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REMARKS ON HOMOGENIZATION AND 3D-2D DIMENSION REDUCTION
OF UNBOUNDED ENERGIES ON THIN FILMS

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

AssTrACT. We study periodic homogenization and 3D-2D dimension reduction by I'(7)-con-
vergence of heterogeneous thin films whose the stored-energy densities have no polynomial
growth. In particular, our results are consistent with one of the basic facts of nonlinear elasticity,
namely the necessity of an infinite amount of energy to compress a finite volume of matter into
zero volume. However, our results are not consistent with the noninterpenetration of the matter.

1. INTRODUCTION

Consider a heterogeneous thin film occupying in a reference configuration the bounded open

set Y. < R? given by
T e
Yie =2 X —5—, c ,
2° 2
where 7y €]0, 00| is fixed, ¢ > 0 and ¥ = R? is Lipschitz, open and bounded. The small param-

eters €7 and ¢ represent respectively the film thickness and the length scale of heterogeneity
and material microstructure, and the meaning of the coeflicient  is as follows:

e v < 1 means that the film thickness is much larger than heterogeneity;
e v = 1 means that the film thickness is comparable to heterogeneity;
e v > 1 means that the film thickness is much smaller than heterogeneity.

A point of ¥, is denoted by (z, z3) with z € ¥ and z3 €] — %, %[ In order to model z-periodic

heterogenities of the material, we assume that its stored-energy density is a Borel measurable
function

W R? x M*** — [0, 0]
with the following properties:

(Cy) W is p-coercive with p > 1, i.e. there exists C' > 0 such that W (z, F') = C|F|? for all
(z, F) e R? x IM3*3;

(Cy) W is 1-periodic with respect to z, i.e. W(z+2z, F) = W(z, F) forall (z, F') € R* x M3*3
and all 2 € Z2.
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2 HOMOGENIZATION AND 3D-2D REDUCTION OF UNBOUNDED ENERGIES ON THIN FILMS

In order to take into account the fact that an infinite amount of energy is required to compress
a finite volume into zero volumd? i.e.

W(x,F) — oo as detF — 0, (1.1)

where detF' denotes the determinant of the 3 x 3 matrix F, we assume that

(C3) W is p-ample, i.e. there exist ¢ > 0 such that ZW (x, F) < ¢(1 + |F|P) forall (z, F) €
R? x M**3, where ZW : R?* x M?**3 — [0, o0] is defined by

FW(x, F) :=inf {J W (z, F + Vo(z,x3))dedrs - ¢ € Wy ™ (Y; ]R3)} (1.2)
Y

with Y :=] — 1 2[%.
Note that (C3) does not imply that T is of p-polynomial growth, and is compatible with (1.1)
(see Section [5). The object of this paper is to show that as ¢ — 0 the three-dimensional free
energy functional E. : WHP(3_; R?) — [0, 0] (with p > 1) defined by
1

E.(u) := p= Lg w <§, Vu(x,x3)> dxdxs (1.3)

I'(7)-converges to the two-dimensional free energy functional E : W'?(3; R?) — [0, 0] given

by
E(v) := JEW<VU(SL’)>dZC (1.4)

with W : M3*2 — [0, c0]. Usually, E is called the homogenized nonlinear membrane energy
associated with the two-dimensional elastic material with respect to the reference configuration
Y. Furthermore, we wish to give a representation formula for 1.

In the homogeneous case, i.e. W(x, F') = W(F'), the problem of deriving membrane model as
variational limit of non-linear three dimensional elasticity began at the begining of the nineties
with the works of Le Dret and Raoult (see [1}2]) who solved the problem in the case where W
is bounded, i.e. W(F) < ¢(1 + |F|?). In the unbounded case, the problem was solved in [3]
for the constraint “detVu # 0” and in [4] for the constraint “detVu > 07 (see also [5}16]). Note
that the answer of the problem of deriving membrane model as variational limit of non-linear
three dimensional elasticity under the constraint “detVu > 07 is the result of several works on
the subject: mainly, the attempt of Percivale in 1991 (see [7]), the rigorous answer by Le Dret
and Raoult in the p-polynomial growth case and especially the substantial contributions of Ben

Belgacem (see [8, 9, 10]).

In the heterogeneous and bounded case, the problem was solved by Braides, Fonseca and
Francfort (see [11]) for v = 1 and by Shu (see [12]) for v # 1. In the present paper we deal
with the heterogeneous and unbounded case. Our results (see Theorem[2.T]and Corollary[5.2)
are compatible with the constraint “detVu # 0” but not with the constraint “detVu > 0. To
our knowledge, in the heterogeneous case, incorporating the constraint “detVu > 0” is an open
problem.

2However, we do not prevent orientation reversal.
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The plan of the paper is as follows. In the next section we state our main result (see Theorem
- 2.1)) establishing the I'(7)-convergence (whose definition is recalled in §3.1)) of E. in (1.3) to

E in (1.4)) together with a representation formula for W which depends on 7. The proof of
Theorem [2.1]is given in Section 4] by using two results: unbounded relaxation (see Corollary
[3.6) and bounded homogenization and 3D-2D dimension reduction (see Theorem[3.9). These
results, proved in [13] and [11} 12] respectively, are recalled in . In Section [5) l we give
applications of Theorem (see Corollary |5.2).

Notation. For k& = 2 or 3, M?** denotes the space of real 3 x k matrices. For L : R? x M3*¥ —
[0, 0], the function @L : R? x M3** — [0, o0] is defined as follows: for each x € R?, @L(x, -) is
the quasiconvex envelop of L(z,-) : M*** — [0, oo]. The symbol {ystands for the mean-value
integral with respect to the Lebesgue measure Z* on R, i.e. &2 gk &Q

2. MAIN RESULT

Let %, denote the class of A € L*(R?; [0, o[) such that A is continuous almost everywhere with
respect to £? and let #? and #7? be classes of Borel measurable functions W : R? x M3*3 —

[0, 0] defined by:
JP = {W :R? x M**3 — [0, 00] : W satisfies (Cy), (C3) and (04)}; (2.1)

7P = {W L R2 x M3 s [0,00] : W satisfies (Cy), (Cy) and (C5)},  (2.2)

where (Cy) and (Cs) are given by:
(Cy) there exists A € &, for every x, 2’ € R? and every F' € IM3*3,
Wz, F) < |[AMz) = M2)|(1+ W (@', F)) + W(', F);

(Cs) there exist a finite family {V;};c; of open disjoint subsets of R?, with £?(0V;) = 0 for
all j € J and Z*(R?\ Ujes V;) = 0, and a finite family {H; : M**® — [0, oo]}jeJ of
Borel measurable functions such that

F) =Y 1y, (x)H;(F
jedJ
Let us set:

jp

o |
{

W e g7 . W satisties (Cy) ¢;

W e #P . W satishies (Cg)} = {W € 7" : 1y, is 1-periodic for all j € J}.

per :

In what follows, given L : R? x M3*3 — [0, 0], we consider L : R? — M3*2 — [0, o] defined
by

L(z,€) = inf Lz, €] <)),

IBy the quasiconvex envelope of L(z, -) we mean the greatest quasiconvex function from IM3* to [0, o0] which
less than or equal to L(z, -). Clearly, L(x, ) is quasiconvex if and only if @L(z,-) = L(x, ).
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and ZL : M3*3 — [0,00], ZL : M3*% — [0, 0] and Z L : M3>*? — [0, 0] defined by:

FL(F):= inf inf J[ L(z, F + Vy(x,x3))drds;
REN oeWy P (kY R?) J ky

FL(E) = inf in Jf o P Vgl as) | sl )iy
kY x]—

* 51, y
REN® oeWy P (kY x]— 5,5 [R?) [

N

FL(E) = inf inf J[ Ai(x,é“ + V(z))dz,
)J kY

keN* oew P (kY ;R3

where [ | ¢] denotes the element of M**3 corresponding to (£, () € M3*? x R? and, for each
ke IN*, WP (kY ; R3), Wy P (kY x] — L, L[; R3) and W, ” (kY ; R?) are given by:

272

Wol’p(kY; ]R?’)::{cp e W'P(kY:R*) : o = 0 on 8k:Y};

g ~ 11 N 1 1[ . ~ 11
Wol’p<kY>< —5,5[;R3>::{@6W1’p(ka]—§,§[;]R3>:g0=00n0ka]—§,§[};

Wol’p(k’f/; R3):={<p € Wl’p(l{;?; R*) :p=0o0n (7]{;17},

where Y :=] — £, 1[* and Y =] - 1, 2[2. The main result of the paper is the following.

Theorem 2.1. If W e JF U #F thenase — 0, E. in lb [(7)-converges to E in 1) i.e for
every v € WHP(3; R?),
(r(w) ~ lim E) (v) = E(v)
with W : M3*2 — [0, 0] given as follows:
Q) ify < 1then W = QX FEW;

(i) if v = 1 then W = ZEW;

(iii) if v > 1 then W = HZW.

Remark 2.2. From (C;) and (C3) we see that for every (z, F') € R? x M3*3,
ClFP<SZW(z,F) < c(l+|FP),
and so, for every (z,£) € R? x IM3*2,
CIEP < W (2,€) < ef1 + [&P).
Consequently, for every 7 €]0, oo,
Clel < W(E) < e+ [E]7).

On the other hand, under (C3), ZW = @W by Lemma|3.8] and consequently in Theorem [2.1]

we have
QX OW ifv <1
W=1 %W ify=1
HOW ity > 1.



HOMOGENIZATION AND 3D-2D REDUCTION OF UNBOUNDED ENERGIES ON THIN FILMS 5

The distinguishing feature of Theorem[2.1]is that it can be applied with stored-energy densities
W having a singular behavior of type (L.I) (see Section [5).

3. AUXILIARY RESULTS

3.1. I'(m)-convergence. To accomplish our asymptotic analysis, we use the notion of conver-
gence introduced by Anzellotti, Baldo and Percivale in [14] in order to deal with dimension
reduction problems in mechanics. Let 7 = {m.}. be the family of maps 7. : W'?(3_; R?) —

Wh?(3; R?) defined by

e
2

| 2
Te(u) 1= 5_’Yf . u(-, x3)drs.

Definition 8.1. We say that £, I'(7)-converges to E as ¢ — 0, and we write £ = ['(7)- lim._¢ E.,
if the following two assertions hold:

() for all v € WP(3; R3) and all {u.}. ¢ WP(3,; R3),
if 7.(u.) — vin LP(3; R?) then E(v) < lim E. (u.);

e—0

(ii) for all v € W1P(3; R3), there exists {u.}. =« WHP(X_; R3) such that:
m.(u:) — vin LP(3; R?) and E(v) = @)Ea(ua).

In fact, Definition is a variant of De Giorgi’s I'-convergence. This is made clear by Propo-
sition Consider E. : WHP(3; R?) — [0, 0] defined by

E.(v) := inf {Eg(u) () = U}.

Definition 3.2. We say that E€ I'-converges to E as ¢ — 0, and we write £ = I'-lim,._, Eg if
for every v € WiP(%; R?),

(r-n_mﬁa) (v) = (r-Tm £ (v) = B,

e—0

where:

e—0 e—0

<F—li_mE’6> (v) ;= inf {li_m@e(vg) DU, — vin LP(E;]R3)} :

(F— }:I_I% EE) (v) := inf {E E.(v.) : v. — v in LP(3; R3)} :

For a deeper discussion of the I'-convergence theory we refer to the book [15]]. Clearly, Defi-
nition is equivalent to assertions (i) and (ii) in definition with “m(us) — v” replaced by
“v. — v”. It is then obvious that

Proposition 8.3. E = I'(7)-lim._¢ E. if and only if E = T'-lim._, E’E.

As, for every ¢ > 0, we have

inf {Eg(u) e (u) = v} = inf {Ee(u) e (u) = v},
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where E. : W'P(3,; R?) — [0, 0] is the relaxed functional of E, : W'P(3_; R?) — [0, 0], i.e
for every u € WhP(3_; R3),

E.(u) = inf { lim E.(u,) : u, — uwin LP(X; Rg)} : 3.1)

n—oo

from proposition[3.3]we deduce that the following result which is used in the proof of Theorem

Proposition 8.4. The I'(t)-limit is stable by substituting E. by its relaxed functional E..

3.2. Relaxation in the heterogeneous and unbounded case. Let W : RZxIM3*3 — [0, 0] be a
Borel measurable function, let p > 1, let 2 = R3 be a bounded open set such that #3(092) = 0,
let I : W'P(Q; R®) — [0, 0] be defined by

u) :J W(x, Vu(x,z3))drdrs
0
and let T : WHP(Q; R3) — [0, 0] the relaxed functional of I, i.e.

I(u) := inf { lim 7(u,) : u, — uin LP($; ]RS)} :

n—ao0

In [18, Theorems 3.8 and 3.15] we proved the following integral representation theorem.

Theorem 3.5. If W € P U FP, where FP and FP are defined in (2.1) and (2.2)) respectively, then
u) = f FW (z,Vu(zx))dzx
Q

for all v e WHP(Q; R™).

Given € > 0, set W.(z, F) = 1 =W (f ) It is easy to see that:
e if (Cy) holds then Wg(x, F) = S|F|P forall (z, F) € R? x M*, i.e. W is p-coercive;

e if (C3) holds then ZW.(z, F) < £(1 + |F|?) for all (z, F) € R* x M**?, i.e. ZW. is
p-ample;

e if (Cy)holds then W_(z, F) < |A\(2)—Ae(2))|(1+ W (2!, F))+W.(2', F) forall z, 2’ € R?
and all F' € M3 where A.(+) := ZA(2) € Z;

o if (C5) holds then We(z, F) = >, ; 1vs(2)Hj (F) where, for each j € J, Hj := L,
and VS := £V}; moreover, as Z*(0V;) = 0 for all j € J and Z*(R*\ Uje; V;) = 0, we
have £?(0eV;) = 0 for all j € J and £?*(R?\ Uje; eV;) = 0.
Hence if W e .97 U #? then W, € J? U #P. So, by applying Theorem [3.5] with Q = % and
I = E., with E_ defined in (I.3]), we obtain the following result which is used in the proof of
Theorem [2.11

Corollary 3.6. If W € #P U P then, for every ¢ > 0,
— 1 x
E.(u) = = st FW (g, Vu(z, 1:3)) drdzrs
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for all w e WHP(X,; R3) where E., defined in (3.1)), is the relaxed functional of E..

Remark 3.7. Because of the following lemma (see [16, Theorem 2.8-bis]) which makes clear
the link between the quasiconvex envelope @W of W and ZW defined in (1.2), in Theorem
and Corollary[3.6) ZW can be replaced by QW

Lemma 3.8. If ZW is finite then QW = ZW.

3.3. Homogenization and 3D-2D dimension reduction in the bounded case. In the bounded
case, instead of (C3), we consider the following condition:

(C2) W is of p-polynomial growth, i.e. there exists ¢ > 0 such that W(z, F) < ¢(1 + |F|P)
forall (z, F) € R? x IM3*3,

and we also assume that

(Cgp) W is p-locally lipschitz with respect to F' in the following sense: there exists # > 0 such
that [W(x, F) — W(z, F')| < 0|F — F'|(1 + |F[P~! + |F'|P7!) for all z € R? and all
FF e M3,

To establish Theorem we need the following result which was proved by Braides, Fonseca
and Francfort (see [11]) for v = 1 and by Shu (see [12]) for v # 1.

Theorem 3.9. If, (Cy), (Cy), (C2) and (Cgp) hold then as ¢ — 0, E. in (1.8) T'(7)-converges to E
in (1.4), i.e. for every v e W'P(32; R?),

(r(w) ~ lim E) (v) = B(v)
with W : M3*2 — [0, 0] given as follows:
() ify < 1then W = @?/fﬁ/;
(i) if y = 1 then W = HW:

(i) if v > 1 then W = HW.
Contrary to Theorem due to the fact that W is of p-polynomial growth, Theorem is
not compatible with (L.1).
4. Proor or THeoreEM [2.1]

As, by Proposition the I'(7)-limit is stable by substituting E. by its relaxed functional £_,

1.e.

E.(u) inf { lim E.(uy,) : u, — uin LP(X,; Rg)}
n—:o0

1

= —inf { lim f W <£,Vun(x,x3)> dzxdzs : u, — uwin LP(X,; ]RS)} ,
ev n—w Jx, €

it suffices to prove that for every v € WhP(3; R?),

(r(w)-yg%ﬁs) (v) = L W(Vo(z))dz (4.1)
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with W : M3*2 — [0, 0] given by (i), (i) or (iii). Since W € 7 U #P, by Corollarywe

have .
— x
E.(u) = = LE ZW (g, Vu(z, x;;)) dxdzs

foralle > 0and all uw € WP (X, R3) with ZW : R? x M3*3 — [0, 00] given by (1.2). It is clear
that ZW is p-coercive and 1-periodic with respect to x. Moreover, ZW is of p-polynomial

growth and so, by Lemma ZFW = @W, hence, for each x € R%, ZW (x, -) is quasiconvex.
Consequently ZW is p-locally lipschitz and the result follows by applying Theorem to
ZzgWw.n

5. APPLICATIONS

Let # be the class of Borel measurable function H : M3*3 — [0, 0] defined by
K = {H : M**% — [0, 00] : H is p-coercive and satisfies (CG)},

where (Cg) is given by
(Cg) there exist v, 3 > 0 such that for every ' € IM?*3,
if [deté| = a then H(F) < (1 + |FP).
Note that (Cg) is compatible with the singular behavior
H(F) — oo as detF — 0. (5.1)
A typical example of a function belonging to the class & is given by
H(F) = |F|’ + h(detF)

where h : R — [0, 0] is a Borel measurable function for which there exist §," > 0 such that
h(t) < ¢ forall |t| = §. For example, given s > 0 and T' > 0 (possibly very large), this latter
1

condition is satisfied with 6 = 27 and ¢’ = max {W’ T } when h is of type

T ift<-T

il t > 0.
ts

Let &1, & and &3 be classes of Borel measurable functions W : R? x M3*3 — [0, o0] defined
by:

$p = {W : R? x M**3 — [0, 00] : W satisfies (C7)};

Sy 1= {W :R? x M**3 — [0, 00] : W satisfies (Cg)};

Sy 1= {W :R? x M**® — [0, 00] : W satisfies (C5) with H; € % forall j e J},

where (C;) and (Cg) are given by:
(C7) there exist H € & and a 1-periodic a € & with a(x) = 7 for all z € R? and some 1 > 0
such that
W(z,F)=a(x)H(F);
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(Cg) there exist Borel measurable functions Hy, Hy : M?*? — [0, o0] with

ngl%
Hy, < Hy < vH, for some v > 1

such that

W(x,F) = 1g,(z)H(F) + 1g,(x)Hy(F),
where Ej is a 1-periodic open subset of R? such that |0F;| = 0 and Fy := R?\ Fy, with
1g, and 1g, denoting the characteristic functions of E; and Es respectively.

Due to the fact that any H € F is compatible with (5.1), for every i € {1,2,3}, any W € &, is
compatible with (1.1). The following result was proved in [13, Lemmas 2.11, 2.16 and 2.21].

092 ng)er and C\S)g c fP

per*

Proposition 5.1. The following inclusions hold: &, < FP

per?

As a consequence of Theorem and Proposition we have

Corollary 5.2. If W € 8, U 8, U S5 then as € — 0, E. in (1.3) T'()-converges to E in li with
W given by (i), (ii) or (iii) in Theorem
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