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LINEARITY AND INDISCRETENESS OF AMALGAMATED PRODUCTS OF HYPERBOLIC GROUPS

We discuss the linearity and discreteness of amalgamated products of linear word hyperbolic groups. In particular, we prove that the double of a torsion-free Anosov group along a maximal cyclic subgroup is always linear, and we construct examples of such groups which do not admit discrete and faithful representations into any simple Lie group of real rank 1. We also build new examples of non-linear word hyperbolic groups, elaborating on a previous work of Canary-Stover-Tsouvalas.

Introduction

In his groundbreaking work [START_REF] Gromov | Hyperbolic groups[END_REF], Gromov introduced the notion of word-hyperbolic group, which captures the coarse geometric and algebraic properties of fundamental groups of closed negatively curved manifolds. Among their many interesting properties, hyperbolic groups are stable under various operations of topological origin, such as amalgamated products and HNN extensions over nice subgroups, see [START_REF] Bestvina | A combination theorem for negatively curved groups[END_REF]. Moreover, certain quotients of a non-elementary hyperbolic group remain hyperbolic after adding sufficiently complicated relations (see [START_REF] Gromov | Hyperbolic groups[END_REF], [START_REF] Delzant | Sous-groupes distingués et quotients des groupes hyperboliques[END_REF] and [START_REF] Yu | On residualing homomorphisms and G-subgroups of hyperbolic groups[END_REF]).

The present work revolves around the following general question:

Question. Which word-hyperbolic groups admit geometric realisations ?

Of course, the term "geometric realisation" can be understood in many ways. Here, we will mainly be interested in realizing word-hyperbolic groups as discrete subgroups of (real) linear Lie groups.

An important family of word-hyperbolic groups of geometric origin is formed by convexcocompact subgroups of simple rank one Lie groups. This includes linear groups that predate Gromov's definition by a century, such as Schottky groups, quasi-Fuchsian groups or uniform hyperbolic lattices. Gromov's theory was actually meant to generalize the class of uniform hyperbolic lattices in a coarse geometric context. A convex-cocompact subgroup Γ of a rank 1 Lie group G is quasi-isometrically embedded in the symmetric space X of G, which is negatively curved, and the boundary at infinity of Γ (as defined by Gromov) is then realized as a Γ-invariant subset of the sphere at infinity of X.

In the past two decades, the development of the theory of Anosov groups has built a nice framework to study geometric realizations of word-hyperbolic groups in higher rank Lie groups. Anosov representations were first introduced by Labourie in [START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF] for fundamental groups of closed negatively curved Riemannian manifolds, and the definition was later extended to more general word hyperbolic groups by Guichard-Wienhard in [START_REF] Guichard | Anosov representations: Domains of discontinuity and applications[END_REF]. The definition was recently streamlined by various authors [START_REF] Kapovich | A Morse Lemma for quasigeodesics in symmetric spaces and Euclidean buildings[END_REF][START_REF] Bochi | Anosov representations and dominated splittings[END_REF], who proved in particular that a subgroup Γ of a semisimple linear group G satisfies a refinement of quasi-isometric embeddedness if and only if Γ is word-hyperbolic and the inclusion is Anosov (see Definition 2.7).

Anosov subgroups of a semisimple linear Lie group G have many good geometric and dynamical properties: they are quasi-isometrically embedded into the ambient group, are stable under small deformations, and their boundary at infinity (as defined by Gromov) identifies with a compact invariant subset of some flag variety of G (see [START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF][START_REF] Guichard | Anosov representations: Domains of discontinuity and applications[END_REF]). They are now commonly accepted as a good higher rank generalization of convex-cocompactness in rank 1. In fact, by the work of Danciger-Guéritaud-Kassel [START_REF] Danciger | Convex cocompact actions in real projective geometry[END_REF] and Zimmer [START_REF] Zimmer | Projective Anosov representations, convex cocompact actions, and rigidity[END_REF] every Anosov subgroup Γ of G, after embedding G in the appropriate general linear group, acts convex-cocompactly on a stricly convex open domain of some projective space PpR d q.

Though not every Gromov hyperbolic group admits an Anosov representation, the only known obstruction so far seems to be non-linearity. Non-linear hyperbolic groups were first constructed by M. Kapovich [START_REF] Kapovich | Representations of polygons of finite groups[END_REF]: using Corlette's super-rigidity for lattices in Sppk, 1q, he proved that the quotients of such lattices by a sufficiently large power of a non-trivial element are not linear. More recently, Canary, Stover and the second author constructed new examples by proving that sufficiently complicated amalgamated products of Sppk, 1q-lattices are not linear. Our main result here is a new obstruction to realizing certain Gromov-hyperbolic groups as convex-cocompact groups. We prove the following: Theorem 1.1. There exists a word-hyperbolic group which admits a faithful representation into Sppk, 1q but does not admit any discrete and faithful representation into any semisimple Lie group of real rank 1.

Our example is the amalgamated product of two copies of a uniform Sppk, 1q-lattice along a maximal infinite cyclic subgroup. In the process, we prove a general linearity result for the double of a torsion-free Anosov group along a maximal cyclic subgroup, as well as several nonlinearity results for more complicated amalgamated products which simplify the construction of non-linear examples in [START_REF] Canary | New nonlinear hyperbolic groups[END_REF].

1.1. Amalgamated products of Gromov hyperbolic groups. Let Γ 1 , Γ 2 and W be groups and i 1 : W Ñ Γ 1 and i 2 : W Ñ Γ 2 be injective group homomorphisms. Recall that the amalgamated product Γ 1 ˚i1pW q"i2pW q Γ 2 is the quotient of the free product Γ 1 ˚Γ2 by the normal subgroup generated by the set g `i1 pwqi 2 pwq ´1˘g ´1 : g P Γ 1 ˚Γ2 , w P W ( . This operation is inspired by Van Kampen's theorem, which states that the fundamental group of a union of two open sets with connected intersection is the amalgamated product of the fundamental groups of the two open sets along the fundamental group of the intersection.

A particular case of amalgamated product is the double of Γ along W , denoted Γ˚W Γ, where Γ 1 " Γ 2 " Γ, W is a subgroup of Γ and i 1 and i 2 are both the inclusion of W into Γ.

It is folklore knowledge that the free product of two word hyperbolic groups is again word hyperbolic. Bestvina-Feighn [START_REF] Bestvina | A combination theorem for negatively curved groups[END_REF] have studied more generally the hyperbolicity of graphs of groups with word hyperbolic vertex and edge groups. In particular, they proved that the amalgamated product of hyperbolic groups along quasi-convex malnormal subgroups is hyperbolic (see also Theorem 2.6). This applies for instance to amalgamations of torsion-free hyperbolic groups along maximal cyclic subgroups. 1.2. Linearity and non-linearity. A cyclic subgroup of a group Γ is called maximal if it is not properly contained in a cyclic subgroup of Γ. Our first theorem is a linearity theorem for doubles of torsion free Anosov groups along a maximal cyclic subgroup: Theorem 1.2. Let Γ be a torsion-free Anosov subgroup of a semisimple linear group G and xwy be a maximal cyclic subgroup of Γ. Then the double Γ˚x wy Γ of Γ along xwy admits a faithful representation into G.

To point out some ways in which this result is optimal, we will also prove several non-linearity results for more complicated amalgamated products.

Theorem 1.3. Let Γ 1 and Γ 2 be lattices in Sppk, 1q, k ě 2, and xw i y be a cyclic subgroup of Γ i for i " 1, 2. Assume that w 1 P Γ 1 and w 2 P Γ 2 have different translation lengths in the symmetric space of Sppk, 1q. Then every linear representation of Γ 1 ˚w1"w2 Γ 2 restricted on Γ 1 and Γ 2 has finite image.

Corollary 1.4. Let Γ 1 and Γ 2 be lattices in Sppk, 1q, k ě 2. Let W be an infinite finitely generated group and i 1 , i 2 be embeddings of W into Γ 1 and Γ 2 respectively. Assume that there exists w P W such that i 1 pwq and i 2 pwq have different translation lengths. Then the amalgamated product Γ 1 ˚i1pW q"i2pW q Γ 2 is not linear.

When Γ 1 and Γ 2 are torsion-free and i 1 pW q and i 2 pW q are maximal cyclic subgroups, this corollary gives new examples of non-linear hyperbolic groups by the Bestvina-Feighn combination theorem.

Theorem 1.3 does not apply to doubles of a quaternionic lattice Γ over a subgroup W . However, these also tend to be non-linear for a larger group W .

Theorem 1.5. Let Γ be a uniform lattice in Sppk, 1q, k ě 2 and W be a proper subgroup of Γ which is not a uniform lattice in its Zariski closure. Then Γ ˚W Γ is not linear.

Again, this theorem can be applied to a quasi-convex malnormal free subgroups of Γ (which exist by [K99, Thm. 6.7]) and are not lattices in their Zariski closure in Sppk, 1q, thus giving new constructions of non-linear hyperbolic groups. Both constructions are improvements on the main constructions of [START_REF] Canary | New nonlinear hyperbolic groups[END_REF].

Finally, we point out the importance of the Anosov assumption in Theorem 1.2 by proving the following: Theorem 1.6. For n ě 3, there exist (many) maximal cyclic subgroups xwy of SLpn, Zq for which the double of SLpn, Zq along xwy is not linear.

1.3. Discreteness and Anosov property. The subgroup Γ ˚xwy Γ of G in Theorem 1.2 has no reason to be discrete. In fact, it cannot be discrete if Γ is already a uniform lattice in G. We will prove that some of them can never be embedded discretely into any rank 1 Lie group.

Theorem 1.7. Let Γ be a uniform lattice in Sppk, 1q, k ě 4, and xwy be an infinite maximal cyclic subgroup of Γ. Then the group Γ˚x wy Γ does not admit a discrete and faithful representation into any semisimple Lie group of rank 1.

Recall that if Γ is torsion-free then Γ˚x wy Γ is word hyperbolic by the Bestvina-Feighn combination theorem (Theorem 2.6) and isomorphic to a (dense) subgroup of Sppk, 1q by Theorem 1.2. The group Γ ˚xwy Γ is an example satisfying the conclusion of Theorem 1.1. To our knowledge, this is the first example of a linear word-hyperbolic group which is not virtually isomorphic to a convex cocompact group of a simple Lie group of real rank 1.

Note that Theorem 1.7 contrasts with the following theorem of Baker-Cooper in real hyperbolic geometry: Theorem 1.8 (Baker-Cooper [START_REF] Baker | A combination theorem for convex hyperbolic manifolds, with applications to surfaces in 3-manifolds[END_REF]). Let Γ be a convex-cocompact group of isometries of the real hyperbolic space RH k and xwy be an infinite maximal cyclic subgroup of Γ. Then there exists a finite index subgroup Γ 1 of Γ containing xwy such that Γ 1 ˚xwy Γ 1 admits a convex-cocompact representation into IsompRH 2k´1 q.

1.4. Further questions and perspectives. The present work leaves open the following question: Question 1.9. Let Γ be an Anosov subgroup of G and xwy a maximal cyclic subgroup of Γ. Does Γ ˚xwy Γ admit an Anosov representation (possibly in some larger group)?

We strongly believe in the following weaker statement, motivated partly by Baker-Cooper's theorem above: Conjecture 1.10. Let Γ be an Anosov group and xwy a maximal cyclic subgroup of Γ. Then there exists a finite index subgroup Γ 1 of Γ containing w such that Γ 1 ˚xwy Γ 1 admits an Anosov representation.

Remark 1.11. Even though Γ 1 is a proper finite index subgroup of Γ with w P Γ 1 , the group Γ 1 ˚xwy Γ 1 has infinite index in Γ ˚xwy Γ. Hence a proof of Conjecture 1.10 would not give an immediate answer to Questionm 1.9.

Note that the analoguous question for free products has already been studied. Dey-Kapovich-Leeb in [START_REF] Dey | A combination theorem for Anosov subgroups[END_REF] and Dey-Kapovich in [START_REF] Dey | Klein-Maskit combination theorem for Anosov subgroups: Free products[END_REF] have studied when the group generated by two P -Anosov subgroups of a group G is a P -Anosov free product into G. Danciger-Guéritaud-Kassel have also announced (see [DGK17, Prop. 12.5]) that the free product of two infinite Anosov subgroups of PGLpd, Rq also admits an Anosov representation into PGLpm, Rq for some m ě d. The particular case of convex-cocompact groups in rank 1 Lie groups seems to be folklore.

Let us finally mention that the work of Agol and Wise give many examples of hyperbolic groups admitting discrete and faithful linear representations: Wise in [START_REF] Wise | Cubulating small cancellation groups[END_REF] proved that C 1 p 1 6 qsmall cancellation groups are cubulated, and Agol [START_REF] Agol | The virtual Haken Conjecture[END_REF] proved (relying also on the work of Haglund-Wise [START_REF] Haglund | Special cube complexes[END_REF]) that cubulated hyperbolic groups are virtually special and vistually embed into some GLpd, Zq.

These various results raise the following general question: Question 1.12. Is there a linear hyperbolic group that does not admit a discrete and faithful representation in any (real) linear group ? 1.5. Strategy of the proofs. We will derive Theorem 1.2 from the linearity for the HNN extension Γ˚x wy def " @ Γ, t | twt ´1 " w D :

Theorem 1.13. Let Γ be a torsion-free Anosov subgroup of a semisimple linear group G and xwy a maximal cyclic subgroup of Γ. Then there exists t P G which commutes with w P Γ such that the subgroup of G generated by Γ and t is isomorphic to the HNN extension Γ˚x wy .

In fact, the group Γ˚x wy has a morphism onto Z, the kernel of which is spanned by all the t i Γt ´i, i P Z. This kernel is isomorphic to the amalgamated product of infinitely many copies of Γ over xwy.

The other negative theorems (Theorems 1.3, 1.5, 1.6 and 1.7) are all based on the same strategy as in [START_REF] Canary | New nonlinear hyperbolic groups[END_REF]: A linear representation of an amalgamated product Γ 1 ˚W Γ 2 is given by two representations ρ 1 and ρ 2 of Γ 1 and Γ 2 respectively which coincide on W . We consider situations where the superrigidity theorems of Margulis [START_REF] Margulis | Discrete Subgroups of Semisimple Lie Groups[END_REF] and Corlette [START_REF] Corlette | Archimedean superrigidity and hyperbolic geometry[END_REF] give such strong constraints on ρ 1 and ρ 2 that adding the compatibility condition on W leads to a contradiction.

The paper is organized as follows. In Section 2, we recall some elements of the structure of semisimple linear groups and the main properties of their Anosov subgroups. In Section 3 we prove our linearity theorem, Theorem 1.13, from which Theorem 1.2 follows. In Section 4 we recall the precise statements of Margulis' and Corlette's superrigidity theorems, which we use in Section 5 to prove the remaining results.

Background

In this section, we provide some background on amalgamated products and HNN extensions, Lie theory and Anosov representations.

2.1. Amalgamated products and HNN extensions. We refer the reader to [LS77, Ch. IV] and [START_REF] Serre | Trees[END_REF] for more background on amalgamated products and HNN extensions. For a group H and a subset S of H, we denote by xxSyy the normal subgroup of H generated by hsh ´1 : s P S, h P H ( . Let Γ 1 , Γ 2 and W be three groups and ι 1 : W Ñ Γ 1 and ι 2 : W Ñ Γ 2 two injective 1 morphisms.

Definition 2.1. The amalgamated product of Γ 1 and Γ 2 along W is the group

Γ 1 ˚ι1"ι2 Γ 2 " Γ 1 ˚Γ2 {xxι 1 pwqι 2 pwq ´1, w P W yy .
Let T i (i " 1, 2) be a set of right coset representatives of ι i pW q in Γ i . A normal form is a sequence pw 0 , . . . , w n q, n ě 0, with the following properties: w 0 P W , if n ě 1, w i P T 1 t1u or w i P T 2 t1u for 1 ď i ď n and for every 1 ď i ď n ´1 we have x i P T 1 and x i`1 P T 2 or x i P T 2 and x i`1 P T 1 . Every element g P Γ ˚ι1"ι2 Γ 2 has a unique representation g " ι 1 pw 0 qw 1 ¨¨¨w n for some normal form pw 0 , . . . , w n q (see [LS77, Ch. IV, Thm. 2.6]). In particular, Γ 1 and Γ 2 naturally identify to subgroups of Γ.

The amalgamated product Γ 1 ˚ι1"ι2 Γ 2 satisfies the following universal property:

Proposition 2.2. For any group G and any homomorphisms

ρ 1 : Γ 1 Ñ G and ρ 2 : Γ 2 Ñ G such that ρ 1 ˝i1 " ρ 2 ˝i2 , there exists a unique homomorphism ρ : Γ 1 ˚ι1"ι2 Γ 2 Ñ G whose restriction to Γ i is ρ i for i " 1, 2.
If the morphisms ι i are implicit, we will sometimes denote the amalgamated product by Γ 1 ˚W1"W2 Γ 2 , where W i " ι i pW q, or even Γ 1 ˚W Γ 2 when this does not bring any confusion. When Γ 1 " Γ 2 " Γ, W is a subgroup of Γ and ι 1 , ι 2 are the inclusion, we call Γ ˚W Γ the double of Γ along W .

The following fact, which will be useful later, is a straightforward consequence of the uniqueness of normal forms in amalgamated free products.

Fact 2.3. Let Γ be a group, Γ 1 and Γ 2 be subgroups of Γ such that Γ 1 is a proper subgroup of Γ 2 . Then the natural group homomorphism π : Γ ˚Γ1 Γ Ñ Γ ˚Γ2 Γ is not injective.

Let now Γ be a group, W a subgroup of Γ and ϕ : W Ñ Γ a morphism.

Definition 2.4. The HNN extension of Γ relative to ϕ is the group

Γ˚ϕ " Γ ˚xty L xxt ´1wtϕpwq ´1, w P W yy.
Let T W and T ϕpW q be sets of right coset representatives of W and ϕpW q in Γ respectively containing the identity element e P Γ. By the normal form theorem for HNN extensions [LS77, Ch. IV, Thm. 2.1] every element g P Γ˚ϕ can be uniquely written in the form g " g 0 t m1 g 1 ¨¨¨t ms g s , m 1 , . . . , m s P t´1, 1u such that: if ε i " ´1 then g i P T W , if ε i " 1 then g i P T ϕpW q and there are no subwords of the form t m et ´m. In particular, Γ embeds as a subgroup of Γ˚ϕ.

The HNN extension Γ˚φ satisfies a universal property:

Proposition 2.5. Let G be a group, ρ : Γ Ñ G a homomorphism and h P G such that ρpϕpwqq " hρpwqh ´1 for all w P W . Then there exists a unique homomorphism ρ h : Γ˚ϕ Ñ G such that ρ h | Γ " ρ and ρ h ptq " h.

1 The general definition does not require injectivity, but this assumption will simplify the exposition here, and is enough for our purposes.

When ϕ is the inclusion of W in Γ, we simply denote the HNN extension by Γ˚W . This HNN extension admits a surjective group homomorphism π : Γ˚W Ñ Z mapping Γ to 0 and t to 1. Its kernel is the normal subgroup xxΓyy " @ t i gt ´i : g P Γ, i P Z D , which is isomorphic to the amalgamated product of countably many copies of Γ along W .

A subgroup W of Γ is malnormal if, for every g P Γ W , we have gW g ´1 X W " t1u . When Γ is word-hyperbolic, W is quasi-convex in Γ if and only if the inclusion W ãÑ Γ induces quasi-isometric embedding of their Cayley graphs. The Bestvina-Feighn combination theorem asserts, in particular, that amalgamations of hyperbolic groups along malnormal quasi-convex subgroups are hyperbolic.

Theorem 2.6 (Bestvina-Feighn [START_REF] Bestvina | A combination theorem for negatively curved groups[END_REF]). Let Γ 1 , Γ 2 and W be word-hyperbolic groups and ι 1 : W ãÑ Γ 1 and ι 2 : W ãÑ Γ 2 be quasi-convex embeddings such that ι 1 pW q is malnormal in

Γ 1 . Then Γ 1 ˚ι1"ι2 Γ 2 is word hyperbolic.
Note that a maximal cyclic subgroup 2 of a torsion-free word-hyperbolic group is malnormal. Kapovich [K99] proved that every non-elementary word-hyperbolic group contains malnormal quasi-convex free subgroups with 2 generators. 2.2. Lie theory. Let us fix some notation, mainly following [GW12, §3.2]. Throughout this paper, we consider G a linear, non-compact, semisimple real algebraic Lie group and denote by g its Lie algebra. Let Ad : G Ñ GLpgq and ad : g Ñ Endpgq denote the adjoint representations of G and g, and let exp : g Ñ G be the exponential map. The Killing form B : g ˆg Ñ R is the bilinear form BpX, Y q " trpad X ad Y q. It is invariant under the adjoint action and is nondegenerate as soon as g is semisimple. Let us fix K a maximal compact subgroup of G, unique up to conjugation. We have the associated decomposition

g " k ' p
where k " LiepKq and p is its orthogonal complement with respect to B. We choose a Cartan subspace a, i.e. a maximal abelian subalgebra of g contained in p. The real rank of G is the dimension of a as a real vector space.

The co-diagonalization of the adjoint action of a decomposes g as the direct sum of root spaces:

g " g 0 ' à αPΣ g α , where g α " tX P g : ad H pXq " αpHqX @H P au and Σ " tα P a ˚: g α ‰ 0u is the set of restricted roots. After chosing a vector u P a Ť αPΣ ker α, we define the set of positive roots Σ `" tα P Σ | αpuq ą 0u and the dominant Weyl chamber a `" H P a : αpHq ě 0 @α P Σ `( . Finally, a positive root is simple if it cannot be written as the sum of two positive roots. The set of simple roots ∆ is a basis of a ˚and the dominant Weyl chamber is the associated positive quadrant.

The Cartan decomposition writes every element g P G in the form g " k exppµpgqqk 1 for k, k 1 P K and µpgq P a `. The vector µpgq is unique and called the Cartan projection of G. The Jordan projection Ý Ñ : G Ñ a `can be defined by

Ý Ñ pgq " lim nÑ8 µpg n q n .
Let θ Ă ∆ be a subset of simple restricted roots. Set and let Z K pa θ q be the centralizer of a θ in K. One associates to θ a pair of opposite parabolic subgroups pP θ , P θ q defined by:

P θ " Z K pa θ q exppaq exp ´à αPΣ `g˘α ¯.
The subgroup L θ def " P θ X P θ is a Levi factor of both P θ and P θ , which admits the Cartan decomposition L θ " Z K pa θ q exp `aL θ ˘ZK pa θ q where a Lθ " H P a : αpHq ě 0, @α P θ ( . An element g P G is called θ-proximal if αp Ý Ñ pgqq ą 0 for every α P θ. For a group H, a representation ρ :

H Ñ G is called θ-proximal if ρpHq contains a θ-proximal element.
2.3. The example of SLpd, Rq. We endow R d with its standard inner product and denote by pe 1 , . . . , e d q its canonical othonormal basis. For J Ă t1, . . . , du we set xte j : j P Juy K def " xte i : i R Juy.

A standard choice of compact subgroup of SLpd, Rq is the special orthogonal group SOpdq " g P SLpd, Rq : gg t " I d ( . One can choose as a Cartan subspace the space a " diag 0 pdq of diagonal matrices with trace zero, and as a dominant Weyl chamber the cone of traceless diagonal matrices with diagonal coefficients in non-increasing order. The restricted roots are the forms ε i ´εj where ε i P a ˚is the projection to the pi, iq entry, and the root space associated to ε i ´εj (for i ‰ j) is RE ij , where E ij is the d ˆd elementary matrix with 1 at the pi, jq entry and 0 everywhere else. The root ε i ´εj is positive when i ą j and simple when j " i `1.

Given g P SLpd, Rq, denote by λ 1 pgq ě λ 2 pgq ě . . . ě λ d pgq the moduli of the eigenvalues of g in decreasing order (counting multiplicity), and by σ i pgq the i th singular value of g, defined by the relation σ i pgq " a λ i pg t gq. The Cartan and Jordan projections of g P SLpd, Rq are given by the vectors µpgq " `log σ 1 pgq, . . . , log σ d pgq Ý Ñ pgq " `log λ 1 pgq, . . . , log λ d pgq ȓespectively.

For 1 ď i ď d ´1, the matrix g is called i-proximal if λ i pgq ą λ i`1 pgq. Now, for θ " tε i1 ´εi1`1 , . . . , ε i k ´εi k `1u Ă ∆, the associated parabolic subgroups P θ and P θ are respectively the stabilizers of the flag If Γ is a finitely generated subgroup of G, we call Γ P θ -Anosov or θ-Anosov if the inclusion Γ ãÑ G is θ-Anosov. For an abstract group Γ, any θ-Anosov representation ρ : Γ Ñ G has finite kernel and its image is a θ-Anosov subgroup of G.

Anosov groups enjoy many nice geometric and dynamical properties. In particular, they are word-hyperbolic and their Gromov boundary identifies with a compact subset of some flag variety of G. To be more precise, let Γ be a word-hyperbolic group and B 8 Γ its Gromov boundary. Every infinite-order element γ P Γ has exactly two fixed points on B 8 Γ, denoted by γ `and γ ´, called respectively the attracting and repelling fixed point of γ. ' ξ ρ and ξ ρ are transverse: for every pair px, yq of distinct points of B 8 Γ, there exists h P G such that ξ ρ pxq " hP θ and ξ ρ pyq " hP θ . ' The maps ξ ρ and ξ ρ are dynamics preserving: for every infinite order element γ P Γ, ρpγq is θ-proximal and the points ξ ρ pγ `q and ξ ρ pγ `q are the attracting fixed points of ρpγq in G{P θ and G{P θ respectively.

For more background on Anosov representations we refer to the survey paper [START_REF] Canary | Informal Lecture Notes on Anosov Representations[END_REF].

2.5. The rank 1 case. When the linear group G has rank 1, its symmetric space G{K is Gromov hyperbolic and its boundary at infinity coincides with G{P , where P is the unique proper parabolic subgroup of G up to conjugation. A representation ρ : Γ Ñ G is P -Anosov if and only if it is a quasi-isometric embedding, and the existence of an Anosov limit map ξ ρ : B 8 Γ Ñ G{P reduces to a property of quasi-isometric embeddings between Gromov hyperbolic spaces.

Finally, ρ acts properly discontinuously and cocompactly on the convex hull of ξ ρ pB 8 Γq in G{K. Thus, in rank 1, the notion of Anosov representation coincides with the classical notion of convex cocompact representation.

2.6. Projective Anosov representations. A particular case of Anosov property is the projective Anosov property of representations into SLpd, Rq. Definition 2.9. A linear representation ρ : Γ Ñ SLpd, Rq is called projective Anosov if there exist constants C, a ą 0 with σ 1 pρpγqq σ 2 pρpγqq ě Ce a|γ|Γ for every γ P Γ.

In other words, a projective Anosov representation is a θ-Anosov representation for θ " tε 1 ´ε2 u .

Such a representation induces boundary maps ξ ρ and ξ ρ with values into PpR d q and Gr d´1 pR d q respectively, and the transversality condition means for all x ‰ y P B 8 Γ, ξ ρ pxq R ker ξ ρ pyq .

Restricted weights of representations of G.

Let G be a linear real semisimple Lie group, τ : G Ñ GLpd, Rq be an irreducible linear representation of G and fix a Ă g a Cartan subspace of G. Up to conjugation, we may assume that dτ paq is contained in diag 0 pdq and hence there exists a decomposition of R d into weight spaces:

R d " V χ1 ' ¨¨¨' V χ d
where χ 1 , . . . , χ d P a ˚and V χi def " v P R d : dτ pHqv " χ i pHqv, @H P a ( for each 1 ď i ď d. The linear forms χ 1 , . . . , χ d P a ˚are called the restricted weights of τ and are integral combinations of the fundamental weights tω α u αP∆ of G with respect to the set of simple roots ∆ (see [START_REF] Knapp | Lie groups beyond an introduction[END_REF]). There is also a partial order on the set of distinct restricted weights of τ : given two weights χ ‰ χ 1 , χ ą χ 1 if and only if χ ´χ1 P ř αP∆ R `α. For this partial order, among the distinct weights of τ there exists a unique maximal element, denoted by χ τ , called the highest weight of τ .

In fact, one can turn any Anosov representation into some Lie group G into a projective Anosov representation after composing with a suitable linear representation of G (see for instance [GW12, Prop. 4.3], [GGKW17, Prop. 3.5]):

Proposition 2.10. Let G a real semisimple Lie group and θ Ă ∆ a (non-empty) subset of simple restricted roots of G. There exists d " dpG, θq and an irreducible θ-proximal representation τ : G Ñ GLpd, Rq with the following properties:

(i) A representation ρ : Γ Ñ G of a word hyperbolic group Γ is θ-Anosov if and only if τ ˝ρ is projective Anosov. (ii) Let χ ‰ χ τ be a restricted weight of τ . If H P a `with αpHq ą 0 for every α P θ, then χ τ pHq ą χpHq. Moreover, if αpHq " 0 for every α P ∆ θ and αpHq P N ˚for every α P θ, then χ τ pHq ´χpHq P N ˚.

Remark 2.11. (see [GGKW17, Prop. 3.3 & Prop. 3.5(i)]) For a θ-Anosov representation ρ : Γ Ñ G, the Anosov limit maps of the projective Anosov representation τ ˝ρ : Γ Ñ GLpd, Rq can be obtained from τ and the limit maps pξ ρ , ξ ρ q of ρ as follows. Let V χτ be the one dimensional weight space corresponding to the highest weight and V ăχτ be the direct sum of the weight spaces different from V χτ . There exist τ -equivariant embeddings ι τ : G{P θ ãÝ Ñ PpR d q and ι τ : G{P θ ãÝ Ñ Gr d´1 pR d q defined as follows:

ι τ `gP θ ˘" " τ pgqV χτ ‰ and ι τ `gP θ ˘" τ pgqV ăχτ for g P G. Then the pair of the Anosov limit maps of τ ˝ρ is `ιτ ˝ξρ , ι τ ˝ξρ ˘.

2.8. Quaternionic hyperbolic spaces and groups. Let H " R'Ri'Rj 'Rk be Hamilton's quaternion algebra. For z " a `bi `cj `dk P H, denote by z " a ´bi ´cj ´dk the conjugate of z and let |z| :" ? zz. For a matrix g " pg ij q ij P Mat nˆn pHq, g ˚" pg ji q ij is the conjugate transpose of g. For m ě 1, let J m " diag `1, . . . , 1, ´1˘. The projectivization PpH m`1 q is the set of equivalence classes of vectors in H m`1 , where u, v P H m`1 are equivalent if u " vz for some z P H ´t0u. The quaternionic hyperbolic space HH m is the open subset of the projective space PpH m q given by HH m " " z 0 : . . . :

z m´1 : z m ‰ P PpH m`1 q : |z 0 | 2 `. . . `|z m´1 | 2 ă |z m | 2 (
We consider the symplectic unitary group Sppm, 1q " g P GLpm `1, Hq : g ˚Jm g " J m ( and the compact subgroup Sppmq " g P GLpm, Hq : gg ˚" I m ( . The Lie group Sppm, 1q preserves and acts transitively on HH m . The stabilizer of v 0 " " t0u m : 1 ‰ in Sppm, 1q is the group Sppmq ˆSpp1q which is also the, unique up to conjugation, maximal compact subgroup of Sppm, 1q.

We shall use the following fact, which is almost immediate from the classification of the totally geodesic subspaces of HH m . Fact 2.12. Let m ě 1 and L be a geodesic in HH m . There exists a unique quaternionic line L 1 in HH m containing L.

Proof. Up to translating L by an element g P Sppm, 1q, we may assume that L " " t0u m´1 : tanh t : 1

‰ : t P R ( " P `t0u m´1 ˆR2 ˘X HH m
Obviously, the quaternionic line L 1 " P `t0u m´1 ˆH2 ˘X HH m contains L. Suppose that P is a quaternionic geodesic subspace of HH m containing L. By the classification of totally geodesic subspaces of HH m (see for example [Mey15, Thm. 2.12]), there exists a real subspace W of H m`1 , right invariant by H, so that P " PpW q X HH m . Since L is contained in P , W contains t0u ˆR2 and so contains t0u ˆH2 . It follows that P contains L 1 . Therefore, L 1 is unique.

Linear groups from Anosov representations

Following an idea of Shalen (see [Sha79, Thm. 2]), we prove that certain amalgamated free products and HNN extensions of groups admitting Anosov representations over cyclic subgroups are linear. Using similar methods, Wehrfritz earlier proved in [Weh73, Thm. 5] linearity of amalgamations of free groups along cyclic subgroups generated by primitive elements. Linearity of certain HNN extensions into SLp2, Cq was also proved by Button in [But12, Thm. 6.1].

For our proof of Theorem 1.13 we need the following proposition.

Proposition 3.1. Let Γ be a torsion-free word hyperbolic group and xwy be a maximal cyclic subgroup of Γ. Suppose that ρ : Γ Ñ GLpd, Rq is a projective Anosov representation. Then there exists h P GLpd, Rq with the property: for every element g P Γ xwy, the p1, 1q, p1, dq, pd, 1q and pd, dq entries of the matrix hρpgqh ´1 are non-zero.

Proof. Let ξ ρ : B 8 Γ Ñ PpR d q and ξ ρ : B 8 Γ Ñ Gr d´1 pR d q be the continuous ρ-equivariant Anosov limit maps of ρ. By the transversality of the Anosov limit maps we may find h P GLpd, Rq such that ξ ρ pw `q " h ´1 xe 1 y, ξ ρ pw ´q " h ´1 xe d y, ξ ρ pw `q " h ´1 xe d y K and ξ ρ pw ´q " h ´1 xe 1 y K . The matrices ρpwq and ρpw ´1q are both 1-proximal and since ξ ρ and ξ ρ are dynamics preserving we may write ρpwq " h ´1 ¨s1 0 0 0 A 0 0 0 s d 'h,

for some matrix A P GLpd ´2, Rq, such that

|s 1 | ą λ 1 pAq ě λ d´2 pAq ą |s d |.
We remark that since Γ is torsion-free and xwy is a maximal cyclic subgroup of Γ, the stabilizer of w ˘in Γ (under the action of Γ in B 8 Γ) is the cyclic group xwy (see [START_REF] Gromov | Hyperbolic groups[END_REF]). In particular, the cyclic group xwy is equal to its normalizer in Γ. Moreover, note that if g P Γ and gw ˘P tw `, w ´u, gwg ´1 has to be in the stabilizer of w `or w ´under the action of Γ on B 8 Γ. Hence, gwg ´1 " w ˘1, g normalizes xwy and hence g P xwy. Therefore, we deduce that for every g P Γ xwy, the intersection gw `, gw ´u X tw `, w ´( is empty. Finally, since the maps ξ ρ and ξ ρ are transverse and ρ-equivariant, we have

ρpgqξ ρ pw `q ' ξ ρ pw ˘q " ρpgqξ ρ pw ´q ' ξ ρ pw ˘q " R d .
It follows that the p1, 1q, p1, dq, pd, 1q and pd, dq entries of hρpgqh ´1 are non-zero.

Proof of Theorem 1.13. We split the proof of the theorem in two parts:

Construction of a family of representations π q : Γ˚x wy Ñ G ( qą1 . By [GW12, Lem. 3.18] we may assume that the inclusion of Γ in G, ρ : Γ ãÝ Ñ G, is θ-Anosov for some θ Ă ∆ which is stable under the opposition involution, i.e. θ ˚" θ. Up to conjugating ρ by an element g P G, we may assume that the attracting fixed point of ρpwq (resp. ρpwq ´1) in G{P θ (resp. G{P θ ) is the coset P θ (resp. P θ ) and ρpwq P L θ .

By Proposition 2.10, there exists an irreducible θ-proximal representation τ : G Ñ GLpd, Rq such that τ ˝ρ is a projective Anosov representation. Let χ 1 , . . . , χ d P a ˚be the restricted weights of τ . Up to conjugating τ , we may assume that V χi " xe i y for 1 ď i ď d. Observe that the dual representation τ ˚is also θ-proximal and its weights are ´χ1 , . . . , ´χd . Up to conjugating τ by a permutation matrix of Opdq, we may assume that the highest weight space of τ and τ ˚are V χ1 " xe 1 y and V χ d " xe d y respectively.

Let us now fix a vector H 0 P a `X a θ such that αpH 0 q P N ˚@ α P θ and αpH 0 q " 0 @ α P ∆ θ.

Let q ą 1. The matrix τ `expplogpqqH 0 q ˘" exp `logpqqdτ pH 0 q ˘has the following properties:

(i) τ `expplogpqqH 0 q ˘is the diagonal matrix diag `qχ1pH0q , . . . , q χ d pH0q ˘.

(ii) χ 1 pH 0 q ´χi pH 0 q P N ˚and χ d pH 0 q ´χj pH 0 q P N ˚for every 2 ď i ď d and 1 ď j ď d ´1.

The attracting fixed points of τ `expplogpqqH 0 q ˘and τ `expp´logpqqH 0 q ˘in PpR d q are the lines re 1 s and re d s respectively.

(iii) exp `˘logpqqH 0 ˘commutes with ρpwq P L θ .

By Proposition 2.5 we conclude that there exists a well defined group homomorphism π q : Γ˚x wy Ñ G defined as follows: π q ptq " exp `logpqqH 0 πq pγq " ρpγq, γ P Γ.

Injectivity of π q : Γ˚x wy Ñ G for generic values of q ą 1. We are going to prove that τ ˝πq is a faithful representation. More precisely, we prove that for every non-trivial element h P Γ˚x wy , τ pπ q phqq is not a scalar multiple of I d . We recall that the attracting fixed point of ρpwq in G{P θ is the coset P θ and its repelling fixed point in G{P θ is P θ . It follows by Remark 2.11 that the attracting fixed point of τ pρpwqq `resp. τ ˚pρpwqq ˘in PpR d q is the line ι τ pP θ q " " V χτ ‰ " re 1 s `resp. ι τ ˚pP θ q " " V χ τ ˚‰ " re d s ˘. The repelling fixed point of τ ˚pρpwqq (resp. τ pρpwqq) in Gr d´1 pR d q is the pd ´1q-plane ι τ ˚pP θ q " V ăχ τ ˚" xe d y K (resp. ι τ pP θ q " V ăχτ " xe 1 y K ). We deduce from Proposition 3.1 (and its proof) that for every γ P Γ xwy the p1, 1q, p1, dq, pd, 1q and pd, dq entries of the matrix τ pρpγqq are non-zero.

Let F be the finitely generated subfield of R spanned by the entries of the elements of τ pρpΓqq. Let us chose q ą 1 to be transcendental over the field F and suppose that h P Γ˚x wy is a nontrivial element. If h lies in a conjugate of Γ, obviously τ pπ q phqq is not a scalar multiple of I d since Γ is torsion-free and τ ˝ρ : Γ Ñ GLpd, Rq is projective Anosov and faithful. If h P Γ˚x wy does not lie in a conjugate of Γ, by the normal form theorem for HNN extensions [LS77, Ch. IV, Thm. 2.1], h is conjugate to a product of the form

h k " t p1 g 1 t p2 g 2 ¨¨¨t p k g k ,
where g j P Γ xwy for 1 ď j ď k and p 1 , . . . , p k ‰ 0. We may assume that p 1 ą 0 and we will show that τ pπ q ph k qq is not a scalar multiple of I d . If p 1 ă 0 similar arguments will apply. We may write τ pπ q ptqq pi " diag ´qpiχ1pH0q , . . . , q piχ d pH0qq ¯" q mi A i where

A i def " $ & % diag ´qpipχ1pH0q´χ d pH0qq , . . . , 1 ¯if p i ą 0 diag ´1, . . . , q pipχ d pH0q´χ1pH0qq ¯if p i ă 0 and m i def " " p i χ d pH 0 q if p i ą 0 p i χ 1 pH 0 q if p i ă 0.
In particular, since π q pγq " ρpγq for every γ P Γ, we may write τ pπ q ph k qq " τ pπ q ptqq p1 τ pρpg 1 qq ¨¨¨τ pπ q ptqq p k τ pρpg k qq " q s `A1 τ pρpg 1 qq ˘¨¨¨`A k τ pρpg k qq ˘, where s " ř k i"1 m i . Let us also set s i def " p i `χ1 pH 0 q ´χd pH 0 q ˘for 1 ď i ď k. We have already seen that for every 1 ď j ď k the p1, 1q, p1, dq, pd, 1q and pd, dq entries of τ pρpg j qq are non-zero. We first check that A 1 τ pπ q pg 1 qq is a matrix whose p1, dq and p1, 1q entries are polynomials in q of degree s 1 , for 2 ď i ď d ´1 the p1, iq entry is a polynomial of degree at most s 1 and the remaining entries are polynomials of degree at most s 1 ´1.

Next we mutliply with the matrix A 2 τ pπpg 2 qq. There are two cases to consider:

Case 1. Suppose that p 2 ą 0 (and s 2 ą 0). The p1, 1q and p1, dq entries of A 2 τ pρpg 2 qq is a polynomial in q of degree s 2 , the remaining p1, iq entries have degree at most s 2 and all the other entries have degree at most s 2 ´1. We see that the p1, 1q (resp. p1, dq) entry of A 1 τ pρpg 1 qqA 2 τ pρpg 2 qq is obtained by multiplying the p1, 1q entry of A 1 τ pρpg 1 qq with the p1, 1q (resp. p1, dq) entry of A 2 τ pρpg 2 qq plus we add some terms of degree at most s 1 `s2 ´1. With this observation, we see that the p1, 1q and p1, dq entries of A 1 τ pρpg 1 qqA 2 τ pρpg 2 qq are polynomials in q of degree s 1 `s2 . For 2 ď i ď d ´1, the entries p1, iq of A 1 τ pρpg 1 qqA 2 τ pρpg 2 qq have degree at most s 1 `s2 and the remaining entries have degree at most s 1 `s2 ´1.

Case 2. Suppose that p 2 ă 0 (and s 2 ă 0). The product A 2 τ pρpg 2 qq has its pd, 1q and pd, dq entries as polynomials in q of degree |s 2 |, all the other entries pd, iq are of degree at most |s 2 | and the remaining entries have degree at most |s 2 |´1. We check that the p1, 1q (resp. p1, dq) entry of A 1 τ pρpg 1 qqA 2 τ pρpg 2 qq is obtained by multiplying the p1, dq entry of A 1 τ pρpg 1 qq with the pd, 1q (resp. pd, dq) entry of A 2 τ pρpg 2 qq plus we add some terms of degree at most s 1 `|s 2 | ´1. In this case, we deduce that the p1, 1q and p1, dq entries of A 1 τ pρpg 1 qqA 2 τ pρpg 2 qq are polynomials in q of degree s 1 `|s 2 |. The remaining entries p1, iq for 2 ď i ď d ´1 are polynomials of degree at most s 1 `|s 2 | and all other entries are polynomials of degree at most s 1 `|s 2 | ´1. By induction, one shows that the p1, 1q and p1, dq entries of the product A 1 τ pρpg 1 qq ¨¨Ä k τ pρpg k qq are polynomials in Frqs of degree

d k " k ÿ i"1 |s i | " `χ1 pH 0 q ´χd pH 0 q ˘k ÿ i"1 |p i |,
for every 2 ď i ď d ´1, the p1, iq entry is a polynomial of degree at most d k and all the other entries have degree at most d k ´1 in q. Since q was chosen to be transcendental over F, it follows that τ pπphqq is not a scalar mutliple of I d . Finally, we conclude that τ ˝πq : Γ˚x wy Ñ GLpd, Rq (and hence π q ) is a faithful representation.

As a corollary of the method of proof of Theorem 1.13 we have: Corollary 3.2. Let G be a linear semisimple Lie group. Fix θ Ă ∆ a subset of simple restricted roots of G and let Γ 1 and Γ 2 be two torsion-free word-hyperbolic groups. Let xw 1 y and xw 2 y be two maximal cyclic subgroups of Γ 1 and Γ 2 respectively. Suppose that ρ 1 : Γ 1 Ñ G and ρ 2 : Γ Ñ G are θ-Anosov representations and ρ 1 pw 1 q " ρ 2 pw 2 q. Then there exists h P G such that the subgroup @ ρ 1 pΓ 1 q, hρ 2 pΓqh ´1D of G is isomorphic to the amalgamated product Γ 1 ˚w1"w2 Γ 2 .

Proof. We keep the notation from the previous proof. Up to conjugating both ρ 1 and ρ 2 by some element g P G, we may assume that ρ 1 pw 1 q " ρ 2 pw 2 q P L θ . As previously, let τ : G Ñ GLpd, Rq be an irreducible θ-proximal representation such that τ ˝ρi : Γ i Ñ GLpd, Rq is a projective Anosov representation for i " 1, 2. We choose q ą 1 transcendental over the finitely generated field F 1 generated by the entries of the matrices in τ pρ 1 pΓqq Y τ pρ 2 pΓqq. We may assume that the matrix h q def " exp `logpqqdτ pH 0 qq ˘is a diagonal matrix of the form diag `qχ1pH0q , . . . , q χ d pH0q ˘, where χ 1 pH 0 q ´χi pH 0 q P N ˚for every 2 ď i ď d. Proposition 2.2 ensures that there exists a well defined group homomorphism π 1 q : Γ 1 ˚w1"w2 Γ 2 Ñ G such that π 1 q pγ 1 q " ρ 1 pγ 1 q, γ 1 P Γ 1 π 1 q pγ 2 q " h q ρ 2 pγ 2 qh ´1 q , γ 2 P Γ 2 . By Proposition 3.1, the p1, 1q, p1, dq, pd, 1q and pd, dq entries of ρ i pγ i q are non-zero for γ i P Γ i xw i y and i " 1, 2. We similarly check that for a word h k " g 11 g 21 ¨¨¨g 1k g 2k , g ij P Γ i xw i y, which is not in a conjugate of Γ 1 or Γ 2 , the p1, 1q and p1, dq entries of τ pπ 1 q ph k qq are of the form q r k f pqq, where r k P R and f pqq P Frqs is a polynomial of degree kpχ 1 pH 0 q ´χd pH 0 qq. In particular, π 1 q is injective and the group @ ρ 1 pΓ 1 q, h q ρ 2 pΓ 2 qh ´1 q D is isomorphic to Γ 1 ˚w1"w2 Γ 2 .

Superrigidity and arithmeticity

The renowned superrigidity theorem of Margulis [START_REF] Margulis | Discrete Subgroups of Semisimple Lie Groups[END_REF] states that linear representations of an irreducible lattice in a real semisimple linear group G of rank at least 2 essentially extend to the whole group G. The theorem was extended by Corlette [START_REF] Corlette | Archimedean superrigidity and hyperbolic geometry[END_REF] to representations of lattices in the quaternionic groups Sppk, 1q, k ě 2, and the exceptional group F p´20q 4 (of rank 1). Let G be a real simple linear group which is either isogeneous to Sppk, 1q or F p´20q 4

or of rank at least 2, and let Γ be a lattice in G. We first state a geometric version of these superrigidity theorems.

Theorem 4.1. Let H be a real semisimple linear group and ρ a representation of Γ into H. Then there exists a ρ-equivariant map f : G{K Ñ H{L which is totally geodesic. (Here G{K and H{L denote respectively the symmetric spaces of G and H.) Remark 4.2. Since G is simple, the symmetric space G{K is irreducible. Hence the totally geodesic map f is either constant (in which case ρ takes values in a compact subgroup of H) or an embedding which is isometric up to scaling one of the symmetric metrics.

Margulis (in higher rank) and Gromov-Schoen [START_REF] Gromov | Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one[END_REF] (for G " Sppk, 1q or F p´20q 4

) also proved Theorem 4.1 for linear representations of Γ over (complete) valued fields. There, the Bruhat-Tits building of H plays the role of the symmetric space, and totally geodesic maps from a Riemannian symmetric space are constant, implying that every representation of Γ over such a field has bounded image.

This stronger form of superrigidity has many consequences. It implies in particular that all lattices under consideration are arithmetic: Theorem 4.3. Given G and Γ as above, there exists a semisimple linear algebraic group G over Q and a smooth surjective morphism φ : GpRq Ñ G with compact kernel such that Γ is comensurable to φpGpZqq.

Finally, these superrigidity results essentially classify the linear representations of lattices in higher rank. Let us now assume (without loss of generality by Theorem 4.3) that Γ is commensurable to GpZq, where G is a semisimple algebraic group over Q such that GpRq is isogeneous to a product of G with a compact group. Remark 4.5. Let us finally note that superrigidity over valued fields also implies that linear representations of Γ into GLpn, kq have finite image when k is a field of positive characteristic (see the proof in [Kap05, Thm. 8.1]).

Non-linear and indiscrete groups

5.1. Non-linear amalgamations. Here we prove the three non-linearity results stated in the introduction. As in previous examples, see [START_REF] Kapovich | Representations of polygons of finite groups[END_REF][START_REF] Canary | New nonlinear hyperbolic groups[END_REF], superrigid lattices will be the starting points of our constructions of non-linear groups. We first prove Theorem 1.3 which we recall here.

Theorem 1.3 Let Γ 1 and Γ 2 be lattices in Sppk, 1q, k ě 2, and xw i y be a cyclic subgroup of Γ i for i " 1, 2. Assume that w 1 P Γ 1 and w 2 P Γ 2 have different translation lengths in the symmetric space of Sppk, 1q. Then every linear representation of Γ 1 ˚w1"w2 Γ 2 restricted on Γ 1 and Γ 2 has finite image.

For an isometry g P Sppk, 1q we denote by HH k pgq the translation length for its action on HH k . Let us note that we equip the quaternionic hyperbolic space HH k with the negatively curved Riemannian metric induced by a scalar multiple of the Killing form (on the symmetric part of the Lie algebra of Sppk, 1q) such that the hyperbolic isometry gptq def " ¨Ik´1 0 0 0 coshptq sinhptq 0 sinhptq coshptq ' satisfies HH k pgptqq " t or every t ě 0.

For the proof we will need the following lemma. Recall that for an element g P GLpd, Cq, λ 1 pgq ě ¨¨¨ě λ d pgq are the moduli of the eigenvalues of g in decresing order and Ý Ñ " plog λ 1 , . . . , log λ r q : GLpr, Rq Ñ R r denotes the Jordan projection. A matrix g is called 1proximal if λ 1 pgq ą λ 2 pgq. Lemma 5.1. Let k ě 2 and ρ : Sppk, 1q Ñ GLpr, Cq be a non-trivial continuous representation. Let 1 ď i ď r ´1 be the largest index such that log λ i pρpgqq " log λ 1 pρpgqq for every g P Sppk, 1q. Then for all g P Sppk, 1q we have log λ i pρpgqq λ i`1 pρpgqq " HH k pgq.

Proof. Note that by the definition of the index i P N the representation ^iρ : Sppk, 1q Ñ GLp^iC r q is 1-proximal. Since Sppk, 1q has real rank 1 it is enough to determine the eigenvalues of the matrix ^iρpgptqq. Note that since the complexification of SUp2, 1q is SLp3, Cq, the restriction ^iρ : SUp2, 1q ˆtI k´2 u Ñ GLp^iC r q can be extended to a complex semisimple representation ψ : SLp3, Cq Ñ GLp^iC r q. The representation ψ decomposes as a direct product ψ " ψ 1 ˆ¨¨¨ˆψ p where ψ i : SLp3, Cq Ñ SLpV i q ( p i"1 are irreducible complex representations and ^iC d " V 1 ' ¨¨¨' V p . Note that ψpgptqq is 1-proximal and its attracting fixed point in PpC r q necessarily lies in Ť r i"1 PpV i q, say in PpV 1 q. In particular, ψ 1 is 1-proximal and log λ 1 pψ 1 pgptqq ą log λ 1 pψ j pgptqq for 2 ď j ď p and t ą 0. By using the representation theory of SLp3, Cq or [GGKW17, Lem. 3.7], one verifies that log λ 1 pψ j pgptqqq is an integral multiple of t for every 1 ď j ď p and also log λ1pψ1gptqqq λ2pψ1pgptqqq " t. Here, it is important that k ě 2 in order to guarantee that 1 is indeed an eigenvalue of gptq. Moreover, observe that log λ 1 pψpgptqqq λ 2 pψpgptqqq " min

! log λ 1 pψ 1 pgptqqq λ 2 pψ 1 pgptqqq , log λ 1 pψ 1 pgptqqq λ 1 pψ 2 pgptqqq , . . . , log λ 1 pψ 1 pgptqqq λ 1 pψ p pgptqqq )
and therefore it follows that log λipρpgptqqq λi`1pρpgptqqq " log λ1pψpgptqqq λ2pψpgptqqq " t. The conclusion follows.

Proof of Theorem 1.3. Let L be a field and ρ : Γ 1 ˚g1"g2 Γ 2 Ñ GLpd, Lq be a linear representation. Assume first that L has positive characteristic. Then ρ| Γ1 has necessarily finite image, see Remark 4.5 and [START_REF] Kapovich | Representations of polygons of finite groups[END_REF]. We now assume that L has characteristic 0. Since Γ 1 ˚g1"g2 Γ 2 is finitely generated, we may assume without loss of generality that L is finitely generated over Q. If ρ| Γ1 has infinite image, then there exists a representation τ : GLpd, Lq Ñ GLpr, Rq such that τ ˝ρ| Γ1 has unbounded image (see [START_REF] Canary | New nonlinear hyperbolic groups[END_REF]Thm. 3.1]). By Corlette's superrigidity theorem (see Theorem 4.1), there exists a continuous non-trivial representation ρ 1 : Sppk, 1q Ñ GLpr, Rq such that Ý Ñ pρ 1 pgqq " Ý Ñ pρpgqq for every g P Γ 1 . Up to taking an exterior power of ρ and ρ 1 , we may also assume that ρ 1 (and hence ρ) is 1-proximal. In particular, λ 1 pρ 1 pg 1 qq ą λ 2 pρ 1 pg 1 qq. Now we observe that Ý Ñ pρpg 1 qq " Ý Ñ pρpg 2 qq ‰ 0 and hence the image of the restriction ρ| Γ2 is also unbounded and contains a 1-proximal element. By Corlette's superrigidity there exists a continuous proximal representation ρ 2 : Sppk, 1q Ñ GLpr, Rq such that Ý Ñ pρ 2 pgqq " Ý Ñ pρpgqq for every g P Γ 2 . Finally, we have log λ 1 pρ 1 pg 1 qq λ 2 pρ 1 pg 1 qq " log λ 1 pρpg 1 qq λ 2 pρpg 1 qq " log λ 1 pρpg 2 qq λ 2 pρpg 2 qq " log λ 1 pρ 2 pg 2 qq λ 2 pρ 2 pg 2 qq .

By using Lemma 5.1 for the 1-proximal representations ρ 1 and ρ 2 of Sppk, 1q and i " 1, we obtain that the translation lengths of g 1 and g 2 on HH k have to be equal. However, this contradicts the hypothesis that HH k pg 1 q ‰ HH k pg 2 q. Finally, we conclude that every linear representation of the amalgamated product Γ 1 ˚g1"g2 Γ 2 over a field L restricted to either Γ 1 or Γ 2 has finite image.

Our remaining non-linearity results will follow from a general lemma about representations of superrigid lattices. As in Section 4, let G be a real semisimple linear group which is either of rank at least two or isogeneous to Sppk, 1q, k ě 2, or F p´20q 4 and let Γ be a lattice in G.

Lemma 5.2. Let W be a subgroup of G. Let ρ 1 : Γ Ñ GLpr, kq and ρ 2 : Γ Ñ GLpr, kq be two linear representations of Γ over a field k which coincide on W . Then ρ 1 and ρ 2 coincide on a finite index subgroup of Γ X W Z . (Here, W Z denotes the Zariski closure of W in G.)

Proof. Assume first that k has positive characteristic. Then ρ 1 and ρ 2 have finite image by Remark 4.5, hence they are both trivial on a finite index subgroup of Γ.

Let us now assume that k has characteristic 0. Since Γ is finitely generated, ρ 1 and ρ 2 have their image in a finitely generated extension of Q (the extension generated by all the coefficients of the image of a finite generating subset of Γ). We can thus assume that k embeds in C, and after composing with the restriction of scalars GLpr, Cq Ñ GLp2r, Rq we can thus restrict to the case where k " R.

By Theorem 4.3, there exists a semisimple linear algebraic group G over Q and a smooth morphism φ : GpRq Ñ G with compact kernel such that Γ is commensurable to φpGpZqq. Up to passing to a finite index subgroup and a finite cover, we can assume that G is algebraically connected and simply connected (equivalently, that GpCq is connected and simply connected). This implies that the morphism φ is algebraic (see [START_REF] Morris | Introduction to arithmetic groups[END_REF]). If we replace Γ by φ ´1pΓq, W by φ ´1pW q and ρ 1 and ρ 2 by ρ 1 ˝φ and ρ 2 ˝φ, we are thus reduced to the case where G " GpRq and Γ is commensurable to GpZq. Now, by Theorem 4.4, there exist ψ 1 and ψ 2 : GpRq Ñ GLpr, Rq that coincide with ρ 1 and ρ 2 on a finite index subgroup of Γ. Since G is algebraically simply connected, ψ 1 and ψ 2 are algebraic over R. Now, since ρ 1 and ρ 2 coincide on W , ψ 1 and ψ 2 coincide on a finite index quaternionic line L 1 ρpwq Ă HH m containing L ρpwq . In particular, L 1 ρpwq is contained in X 1 X X 2 . Observe that the action of ρpwq on L 1 ρpwq cannot be cocompact. Hence, we may choose a sequence px n q nPN in L 1 ρpwq such that dist HH m `xn , L ρpwq ˘Ñ 8 as n Ñ 8. Since Γ 1 and Γ 2 are cocompact lattices in Sppk, 1q and f i is ρ| Γi -equivariant, for every n P N, we may find γ n P Γ 1 , γ 1 n P Γ 2 and M ą 0 such that d HH m `xn , ρpγ n qK m ˘ď M and d HH m px n , ρpγ 1 n qK m q ď M for every n P N. In particular, the triangle inequality implies that d HH m `ρpγ ´1 n γ 1 n qK m , K m ˘" d HH m `ρpγ 1 n qK m , ρpγ n qK m ˘ď 2M for every n P N. Since ρ is assumed to have discrete image, we may pass to a subsequence pk n q nPN and assume that ρpγ ´1 kn γ 1 kn q " ρpγ ´1 kn 0 γ 1 kn 0 q or equivalently ρpγ kn 0 γ ´1 kn q " ρpγ 1 kn 0 γ 1´1 kn q for every n ě n 0 . Since ρ is faithful and Γ 1 X Γ 2 is the cyclic group xwy, there exists s n P N such that γ kn 0 γ ´1 kn " γ 1 n0 γ 1´1 kn " w sn for n ě n 0 . Therefore, there exists C ą 0 with dist HH m px kn , L ρpwq q ď C for every n P N, contradicting the choice of the sequence px n q nPN above.

Finally, we conclude that there is no discrete faithful representation ρ : Γ ˚xwy Γ Ñ Sppm, 1q. The proof of Theorem 1.7 is complete.

  2 i.e. is not contained in a larger cyclic subgroup.

  xe 1 , . . . , e i1 y Ă xe 1 , . . . , e i2 y Ă . . . Ă xe 1 , . . . , e i k y and the stabilizer of the flag xe 1 , . . . , e i k y K Ă xe 1 , . . . , e K i2 y Ă . . . Ă xe 1 , . . . , e i1 y K . 2.4. Anosov representations. More recently, Kapovich-Leeb-Porti in [KLP18] and Bochi-Potrie-Sambarino in [BPS19], characterized Anosov representations into G entirely in terms of their Cartan projections. Moreover, this particularly synthetic characterization does not a priori assume hyperbolicity of the domain group. We use it here as a definition.Let Γ be a finitely generated group. We fix a left invariant word metric on Γ and denote by |γ| the distance of an element γ P Γ from the identity element e P Γ.Definition 2.7 ([KLP18, BPS19]). Let θ Ă ∆ be a (non-empty) subset of simple restricted roots of G. A representation ρ : Γ Ñ G is called P θ -Anosov or θ-Anosov if there exist constants C, c ą 0 such that α pµpρpγqqq ě c|γ| ´C for every α P θ and all γ P Γ.

  Theorem 2.8 (Labourie[START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF], Guichard-Wienhard [GW12], Kapovich-Leeb-Porti[START_REF] Kapovich | A Morse Lemma for quasigeodesics in symmetric spaces and Euclidean buildings[END_REF]). Let ρ : Γ Ñ G be a θ-Anosov representation. Then there exists a unique pair of continuous, ρ-equivariant injective maps `ξρ , ξ ρ ˘: B 8 Γ Ñ G{P θ ˆG{P θ called the Anosov limit maps of ρ, satisfying the following properties:

  Theorem 4.4.[START_REF] Morris | Introduction to arithmetic groups[END_REF] Cor. 16.4.1]) Let ρ : Γ Ñ GLpn, Rq be a linear representation. Then there exists a smooth morphism φ : GpRq Ñ GLpn, Rq which coincides with ρ on a finite index subgroup of Γ.
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subgroup of W . Since they are algebraic morphisms, they coincide on a finite index subgroup of W Z , and ρ 1 and ρ 2 coincide on a finite index subgroup of Γ X W Z .

We obtain the following corollary which immediately implies Theorem 1.5.

Corollary 5.3. If W is not a lattice in W Z , then Γ ˚W Γ is not linear.

Proof. Let us first note that ΓXW Z is a lattice in W Z . Indeed, we can restrict to the case where G " GpRq and Γ is commensurable to GpZq. Then W Z is defined over

a lattice in W Z by Borel-Harish-Chandra's theorem (see for instance [Ben08, Théorème 5.4]).

Let ρ : Γ ˚W Γ Ñ GLpd, kq be a linear representation of Γ ˚W Γ. By Lemma 5.2 and the universal property of amalgamated products, ρ factors through Γ ˚W 1 Γ, where W 1 Ą W is a finite index subgroup of Γ X W Z . Since W is not a lattice in W Z , the group W 1 strictly contains W and hence Fact 2.3 implies that the representation ρ is not faithful.

Theorem 1.6 follows from Corollary 5.3 and the following lemma which follows from the work of Prasad-Rapinchuck [PR03, Thm. 1].

Lemma 5.4. ([PR03]

) There exists g P SLpd, Zq such that xgy Z is a real split maximal torus.

Proof of Theorem 1.6. By Lemma 5.4, there exists a cyclic subgroup xwy of SLpn, Zq whose Zariski closure contains a real split torus of SLpn, Rq of rank at least two. Hence xwy is not a lattice in its Zariski closures, and Corollary 5.3 implies that the double of SLpn, Zq along xwy is not linear. 5.2. Indiscrete linear hyperbolic groups. Let us recall that every simple real rank 1 Lie group is isogenous to SOpn, 1q, SUpn, 1q, Sppn, 1q, n ě 1, or to F p´20q 4 which is the isometry group of the octonionic hyperbolic plane OH 2 . We denote by K m " SppmqˆSpp1q the unique up to conjugation maximal compact subgroup of Sppm, 1q. In this subsection, we prove Theorem 1.7, exhibiting a linear hyperbolic group which does not admit a discrete and faithful representation into any Lie group of rank 1.

Theorem 1.7. Let Γ be a uniform lattice in Sppk, 1q, k ě 4, and xwy be an infinite maximal cyclic subgroup of Γ. Then the group Γ˚x wy Γ does not admit a discrete and faithful representation into any semisimple Lie group of rank 1.

Note that the subgroup xΓ, tΓt ´1y of the HNN extension Γ˚x wy " @ Γ, t | twt ´1 " w D is isomorphic to Γ ˚xwy Γ. By Theorem 1.2, the double Γ ˚xwy Γ admits a faithful representation into Sppk, 1q. Note also that this group is word hyperbolic by the Bestvina-Feighn combination theorem (see Theorem 2.6).

Proof of Theorem 1.7. Since k ě 4, Γ has virtual cohomological dimension at least 16. Hence, there is no discrete and faithful representation ρ : Γ Ñ F , contradicting Mostow's rigidity [START_REF] Mostow | Strong rigidity of locally symmetric spaces[END_REF]. Therefore, since SOpm, 1q Ă SUpm, 1q Ă Sppm, 1q, it is enough to rule out discrete faithful embeddings of the amalgamated product Γ ˚xwy Γ into Sppm, 1q for every m ě 4.

Denote by Γ 1 and Γ 2 the two copies of Γ amalgamated along xwy inside Γ ˚xwy Γ. Let us also denote by d HH d the Riemannian metric distance on HH d . Supppose that there exists a discrete and faithful representation ρ : Γ ˚xwy Γ Ñ Sppm, 1q. By Theorem 4.1, for i P t1, 2u, there exists a ρ| Γi -equivariant totally geodesic embedding f i : HH k ãÝ Ñ HH m , and for i P t1, 2u, X i def " f i pHH k q is a ρpwq-invariant totally geodesic submanifold of HH m . Therefore, both X 1 and X 2 contain the axis L ρpwq of ρpwq. By Fact 2.12, both X 1 and X 2 contain the unique