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REMARKS ON HOMOGENIZATION AND 3D3D3D-2D2D2D DIMENSION REDUCTION
OF UNBOUNDED ENERGIES ON THIN FILMS

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Abstract. We study periodic homogenization and 3D-2D dimension reduction by Γpπq-con-
vergence of heterogeneous thin �lms whose the stored-energy densities have no polynomial
growth. In particular, our results are consistent with one of the basic facts of nonlinear elasticity,
namely the necessity of an in�nite amount of energy to compress a �nite volume of matter into
zero volume. However, our results are not consistent with the noninterpenetration of the matter.

1. Introduction

Consider a heterogeneous thin �lm occupying in a reference con�guration the bounded open
set Σε Ă R

3 given by

Σε :“ Σˆ



´
εγ

2
,
εγ

2

„

,

where γ Ps0,8r is �xed, ε ą 0 and Σ Ă R2 is Lipschitz, open and bounded. The small param-
eters εγ and ε represent respectively the �lm thickness and the length scale of heterogeneity
and material microstructure, and the meaning of the coe�cient γ is as follows:

‚ γ ă 1 means that the �lm thickness is much larger than heterogeneity;
‚ γ “ 1 means that the �lm thickness is comparable to heterogeneity;
‚ γ ą 1 means that the �lm thickness is much smaller than heterogeneity.

A point of Σε is denoted by px, x3q with x P Σ and x3 Ps´
εγ

2
, ε

γ

2
r. In order to model x-periodic

heterogenities of the material, we assume that its stored-energy density is a Borel measurable
function

W : R2
ˆM3ˆ3 ! r0,8s

with the following properties:

(C1) W is p-coercive with p ą 1, i.e. there exists C ą 0 such that W px, F q ě C|F |p for all
px, F q P R2 ˆM3ˆ3;

(C2) W is 1-periodic with respect to x, i.e. W px`z, F q “ W px, F q for all px, F q P R2ˆM3ˆ3

and all z P Z2.
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2 HOMOGENIZATION AND 3D-2D REDUCTION OF UNBOUNDED ENERGIES ON THIN FILMS

In order to take into account the fact that an in�nite amount of energy is required to compress
a �nite volume into zero volume2, i.e.

W px, F q! 8 as detF ! 0, (1.1)

where detF denotes the determinant of the 3ˆ 3 matrix F , we assume that
(C3) W is p-ample, i.e. there exist c ą 0 such that ZW px, F q ď cp1 ` |F |pq for all px, F q P

R2 ˆM3ˆ3, whereZW : R2 ˆM3ˆ3 ! r0,8s is de�ned by

ZW px, F q :“ inf

"
ż

Y

W px, F `∇ϕpx, x3qqdxdx3 : ϕ P W 1,8
0 pY ;R3

q

*

(1.2)

with Y :“s ´ 1
2
, 1

2
r3.

Note that (C3) does not imply thatW is of p-polynomial growth, and is compatible with (1.1)
(see Section 5). The object of this paper is to show that as ε ! 0 the three-dimensional free
energy functional Eε : W 1,ppΣε;R

3q! r0,8s (with p ą 1) de�ned by

Eεpuq :“
1

εγ

ż

Σε

W
´x

ε
,∇upx, x3q

¯

dxdx3 (1.3)

Γpπq-converges to the two-dimensional free energy functionalE : W 1,ppΣ;R3q! r0,8s given
by

Epvq :“

ż

Σ

W
`

∇vpxq
˘

dx (1.4)

with W : M3ˆ2 ! r0,8s. Usually, E is called the homogenized nonlinear membrane energy
associated with the two-dimensional elastic material with respect to the reference con�guration
Σ. Furthermore, we wish to give a representation formula forW .

In the homogeneous case, i.e. W px, F q “ W pF q, the problem of deriving membrane model as
variational limit of non-linear three dimensional elasticity began at the begining of the nineties
with the works of Le Dret and Raoult (see [1, 2]) who solved the problem in the case whereW
is bounded, i.e. W pF q ď cp1 ` |F |pq. In the unbounded case, the problem was solved in [3]
for the constraint “det∇u ‰ 0” and in [4] for the constraint “det∇u ą 0” (see also [5, 6]). Note
that the answer of the problem of deriving membrane model as variational limit of non-linear
three dimensional elasticity under the constraint “det∇u ą 0” is the result of several works on
the subject: mainly, the attempt of Percivale in 1991 (see [7]), the rigorous answer by Le Dret
and Raoult in the p-polynomial growth case and especially the substantial contributions of Ben
Belgacem (see [8, 9, 10]).

In the heterogeneous and bounded case, the problem was solved by Braides, Fonseca and
Francfort (see [11]) for γ “ 1 and by Shu (see [12]) for γ ‰ 1. In the present paper we deal
with the heterogeneous and unbounded case. Our results (see Theorem 2.1 and Corollary 5.2)
are compatible with the constraint “det∇u ‰ 0” but not with the constraint “det∇u ą 0”. To
our knowledge, in the heterogeneous case, incorporating the constraint “det∇u ą 0” is an open
problem.

2However, we do not prevent orientation reversal.
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The plan of the paper is as follows. In the next section we state our main result (see Theorem
2.1) establishing the Γpπq-convergence (whose de�nition is recalled in §3.1) of Eε in (1.3) to
E in (1.4) together with a representation formula for W which depends on γ. The proof of
Theorem 2.1 is given in Section 4 by using two results: unbounded relaxation (see Corollary
3.6) and bounded homogenization and 3D-2D dimension reduction (see Theorem 3.9). These
results, proved in [13] and [11, 12] respectively, are recalled in §3.2. In Section 5 we give
applications of Theorem 2.1 (see Corollary 5.2).

Notation. For k “ 2 or 3,M3ˆk denotes the space of real 3ˆkmatrices. For L : R2ˆM3ˆk !
r0,8s, the functionQL : R2ˆM3ˆk ! r0,8s is de�ned as follows: for each x P R2, QLpx, ¨q is
the quasiconvex envelope1 ofLpx, ¨q : M3ˆk ! r0,8s. The symbol´

ş

stands for themean-value
integral with respect to the Lebesgue measure Lk on Rk, i.e. ´

ş

Q
“ 1

LkpQq
´
ş

Q
.

2. Main result

LetL2 denote the class of λ P L8pR2; r0,8rq such that λ is continuous almost everywhere with
respect to L2 and let Ip and Jp be classes of Borel measurable functionsW : R2 ˆM3ˆ3 !
r0,8s de�ned by:

Ip :“
!

W : R2
ˆM3ˆ3 ! r0,8s : W satis�es pC1q, pC3q and pC4q

)

; (2.1)

Jp :“
!

W : R2
ˆM3ˆ3 ! r0,8s : W satis�es pC1q, pC3q and pC5q

)

, (2.2)

where (C4) and (C5) are given by:
(C4) there exists λ PL2 for every x, x1 P R2 and every F PM3ˆ3,

W px, F q ď |λpxq ´ λpx1q|p1`W px1, F qq `W px1, F q;

(C5) there exist a �nite family tVjujPJ of open disjoint subsets of R2, with L2pBVjq “ 0 for
all j P J and L2pR2z YjPJ Vjq “ 0, and a �nite family tHj : M3ˆ3 ! r0,8sujPJ of
Borel measurable functions such that

W px, F q “
ÿ

jPJ

1VjpxqHjpF q.

Let us set:

Ip
per :“

!

W P Ip : W satis�es pC2q

)

;

Jp
per :“

!

W P Jp : W satis�es pC2q

)

“

!

W P Jp : 1Vj is 1-periodic for all j P J
)

.

In what follows, given L : R2 ˆM3ˆ3 ! r0,8s, we consider pL : R2 !M3ˆ2 ! r0,8s de�ned
by

pLpx, ξq :“ inf
ζPR3

Lpx, rξ | ζsq,

1By the quasiconvex envelope of Lpx, ¨q wemean the greatest quasiconvex function fromM3ˆk to r0,8s which
less than or equal to Lpx, ¨q. Clearly, Lpx, ¨q is quasiconvex if and only if QLpx, ¨q “ Lpx, ¨q.
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andHL : M3ˆ3 ! r0,8s, xHL : M3ˆ2 ! r0,8s andHpL : M3ˆ2 ! r0,8s de�ned by:

HLpF q :“ inf
kPN˚

inf
ϕPW 1,p

0 pkY ;R3q

´

ż

kY

Lpx, F `∇ϕpx, x3qqdxdx3;

xHLpξq :“ inf
kPN˚

inf
ϕPxW 1,p

0 pk pYˆs´ 1
2
, 1
2
r;R3q

´

ż

k pYˆs´ 1
2
, 1
2
r

Lpx, rξ `∇xϕpx, x3q | B3ϕpx, x3qsqdxdx3;

HpLpξq :“ inf
kPN˚

inf
ϕPW 1,p

0 pk pY ;R3q

´

ż

k pY

pLpx, ξ `∇ϕpxqqdx,

where rξ | ζs denotes the element ofM3ˆ3 corresponding to pξ, ζq P M3ˆ2 ˆR3 and, for each
k P N˚,W 1,p

0 pkY ;R3q, xW 1,p
0 pkpYˆs ´ 1

2
, 1

2
r;R3q andW 1,p

0 pkpY ;R3q are given by:

W 1,p
0 pkY ;R3

q:“
!

ϕ P W 1,p
pkY ;R3

q : ϕ “ 0 on BkY
)

;

xW 1,p
0

ˆ

kpY ˆ



´
1

2
,
1

2

„

;R3

˙

:“

"

ϕ P W 1,p

ˆ

kpY ˆ



´
1

2
,
1

2

„

;R3

˙

: ϕ “ 0 on BkpY ˆ


´
1

2
,
1

2

„*

;

W 1,p
0 pkpY ;R3

q:“
!

ϕ P W 1,p
pkpY ;R3

q : ϕ “ 0 on BkpY
)

,

where Y :“s ´ 1
2
, 1

2
r3 and pY :“s ´ 1

2
, 1

2
r2. The main result of the paper is the following.

Theorem 2.1. IfW P Ip
per YJp

per then as ε! 0, Eε in (1.3) Γpπq-converges to E in (1.4), i.e. for
every v P W 1,ppΣ;R3q,

´

Γpπq ´ lim
ε!0

Eε

¯

pvq “ Epvq

withW : M3ˆ2 ! r0,8s given as follows:

(i) if γ ă 1 thenW “ Q {HZW ;

(ii) if γ “ 1 thenW “ xHZW ;

(iii) if γ ą 1 thenW “HzZW .

Remark 2.2. From (C1) and (C3) we see that for every px, F q P R2 ˆM3ˆ3,

C|F |p ďZW px, F q ď cp1` |F |pq,

and so, for every px, ξq P R2 ˆM3ˆ2,

C|ξ|p ď zZW px, ξq ď cp1` |ξ|pq.

Consequently, for every γ Ps0,8r,

C|ξ|p ď W pξq ď cp1` |ξ|pq.

On the other hand, under (C3),ZW “ QW by Lemma 3.8, and consequently in Theorem 2.1
we have

W “

$

’

&

’

%

Q{HQW if γ ă 1
xHQW if γ “ 1

HyQW if γ ą 1.
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The distinguishing feature of Theorem 2.1 is that it can be applied with stored-energy densities
W having a singular behavior of type (1.1) (see Section 5).

3. Auxiliary results

3.1. ΓpπqΓpπqΓpπq-convergence. To accomplish our asymptotic analysis, we use the notion of conver-
gence introduced by Anzellotti, Baldo and Percivale in [14] in order to deal with dimension
reduction problems in mechanics. Let π “ tπεuε be the family of maps πε : W 1,ppΣε;R

3q !
W 1,ppΣ;R3q de�ned by

πεpuq :“
1

εγ

ż εγ

2

´ εγ

2

up¨, x3qdx3.

De�nition 3.1. We say thatEε Γpπq-converges toE as ε! 0, and wewriteE “ Γpπq- limε!0Eε,
if the following two assertions hold:

(i) for all v P W 1,ppΣ;R3q and all tuεuε Ă W 1,ppΣε;R
3q,

if πεpuεq! v in LppΣ;R3
q then Epvq ď lim

ε!0
Eεpuεq;

(ii) for all v P W 1,ppΣ;R3q, there exists tuεuε Ă W 1,ppΣε;R
3q such that:

πεpuεq! v in LppΣ;R3
q and Epvq ě lim

ε!0
Eεpuεq.

In fact, De�nition 3.1 is a variant of De Giorgi’s Γ-convergence. This is made clear by Propo-
sition 3.3. Consider pEε : W 1,ppΣ;R3q! r0,8s de�ned by

pEεpvq :“ inf
!

Eεpuq : πεpuq “ v
)

.

De�nition 3.2. We say that pEε Γ-converges to E as ε ! 0, and we write E “ Γ- limε!0
pEε if

for every v P W 1,ppΣ;R3q,
ˆ

Γ- lim
ε!0

pEε

˙

pvq “
´

Γ- lim
ε!0

pEε

¯

pvq “ Epvq,

where:
ˆ

Γ- lim
ε!0

pEε

˙

pvq :“ inf

"

lim
ε!0

pEεpvεq : vε ! v in LppΣ;R3
q

*

;

´

Γ- lim
ε!0

pEε

¯

pvq :“ inf
!

lim
ε!0

pEεpvεq : vε ! v in LppΣ;R3
q

)

.

For a deeper discussion of the Γ-convergence theory we refer to the book [15]. Clearly, De�-
nition 3.2 is equivalent to assertions (i) and (ii) in de�nition 3.1 with “πpuεq! v” replaced by
“vε ! v”. It is then obvious that

Proposition 3.3. E “ Γpπq- limε!0Eε if and only if E “ Γ- limε!0
pEε.

As, for every ε ą 0, we have

inf
!

Eεpuq : πεpuq “ v
)

“ inf
!

Eεpuq : πεpuq “ v
)

,
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where Eε : W 1,ppΣε;R
3q! r0,8s is the relaxed functional of Eε : W 1,ppΣε;R

3q! r0,8s, i.e.
for every u P W 1,ppΣε;R

3q,

Eεpuq “ inf

"

lim
n!8

Eεpunq : un ! u in LppΣε;R
3
q

*

, (3.1)

from proposition 3.3 we deduce that the following result which is used in the proof of Theorem
2.1.

Proposition 3.4. The Γpπq-limit is stable by substituting Eε by its relaxed functional Eε.

3.2. Relaxation in the heterogeneous and unbounded case. LetW : R2ˆM3ˆ3 ! r0,8s be a
Borel measurable function, let p ą 1, let Ω Ă R3 be a bounded open set such thatL3pBΩq “ 0,
let I : W 1,ppΩ;R3q! r0,8s be de�ned by

Ipuq :“

ż

Ω

W px,∇upx, x3qqdxdx3

and let I : W 1,ppΩ;R3q! r0,8s the relaxed functional of I , i.e.

Ipuq :“ inf

"

lim
n!8

Ipunq : un ! u in LppΩ;R3
q

*

.

In [13, Theorems 3.8 and 3.15] we proved the following integral representation theorem.

Theorem 3.5. IfW P Ip YJp, where Ip and Jp are de�ned in (2.1) and (2.2) respectively, then

Ipuq “

ż

Ω

ZW px,∇upxqqdx

for all u P W 1,ppΩ;Rmq.

Given ε ą 0, setWεpx, F q “
1
εγ
W

`

x
ε
, F

˘

. It is easy to see that:

‚ if (C1) holds thenWεpx, F q ě
C
εγ
|F |p for all px, F q P R2 ˆM3ˆ3, i.e. Wε is p-coercive;

‚ if (C3) holds then ZWεpx, F q ď
c
εγ
p1 ` |F |pq for all px, F q P R2 ˆM3ˆ3, i.e. ZWε is

p-ample;

‚ if (C4) holds thenWεpx, F q ď |λεpxq´λεpx
1q|p1`Wεpx

1, F qq`Wεpx
1, F q for all x, x1 P R2

and all F PM3ˆ3 where λεp¨q :“ 1
εγ
λp ¨

ε
q PL2;

‚ if (C5) holds then Wεpx, F q “
ř

jPJ 1V
ε
j
pxqHε

j pF q where, for each j P J , H
ε
j :“ 1

εγ
Hj

and V ε
j :“ εVj; moreover, as L2pBVjq “ 0 for all j P J and L2pR2z YjPJ Vjq “ 0, we

have L2pBεVjq “ 0 for all j P J and L2pR2z YjPJ εVjq “ 0.
Hence if W P Ip Y Jp thenWε P Ip Y Jp. So, by applying Theorem 3.5 with Ω “ Σε and
I “ Eε, with Eε de�ned in (1.3), we obtain the following result which is used in the proof of
Theorem 2.1.

Corollary 3.6. IfW P Ip Y Jp then, for every ε ą 0,

Eεpuq “
1

εγ

ż

Σε

ZW
´x

ε
,∇upx, x3q

¯

dxdx3
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for all u P W 1,ppΣε;R
3q where Eε, de�ned in (3.1), is the relaxed functional of Eε.

Remark 3.7. Because of the following lemma (see [16, Theorem 2.3-bis]) which makes clear
the link between the quasiconvex envelope QW of W and ZW de�ned in (1.2), in Theorem
3.5 and Corollary 3.6,ZW can be replaced by QW .

Lemma 3.8. IfZW is �nite then QW “ZW .

3.3. Homogenization and3D3D3D-2D2D2D dimension reduction in the bounded case. In the bounded
case, instead of (C3), we consider the following condition:
(Cb

3) W is of p-polynomial growth, i.e. there exists c ą 0 such that W px, F q ď cp1 ` |F |pq
for all px, F q P R2 ˆM3ˆ3,

and we also assume that
(Clip

3 ) W is p-locally lipschitz with respect to F in the following sense: there exists θ ą 0 such
that |W px, F q ´ W px, F 1q| ď θ|F ´ F 1|p1 ` |F |p´1 ` |F 1|p´1q for all x P R2 and all
F, F 1 PM3ˆ3.

To establish Theorem 2.1 we need the following result which was proved by Braides, Fonseca
and Francfort (see [11]) for γ “ 1 and by Shu (see [12]) for γ ‰ 1.

Theorem 3.9. If , (C1), (C2), (Cb
3) and (Clip

3 ) hold then as ε ! 0, Eε in (1.3) Γpπq-converges to E
in (1.4), i.e. for every v P W 1,ppΣ;R3q,

´

Γpπq ´ lim
ε!0

Eε

¯

pvq “ Epvq

withW : M3ˆ2 ! r0,8s given as follows:

(i) if γ ă 1 thenW “ QzHW ;

(ii) if γ “ 1 thenW “ xHW ;

(iii) if γ ą 1 thenW “HxW .

Contrary to Theorem 2.1, due to the fact that W is of p-polynomial growth, Theorem 3.9 is
not compatible with (1.1).

4. Proof of Theorem 2.1

As, by Proposition 3.4, the Γpπq-limit is stable by substituting Eε by its relaxed functional Eε,
i.e.

Eεpuq “ inf

"

lim
n!8

Eεpunq : un ! u in LppΣε;R
3
q

*

“
1

εγ
inf

"

lim
n!8

ż

Σε

W
´x

ε
,∇unpx, x3q

¯

dxdx3 : un ! u in LppΣε;R
3
q

*

,

it su�ces to prove that for every v P W 1,ppΣ;R3q,
´

Γpπq- lim
ε!0

Eε

¯

pvq “

ż

Σ

W p∇vpxqqdx (4.1)
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with W : M3ˆ2 ! r0,8s given by (i), (ii) or (iii). Since W P Ip Y Jp, by Corollary 3.6 we
have

Eεpuq “
1

εγ

ż

Σε

ZW
´x

ε
,∇upx, x3q

¯

dxdx3

for all ε ą 0 and all u P W 1,ppΣε;R
3q withZW : R2ˆM3ˆ3 ! r0,8s given by (1.2). It is clear

that ZW is p-coercive and 1-periodic with respect to x. Moreover, ZW is of p-polynomial
growth and so, by Lemma 3.8,ZW “ QW , hence, for each x P R2,ZW px, ¨q is quasiconvex.
Consequently ZW is p-locally lipschitz and the result follows by applying Theorem 3.9 to
ZW . �

5. Applications

Let K be the class of Borel measurable function H : M3ˆ3 ! r0,8s de�ned by

K :“
!

H : M3ˆ3 ! r0,8s : H is p-coercive and satis�es pC6q

)

,

where (C6) is given by
(C6) there exist α, β ą 0 such that for every F PM3ˆ3,

if |detξ| ě α then HpF q ď βp1` |F |pq.

Note that (C6) is compatible with the singular behavior

HpF q! 8 as detF ! 0. (5.1)

A typical example of a function belonging to the class K is given by

HpF q “ |F |p ` hpdetF q

where h : R ! r0,8s is a Borel measurable function for which there exist δ, δ1 ą 0 such that
hptq ď δ1 for all |t| ě δ. For example, given s ą 0 and T ě 0 (possibly very large), this latter
condition is satis�ed with δ “ 2T and δ1 “ max

 

1
p2T qs

, T
(

when h is of type

hptq “

$

’

&

’

%

T if t ă ´T
8 if t P r´T, 0s
1

ts
if t ą 0.

Let S1, S2 and S3 be classes of Borel measurable functions W : R2 ˆM3ˆ3 ! r0,8s de�ned
by:

S1 :“
!

W : R2
ˆM3ˆ3 ! r0,8s : W satis�es pC7q

)

;

S2 :“
!

W : R2
ˆM3ˆ3 ! r0,8s : W satis�es pC8q

)

;

S3 :“
!

W : R2
ˆM3ˆ3 ! r0,8s : W satis�es pC5q with Hj PK for all j P J

)

,

where (C7) and (C8) are given by:
(C7) there existH PK and a 1-periodic a PL2 with apxq ě η for all x P R2 and some η ą 0

such that
W px, F q “ apxqHpF q;
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(C8) there exist Borel measurable functions H1, H2 : M3ˆ3 ! r0,8s with
"

H2 PK

H2 ď H1 ď γH2 for some γ ą 1

such that
W px, F q “ 1E1pxqH1pF q ` 1E2pxqH2pF q,

where E1 is a 1-periodic open subset of R2 such that |BE1| “ 0 and E2 :“ R2zE1, with
1E1 and 1E2 denoting the characteristic functions of E1 and E2 respectively.

Due to the fact that any H P K is compatible with (5.1), for every i P t1, 2, 3u, anyW P Si is
compatible with (1.1). The following result was proved in [13, Lemmas 2.11, 2.16 and 2.21].

Proposition 5.1. The following inclusions hold: S1 Ă Ip
per, S2 Ă Ip

per and S3 Ă Jp
per.

As a consequence of Theorem 2.1 and Proposition 5.1 we have

Corollary 5.2. IfW P S1 YS2 YS3 then as ε! 0, Eε in (1.3) Γpπq-converges to E in (1.4) with
W given by (i), (ii) or (iii) in Theorem 2.1.
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