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RESIDUALLY FINITE NON LINEAR HYPERBOLIC GROUPS

We exhibit the first examples of residually finite non-linear Gromov hyperbolic groups. Our examples are constructed as amalgamated products of torsion-free cocompact lattices in the rank 1 Lie group Sppd, 1q, d ě 2, along maximal cyclic subgroups.

2 is a residually finite non-linear Gromov hyperbolic group.

Introduction

Recall that a group G is called residually finite if for every element g P G t1u there exists a finite group F and a group homomorphism φ : G Ñ F with φpgq ‰ 1. A long standing open question of Gromov [START_REF] Gromov | Hyperbolic groups[END_REF] asks whether every hyperbolic group is residually finite. Since every finitely generated linear group is residually finite by Malcev's theorem, a negative answer to Gromov's question should be considered among non-linear hyperbolic groups. Using the superrigidity theorems of Corlette [START_REF] Corlette | Archimedean superrigidity and hyperbolic geometry[END_REF] and Gromov-Schoen [START_REF] Gromov | Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one[END_REF], M. Kapovich constructed in [START_REF] Kapovich | Representations of polygons of finite groups[END_REF] the first examples of non-linear hyperbolic groups as quotients of cocompact lattices in the simple rank 1 Lie group Sppd, 1q, d ě 2. Other examples of non-linear hyperbolic groups were constructed by Canary, Stover and the second author in [START_REF] Canary | New nonlinear hyperbolic groups[END_REF] and by the authors of this note in [START_REF] Tholozan | Linearity and indiscreteness of amalgamated products of hyperbolic groups[END_REF], as amalgamated products or HNN extensions of quaternionic supperigid lattices along infinite cyclic or quasiconvex free subgroups of rank at least two.

In the light of the previous discussion, it is natural to ask which of these classes of nonlinear hyperbolic groups can be shown to be residually finite. Unfortunately, this question is difficult in most cases, and deeply connected to other well-known problems in geometric group theory. For instance, residual finiteness of Kapovich's examples is related to the congruence subgroup conjecture for quaternionic lattices, see [START_REF] Lubotzky | Some more Non-arithmetic Rigid groups, Geometry, Graphs and Dynamics: Proceedings in Memory of Robert Brooks[END_REF]§4]. Similarly, residual finiteness of amalgamated products along quasi-convex malnormal subgroups is related to the seperability of these subgroups in the ambient lattice, see [LN91, §2] and [START_REF] Agol | Residual finiteness, QCERF and fillings of hyperbolic groups[END_REF]. In view of these difficulties, most of these non-linear examples actually provide good candidates for non-residually finite hyperbolic groups.

Nonetheless, in this note we show that one of our constructions in [START_REF] Tholozan | Linearity and indiscreteness of amalgamated products of hyperbolic groups[END_REF] provides hyperbolic non-linear residually finite groups. They seem to be the first examples of such groups. 1 These are constructed as amalgamated products of cocompact lattices in Sppd, 1q, d ě 2, along maximal cyclic subgroups, hence they are also CATp0q groups.

Theorem 1.1. Let Γ 1 and Γ 2 be two cocompact lattices in Sppd, 1q, d ě 2. There exist finiteindex subgroups Γ 1 1 of Γ 1 and Γ 1 2 of Γ 2 such that for every non-trivial primitive 2 elements γ 1 P Γ 1 1 and γ 2 P Γ 1 2 with different translation lengths in the symmetric space of Sppd, 1q, the amalgamated product

Γ 1 1 ˚γ1"γ2 Γ 1
Note that there are several known examples of finitely generated residually finite nonlinear groups. These include one-relator ascending HNN extensions of free groups exhibited by Drutu-Sapir in [START_REF] Drutu | Non-linear residually finite groups[END_REF], the automorphism groups AutpF n q, n ě 3, (see [START_REF] Formanek | The automorphism group of a free group is not linear[END_REF]) and residually finite groups containing infinite torsion p and q-subgroups for two distinct primes p, q (see e.g. [START_REF] Nica | Linear groups-Malcev's theorem and Selberg's lemma[END_REF]Rmk. 3.4]). More recently, Chong-Wise in [START_REF] Hip | Wise An uncountable family of finitely generated residually finite groups[END_REF] constructed an uncountable family of finitely generated residually finite groups. Most of them are not linear, since there are only countably many finitely generated linear groups, as Sami Douba pointed out to us. However, none of these examples are hyperbolic.

Let us now provide some details on our construction. The non-linearity of the amalgamated product ∆pγ 1 , γ 2 q def " Γ 1 ˚γ1"γ2 Γ 2 is proved in [START_REF] Tholozan | Linearity and indiscreteness of amalgamated products of hyperbolic groups[END_REF] following the point of view of the constructions in [START_REF] Canary | New nonlinear hyperbolic groups[END_REF], and relies on the supperigidity theorems of Corlette [START_REF] Corlette | Archimedean superrigidity and hyperbolic geometry[END_REF] and Gromov-Schoen [START_REF] Gromov | Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one[END_REF]. We sketch the proof in Section 2 for completeness.

In order to prove the residual finiteness of ∆pγ 1 , γ 2 q, one needs to construct finite quotients of Γ 1 and Γ 2 in which γ 1 and γ 2 have the same arbitrarily large order. To guarantee this property, we appeal to a theorem of Platonov [START_REF] Platonov | A certain problem for finitely generated groups[END_REF] saying that every finitely generated linear group admits an abundance of descending sequences of normal finite-index subgroups, where quotients between successive terms are p-groups for some primes p P N. We deduce the following residual finiteness result: Theorem 1.2. Let Γ 1 and Γ 2 be non-elementary Gromov hyperbolic groups which are linear over characteristic zero. There exist finite-index subgroups Γ 1 1 of Γ 1 and Γ 1 2 of Γ 2 with the property that for every γ 1 P Γ 1 1 and γ 2 P Γ 1 2 primitive elements, the amalgamated product

Γ 1 1 ˚γ1"γ2 Γ 1 2
is a residually finite Gromov hyperbolic group.
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Non linear amalgamated products of superrigid lattices

We recall here the construction of non-linear hyperbolic groups from [TT21] that will answer Theorem 1.1.

Theorem 2.1 (Theorem 1.3 of [START_REF] Tholozan | Linearity and indiscreteness of amalgamated products of hyperbolic groups[END_REF]). Let Γ 1 and Γ 2 be two lattices in Sppd, 1q, d ě 2. Assume that γ 1 P Γ 1 and γ 2 P Γ 2 are two infinite order elements with different translation lengths in the symmetric space of Sppd, 1q. Then for every field k and n P N, every representation ρ : Γ 1 ˚γ1"γ2 Γ 2 Ñ GL r pkq maps Γ 1 and Γ 2 to a finite group. In particular, the amalgamated product Γ 1 ˚γ1"γ2 Γ 2 is not linear.

Let us sketch the proof here for completeness. The details are in [START_REF] Tholozan | Linearity and indiscreteness of amalgamated products of hyperbolic groups[END_REF]§5]. The cornerstone of the proof is the superrigidity theorem of Corlette [START_REF] Corlette | Archimedean superrigidity and hyperbolic geometry[END_REF] and Gromov-Schoen [START_REF] Gromov | Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one[END_REF], which say that a linear representation of a Sppd, 1q lattice with infinite image essentially extends to Sppd, 1q. The other ingredient comes from the representation theory of Sppd, 1q: there is a constant c such that, for every proximal continuous homomorphism ψ : Sppd, 1q Ñ GL r pCq and every g P Sppd, 1q, we have

log λ 1 `ψpgqq λ 2 pψpgqq " c ¨ HH d pgq ,
where λ 1 pψpgqq ě λ 2 pψpgqq ě ¨¨¨ě λ r pψpgqq are the moduli of the eigenvalues of ψpgq and HH d pgq denotes the translation length of g P Sppd, 1q acting on the quaternionic hyperbolic space HH d . In the context of Theorem 2.1, the superrigidity of Γ 1 and Γ 2 and the fact that γ 1 , γ 2 P Sppd, 1q have distinct translation lengths implies that two linear representations of ρ i of Γ i with infinite image cannot satisfy ρ 1 pγ 1 q " ρ 2 pγ 2 q .

Thus the amalgamated product does not admit a faithful linear representation.

Residual finiteness of amalgamated products

There are certain ways of proving the residual finiteness of amalgamated products of residually finite groups, as soon as compatibility conditions hold for the amalgamated subgroups, see for example [Bau62, Prop. 1]. We give here the following refinement of Baumslag's proposition for Gromov hyperbolic groups.

Lemma 3.1. Let Γ 1 and Γ 2 be two torsion-free Gromov hyperbolic groups and let γ 1 P Γ 1 and γ 2 P Γ 2 be two primitive elements. Suppose that there exist decreasing sequences `Γ1,n ˘8 n"1 and `Γ2,n ˘8 n"1 of finite-index normal subgroups of Γ 1 and Γ 2 respectively with the following properties:

(i) Ş 8
n"1 Γ i,n " t1u for i P t1, 2u, (ii) rxγ 1 y : xγ 1 y X Γ 1,n s " rxγ 2 y : xγ 2 y X Γ 2,n s for every n P N.

Then the amalgamated product Γ 1 ˚γ1"γ2 Γ 2 is residually finite.

Before we proceed with the proof of this lemma, let us observe that maximal cyclic subgroups of residually finite torsion-free hyperbolic groups are separable. Proposition 3.2. Let Γ be a torsion-free Gromov hyperbolic group. Suppose that `Γn ˘8 n"1 is a decreasing sequence of finite-index normal subgroups of Γ with Ş 8 n"1 Γ n " t1u. Let γ P Γ be a primitive element. Then Ş 8 n"1 xγyΓ n . Let h P H, fix n P N and write h " η n γ sn for some s n P N and γ n P Γ n . Observe that rh, γs " η n γη ´1 n γ ´1 P Γ n since Γ n is a normal subgroup of Γ. We thus have rh, γs P Ş 8 n"1 Γ n " t1u. Hence H centralizes the cyclic group xγy. Since Γ is torsion-free hyperbolic and xγy is maximal cyclic, it is equal to its centralizer [START_REF] Gromov | Hyperbolic groups[END_REF]. Hence H " xγy.

In the light of Proposition 3.2, the proof of Lemma 3.1 is quite standard. We provide a proof for the reader's convenience.

Proof of Lemma 3.1. Let us set ∆ " Γ 1 ˚γ1"γ2 Γ 2 . For every g P ∆, we shall exhibit a finite-index normal subgroup N of ∆ with g P ∆ N .

First, let us assume that g does not lie in a conjugate of Γ 1 or Γ 2 . Up to conjugation, we may write g " w 1 η 1 ¨¨¨w s η s where w 1 , . . . , w s P Γ 1 xγ 1 y and η 1 , . . . , η s P Γ 2 xγ 2 y.

By assumption (i) and Proposition 3.2 there exists m P N large enough such that w 1 , . . . w s P Γ 1 xγ 1 yΓ 1,m and η 1 , . . . η s P Γ 2 xγ 2 yΓ 2,m . By assumption (ii) we have rxγ 1 y : xγ 1 y X Γ 1,m s " rxγ 2 y : xγ 2 y X Γ 2,m s, so xγ 1 y and xγ 2 y are finite cyclic groups of Γ 1 {Γ 1,m and Γ 2 {Γ 2,m of the same order. Thus there exists a surjective homomorphism

π : ∆ Ñ Γ 1 {Γ 1,m ˚γ1"γ2 Γ 2 {Γ 2,m
restricting to the quotient morphism Γ i Ñ Γ i {Γ i,m for i P t1, 2u. By construction, πpw 1 q, . . . , πpw s q P Γ 1 {Γ 1,m xγ 1 y and πpη 1 q, . . . , πpη s q P Γ 2 {Γ 2,m xγ 2 y, and we conclude that πpgq " πpw 1 qπpη 1 q ¨¨¨πpw s qπpη s q ‰ 1 . Now, an amalgamated product of finite groups is virtually free (see for instance [START_REF] Serre | Trees[END_REF]) hence residually finite, so there exists a finite group F and a surjective group homomorphism

ϕ : Γ 1 {Γ 1,m ˚γ1"γ2 Γ 2 {Γ 2,m Ñ F
with ϕpπpgqq ‰ 1. In particular, g P ∆ kerpπ ˝ϕq.

In the case where g " whw ´1 for some w P ∆ and h P Γ 1 (resp. h P Γ 2 ) we choose n P N large enough such that h P Γ 1 Γ 1,n (resp. h P Γ 2 Γ 2,n ). We obtain a surjective group homomorphism π : ∆ Ñ Γ 1 {Γ 1,n ˚γ1"γ2 Γ 2 {Γ 2,n with πphq ‰ 1, hence πpgq ‰ 1. Again, since Γ 1 {Γ 1,n ˚γ1"γ2 Γ 2 {Γ 2,n is residually finite, g survives in a finite quotient of ∆.

Platonov's theorem

By Lemma 3.1, in order to prove residual finiteness of our amalgamated hyperbolic groups, we need to construct sufficiently many quotients of these groups in which the amalgamated cyclic subgroups have the same order. These will be given by the following theorem of Platonov [START_REF] Platonov | A certain problem for finitely generated groups[END_REF] which shows that linear finitely generated groups are residually p-finite for some p (i.e. every non-trivial element survives in a finite quotient which is a p-group).

Theorem 4.1. (Platonov [START_REF] Platonov | A certain problem for finitely generated groups[END_REF]) Let k be a field of characteristic zero and Γ be a finitely generated subgroup of GL r pkq. Then, for all but finitely many primes p P N, there exists a decreasing sequence of finite-index normal subgroups `Γpp n q ˘8 n"1 of Γ with the following properties:

(i) Ş 8 n"1 Γpp n q " t1u. (ii) for n P N, every non-trivial element of Γpp n q{Γpp n`1 q has order equal to p. In particular, Γ is virtually residually p-finite for all but finitely many primes p.

The sequence `Γpp n q ˘8 n"1 is constructed in the following way: let A be the domain generated by the matrix entries of elements of (a finite generating set of) Γ and let I Ă A be a maximal ideal such that A{I is a finite field of characteristic p. The finite index normal subgroup Γpp n q is then defined as the kernel of the morphism Γ Ă GL r pAq Ñ GL r pA{I n q .

A detailed proof of Platonov's theorem is given in [Nic13, Thm. 3.1].

Proof of the theorems

We now have all the tools to conclude the proof of Theorem 1.2 and Theorem 1.1.

Proof of Theorem 1.2. Note first that, by Malcev's theorem, Γ 1 and Γ 2 are residually finite, and by Selberg's lemma, up to passing to finite-index subgroups, we may assume that Γ 1 and Γ 2 are torsion-free. By Theorem 4.1 there exists a prime p P N and descending sequences Γ 1 pp n q ( 8 n"1 and Γ 2 pp n q ( 8 n"1 of finite-index normal subgroups of Γ 1 and Γ 2 respectively such that:

(i) Ş 8 n"1 Γ 1 pp n q " t1u and Ş 8 n"1 Γ 2 pp n q " t1u, (ii) for n ě 1 and i P t1, 2u, every non-trivial element of Γ i pp n q{Γ i pp n`1 q has order equal to p. Let us set Γ 1 1 " Γ 1 ppq and Γ 1 2 " Γ 2 ppq. Let γ 1 P Γ 1 1 and γ 2 P Γ 1 2 be two non-trivial primitive elements. We claim that the amalagamated product ∆pγ 1 , γ 2 q def " Γ 1 1 ˚γ1"γ2 Γ 1 is a residually finite hyperbolic group. Since Γ i is torsion-free for i P t1, 2u, xγ i y is malnormal in Γ i ppq and the hyperbolicity of ∆pγ 1 , γ 2 q follows immediately by the Bestvina-Feighn combination theorem [START_REF] Bestvina | A combination theorem for negatively curved groups[END_REF].

Observe that for every n P N and i P t1, 2u the order of γi in Γ i {Γ i pp n q is a power of p since γ i P Γ i ppq and Γ i ppq{Γ i pp n q is a finite p-group. For every n P N and i P t1, 2u, define a i pnq as the integer such that γi has order p aipnq in Γ i {Γ i pp n q. Since Γ i pp n q is a decreasing sequence of normal subgroups with Ş 8 n"1 Γ i pp n q " t1u, the sequence a i pnq is increasing and unbounded. Moreover, by Property (ii) of Platonov's theorem, γ p a i pnq i P Γ i pp n q has order 1 or p in Γ i pp n q{Γ i pp n`1 q, which implies that a i pn `1q ´ai pnq P t0, 1u for i P t1, 2u. We conclude that a i : N Ñ N is surjective for i P t1, 2u.

Let pk n q 8 n"1 and pl n q 8 n"1 be increasing sequences such that a 1 pk n q " a 2 pl n q " n .

Finally, set Γ 1 1,n " Γ 1 pp kn q and Γ 1 2,n " Γ 2 pp ln q. By the definition of k n and l n , the order of γi in Γ 1 i {Γ 1 i,n is p n for i P t1, 2u. Since pk n q and pl n q are unbounded, we have Ş 8 n"1 Γ i,n " t1u. The decreasing sequences of subgroups `Γ1 i,n ˘8 n"1 satisfy hypotheses (i) and (ii) of Lemma 3.1 and we conclude that ∆pγ 1 , γ 2 q is residually finite. Now Theorem 1.1 follows straightforwardly from Theorem 1.2 and Theorem 2.1.

Proof of Theorem 1.1. Let Γ 1 and Γ 2 be two cocompact lattices of Sppd, 1q, d ě 2. Since Γ 1 and Γ 2 are linear over R, by Theorem 1.2 there exist finite-index subgroups Γ 1 1 and Γ 1 2 of Γ 1 and Γ 2 respectively such that for every γ 1 P Γ 1 1 and γ 2 P Γ 1 2 primitive elements, the group ∆pγ 1 , γ 2 q is a residually finite Gromov hyperbolic group. On the other hand, when the translation lengths of γ 1 and γ 2 P Sppd, 1q are different, the group ∆pγ 1 , γ 2 q is non-linear by Theorem 2.1.

  n " xγy. Proof. Let us set H def "