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LINEARITY AND INDISCRETENESS OF AMALGAMATED PRODUCTS

OF HYPERBOLIC GROUPS

NICOLAS THOLOZAN AND KONSTANTINOS TSOUVALAS

Abstract. We discuss the linearity and discreteness of amalgamated products of linear word

hyperbolic groups. In particular, we prove that the double of a torsion-free Anosov group

along a maximal cyclic subgroup is always linear, and we construct examples of such groups

which do not admit discrete and faithful representations into any simple Lie group of real

rank 1. We also build new examples of non-linear word hyperbolic groups, elaborating on a

previous work of Canary–Stover–Tsouvalas.

1. Introduction

In his groundbreaking work [Gro87], Gromov introduced the notion of word-hyperbolic group,
which captures the coarse geometric and algebraic properties of fundamental groups of closed
negatively curved manifolds. Among their many interesting properties, hyperbolic groups are
stable under various operations of topological origin, such as amalgamated products and HNN
extensions over nice subgroups, see [BF92]. Moreover, certain quotients of a non-elementary
hyperbolic group remain hyperbolic after adding sufficiently complicated relations (see [Gro87],
[Del96] and [Ol93]).

The present work revolves around the following general question:

Question. Which word-hyperbolic groups admit geometric realisations ?

Of course, the term “geometric realisation” can be understood in many ways. Here, we will
mainly be interested in realizing word-hyperbolic groups as discrete subgroups of (real) linear
Lie groups.

An important family of word-hyperbolic groups of geometric origin is formed by convex-
cocompact subgroups of simple rank one Lie groups. This includes linear groups that predate
Gromov’s definition by a century, such as Schottky groups, quasi-Fuchsian groups or uniform
hyperbolic lattices. Gromov’s theory was actually meant to generalize the class of uniform
hyperbolic lattices in a coarse geometric context. A convex-cocompact subgroup Γ of a rank 1
Lie group G is quasi-isometrically embedded in the symmetric space X of G, which is negatively
curved, and the boundary at infinity of Γ (as defined by Gromov) is then realized as a Γ-invariant
subset of the sphere at infinity of X.

In the past two decades, the development of the theory of Anosov groups has built a nice
framework to study geometric realizations of word-hyperbolic groups in higher rank Lie groups.
Anosov representations were first introduced by Labourie in [Lab06] for fundamental groups of
closed negatively curved Riemannian manifolds, and the definition was later extended to more
general word hyperbolic groups by Guichard–Wienhard in [GW12]. The definition was recently
streamlined by various authors [KLP18, BPS19], who proved in particular that a subgroup Γ of
a semisimple linear group G satisfies a refinement of quasi-isometric embeddedness if and only
if Γ is word-hyperbolic and the inclusion is Anosov (see Definition 2.7).

Anosov subgroups of a semisimple linear Lie group G have many good geometric and dynam-
ical properties: they are quasi-isometrically embedded into the ambient group, are stable under
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small deformations, and their boundary at infinity (as defined by Gromov) identifies with a com-
pact invariant subset of some flag variety of G (see [Lab06, GW12]). They are now commonly
accepted as a good higher rank generalization of convex-cocompactness in rank 1. In fact, by
the work of Danciger–Guéritaud–Kassel [DGK17] and Zimmer [Zim21] every Anosov subgroup
Γ of G, after embedding G in the appropriate general linear group, acts convex-cocompactly on
a stricly convex open domain of some projective space PpRdq.

Though not every Gromov hyperbolic group admits an Anosov representation, the only
known obstruction so far seems to be non-linearity. Non-linear hyperbolic groups were first
constructed by M. Kapovich [Kap05]: using Corlette’s super-rigidity for lattices in Sppk, 1q, he
proved that the quotients of such lattices by a sufficiently large power of a non-trivial element are
not linear. More recently, Canary, Stover and the second author constructed new examples by
proving that sufficiently complicated amalgamated products of Sppk, 1q-lattices are not linear.
Our main result here is a new obstruction to realizing certain Gromov-hyperbolic groups as
convex-cocompact groups. We prove the following:

Theorem 1.1. There exists a word-hyperbolic group which admits a faithful representation
into Sppk, 1q but does not admit any discrete and faithful representation into any semisimple
Lie group of real rank 1.

Our example is the amalgamated product of two copies of a uniform Sppk, 1q-lattice along
a maximal infinite cyclic subgroup. In the process, we prove a general linearity result for the
double of a torsion-free Anosov group along a maximal cyclic subgroup, as well as several non-
linearity results for more complicated amalgamated products which simplify the construction
of non-linear examples in [CST19].

1.1. Amalgamated products of Gromov hyperbolic groups. Let Γ1, Γ2 and W be groups
and i1 : W Ñ Γ1 and i2 : W Ñ Γ2 be injective group homomorphisms. Recall that the
amalgamated product Γ1˚i1pW q“i2pW qΓ2 is the quotient of the free product Γ1˚Γ2 by the normal

subgroup generated by the set
 

g
`

i1pwqi2pwq
´1

˘

g´1 : g P Γ1 ˚ Γ2, w P W
(

. This operation is
inspired by Van Kampen’s theorem, which states that the fundamental group of a union of two
open sets with connected intersection is the amalgamated product of the fundamental groups
of the two open sets along the fundamental group of the intersection.

A particular case of amalgamated product is the double of Γ along W , denoted Γ˚W Γ, where
Γ1 “ Γ2 “ Γ, W is a subgroup of Γ and i1 and i2 are both the inclusion of W into Γ.

It is folklore knowledge that the free product of two word hyperbolic groups is again word
hyperbolic. Bestvina–Feighn [BF92] have studied more generally the hyperbolicity of graphs of
groups with word hyperbolic vertex and edge groups. In particular, they proved that the amal-
gamated product of hyperbolic groups along quasi-convex malnormal subgroups is hyperbolic
(see also Theorem 2.6). This applies for instance to amalgamations of torsion-free hyperbolic
groups along maximal cyclic subgroups.

1.2. Linearity and non-linearity. A cyclic subgroup of a group Γ is called maximal if it is
not properly contained in a cyclic subgroup of Γ. Our first theorem is a linearity theorem for
doubles of torsion free Anosov groups along a maximal cyclic subgroup:

Theorem 1.2. Let Γ be a torsion-free Anosov subgroup of a semisimple linear group G and
xwy be a maximal cyclic subgroup of Γ. Then the double Γ˚xwyΓ of Γ along xwy admits a faithful
representation into G.

To point out some ways in which this result is optimal, we will also prove several non-linearity
results for more complicated amalgamated products.

Theorem 1.3. Let Γ1 and Γ2 be lattices in Sppk, 1q, k ě 2, and xwiy be a cyclic subgroup
of Γi for i “ 1, 2. Assume that w1 P Γ1 and w2 P Γ2 have different translation lengths in the
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symmetric space of Sppk, 1q. Then every linear representation of Γ1 ˚w1“w2 Γ2 restricted on Γ1

and Γ2 has finite image.

Corollary 1.4. Let Γ1 and Γ2 be lattices in Sppk, 1q, k ě 2. Let W be an infinite finitely
generated group and i1, i2 be embeddings of W into Γ1 and Γ2 respectively. Assume that there
exists w PW such that i1pwq and i2pwq have different translation lengths. Then the amalgamated
product Γ1 ˚i1pW q“i2pW q Γ2 is not linear.

When Γ1 and Γ2 are torsion-free and i1pW q and i2pW q are maximal cyclic subgroups, this
corollary gives new examples of non-linear hyperbolic groups by the Bestvina–Feighn combina-
tion theorem.

Theorem 1.3 does not apply to doubles of a quaternionic lattice Γ over a subgroup W .
However, these also tend to be non-linear for a larger group W .

Theorem 1.5. Let Γ be a uniform lattice in Sppk, 1q, k ě 2 and W be a proper subgroup of Γ
which is not a uniform lattice in its Zariski closure. Then Γ ˚W Γ is not linear.

Again, this theorem can be applied to a quasi-convex malnormal free subgroups of Γ (which
exist by [K99, Thm. 6.7]) and are not lattices in their Zariski closure in Sppk, 1q, thus giving
new constructions of non-linear hyperbolic groups. Both constructions are improvements on the
main constructions of [CST19].

Finally, we point out the importance of the Anosov assumption in Theorem 1.2 by proving
the following:

Theorem 1.6. For n ě 3, there exist (many) maximal cyclic subgroups xwy of SLpn,Zq for
which the double of SLpn,Zq along xwy is not linear.

1.3. Discreteness and Anosov property. The subgroup Γ ˚xwy Γ of G in Theorem 1.2 has
no reason to be discrete. In fact, it cannot be discrete if Γ is already a uniform lattice in G. We
will prove that some of them can never be embedded discretely into any rank 1 Lie group.

Theorem 1.7. Let Γ be a uniform lattice in Sppk, 1q, k ě 4, and xwy be an infinite maximal
cyclic subgroup of Γ. Then the group Γ˚xwyΓ does not admit a discrete and faithful representation
into any semisimple Lie group of rank 1.

Recall that if Γ is torsion-free then Γ˚xwyΓ is word hyperbolic by the Bestvina–Feighn combi-
nation theorem (Theorem 2.6) and isomorphic to a (dense) subgroup of Sppk, 1q by Theorem 1.2.
The group Γ ˚xwy Γ is an example satisfying the conclusion of Theorem 1.1. To our knowledge,
this is the first example of a linear word-hyperbolic group which is not virtually isomorphic to
a convex cocompact group of a simple Lie group of real rank 1.

Note that Theorem 1.7 contrasts with the following theorem of Baker–Cooper in real hyper-
bolic geometry:

Theorem 1.8 (Baker–Cooper [BC05]). Let Γ be a convex-cocompact group of isometries of the
real hyperbolic space RHk and xwy be an infinite maximal cyclic subgroup of Γ. Then there exists
a finite index subgroup Γ1 of Γ containing xwy such that Γ1 ˚xwy Γ1 admits a convex-cocompact

representation into IsompRH2k´1q.

1.4. Further questions and perspectives. The present work leaves open the following ques-
tion:

Question 1.9. Let Γ be an Anosov subgroup of G and xwy a maximal cyclic subgroup of Γ.
Does Γ ˚xwy Γ admit an Anosov representation (possibly in some larger group)?

We strongly believe in the following weaker statement, motivated partly by Baker–Cooper’s
theorem above:
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Conjecture 1.10. Let Γ be an Anosov group and xwy a maximal cyclic subgroup of Γ. Then
there exists a finite index subgroup Γ1 of Γ containing w such that Γ1 ˚xwy Γ1 admits an Anosov
representation.

Remark 1.11. Even though Γ1 is a proper finite index subgroup of Γ with w P Γ1, the group
Γ1 ˚xwy Γ1 has infinite index in Γ ˚xwy Γ. Hence a proof of Conjecture 1.10 would not give an
immediate answer to Questionm 1.9.

Note that the analoguous question for free products has already been studied. Dey–Kapovich–
Leeb in [DKL19] and Dey–Kapovich in [DK22] have studied when the group generated by two
P -Anosov subgroups of a group G is a P -Anosov free product into G. Danciger–Guéritaud–
Kassel have also announced (see [DGK17, Prop. 12.5]) that the free product of two infinite
Anosov subgroups of PGLpd,Rq also admits an Anosov representation into PGLpm,Rq for some
m ě d. The particular case of convex-cocompact groups in rank 1 Lie groups seems to be
folklore.

Let us finally mention that the work of Agol and Wise give many examples of hyperbolic
groups admitting discrete and faithful linear representations: Wise in [Wis04] proved that C 1p 1

6 q-
small cancellation groups are cubulated, and Agol [Ag13] proved (relying also on the work of
Haglund–Wise [HW08]) that cubulated hyperbolic groups are virtually special and vistually
embed into some GLpd,Zq.

These various results raise the following general question:

Question 1.12. Is there a linear hyperbolic group that does not admit a discrete and faithful
representation in any (real) linear group ?

1.5. Strategy of the proofs. We will derive Theorem 1.2 from the linearity for the HNN

extension Γ˚xwy
def
“

@

Γ, t | twt´1 “ w
D

:

Theorem 1.13. Let Γ be a torsion-free Anosov subgroup of a semisimple linear group G and
xwy a maximal cyclic subgroup of Γ. Then there exists t P G which commutes with w P Γ such
that the subgroup of G generated by Γ and t is isomorphic to the HNN extension Γ˚xwy.

In fact, the group Γ˚xwy has a morphism onto Z, the kernel of which is spanned by all the

tiΓt´i, i P Z. This kernel is isomorphic to the amalgamated product of infinitely many copies
of Γ over xwy.

The other negative theorems (Theorems 1.3, 1.5, 1.6 and 1.7) are all based on the same
strategy as in [CST19]: A linear representation of an amalgamated product Γ1 ˚W Γ2 is given
by two representations ρ1 and ρ2 of Γ1 and Γ2 respectively which coincide on W . We con-
sider situations where the superrigidity theorems of Margulis [Mar91] and Corlette [Cor92] give
such strong constraints on ρ1 and ρ2 that adding the compatibility condition on W leads to a
contradiction.

The paper is organized as follows. In Section 2, we recall some elements of the structure of
semisimple linear groups and the main properties of their Anosov subgroups. In Section 3 we
prove our linearity theorem, Theorem 1.13, from which Theorem 1.2 follows. In Section 4 we
recall the precise statements of Margulis’ and Corlette’s superrigidity theorems, which we use
in Section 5 to prove the remaining results.

Acknowledgements. We would like to thank Richard Canary, Beatrice Pozzetti and Matthew
Stover for helpful conversations, as well as Olivier Benoist for his Galois theoretic help with the
proof of Lemma 5.4. We would also like to thank the referee for a careful reading of the article.
This project received funding from the European Research Council (ERC) under the European’s
Union Horizon 2020 research and innovation programme (ERC starting grant DiGGeS, grant
agreement No 715982).
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2. Background

In this section, we provide some background on amalgamated products and HNN extensions,
Lie theory and Anosov representations.

2.1. Amalgamated products and HNN extensions. We refer the reader to [LS77, Ch.
IV] and [Ser80] for more background on amalgamated products and HNN extensions. For a
group H and a subset S of H, we denote by xxSyy the normal subgroup of H generated by
 

hsh´1 : s P S, h P H
(

.

Let Γ1, Γ2 and W be three groups and ι1 : W Ñ Γ1 and ι2 : W Ñ Γ2 two injective1

morphisms.

Definition 2.1. The amalgamated product of Γ1 and Γ2 along W is the group

Γ1 ˚ι1“ι2 Γ2 “ Γ1 ˚ Γ2{xxι1pwqι2pwq
´1, w PW yy .

Let Ti (i “ 1, 2) be a set of right coset representatives of ιipW q in Γi. A normal form is a
sequence pw0, . . . , wnq, n ě 0, with the following properties: w0 PW , if n ě 1, wi P T1 r t1u or
wi P T2 r t1u for 1 ď i ď n and for every 1 ď i ď n´1 we have xi P T1 and xi`1 P T2 or xi P T2

and xi`1 P T1. Every element g P Γ ˚ι1“ι2 Γ2 has a unique representation g “ ι1pw0qw1 ¨ ¨ ¨wn
for some normal form pw0, . . . , wnq (see [LS77, Ch. IV, Thm. 2.6]). In particular, Γ1 and Γ2

naturally identify to subgroups of Γ.
The amalgamated product Γ1 ˚ι1“ι2 Γ2 satisfies the following universal property:

Proposition 2.2. For any group G and any homomorphisms ρ1 : Γ1 Ñ G and ρ2 : Γ2 Ñ G
such that ρ1 ˝ i1 “ ρ2 ˝ i2, there exists a unique homomorphism ρ : Γ1 ˚ι1“ι2 Γ2 Ñ G whose
restriction to Γi is ρi for i “ 1, 2.

If the morphisms ιi are implicit, we will sometimes denote the amalgamated product by
Γ1 ˚W1“W2

Γ2, where Wi “ ιipW q, or even Γ1 ˚W Γ2 when this does not bring any confusion.
When Γ1 “ Γ2 “ Γ, W is a subgroup of Γ and ι1, ι2 are the inclusion, we call Γ ˚W Γ the double
of Γ along W .

The following fact, which will be useful later, is a straightforward consequence of the unique-
ness of normal forms in amalgamated free products.

Fact 2.3. Let Γ be a group, Γ1 and Γ2 be subgroups of Γ such that Γ1 is a proper subgroup of
Γ2. Then the natural group homomorphism π : Γ ˚Γ1 Γ Ñ Γ ˚Γ2 Γ is not injective.

Let now Γ be a group, W a subgroup of Γ and ϕ : W Ñ Γ a morphism.

Definition 2.4. The HNN extension of Γ relative to ϕ is the group

Γ˚ϕ “ Γ ˚ xty
L

xxt´1wtϕpwq´1, w PW yy.

Let TW and TϕpW q be sets of right coset representatives of W and ϕpW q in Γ respectively con-
taining the identity element e P Γ. By the normal form theorem for HNN extensions [LS77, Ch.
IV, Thm. 2.1] every element g P Γ˚ϕ can be uniquely written in the form g “ g0t

m1g1 ¨ ¨ ¨ t
msgs,

m1, . . . ,ms P t´1, 1u such that: if εi “ ´1 then gi P TW , if εi “ 1 then gi P TϕpW q and there

are no subwords of the form tmet´m. In particular, Γ embeds as a subgroup of Γ˚ϕ.
The HNN extension Γ˚φ satisfies a universal property:

Proposition 2.5. Let G be a group, ρ : Γ Ñ G a homomorphism and h P G such that
ρpϕpwqq “ hρpwqh´1 for all w P W . Then there exists a unique homomorphism ρh : Γ˚ϕ Ñ G
such that ρh|Γ “ ρ and ρhptq “ h.

1The general definition does not require injectivity, but this assumption will simplify the exposition here,

and is enough for our purposes.
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When ϕ is the inclusion of W in Γ, we simply denote the HNN extension by Γ˚W . This HNN
extension admits a surjective group homomorphism π : Γ˚W Ñ Z mapping Γ to 0 and t to 1.
Its kernel is the normal subgroup xxΓyy “

@

tigt´i : g P Γ, i P Z
D

, which is isomorphic to the
amalgamated product of countably many copies of Γ along W .

A subgroup W of Γ is malnormal if, for every g P Γ rW , we have gWg´1 XW “ t1u .
When Γ is word-hyperbolic, W is quasi-convex in Γ if and only if the inclusion W ãÑ Γ induces
quasi-isometric embedding of their Cayley graphs. The Bestvina–Feighn combination theorem
asserts, in particular, that amalgamations of hyperbolic groups along malnormal quasi-convex
subgroups are hyperbolic.

Theorem 2.6 (Bestvina–Feighn [BF92]). Let Γ1, Γ2 and W be word-hyperbolic groups and
ι1 : W ãÑ Γ1 and ι2 : W ãÑ Γ2 be quasi-convex embeddings such that ι1pW q is malnormal in
Γ1. Then Γ1 ˚ι1“ι2 Γ2 is word hyperbolic.

Note that a maximal cyclic subgroup2 of a torsion-free word-hyperbolic group is malnormal.
Kapovich [K99] proved that every non-elementary word-hyperbolic group contains malnormal
quasi-convex free subgroups with 2 generators.

2.2. Lie theory. Let us fix some notation, mainly following [GW12, §3.2]. Throughout this
paper, we consider G a linear, non-compact, semisimple real algebraic Lie group and denote by
g its Lie algebra. Let Ad : GÑ GLpgq and ad : gÑ Endpgq denote the adjoint representations
of G and g, and let exp : g Ñ G be the exponential map. The Killing form B : g ˆ g Ñ R is
the bilinear form BpX,Y q “ trpadXadY q. It is invariant under the adjoint action and is non-
degenerate as soon as g is semisimple. Let us fix K a maximal compact subgroup of G, unique
up to conjugation. We have the associated decomposition

g “ k‘ p

where k “ LiepKq and p is its orthogonal complement with respect to B. We choose a Cartan
subspace a, i.e. a maximal abelian subalgebra of g contained in p. The real rank of G is the
dimension of a as a real vector space.

The co-diagonalization of the adjoint action of a decomposes g as the direct sum of root
spaces:

g “ g0 ‘
à

αPΣ

gα ,

where gα “ tX P g : adHpXq “ αpHqX @H P au and Σ “ tα P a˚ : gα ‰ 0u is the set of
restricted roots. After chosing a vector u P ar

Ť

αPΣ kerα, we define the set of positive roots

Σ` “ tα P Σ | αpuq ą 0u

and the dominant Weyl chamber

a` “
 

H P a : αpHq ě 0 @α P Σ`
(

.

Finally, a positive root is simple if it cannot be written as the sum of two positive roots. The
set of simple roots ∆ is a basis of a˚ and the dominant Weyl chamber is the associated positive
quadrant.

The Cartan decomposition writes every element g P G in the form g “ k exppµpgqqk1 for
k, k1 P K and µpgq P a`. The vector µpgq is unique and called the Cartan projection of G. The

Jordan projection
ÝÑ
` : GÑ a` can be defined by

ÝÑ
` pgq “ lim

nÑ8

µpgnq

n
.

Let θ Ă ∆ be a subset of simple restricted roots. Set

aθ
def
“

č

αP∆rθ
kerpαq

2i.e. is not contained in a larger cyclic subgroup.
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and let ZKpaθq be the centralizer of aθ in K. One associates to θ a pair of opposite parabolic
subgroups pP`θ , P

´
θ q defined by:

P˘θ “ ZKpaθq exppaq exp
´

à

αPΣ`

g˘α

¯

.

The subgroup Lθ
def
“ P`θ X P´θ is a Levi factor of both P`θ and P´θ , which admits the Cartan

decomposition

Lθ “ ZKpaθq exp
`

a`Lθ
˘

ZKpaθq

where a`Lθ “
 

H P a : αpHq ě 0, @α P θ
(

.

An element g P G is called θ-proximal if αp
ÝÑ
` pgqq ą 0 for every α P θ. For a group H, a

representation ρ : HÑ G is called θ-proximal if ρpHq contains a θ-proximal element.

2.3. The example of SLpd,Rq. We endow Rd with its standard inner product and denote by

pe1, . . . , edq its canonical othonormal basis. For J Ă t1, . . . , du we set xtej : j P JuyK
def
“ xtei :

i R Juy.
A standard choice of compact subgroup of SLpd,Rq is the special orthogonal group SOpdq “

 

g P SLpd,Rq : ggt “ Id
(

. One can choose as a Cartan subspace the space a “ diag0pdq
of diagonal matrices with trace zero, and as a dominant Weyl chamber the cone of traceless
diagonal matrices with diagonal coefficients in non-increasing order. The restricted roots are
the forms εi´εj where εi P a

˚ is the projection to the pi, iq entry, and the root space associated
to εi´ εj (for i ‰ j) is REij , where Eij is the dˆ d elementary matrix with 1 at the pi, jq entry
and 0 everywhere else. The root εi ´ εj is positive when i ą j and simple when j “ i` 1.

Given g P SLpd,Rq, denote by λ1pgq ě λ2pgq ě . . . ě λdpgq the moduli of the eigenvalues
of g in decreasing order (counting multiplicity), and by σipgq the ith singular value of g, de-

fined by the relation σipgq “
a

λipgtgq. The Cartan and Jordan projections of g P SLpd,Rq
are given by the vectors

µpgq “
`

log σ1pgq, . . . , log σdpgq
˘

ÝÑ
` pgq “

`

log λ1pgq, . . . , log λdpgq
˘

respectively. For 1 ď i ď d´ 1, the matrix g is called i-proximal if λipgq ą λi`1pgq.
Now, for θ “ tεi1 ´ εi1`1, . . . , εik ´ εik`1u Ă ∆, the associated parabolic subgroups P`θ and

P´θ are respectively the stabilizers of the flag

xe1, . . . , ei1y Ă xe1, . . . , ei2y Ă . . . Ă xe1, . . . , eiky

and the stabilizer of the flag

xe1, . . . , eiky
K Ă xe1, . . . , e

K
i2y Ă . . . Ă xe1, . . . , ei1y

K.

2.4. Anosov representations. More recently, Kapovich–Leeb–Porti in [KLP18] and Bochi–
Potrie–Sambarino in [BPS19], characterized Anosov representations into G entirely in terms
of their Cartan projections. Moreover, this particularly synthetic characterization does not a
priori assume hyperbolicity of the domain group. We use it here as a definition.

Let Γ be a finitely generated group. We fix a left invariant word metric on Γ and denote by
|γ| the distance of an element γ P Γ from the identity element e P Γ.

Definition 2.7 ([KLP18, BPS19]). Let θ Ă ∆ be a (non-empty) subset of simple restricted
roots of G. A representation ρ : Γ Ñ G is called Pθ-Anosov or θ-Anosov if there exist constants
C, c ą 0 such that

α pµpρpγqqq ě c|γ| ´ C

for every α P θ and all γ P Γ.
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If Γ is a finitely generated subgroup of G, we call Γ Pθ-Anosov or θ-Anosov if the inclusion
Γ ãÑ G is θ-Anosov. For an abstract group Γ, any θ-Anosov representation ρ : Γ Ñ G has finite
kernel and its image is a θ-Anosov subgroup of G.

Anosov groups enjoy many nice geometric and dynamical properties. In particular, they
are word-hyperbolic and their Gromov boundary identifies with a compact subset of some
flag variety of G. To be more precise, let Γ be a word-hyperbolic group and B8Γ its Gromov
boundary. Every infinite-order element γ P Γ has exactly two fixed points on B8Γ, denoted by
γ` and γ´, called respectively the attracting and repelling fixed point of γ.

Theorem 2.8 (Labourie [Lab06], Guichard–Wienhard [GW12], Kapovich–Leeb–Porti [KLP18]).
Let ρ : Γ Ñ G be a θ-Anosov representation. Then there exists a unique pair of continuous,
ρ-equivariant injective maps

`

ξρ, ξ
´
ρ

˘

: B8Γ Ñ G{P`θ ˆG{P
´
θ

called the Anosov limit maps of ρ, satisfying the following properties:

‚ ξρ and ξ´ρ are transverse: for every pair px, yq of distinct points of B8Γ, there exists

h P G such that ξρpxq “ hP`θ and ξ´ρ pyq “ hP´θ .

‚ The maps ξρ and ξ´ρ are dynamics preserving: for every infinite order element γ P Γ,

ρpγq is θ-proximal and the points ξρpγ
`q and ξ´ρ pγ

`q are the attracting fixed points of

ρpγq in G{P`θ and G{P´θ respectively.

For more background on Anosov representations we refer to the survey paper [Can21].

2.5. The rank 1 case. When the linear group G has rank 1, its symmetric space G{K is
Gromov hyperbolic and its boundary at infinity coincides with G{P , where P is the unique
proper parabolic subgroup of G up to conjugation.

A representation ρ : Γ Ñ G is P -Anosov if and only if it is a quasi-isometric embedding, and
the existence of an Anosov limit map ξρ : B8Γ Ñ G{P reduces to a property of quasi-isometric
embeddings between Gromov hyperbolic spaces.

Finally, ρ acts properly discontinuously and cocompactly on the convex hull of ξρpB8Γq in
G{K. Thus, in rank 1, the notion of Anosov representation coincides with the classical notion
of convex cocompact representation.

2.6. Projective Anosov representations. A particular case of Anosov property is the pro-
jective Anosov property of representations into SLpd,Rq.

Definition 2.9. A linear representation ρ : Γ Ñ SLpd,Rq is called projective Anosov if there
exist constants C, a ą 0 with

σ1pρpγqq

σ2pρpγqq
ě Cea|γ|Γ

for every γ P Γ.

In other words, a projective Anosov representation is a θ-Anosov representation for

θ “ tε1 ´ ε2u .

Such a representation induces boundary maps ξρ and ξ´ρ with values into PpRdq and Grd´1pRdq
respectively, and the transversality condition means for all x ‰ y P B8Γ,

ξρpxq R ker ξ´ρ pyq .
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2.7. Restricted weights of representations of G. Let G be a linear real semisimple Lie
group, τ : G Ñ GLpd,Rq be an irreducible linear representation of G and fix a Ă g a Cartan
subspace of G. Up to conjugation, we may assume that dτpaq is contained in diag0pdq and hence
there exists a decomposition of Rd into weight spaces:

Rd “ V χ1 ‘ ¨ ¨ ¨ ‘ V χd

where χ1, . . . , χd P a
˚ and V χi

def
“

 

v P Rd : dτpHqv “ χipHqv, @H P a
(

for each 1 ď i ď d. The
linear forms χ1, . . . , χd P a

˚ are called the restricted weights of τ and are integral combinations
of the fundamental weights tωαuαP∆ of G with respect to the set of simple roots ∆ (see [Kna96]).
There is also a partial order on the set of distinct restricted weights of τ : given two weights χ ‰
χ1, χ ą χ1 if and only if χ´ χ1 P

ř

αP∆ R`α. For this partial order, among the distinct weights
of τ there exists a unique maximal element, denoted by χτ , called the highest weight of τ .

In fact, one can turn any Anosov representation into some Lie group G into a projective
Anosov representation after composing with a suitable linear representation of G (see for in-
stance [GW12, Prop. 4.3], [GGKW17, Prop. 3.5]):

Proposition 2.10. Let G a real semisimple Lie group and θ Ă ∆ a (non-empty) subset of sim-
ple restricted roots of G. There exists d “ dpG, θq and an irreducible θ-proximal representation
τ : GÑ GLpd,Rq with the following properties:

(i) A representation ρ : Γ Ñ G of a word hyperbolic group Γ is θ-Anosov if and only if τ ˝ρ
is projective Anosov.

(ii) Let χ ‰ χτ be a restricted weight of τ . If H P a` with αpHq ą 0 for every α P θ, then
χτ pHq ą χpHq. Moreover, if αpHq “ 0 for every α P ∆ r θ and αpHq P N˚ for every
α P θ, then χτ pHq ´ χpHq P N˚.

Remark 2.11. (see [GGKW17, Prop. 3.3 & Prop. 3.5(i)]) For a θ-Anosov representation
ρ : Γ Ñ G, the Anosov limit maps of the projective Anosov representation τ ˝ ρ : Γ Ñ GLpd,Rq
can be obtained from τ and the limit maps pξρ, ξ

´
ρ q of ρ as follows. Let V χτ be the one di-

mensional weight space corresponding to the highest weight and V ăχτ be the direct sum of the
weight spaces different from V χτ . There exist τ -equivariant embeddings ι`τ : G{P`θ ãÝÑ PpRdq
and ι´τ : G{P´θ ãÝÑ Grd´1pRdq defined as follows:

ι`τ
`

gP`θ
˘

“
“

τpgqV χτ
‰

and ι´τ
`

gP´θ
˘

“ τpgqV ăχτ

for g P G. Then the pair of the Anosov limit maps of τ ˝ ρ is
`

ι`τ ˝ ξρ, ι
´
τ ˝ ξ

´
ρ

˘

.

2.8. Quaternionic hyperbolic spaces and groups. Let H “ R‘Ri‘Rj‘Rk be Hamilton’s
quaternion algebra. For z “ a` bi` cj ` dk P H, denote by z “ a´ bi´ cj ´ dk the conjugate
of z and let |z| :“

?
zz. For a matrix g “ pgijqij P MatnˆnpHq, g˚ “ pgjiqij is the conjugate

transpose of g. For m ě 1, let Jm “ diag
`

1, . . . , 1,´1
˘

. The projectivization PpHm`1q is the

set of equivalence classes of vectors in Hm`1, where u, v P Hm`1 are equivalent if u “ vz for
some z P H´ t0u. The quaternionic hyperbolic space HHm is the open subset of the projective
space PpHmq given by

HHm “
 “

z0 : . . . : zm´1 : zm
‰

P PpHm`1q : |z0|
2 ` . . .` |zm´1|

2 ă |zm|
2
(

We consider the symplectic unitary group Sppm, 1q “
 

g P GLpm ` 1,Hq : g˚Jmg “ Jm
(

and the compact subgroup Sppmq “
 

g P GLpm,Hq : gg˚ “ Im
(

. The Lie group Sppm, 1q

preserves and acts transitively on HHm. The stabilizer of v0 “
“

t0um : 1
‰

in Sppm, 1q is the
group Sppmq ˆ Spp1q which is also the, unique up to conjugation, maximal compact subgroup
of Sppm, 1q.

We shall use the following fact, which is almost immediate from the classification of the
totally geodesic subspaces of HHm.
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Fact 2.12. Let m ě 1 and L be a geodesic in HHm. There exists a unique quaternionic line L1

in HHm containing L.

Proof. Up to translating L by an element g P Sppm, 1q, we may assume that

L “
 “

t0um´1 : tanh t : 1
‰

: t P R
(

“ P
`

t0um´1 ˆ R2
˘

XHHm

Obviously, the quaternionic line L1 “ P
`

t0um´1ˆH2
˘

XHHm contains L. Suppose that P is a
quaternionic geodesic subspace of HHm containing L. By the classification of totally geodesic
subspaces of HHm (see for example [Mey15, Thm. 2.12]), there exists a real subspace W of
Hm`1, right invariant by H, so that P “ PpW q XHHm. Since L is contained in P , W contains
t0u ˆ R2 and so contains t0u ˆH2. It follows that P contains L1. Therefore, L1 is unique. �

3. Linear groups from Anosov representations

Following an idea of Shalen (see [Sha79, Thm. 2]), we prove that certain amalgamated free
products and HNN extensions of groups admitting Anosov representations over cyclic subgroups
are linear. Using similar methods, Wehrfritz earlier proved in [Weh73, Thm. 5] linearity of
amalgamations of free groups along cyclic subgroups generated by primitive elements. Linearity
of certain HNN extensions into SLp2,Cq was also proved by Button in [But12, Thm. 6.1].

For our proof of Theorem 1.13 we need the following proposition.

Proposition 3.1. Let Γ be a torsion-free word hyperbolic group and xwy be a maximal cyclic
subgroup of Γ. Suppose that ρ : Γ Ñ GLpd,Rq is a projective Anosov representation. Then there
exists h P GLpd,Rq with the property: for every element g P Γ r xwy, the p1, 1q, p1, dq, pd, 1q and
pd, dq entries of the matrix hρpgqh´1 are non-zero.

Proof. Let ξρ : B8Γ Ñ PpRdq and ξ´ρ : B8Γ Ñ Grd´1pRdq be the continuous ρ-equivariant
Anosov limit maps of ρ. By the transversality of the Anosov limit maps we may find h P

GLpd,Rq such that ξρpw
`q “ h´1 xe1y, ξρpw

´q “ h´1 xedy, ξ
´
ρ pw

`q “ h´1 xedy
K

and ξ´ρ pw
´q “

h´1 xe1y
K
. The matrices ρpwq and ρpw´1q are both 1-proximal and since ξρ and ξ´ρ are dynamics

preserving we may write

ρpwq “ h´1

¨

˝

s1 0 0
0 A 0
0 0 sd

˛

‚h,

for some matrix A P GLpd´ 2,Rq, such that

|s1| ą λ1pAq ě λd´2pAq ą |sd|.

We remark that since Γ is torsion-free and xwy is a maximal cyclic subgroup of Γ, the stabilizer
of w˘ in Γ (under the action of Γ in B8Γ) is the cyclic group xwy (see [Gro87]). In particular,
the cyclic group xwy is equal to its normalizer in Γ. Moreover, note that if g P Γ and gw˘ P
tw`, w´u, gwg´1 has to be in the stabilizer of w` or w´ under the action of Γ on B8Γ. Hence,
gwg´1 “ w˘1, g normalizes xwy and hence g P xwy. Therefore, we deduce that for every
g P Γ r xwy, the intersection

 

gw`, gw´u X tw`, w´
(

is empty.
Finally, since the maps ξρ and ξ´ρ are transverse and ρ-equivariant, we have

ρpgqξρpw
`q ‘ ξ´ρ pw

˘q “ ρpgqξρpw
´q ‘ ξ´ρ pw

˘q “ Rd.

It follows that the p1, 1q, p1, dq, pd, 1q and pd, dq entries of hρpgqh´1 are non-zero. �

Proof of Theorem 1.13. We split the proof of the theorem in two parts:

Construction of a family of representations
 

πq : Γ˚xwy Ñ G
(

qą1
. By [GW12, Lem. 3.18] we

may assume that the inclusion of Γ in G, ρ : Γ ãÝÑ G, is θ-Anosov for some θ Ă ∆ which is
stable under the opposition involution, i.e. θ˚ “ θ. Up to conjugating ρ by an element g P G,
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we may assume that the attracting fixed point of ρpwq (resp. ρpwq´1) in G{P`θ (resp. G{P´θ )

is the coset P`θ (resp. P´θ ) and ρpwq P Lθ.
By Proposition 2.10, there exists an irreducible θ-proximal representation τ : GÑ GLpd,Rq

such that τ ˝ ρ is a projective Anosov representation. Let χ1, . . . , χd P a˚ be the restricted
weights of τ . Up to conjugating τ , we may assume that V χi “ xeiy for 1 ď i ď d. Observe
that the dual representation τ˚ is also θ-proximal and its weights are ´χ1, . . . ,´χd. Up to
conjugating τ by a permutation matrix of Opdq, we may assume that the highest weight space
of τ and τ˚ are V χ1 “ xe1y and V χd “ xedy respectively.

Let us now fix a vector H0 P a
`
X aθ such that

αpH0q P N˚ @ α P θ and αpH0q “ 0 @ α P ∆ r θ.

Let q ą 1. The matrix τ
`

expplogpqqH0q
˘

“ exp
`

logpqqdτpH0q
˘

has the following properties:

(i) τ
`

expplogpqqH0q
˘

is the diagonal matrix diag
`

qχ1pH0q, . . . , qχdpH0q
˘

.

(ii) χ1pH0q´χipH0q P N˚ and χdpH0q´χjpH0q P N˚ for every 2 ď i ď d and 1 ď j ď d´1.
The attracting fixed points of τ

`

expplogpqqH0q
˘

and τ
`

expp´ logpqqH0q
˘

in PpRdq are
the lines re1s and reds respectively.

(iii) exp
`

˘ logpqqH0

˘

commutes with ρpwq P Lθ.

By Proposition 2.5 we conclude that there exists a well defined group homomorphism πq : Γ˚xwy Ñ G
defined as follows:

πqptq “ exp
`

logpqqH0

˘

πqpγq “ ρpγq, γ P Γ.

Injectivity of πq : Γ˚xwy Ñ G for generic values of q ą 1.
We are going to prove that τ ˝ πq is a faithful representation. More precisely, we prove that

for every non-trivial element h P Γ˚xwy, τpπqphqq is not a scalar multiple of Id. We recall that

the attracting fixed point of ρpwq in G{P`θ is the coset P`θ and its repelling fixed point in G{P´θ
is P´θ . It follows by Remark 2.11 that the attracting fixed point of τpρpwqq

`

resp. τ˚pρpwqq
˘

in

PpRdq is the line ι`τ pP
`
θ q “

“

V χτ
‰

“ re1s
`

resp. ι`τ˚pP
`
θ q “

“

V χτ˚
‰

“ reds
˘

. The repelling fixed

point of τ˚pρpwqq (resp. τpρpwqq) in Grd´1pRdq is the pd´ 1q-plane ι´τ˚pP
´
θ q “ V ăχτ˚ “ xedy

K

(resp. ι´τ pP
´
θ q “ V ăχτ “ xe1y

K). We deduce from Proposition 3.1 (and its proof) that for every
γ P Γ r xwy the p1, 1q, p1, dq, pd, 1q and pd, dq entries of the matrix τpρpγqq are non-zero.

Let F be the finitely generated subfield of R spanned by the entries of the elements of τpρpΓqq.
Let us chose q ą 1 to be transcendental over the field F and suppose that h P Γ˚xwy is a non-
trivial element. If h lies in a conjugate of Γ, obviously τpπqphqq is not a scalar multiple of Id
since Γ is torsion-free and τ ˝ ρ : Γ Ñ GLpd,Rq is projective Anosov and faithful. If h P Γ˚xwy
does not lie in a conjugate of Γ, by the normal form theorem for HNN extensions [LS77, Ch.
IV, Thm. 2.1], h is conjugate to a product of the form

hk “ tp1g1t
p2g2 ¨ ¨ ¨ t

pkgk,

where gj P Γ r xwy for 1 ď j ď k and p1, . . . , pk ‰ 0. We may assume that p1 ą 0 and we will
show that τpπqphkqq is not a scalar multiple of Id. If p1 ă 0 similar arguments will apply. We
may write

τpπqptqq
pi “ diag

´

qpiχ1pH0q, . . . , qpiχdpH0qq
¯

“ qmiAi

where

Ai
def
“

$

&

%

diag
´

qpipχ1pH0q´χdpH0qq, . . . , 1
¯

if pi ą 0

diag
´

1, . . . , qpipχdpH0q´χ1pH0qq

¯

if pi ă 0
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and

mi
def
“

"

piχdpH0q if pi ą 0
piχ1pH0q if pi ă 0.

In particular, since πqpγq “ ρpγq for every γ P Γ, we may write

τpπqphkqq “ τpπqptqq
p1τpρpg1qq ¨ ¨ ¨ τpπqptqq

pkτpρpgkqq

“ qs
`

A1τpρpg1qq
˘

¨ ¨ ¨
`

Akτpρpgkqq
˘

,

where s “
řk
i“1mi. Let us also set si

def
“ pi

`

χ1pH0q ´ χdpH0q
˘

for 1 ď i ď k. We have already
seen that for every 1 ď j ď k the p1, 1q, p1, dq, pd, 1q and pd, dq entries of τpρpgjqq are non-zero.
We first check that A1τpπqpg1qq is a matrix whose p1, dq and p1, 1q entries are polynomials in
q of degree s1, for 2 ď i ď d ´ 1 the p1, iq entry is a polynomial of degree at most s1 and the
remaining entries are polynomials of degree at most s1 ´ 1.

Next we mutliply with the matrix A2τpπpg2qq. There are two cases to consider:

Case 1. Suppose that p2 ą 0 (and s2 ą 0). The p1, 1q and p1, dq entries of A2τpρpg2qq is
a polynomial in q of degree s2, the remaining p1, iq entries have degree at most s2 and all
the other entries have degree at most s2 ´ 1. We see that the p1, 1q (resp. p1, dq) entry of
A1τpρpg1qqA2τpρpg2qq is obtained by multiplying the p1, 1q entry of A1τpρpg1qq with the p1, 1q
(resp. p1, dq) entry of A2τpρpg2qq plus we add some terms of degree at most s1`s2´1. With this
observation, we see that the p1, 1q and p1, dq entries of A1τpρpg1qqA2τpρpg2qq are polynomials
in q of degree s1 ` s2. For 2 ď i ď d´ 1, the entries p1, iq of A1τpρpg1qqA2τpρpg2qq have degree
at most s1 ` s2 and the remaining entries have degree at most s1 ` s2 ´ 1.

Case 2. Suppose that p2 ă 0 (and s2 ă 0). The product A2τpρpg2qq has its pd, 1q and pd, dq
entries as polynomials in q of degree |s2|, all the other entries pd, iq are of degree at most |s2| and
the remaining entries have degree at most |s2|´1. We check that the p1, 1q (resp. p1, dq) entry of
A1τpρpg1qqA2τpρpg2qq is obtained by multiplying the p1, dq entry of A1τpρpg1qq with the pd, 1q
(resp. pd, dq) entry of A2τpρpg2qq plus we add some terms of degree at most s1`|s2|´1. In this
case, we deduce that the p1, 1q and p1, dq entries of A1τpρpg1qqA2τpρpg2qq are polynomials in q
of degree s1 ` |s2|. The remaining entries p1, iq for 2 ď i ď d ´ 1 are polynomials of degree at
most s1 ` |s2| and all other entries are polynomials of degree at most s1 ` |s2| ´ 1.

By induction, one shows that the p1, 1q and p1, dq entries of the product A1τpρpg1qq ¨ ¨ ¨

Akτpρpgkqq are polynomials in Frqs of degree

dk “
k
ÿ

i“1

|si| “
`

χ1pH0q ´ χdpH0q
˘

k
ÿ

i“1

|pi|,

for every 2 ď i ď d´ 1, the p1, iq entry is a polynomial of degree at most dk and all the other
entries have degree at most dk ´ 1 in q. Since q was chosen to be transcendental over F, it
follows that τpπphqq is not a scalar mutliple of Id.

Finally, we conclude that τ ˝ πq : Γ˚xwy Ñ GLpd,Rq (and hence πq) is a faithful representa-
tion. �

As a corollary of the method of proof of Theorem 1.13 we have:

Corollary 3.2. Let G be a linear semisimple Lie group. Fix θ Ă ∆ a subset of simple restricted
roots of G and let Γ1 and Γ2 be two torsion-free word-hyperbolic groups. Let xw1y and xw2y be two
maximal cyclic subgroups of Γ1 and Γ2 respectively. Suppose that ρ1 : Γ1 Ñ G and ρ2 : Γ Ñ G
are θ-Anosov representations and ρ1pw1q “ ρ2pw2q. Then there exists h P G such that the
subgroup

@

ρ1pΓ1q, hρ2pΓqh
´1

D

of G is isomorphic to the amalgamated product Γ1 ˚w1“w2
Γ2.

Proof. We keep the notation from the previous proof. Up to conjugating both ρ1 and ρ2 by some
element g P G, we may assume that ρ1pw1q “ ρ2pw2q P Lθ. As previously, let τ : GÑ GLpd,Rq
be an irreducible θ-proximal representation such that τ ˝ ρi : Γi Ñ GLpd,Rq is a projective
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Anosov representation for i “ 1, 2. We choose q ą 1 transcendental over the finitely generated
field F1 generated by the entries of the matrices in τpρ1pΓqqYτpρ2pΓqq. We may assume that the

matrix hq
def
“ exp

`

logpqqdτpH0qq
˘

is a diagonal matrix of the form diag
`

qχ1pH0q, . . . , qχdpH0q
˘

,
where χ1pH0q ´ χipH0q P N˚ for every 2 ď i ď d. Proposition 2.2 ensures that there exists a
well defined group homomorphism π1q : Γ1 ˚w1“w2 Γ2 Ñ G such that

π1qpγ1q “ ρ1pγ1q, γ1 P Γ1

π1qpγ2q “ hqρ2pγ2qh
´1
q , γ2 P Γ2.

By Proposition 3.1, the p1, 1q, p1, dq, pd, 1q and pd, dq entries of ρipγiq are non-zero for γi P
Γir xwiy and i “ 1, 2. We similarly check that for a word hk “ g11g21 ¨ ¨ ¨ g1kg2k, gij P Γir xwiy,
which is not in a conjugate of Γ1 or Γ2, the p1, 1q and p1, dq entries of τpπ1qphkqq are of the
form qrkfpqq, where rk P R and fpqq P Frqs is a polynomial of degree kpχ1pH0q ´ χdpH0qq. In
particular, π1q is injective and the group

@

ρ1pΓ1q, hqρ2pΓ2qh
´1
q

D

is isomorphic to Γ1˚w1“w2
Γ2. �

4. Superrigidity and arithmeticity

The renowned superrigidity theorem of Margulis [Mar91] states that linear representations of
an irreducible lattice in a real semisimple linear group G of rank at least 2 essentially extend to
the whole group G. The theorem was extended by Corlette [Cor92] to representations of lattices

in the quaternionic groups Sppk, 1q, k ě 2, and the exceptional group F
p´20q
4 (of rank 1).

Let G be a real simple linear group which is either isogeneous to Sppk, 1q or F
p´20q
4 or of rank

at least 2, and let Γ be a lattice in G. We first state a geometric version of these superrigidity
theorems.

Theorem 4.1. Let H be a real semisimple linear group and ρ a representation of Γ into H.
Then there exists a ρ-equivariant map

f : G{K Ñ H{L

which is totally geodesic. (Here G{K and H{L denote respectively the symmetric spaces of G
and H.)

Remark 4.2. Since G is simple, the symmetric space G{K is irreducible. Hence the totally
geodesic map f is either constant (in which case ρ takes values in a compact subgroup of H)
or an embedding which is isometric up to scaling one of the symmetric metrics.

Margulis (in higher rank) and Gromov–Schoen [GS92] (for G “ Sppk, 1q or F
p´20q
4 ) also

proved Theorem 4.1 for linear representations of Γ over (complete) valued fields. There, the
Bruhat–Tits building of H plays the role of the symmetric space, and totally geodesic maps
from a Riemannian symmetric space are constant, implying that every representation of Γ over
such a field has bounded image.

This stronger form of superrigidity has many consequences. It implies in particular that all
lattices under consideration are arithmetic:

Theorem 4.3. Given G and Γ as above, there exists a semisimple linear algebraic group G
over Q and a smooth surjective morphism φ : GpRq Ñ G with compact kernel such that Γ is
comensurable to φpGpZqq.

Finally, these superrigidity results essentially classify the linear representations of lattices in
higher rank. Let us now assume (without loss of generality by Theorem 4.3) that Γ is commen-
surable to GpZq, where G is a semisimple algebraic group over Q such that GpRq is isogeneous
to a product of G with a compact group.

Theorem 4.4. ([Mor15, Cor. 16.4.1]) Let ρ : Γ Ñ GLpn,Rq be a linear representation. Then
there exists a smooth morphism φ : GpRq Ñ GLpn,Rq which coincides with ρ on a finite index
subgroup of Γ.
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Remark 4.5. Let us finally note that superrigidity over valued fields also implies that linear
representations of Γ into GLpn,kq have finite image when k is a field of positive characteristic
(see the proof in [Kap05, Thm. 8.1]).

5. Non-linear and indiscrete groups

5.1. Non-linear amalgamations. Here we prove the three non-linearity results stated in
the introduction. As in previous examples, see [Kap05, CST19], superrigid lattices will be the
starting points of our constructions of non-linear groups. We first prove Theorem 1.3 which we
recall here.

Theorem 1.3 Let Γ1 and Γ2 be lattices in Sppk, 1q, k ě 2, and xwiy be a cyclic subgroup of
Γi for i “ 1, 2. Assume that w1 P Γ1 and w2 P Γ2 have different translation lengths in the
symmetric space of Sppk, 1q. Then every linear representation of Γ1 ˚w1“w2 Γ2 restricted on Γ1

and Γ2 has finite image.

For an isometry g P Sppk, 1q we denote by `HHkpgq the translation length for its action on
HHk. Let us note that we equip the quaternionic hyperbolic space HHk with the negatively
curved Riemannian metric induced by a scalar multiple of the Killing form (on the symmetric
part of the Lie algebra of Sppk, 1q) such that the hyperbolic isometry

gptq
def
“

¨

˝

Ik´1 0 0
0 coshptq sinhptq
0 sinhptq coshptq

˛

‚

satisfies `HHkpgptqq “ t or every t ě 0.
For the proof we will need the following lemma. Recall that for an element g P GLpd,Cq,

λ1pgq ě ¨ ¨ ¨ ě λdpgq are the moduli of the eigenvalues of g in decresing order and
ÝÑ
` “

plog λ1, . . . , log λrq : GLpr,Rq Ñ Rr denotes the Jordan projection. A matrix g is called 1-
proximal if λ1pgq ą λ2pgq.

Lemma 5.1. Let k ě 2 and ρ : Sppk, 1q Ñ GLpr,Cq be a non-trivial continuous representation.
Let 1 ď i ď r´1 be the largest index such that log λipρpgqq “ log λ1pρpgqq for every g P Sppk, 1q.
Then for all g P Sppk, 1q we have

log
λipρpgqq

λi`1pρpgqq
“ `HHkpgq.

Proof. Note that by the definition of the index i P N the representation ^iρ : Sppk, 1q Ñ
GLp^iCrq is 1-proximal. Since Sppk, 1q has real rank 1 it is enough to determine the eigen-
values of the matrix ^iρpgptqq. Note that since the complexification of SUp2, 1q is SLp3,Cq,
the restriction ^iρ : SUp2, 1q ˆ tIk´2u Ñ GLp^iCrq can be extended to a complex semisimple
representation ψ : SLp3,Cq Ñ GLp^iCrq. The representation ψ decomposes as a direct product

ψ “ ψ1 ˆ ¨ ¨ ¨ ˆ ψp

where
 

ψi : SLp3,Cq Ñ SLpViq
(p

i“1
are irreducible complex representations and ^iCd “ V1 ‘

¨ ¨ ¨ ‘ Vp. Note that ψpgptqq is 1-proximal and its attracting fixed point in PpCrq necessarily lies
in

Ťr
i“1 PpViq, say in PpV1q. In particular, ψ1 is 1-proximal and log λ1pψ1pgptqq ą log λ1pψjpgptqq

for 2 ď j ď p and t ą 0. By using the representation theory of SLp3,Cq or [GGKW17, Lem.
3.7], one verifies that log λ1pψjpgptqqq is an integral multiple of t for every 1 ď j ď p and also

log λ1pψ1gptqqq
λ2pψ1pgptqqq

“ t. Here, it is important that k ě 2 in order to guarantee that 1 is indeed an

eigenvalue of gptq. Moreover, observe that

log
λ1pψpgptqqq

λ2pψpgptqqq
“ min

!

log
λ1pψ1pgptqqq

λ2pψ1pgptqqq
, log

λ1pψ1pgptqqq

λ1pψ2pgptqqq
, . . . , log

λ1pψ1pgptqqq

λ1pψppgptqqq

)

and therefore it follows that log λipρpgptqqq
λi`1pρpgptqqq

“ log λ1pψpgptqqq
λ2pψpgptqqq

“ t. The conclusion follows. �
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Proof of Theorem 1.3. Let L be a field and ρ : Γ1˚g1“g2 Γ2 Ñ GLpd, Lq be a linear representation.
Assume first that L has positive characteristic. Then ρ|Γ1

has necessarily finite image, see
Remark 4.5 and [Kap05].

We now assume that L has characteristic 0. Since Γ1 ˚g1“g2 Γ2 is finitely generated, we may
assume without loss of generality that L is finitely generated over Q. If ρ|Γ1

has infinite image,
then there exists a representation τ : GLpd, Lq Ñ GLpr,Rq such that τ ˝ ρ|Γ1

has unbounded
image (see [CST19, Thm. 3.1]). By Corlette’s superrigidity theorem (see Theorem 4.1), there
exists a continuous non-trivial representation ρ1 : Sppk, 1q Ñ GLpr,Rq such that

ÝÑ
` pρ1pgqq “

ÝÑ
` pρpgqq

for every g P Γ1. Up to taking an exterior power of ρ and ρ1, we may also assume that ρ1 (and
hence ρ) is 1-proximal. In particular, λ1pρ1pg1qq ą λ2pρ1pg1qq.

Now we observe that
ÝÑ
` pρpg1qq “

ÝÑ
` pρpg2qq ‰ 0 and hence the image of the restriction ρ|Γ2

is also unbounded and contains a 1-proximal element. By Corlette’s superrigidity there exists
a continuous proximal representation ρ2 : Sppk, 1q Ñ GLpr,Rq such that

ÝÑ
` pρ2pgqq “

ÝÑ
` pρpgqq

for every g P Γ2. Finally, we have

log
λ1pρ1pg1qq

λ2pρ1pg1qq
“ log

λ1pρpg1qq

λ2pρpg1qq
“ log

λ1pρpg2qq

λ2pρpg2qq
“ log

λ1pρ2pg2qq

λ2pρ2pg2qq
.

By using Lemma 5.1 for the 1-proximal representations ρ1 and ρ2 of Sppk, 1q and i “ 1, we obtain
that the translation lengths of g1 and g2 on HHk have to be equal. However, this contradicts
the hypothesis that

`HHkpg1q ‰ `HHkpg2q.

Finally, we conclude that every linear representation of the amalgamated product Γ1 ˚g1“g2 Γ2

over a field L restricted to either Γ1 or Γ2 has finite image. �

Our remaining non-linearity results will follow from a general lemma about representations
of superrigid lattices. As in Section 4, let G be a real semisimple linear group which is either of

rank at least two or isogeneous to Sppk, 1q, k ě 2, or F
p´20q
4 and let Γ be a lattice in G.

Lemma 5.2. Let W be a subgroup of G. Let ρ1 : Γ Ñ GLpr,kq and ρ2 : Γ Ñ GLpr,kq be two
linear representations of Γ over a field k which coincide on W . Then ρ1 and ρ2 coincide on a

finite index subgroup of ΓXW
Z

. (Here, W
Z

denotes the Zariski closure of W in G.)

Proof. Assume first that k has positive characteristic. Then ρ1 and ρ2 have finite image by
Remark 4.5, hence they are both trivial on a finite index subgroup of Γ.

Let us now assume that k has characteristic 0. Since Γ is finitely generated, ρ1 and ρ2 have
their image in a finitely generated extension of Q (the extension generated by all the coefficients
of the image of a finite generating subset of Γ). We can thus assume that k embeds in C, and
after composing with the restriction of scalars GLpr,Cq Ñ GLp2r,Rq we can thus restrict to the
case where k “ R.

By Theorem 4.3, there exists a semisimple linear algebraic group G over Q and a smooth
morphism φ : GpRq Ñ G with compact kernel such that Γ is commensurable to φpGpZqq. Up
to passing to a finite index subgroup and a finite cover, we can assume that G is algebraically
connected and simply connected (equivalently, that GpCq is connected and simply connected).
This implies that the morphism φ is algebraic (see [Mor15]). If we replace Γ by φ´1pΓq, W by
φ´1pW q and ρ1 and ρ2 by ρ1 ˝ φ and ρ2 ˝ φ, we are thus reduced to the case where G “ GpRq
and Γ is commensurable to GpZq.

Now, by Theorem 4.4, there exist ψ1 and ψ2 : GpRq Ñ GLpr,Rq that coincide with ρ1 and
ρ2 on a finite index subgroup of Γ. Since G is algebraically simply connected, ψ1 and ψ2 are
algebraic over R. Now, since ρ1 and ρ2 coincide on W , ψ1 and ψ2 coincide on a finite index
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subgroup of W . Since they are algebraic morphisms, they coincide on a finite index subgroup

of W
Z

, and ρ1 and ρ2 coincide on a finite index subgroup of ΓXW
Z

. �

We obtain the following corollary which immediately implies Theorem 1.5.

Corollary 5.3. If W is not a lattice in W
Z

, then Γ ˚W Γ is not linear.

Proof. Let us first note that ΓXW
Z

is a lattice in W
Z

. Indeed, we can restrict to the case where

G “ GpRq and Γ is commensurable to GpZq. Then W
Z

is defined over Q. Since W Ă GpZq,
every Q-character of W

Z
is virtually trivial on W , hence trivial on W

Z
. Therefore, ΓXW

Z
is

a lattice in W
Z

by Borel–Harish-Chandra’s theorem (see for instance [Ben08, Théorème 5.4]).
Let ρ : Γ ˚W Γ Ñ GLpd,kq be a linear representation of Γ ˚W Γ. By Lemma 5.2 and the

universal property of amalgamated products, ρ factors through Γ ˚W 1 Γ, where W 1 Ą W is a

finite index subgroup of ΓXW
Z

. Since W is not a lattice in W
Z

, the group W 1 strictly contains
W and hence Fact 2.3 implies that the representation ρ is not faithful. �

Theorem 1.6 follows from Corollary 5.3 and the following lemma which follows from the work
of Prasad–Rapinchuck [PR03, Thm. 1].

Lemma 5.4. ([PR03]) There exists g P SLpd,Zq such that xgy
Z

is a real split maximal torus.

Proof of Theorem 1.6. By Lemma 5.4, there exists a cyclic subgroup xwy of SLpn,Zq whose
Zariski closure contains a real split torus of SLpn,Rq of rank at least two. Hence xwy is not a
lattice in its Zariski closures, and Corollary 5.3 implies that the double of SLpn,Zq along xwy is
not linear. �

5.2. Indiscrete linear hyperbolic groups. Let us recall that every simple real rank 1 Lie

group is isogenous to SOpn, 1q, SUpn, 1q, Sppn, 1q, n ě 1, or to F
p´20q
4 which is the isometry

group of the octonionic hyperbolic plane OH2.
We denote by Km “ SppmqˆSpp1q the unique up to conjugation maximal compact subgroup

of Sppm, 1q. In this subsection, we prove Theorem 1.7, exhibiting a linear hyperbolic group which
does not admit a discrete and faithful representation into any Lie group of rank 1.

Theorem 1.7. Let Γ be a uniform lattice in Sppk, 1q, k ě 4, and xwy be an infinite maximal
cyclic subgroup of Γ. Then the group Γ˚xwyΓ does not admit a discrete and faithful representation
into any semisimple Lie group of rank 1.

Note that the subgroup xΓ, tΓt´1y of the HNN extension Γ˚xwy “
@

Γ, t | twt´1 “ w
D

is
isomorphic to Γ ˚xwy Γ. By Theorem 1.2, the double Γ ˚xwy Γ admits a faithful representation
into Sppk, 1q. Note also that this group is word hyperbolic by the Bestvina–Feighn combination
theorem (see Theorem 2.6).

Proof of Theorem 1.7. Since k ě 4, Γ has virtual cohomological dimension at least 16. Hence,

there is no discrete and faithful representation ρ : Γ Ñ F
p´20q
4 . Indeed, since the symmetric space

of F
p´20q
4 has dimension 16, such a representation could only exist for k “ 4 and would iden-

tify Γ to a Zariski dense cocompact lattice in F
p´20q
4 , contradicting Mostow’s rigidity [Mos73].

Therefore, since SOpm, 1q Ă SUpm, 1q Ă Sppm, 1q, it is enough to rule out discrete faithful
embeddings of the amalgamated product Γ ˚xwy Γ into Sppm, 1q for every m ě 4.

Denote by Γ1 and Γ2 the two copies of Γ amalgamated along xwy inside Γ ˚xwy Γ. Let us

also denote by dHHd the Riemannian metric distance on HHd. Supppose that there exists a
discrete and faithful representation ρ : Γ ˚xwy Γ Ñ Sppm, 1q. By Theorem 4.1, for i P t1, 2u,

there exists a ρ|Γi-equivariant totally geodesic embedding fi : HHk ãÝÑ HHm, and for i P t1, 2u,

Xi
def
“ fipHHkq is a ρpwq-invariant totally geodesic submanifold of HHm. Therefore, both X1

and X2 contain the axis Lρpwq of ρpwq. By Fact 2.12, both X1 and X2 contain the unique
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quaternionic line L1ρpwq Ă HHm containing Lρpwq. In particular, L1ρpwq is contained in X1 XX2.

Observe that the action of ρpwq on L1ρpwq cannot be cocompact. Hence, we may choose a sequence

pxnqnPN in L1ρpwq such that distHHm

`

xn, Lρpwq
˘

Ñ8 as nÑ8. Since Γ1 and Γ2 are cocompact

lattices in Sppk, 1q and fi is ρ|Γi-equivariant, for every n P N, we may find γn P Γ1, γ1n P Γ2 and
M ą 0 such that

dHHm

`

xn, ρpγnqKm

˘

ďM and dHHmpxn, ρpγ
1
nqKmq ďM

for every n P N. In particular, the triangle inequality implies that

dHHm

`

ρpγ´1
n γ1nqKm,Km

˘

“ dHHm

`

ρpγ1nqKm, ρpγnqKm

˘

ď 2M

for every n P N. Since ρ is assumed to have discrete image, we may pass to a subsequence
pknqnPN and assume that ρpγ´1

kn
γ1knq “ ρpγ´1

kn0
γ1kn0

q or equivalently ρpγkn0
γ´1
kn
q “ ρpγ1kn0

γ1´1
kn
q

for every n ě n0. Since ρ is faithful and Γ1 X Γ2 is the cyclic group xwy, there exists sn P
N such that γkn0

γ´1
kn

“ γ1n0
γ1´1
kn

“ wsn for n ě n0. Therefore, there exists C ą 0 with

distHHmpxkn , Lρpwqq ď C for every n P N, contradicting the choice of the sequence pxnqnPN
above.

Finally, we conclude that there is no discrete faithful representation ρ : Γ ˚xwy Γ Ñ Sppm, 1q.
The proof of Theorem 1.7 is complete. �

References

[Ag13] I. Agol, with an appendix by I. Agol, D. Groves, and J. Manning, The virtual Haken Conjecture, Doc.

Math. 18 (2013), 1045-1087.

[BC05] M. Baker and D. Cooper, A combination theorem for convex hyperbolic manifolds, with applications to

surfaces in 3-manifolds, J. Topol. 1 (2008), 603–642.
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[Lab06] F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165(2006),

51–114.

[LS77] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Vol. 188. Berlin: Springer, 1977.

[Mar91] G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, Berlin, 1991. ISBN

3-540-12179-X, MR1090825

[Mey15] J. Meyer, Totally geodesic spectra of quaternionic hyperbolic orbifolds, preprint, arXiv:1505.03643, 2015.

[Mor15] D. Witte Morris, Introduction to arithmetic groups, Vol. 1319. deductivepress. ca/IntroArithGrps-

FINAL. pdf: Deductive Press, 2015.

[Mos73] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math. Studies 78 (Princeton Uni-

versity Press, Princeton, N.J., 1973).

[Ol93] A. Yu. Olshanskii, On residualing homomorphisms and G-subgroups of hyperbolic groups, Internat. J.

Algebra Comput. 3 (1993), 365-409.

[PR03] G. Prasad and A. S. Rapinchuk, Existence of irreducible R-regular elements in Zariski dense subgroups,

Math Res. Lett. 10, 21–32.

[Ser80] J. P. Serre, Trees, Springer-Verlag, 1980.

[Sha79] P. Shalen, Linear representations of certain amalgamated free products, J. Pure and Appl. Alg. 15

(1979), 187–197.

[Weh73] B. A. F. Wehrfritz, Generalized free products of linear groups, Proc. Lond. Math. Soc. 40 (1973),

402–424.

[Wis04] D. T. Wise, Cubulating small cancellation groups, Geom. Funct. Anal. 14 (2004), 150-214.

[Zim21] A. Zimmer, Projective Anosov representations, convex cocompact actions, and rigidity, J. Diff. Geom.

119 (2021), 513-586.
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