum. The way points are
selected is similar to what was described in the local search process but differs
in some key aspects.

In order to compute x component of the next point p(t + 1) using linear
approximations of the objective function, two points are selected: the latest local
minimum pmin1 = (xmin1, omin1) found by the local search process and one of
its neighbors. The neighbors of a local minimum are the other adjacent local
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minima. As with regular points described in section 3.2, local minima have a
maximum of two neighbors.

The selected local minimum can have one or two neighbors. Table 1 describes
which neighbor is selected depending on the precise situation, where pl = (xl, ol)
(resp. ph = (xh, oh)) are neighbors of pmin1 with a lower (resp. higher) x value.

Table 1. Selected neighbor of pmin1 depending on the situation

Situation Selected neighbor

1 One neighbor pn pn
2 Two neighbors, ol < omin1 < oh pl
3 Two neighbors, ol > omin1 > oh ph
4 Two neighbors, ol < omin1 and omin1 > oh pl if ol < oh, otherwise ph
5 Two neighbors, ol > omin1 and omin1 < oh pl if ol < oh, otherwise ph

For situations 1, 2, 3 and 4, the next point x(t+1) is computed using equation
2, swapping pmin for pmin1 and p(t − 1) for the selected neighbor. Phase 4 of
figure 1 illustrates this process for situation 1. In this diagram, there are two
known local minima, pmin1 and pmin2, the latter being the newly found one. The
next point p(t+1) is estimated using a linear approximation between both local
minima. As with the local search, p(t+1) cannot be farther than k|xmin1 −xn|,
if it is the case, the same operations are applied as described in section 3.2.

In situation 5, as both neighbors pl and ph of pmin1 have a higher objective
value, a global minimum is probably between pl and ph. Equation 3 is used again
to determine the next point.

Once x(t+1) has been computed, the local search process resumes from this
new point with a new chain.

3.4 Cooperation Mechanisms

Sections 3.2 and 3.3 described the nominal behavior of CoBOpti. The system
may encounter a number of special situations during both local and semi-local
searches. This section presents cooperation rules to detect and solve them.

Case 1. During local search, when a new chain is created, either because
it is the first iteration or the semi-local search created a new one, there is a
single point inside the chain. This point thus has no neighbors to compute the
next point with. Hence, no linear approximation can be estimated and x(t+1) is
directly chosen randomly among {xmin−δ, xmin+δ} where δ = 1

kprop
|xlow−xhigh|

and xlow (resp. xhigh) the lower (resp. higher) bounds of the definition domain
of x. In our experiment, kprop = 100 was used.

Case 2. During semi-local search, a similar situation may occur where there
is only one known local minimum. As there are no neighbors to make linear
approximations with, a hill-climbing process is initiated to escape the local
minimum. This process relies on the two points of the latest chain that have the
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lowest and highest x value, called extrema. The goal is to climb up the slopes
around the local minimum to find another slope of opposite direction.

The search focuses on the slope where the extremum with the lowest objective
value is. The next point is computed using equation 4 where ple = (xl

e, o
l
e) is the

extremum with the lowest objective value and phe = (xh
e , o

h
e ) is the other. pn =

(xn, on) is the neighbor of ple. This equation computes the x value of the next
point which would have an objective value equal to that of the highest extremum,
according to the linear approximation of the objective function between the
lowest extremum and its neighbor.

x(t+ 1) = xl
e +

(ohe − ole)(xn − xl
e)

on − ole
(4)

At the next iteration, if the actual objective value is higher than ohe , the
process switches sides; if this is not the case, it continues as is. This process
is repeated until the actual objective value is lower than ole. The local search
process then resumes with a new chain.

During this hill-climbing phase, the distance |x(t+1)−xl
e| cannot be smaller

than a threshold δmin in order to prevent the process from slowing down too
much.

Case 3. It may happen that the local search process finds a local minimum
that was already discovered in previous iterations. In order to escape a potential
search loop, two decisions may occur. If a hill-climbing phase was previously
initiated at this local minimum, the next point x(t+ 1) is computed again and
multiplied by a factor of 2, to explore twice as far and explore a new area. On
the contrary, if no hill-climbing phase was ever initiated at this local minimum,
one is started, in hopes to find a new adjacent valley.

Two local minima are considered to be identical if their distance along the x
axis is less than a threshold εsame.

In this section we presented our approach. It relies on the notion of chains of
points. We first presented a local search process on a chain that allows finding
local optima. When a local optimum is found, a semi-local search process allows
finding new regions of the search-space to explore. Cooperation mechanisms were
introduced to account for special situations, diversify the solutions and create
new chains.

In the next section we evaluate the performances of our method. We com-
pare it to four other local-search and population-based metaheuristics on uncon-
strained mono-objective optimization problems.

4 Experiments and Results

This section compares the performances of CoBOpti with four other methods
cited in section 2: Simulated Annealing (SA), Generalized Simulated Annealing
(GSA), Differential Evolution (DE) and Particle Swarm Optimization (PSO).

Section 4.1 presents the different test functions used to test the performances;
section 4.2 describes the protocole for comparing the performances of CoBOpti
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with other selected methods; section 4.3 presents the results of the experiments;
finally, results are discussed in section 5.

4.1 Test Functions

For the performance comparison experiments, four functions have been selected:
Gramacy and Lee (domain: [0.5, 2.5]), Ackley (parameters: d = 1, a = 20,
b = 0.2, c = 2π; domain: [−32, 32]), Rastrigin (parameter: d = 1; domain:
[−5.12, 5.12]) and Levy function (parameter: d = 1; domain: [−10, 10]). These
functions have been chosen because they feature many local minima, a single
global minimum, and a single parameter [1,7,10,13].

4.2 Methods Comparison

The performances of each approach (SA, GSA, DE and PSO) are compared
against CoBOpti’s. They were all implemented in Python 3.8. GSA and DE were
implemented using the scipy.optimize.dual annealing and scipy.optimize

.differential evolution functions, PSO was implemented with pyswarm.pso

package, and SA was a custom implementation. For GSA, DE and PSO, all
optional parameters excepts those related to bounds, initial state and maximum
number of iterations were let to their default value.

Control variables of CoBOpti are set as follows: εdist = 10−4 (local minimum
detection threshold), εsame = 0.01 (minimum distance between local minima),
δmin = 10−4 (minimum step size during hill climbing phase), and εobj = 5 · 10−3

(precision threshold for global minimum objective value).
For every method, except PSO, the initial value vinit for each decision variable

in a single run is selected by a Sobol Sequence. As values generated by this
sequence are all in the [0, 1] interval, they are adjusted to the variable’s domain
using the formula vinit = s · (dmax − dmin) + dmin where s is a value generated
by the sequence. We did not specify vinit values for PSO as the implementation
we used did not allow it.

Three metrics are defined: success rate, i.e. the ratio of executions that
found the global minimum, number of iterations, number of evaluations
of the objective function.

4.3 Results

Table 2 shows the success rate, mean number of iterations and function evalu-
ations over 200 executions for each method and function, with a maximum of
1000 iterations.

CoBOpti was able to find the global minimum for all four functions. It took
on average between 35 and 100 iterations to find the global minimum with a
similar number of objective function evaluations.

The constant 1000 iterations for SA and GSA are explained by their stopping
criterion. These methods rely on the number of elapsed iterations to compute
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probability distributions: the more iterations have passed, the less likely the algo-
rithm is to select a non-improving move. Once the allowed number of iterations
has passed, no more non-improving moves can be selected and the algorithm
stops. The visited point with the lowest objective value is then returned.

SA did not yield good results, except for Gramacy and Lee’s function with
nearly 100 % of success rate. It yielded very poor results for Ackley function
with only 2 %. These results are coherent with what was described in the review
(section 2).

GSA yielded very good results with 100 % on all functions. The number of
objective function evaluations was two times higher than SA, around 2000.

DE’s success rate is a bit lower than other methods except for SA. However,
the mean number of iteration is quite low, staying between 8 and 50.

PSO was able to find the global minimum in all four cases with a low mean
number of iterations, between 20 and 50. However, the mean number of function
evaluations is higher than other methods, ranging from 2000 to more than 4500.

Table 2. Success rates, average number of iterations and objective function evaluations
of tested methods

Method Function Success rate # of iterations # of evaluations

CoBOpti G. & L. 100 % 49.31 50.31
Ackley 100 % 95.94 96.94

Rastrigin 100 % 80.69 81.69
Levy 100 % 35.3 36.3

SA G. & L. 99.5 % 1000 1000
Ackley 2 % 1000 1000

Rastrigin 10.5 % 1000 1000
Levy 30 % 1000 1000

GSA G. & L. 100 % 1000 2035.58
Ackley 100 % 1000 2124.43

Rastrigin 100 % 1000 2039.97
Levy 100 % 1000 2019.60

DE G. & L. 97.5 % 8.71 154.54
Ackley 100 % 49.62 801.63

Rastrigin 94 % 30.91 481.06
Levy 100 % 50.45 773.75

PSO G. & L. 100 % 20.61 2008.70
Ackley 100 % 46.92 4638.51

Rastrigin 100 % 25.57 2505.57
Levy 100 % 20.02 1951.32

5 Analysis and Discussion

The initial assumption of continuity in function dynamics has been validated by
the experiments on several standard functions. CoBOpti showed better success
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rates than SA and DE, and nearly as good as GSA and PSO. Although the
number of iterations of CoBOpti is comparable to that of DE and PSO, its
number of function evaluations is several orders of magnitude lower.

This low number of objective function evaluations can be attributed to the
fact that the objective function is evaluated only once per visited point. This
behavior stems from the initial assumption that states that the dynamics of the
objective function does not change significantly between two close points.

Execution times were not shown as differences between methods were not
significant. This is most likely due to the relatively low complexity of the selected
functions.

A sensitivity analysis should be done to test the influence of kdist and kprop
on CoBOpti’s performances.

CoBOpti was only tested on mono-objective optimization problems with a
single decision variable. Further research is needed to generalize this approach
to multi-objective global optimization problems with multiple decision variables.
The core principle should stay similar to what was presented in this paper. New
cooperation mechanisms should be added to select which objective to minimize
and which decision variables to tune at each cycle.

Other experiments could be conducted with other complex functions. As real-
world applications are subject to noisy data, resilience to such noise has to be
tested.

6 Conclusion

In this paper, CoBOpti, a new metaheuristic for global optimization, was pre-
sented. It is based on a hypothesis of local continuity of the dynamics of the
objective function. CoBOpti explores the search space by relying on the cooper-
ation of visited solutions based on this hypothesis.

This paper focuses on mono-objective global optimization problems with a
single decision variable. Experiments showed that CoBOpti needs less objective
function evaluations than other common metaheurstic methods while maintain-
ing similar or better success rates on 1D-functions.

CoBOpti is a promising proposition for use in on-line calibration. Indeed,
its low number of objective function evaluations would be useful in the context
of on-line calibration of complex simulation models with computationally inten-
sive objective functions. This property could help reduce the time required to
calibrate these kinds of models.
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