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Reections on the eect of an external ux in surface physics

Sublimating surfaces are out of equilibrium. It has been proposed that sublimation can be compensated by an impinging atomic ux to obtain equilibrium. This work concerns the eect of such an impinging ux on the stability of surfaces in various situations. For this purpose we combine Kinetic Monte Carlo Simulations with analytical developements based on the Burton-Cabrera-Frank (BCF) classical theory. We show that a perfect compensation of the sublimation is possible for vicinal surfaces but not when 2D islands are present on a surface.

We thus study the eect of an impinging ux on the dynamic of a 2D island on a surface. We show that the 2D island area generally varies with time t as -t α . In absence of any impinging ux the value of the exponent α enables to identify the main mechanism at work (diusion limited or attachment-detachment limited). On the contrary, in presence of an impinging ux the value of the exponent α is not enough to identify the main mechanism limiting the area change.

At the end of the sixties, Bethge et al. [13] proposed a simple method to control super(under)saturation conditions in a microscope. This method has been systematically used by J.J. Metois and coworkers [4 7] for studying silicon growth and silicon sublimation in a Reection Electron Microscope (REM). The method consisted in mounting face-to-face in the same sample-holder two silicon wafers (called the substrate and the source) that can be heated independently at two dierent temperatures T source and T sample high enough to ensure Si sublimation. In such experimental conditions two uxes exist on the substrate: the desorbing ux J des (due to the substrate sublimation) and the impinging ux J im (due to the source sublimation). If J des > J im the substrate sublimates, if J im > J des the substrate grows and if J im = J des a steady state is expected. For a simple vicinal substrate, the monoatomic steps thus recede in sublimation conditions (J des > J im ) or advance in growth conditions (J im > J des ) but uctuate on the spot and thus do not displace in steady conditions (J im = J des ).

Such an impinging ux has thus been used to balance the sublimation for studying step uctuations at equilibrium [47]. In the semiconductor industry, wafers are often annealed in stacks where the ux of atoms sublimating from a wafer constitutes an impinging ux for nearby wafers. Therefore the compensation of sublimation is also important in applications [START_REF] Lachman-Shalem | Process Control and Diagnosis[END_REF]. In this paper we discuss the conditions for a possible compensation of sublimation. We will start describing vicinal surfaces. We will show that, if a balance between sublimation and an additional impinging ux can be reached for a vicinal surface, it is not the case for 2D islands on a surface. In this last case we will discuss the eect of sublimation and deposition on the dynamical evolution of a 2D-island. For this purpose we will combine KMC simulations with analytical models.

Preprint submitted to Elsevier September 15, 2022 this is a preprint, the final version is published in: Surface Science 725 (2022) 122158 https://doi.org/10.1016/j.susc.2022.122158 Normalized number of atoms on the surface for a surface with 2 terraces (black squares). This number decreases due to the sublimation. When the sublimation ux is balanced by an impinging ux (red points) corresponding to the evaporation ux measured for the black squares (id-est 1 atom every 9 10 7 ν -1 o ) the supposed compensation does not allow to reach a constant number of atoms on the surface. An overcompensatig ux is necesssary (blue triangles, 1 atom deposited every 4 10 6 ν -1 o ). A surface with 4 steps (green triangles) sublimates more but the total ux (impinging ux equal to the sublimating ux+ overcompensation) necessary to reach a constant number of atoms on the surface is the same as that found with two steps (blue triangles).

All these results may be understood within the classical BCF model [START_REF] Burton | [END_REF] which states that the change of the adatom density n(x) at a location x on the surface is described by the diusion equation:

dn dt = J in + D∇ 2 n - n τ (1) 
where J im is the impinging external ux, D∇ 2 n the diusing surface ux induced by the concentration gradient (D being the surface diusion constant)

and J des = n/τ the desorption ux with τ the mean adatom sublimation time.

In the stationary state dn dt = 0 , the solution reads n(x) = J im τ + Ae x/xs + Be -x/xs where x s = √ Dτ is the mean length of surface diusion. Thus a region of width 2x s centered on a step corresponds to a capture zone where the probability of adatoms to be captured by the step is higher than the sublimation probability (see Figure 1b). The constants A and B are determined by boundary conditions that describe the relationship between the ux towards the steps framing a terrace and the rate of incorporation at these step-edges. They read D dn dx = ±κ(n -n eq ) at the step positions ± /2 with n eq the equilibrium adatom density and κ a kinetic coecient for adatom attachment/detachment at the steps (see Figure 3 where is reported n(x) in the pure sublimation regime). We

thus nd A = B =(J im -neq/τ ) 1 -d xs e -/2xs + 1 + d xs e /2xs -1
.

The new characteristic kinetic length d = D/κ roughly corresponds to the mean length an adatom runs along a step before being incorporated into it [START_REF] Pimpinelli | Physics of crystal growth[END_REF]. The step velocity corresponds to the net ux of adatoms reaching the step (horizontal blue arrows in Figure 1b) , that means

V = a 2 D dn dx -/2 - dn dx + /2
(a 2 being an atomic area), and thus:

V = 2a 2 xs J im - neq τ 2 sinh ( /2xs) 1 -d xs e -/2xs + 1 + d xs e /2xs (2) 
For instantaneous adatom incorporation, also called diusion-limited regime, (D << κ or d → 0) the usual classical BCF result is recovered:

V 0 = 2a 2 x s J im - n eq τ tanh 2x s (3) 
When << 2x s this last expression gives V 0 = a2 J im -neq τ that means that all the adatoms landing on a given terrace of size are incorporated in the steps whereas when >> 2x s there is V 0 = 2a For pure sublimation the steps recede with a velocity V ev obtained by putting J im = 0 in equation 2. We can extract a mean time for adatom desorption < t des >= a 2 VevN L where a 2 is an atomic area, L the step length and N the number of steps in the simulation box. The sublimation ux thus depends on In the diusion limited regime, a stepped (S) surface (top) is equivalent to an alternance of kinked (K) and at (F) areas (bottom) [START_REF] Mutaftschiev | The atomistic nature of crystal growth[END_REF]. Adatoms trapped by the K zones may detach and diuse on the F zone (horizontal red arrows) before desorbing (vertical red arrows) whereas atoms landing on F parts because of the impinging ux (black arrows) directly desorb after a mean time τ (blue arrows). The desorbing ux thus has two contributions (red and blue arrows) the ratio of which depends on /xs that means, for a given value of xs, on the vicinality angle θ given by tan θ = a/ where a is the atomic height of a step. the vicinality. The analytical expression of < t des > perfectly ts the vicinality dependence deduced from KMC (with d as a tting parameter 1 ) in Figure 2a . However since J im -neq τ is a prefactor in equation 2 the true impinging ux necessary to reach the steady state V = 0 is still J im = neq τ and thus does not depend on the vicinality, as found in the KMC simulations 2 . Because of the vicinality factor

2 sinh( /2xs) (1-d xs )e -/2xs +(1+ d xs )e /2xs
smaller than unity that appears in the expression 2 of

V ev , the sublimation rate depends on the interstep distance and is smaller than neq τ . This explains why an overcompensation of the sublimation is necessary in KMC simulations.

Case of 2D islands

In the following we reconsider the evolution of a 2D island on a surface with the two main underlying questions: (i) What is the dynamical evolution of a 2D-island in presence of both sublimation and external uxes ? (ii) Is it possible to compensate the desorption ? For this purpose we will consider three congurations (see Figure 5): a 2D island on a terrace framed by two steps, a 2D island in a hole, and a 2D island on top of another, larger, 2D island (wedding cake conguration). 1 We take neq corresponding to the simulated equilibrium concentration found by counting the number of atoms on the surface without sublimation. 

Dynamical evolution of a 2D-island in presence of sublimation and external ux

The stability and the dynamical evolution of 2D

nanostructures have been studied in many dierent works. Among them the case of a single 2D island on a surface has received an increasing interest [1219].

Indeed, the kinetics of growth or decay of a 2D island may give information on the relative importance of surface diusion and attachment/detachment mechanisms at step edges. More precisely, at low temperature (no sublimation and no external ux) the islands simply shrink because of the Gibbs-Thomson eect [START_REF] Gibbs | On the equilibrium of heterogenous substances[END_REF][START_REF] Thomson | Application of dynamics to Physics and Chemistry[END_REF], which states that the chemical potential of a nano-object increases when its size decreases.

The area of a 2D circular island is often considered to change with time according to a scaling law A(t) ∝ (t 0 -t)

α
where the exponent α varies in a complex way. However two limiting cases have been described: α → 2/3 for diusion limited regime but α → 1 for attachment/detachment limited regime [1216]. J.J.

Metois et al. used the experimental congurations of

Figure 1 and assumed that the impinging ux compensates sublimation [4,6,[START_REF] Métois | [END_REF].

This section is thus devoted to a complete study of the behaviour of a 2D island in presence of sublimation (as done by Altman and coworkers [16,23])

but with an additional external impinging ux. The main question is: is it still possible to describe the dynamics of island shrinking by universal scaling laws Notice that the step edges of both the inner and the outer islands uctuate. These uctuations are neglected in the analytical developments reported in the following.

A(t) ∝ (t 0 -t)
At rst let us use KMC simulations to study the behaviour of an island of radius r i in two congurations (i) in a hole of larger radius R, (ii) on top of another 2D island of radius R (wedding cake conguration). We nd that the island area can be tted by a power law A(t) ∝ (t 0 -t) α (see Figure 7a). However the value of the exponent α depends on the conguration and leads to a faster shortening for a island in a hole than for the wedding cake. The evolution of the exponent α versus the size of the external radius R is reported in gure 7b for a starting value r i =45 for dierent congurations and temperatures. For large values of r i /R, the distance between the edge of the island and that of the hole or of the lower island is small so that the diusion distance is small and the 2D island shrinking is mainly limited by the time necessary to attach and detach atoms from the edges (see Fig-

ure 5). On the contrary, for small values of r i /R, the mechanism is diusion limited and α tends towards 2/3 as experimentally found by Leroy and coworkers for Si(111) [24]. Actually, the absolute value of R plays a role and not only the ratio r i /R. If both values of r i and R are small the island decay can be attachment/detachment limited. The exponent α now remains close to unity for high sublimation then again tends towards α → 2/3 when there is no more sublimation (and thus no more external ux). In other words the exponent, valid for pure diusion, increases when increasing the supplemental impinging ux. the sublimation energy for a given temperature. The reported results correspond to the conguration island in a hole and are similar to those of the wedding cake conguration. Let's notice that for Eev = 3.5 there is no more sublimation so that the last red circle actually corresponds to the limit value of α without any sublimation nor deposition. (R = 250, r i = 45,Simulation box 600x600).

The behaviour of a 2D circular island with sublimation and impinging ux may be analytically studied on the basis of the BCF approach [START_REF] Burton | [END_REF]. For the sake of clarity, all the analytical developments are reported in appendix II. They give access to an analytical expression of the variation dA/dt versus the island radius but cannot be directly integrated to get an explicit expression of A(t). A few universal scaling laws of dA/dt and A(r i ) = πr 2 i obtained as limiting cases of appendix II are reported in table 1.

The area variation dA dt of equation 14 of appendix II is a function of seven parameters n eq ,D, r i , R, x s ,J in τ , d. For the discussion we will x the size of the external radius R as well as the values of n eq and D. There remains three parameters: x s , J in τ, d.

For the discussion we will represent dA/dt versus r i for d varying from the so-called diusion limited case (d → 0) to the so-called attachment/detachment case (d → ∞). We will thus study the eect of sublimation (the smaller x s is, the greater the sublimation is) with and without the presence of a ux J in . Di.

Jim = 0, xs → ∞, d → 0 -1/ri -t 2/3
At/Det We report in the following gures various plots of dA/dt versus r i . All the following gures have been calculated with R = 2 and 0 < r i < 1. In this case we consider that R variations (that are not considered in the analytical model) do not aect signicantly r i variations.

Jim = 0, xs → ∞, d → ∞ 1 - r i R -t Growth xs → ∞, Jimτ > neq ri t 2 Sublim. xs → ∞, Jimτ > neq, ri = R -ri -t 2
Figures 10a,b, c report the evolution of dA/dt versus r i for decreasing values of x s (that means for increasing sublimation) in absence of any external ux (J in = 0) calculated in the diusion-limited case (d → 0). Figure 10d shows a similar trend in the attachment/detachment limited case (d → ∞). In the diffusion limited case, the asymptotic behaviours agree with those reported in table 1: they show that in absence of sublimation (x s → ∞) dA/dt → -1/r i whereas for strong sublimation (x s → 0) dA/dt → -kr i . Also, in the attachment/detachment limited case, dA/dt → -k in absence of sublimation (x s → ∞) but there is still → -kr i for strong sublimation (x s → 0). Figure 11 shows dA/dt as a function of r i in presence of an impinging ux J im > 0. For the diusion limited case (d → 0, Figure 11a) the initial curve dA/dt → -1/r i valid for J im = 0 becomes dA/dt → +kr i whereas for the attachment/detachment limited case (d → ∞) the curve dA/dt → -kr i valid for strong sublimation (weak values of x s ) becomes dA/dt → +kr i in presence of high enough external ux as expected. 

Is it possible to balance the desorption ?

Let us now consider the simpler case of a terrace framed by two steps. Figure 12a shows the number of atoms versus time, extracted from KMC simulation, for a bare surface with two steps (green triangles) and for a 2D island between two steps (red circles). The slope of the line passing through the red circles is larger than that passing through the green triangles. This means that the presence of the 2D island of radius r i increases the number of sublimating atoms with respect to the bare terrace since additional atoms detach from the island edge.

The eect of an impinging ux in simulations with an island between two steps is shown in Figures 12b andc. Figure 12b shows the total number of atoms as a function of time for a 2D island between two steps with an impinging ux adjusted to stop the step motion that exists in absence of the 2D island. In these conditions, the total number of atoms decreases as long as the island exists. Only when the island disappears the number of atoms becomes then remains constant. 3 Notice that it should be possible to choose a higher value of the additional ux that should stabilize the 2D island (no more shrinking), however in this case the steps advance then engulfe the 2D island which again disappears. 4 A crystal can have various facets but in equilibrium with a vapour.
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This is not the case for 2D islands on a surface since their situation never corresponds to an equilibrium state (see subsection 3.2). In KMC simulations it is possible to exactly compensate at each time the desorbing ux with a deposition ux but, due to the island shrinking, this ux must vary with the island perimeter and thus with time. In experiments (Figure 1) it is far from trivial to adjust in real time the deposition ux.

A rst remark thus is that the experimental conguration depicted in Figure 1a does not generally force the system to be in equilibrium.

Let us now consider the dynamic evolution of 2D islands on a surface. Generally, the area of a 2D island may be tted by a power law A(t)

∝ (t 0 -t) α .
The exponent α depends on the mechanism at work but also on the experimental conditions (geometrical congurations and existing uxes). In absence of sublimation and external ux, α → 2/3 in the diusion-limited regime and α → 1 in the attachment/detachment regime. When, in the diusion limited regime, sublimation is supplemented by an external ux the exponent α increases from 2/3 (zero external ux) towards 2 (pure growth) and thus passes through unity for a specic value of the ux. Such a variation thus cannot be interpreted by a transition from a diusion-limited regime towards an attachment/detachment regime. Our KMC simulations conrm the prediction of the analytical expressions and the exponents α approach the asymptotic values (0.78 close to 2/3, 1.72 close to 2 and 0.9 close to 1). KMC simulations also evidence some geometrical eects, as for instance, the dierence of behaviour between an island in a hole and a wedding cake conguration.

A second remark is thus that the value of the exponent α in the scaling law A(t) ∝ (t 0 -t) α is not enough to identify the mechanism at work, at least in presence of sublimation and impinging uxes. Several possible eects have not been considered in these simplied approaches. For instance one might wonder about the eect of specic edge properties as step transparency [3], Ehrlich-Schwoebel barrier [25] or deviations from Gibbs Thomson equations that could exist for small islands and high vapour densities [13]. Following Ref [3], edge transparency change is generally due to non-equilibrium steps present at low temperature and thus should not play in the high temperature range we have considered. The Ehrlich-Schwoebel barrier introduces two new kinetic lengths d + and d -(for up and down hops) that can be usually merged in an eective kinetic length [START_REF] Pimpinelli | Physics of crystal growth[END_REF] and thus should not modify the asymptotic scaling laws.

Last but no least, deviations from the classical Gibbs-Thomson eect only occur for very small islands [13] beneath the size usually studied in experiments. In our analytical calculations we have neglected the effect of advacancies that could play a role especially when sublimation takes place. However, on the basis of ref [26] the eect of ad-vacancies should not modify asymptotic laws as conrmed by our KMC simulations (where advacancies exist).

To conclude, our work provides a basis for further experiments, in particular for studying the evolution of experimental scaling laws far from the classical case (no sublimation nor impinging ux). Beyond these fundamental considerations, the study of the eect of an external ux on the surface dynamics could be important in a few industrial processes in which Si wafers are stacked at high temperature and thus exposed to uxes generated by each other [START_REF] Lachman-Shalem | Process Control and Diagnosis[END_REF].

Appendix I KMC model KMC simulations have been used to complete the analytical approach of the area evolution of 2D circular islands. Indeed, KMC simulations (i) enable to relax the strong assumptions used to obtain asymptotic analytical expressions, (ii) take into account the edge uctuation of both r i and R.

In our KMC model [27] the atoms jump from a position to a nearest neighbor empty position, in a 3D face centered cubic lattice (fcc). The island surface corresponds to a (111) plane of a fcc crystal. Atoms of the rst layer are in contact with a frozen layer underneath. The distance between two nearest neighbor positions is the lattice unit, that we take equal to 1.

Atoms jump with a rate equal to ν 0 exp[-nJ/(k B T )],

where n is the number of nearest neighbors (for instance, for an adatom n = 3 because of the three neighbors in the layer under the adatom), J is a bond energy, taken as the energy unit in our system, k B is the Boltzmann constant and T is the temperature. The attempt frequency ν 0 is taken equal to 1 for all atoms. In simulations with sublimation, atoms can also sublimate, i.e. can be removed from the simulation, if they have less than 12 neighbors. Similarly to atomic jumps, the sublimation rate is equal to ν 0 exp[-(nJ + E ev )/(k B T )], where E ev is an sublimation energy that we have typically taken between 0 and 4 J. To simulate a deposition that compensates sublimation, when an atom sublimates, it is not removed from the simulation, but it is put in a random position on the surface. In some simulations (see Fig- The general solution is

n(r) = B I I 0 (r/x s ) + B K K 0 (r/x s ) + J im τ (4)
4 DISCUSSION AND CONCLUSION 9 where I n (r) and K n (r) are the n th order modied Bessel functions of the rst and second kind respectively and B I and B K two constants that can be determined from the following boundaries conditions that describe the net ux that detach from the inner island towards the surrounding step (for impermeable edges) -D dn dr ri = κ (n eq (r i ) -n(r i ))

-D dn dr R = -κ (n eq (R) -n(R))

where κ is a kinetic coecient and n eq (r) the adatom concentration at equilibrium. We thus obtain

B I = D K (θeq(R/xs) -Jimτ ) + C K (θeq(ri/xs) -Jimτ ) D K C I + C K D I (7) 
B K = D I (θeq(R/xs) -Jimτ ) -C I (θeq(ri/xs) -Jimτ ) D K C I + C K D I (8) 
with

               CK = K0 (R/xs) -d xs K1 (R/xs) CI = I0 (R/xs) + d xs I1 (R/xs) DK = -K0 (ri/xs) -d xs K1 (ri/xs) DI = I0 (ri/xs) -d xs I1 (ri/xs) (9) 
where d = D/κ is the so-called kinetic length. The rate at which the island area A changes by diusion towards the surrounding step is given by dA1 dt = -2πr i Ωj net where j net = κ [n eq (r i ) -n(r i )]

Putting altogether we nd

dA1 dt = - 2πDΩ DK CI + CK DI . ri {neq(R). [DI K1( ri) -DK I1( ri)] -neq(ri). [CK I1( ri) + CI K1( ri)] +Jimτ. [(CK + DK ) I1( ri) + (CI -DI ) K1( ri)]} (10) 
Which is the area change due to the adatom ux from the inner island towards the outer step.

However adatoms may also detach from the island edge then diuse on the island itself before being desorbed.

This supplementary contribution to the area change may be calculated by solving the equation 1 whose solution simply reads n(r) = B I I 0 (r/x s )+J im τ to avoid the divergence of K 0 (r i =0) that should appear with the solution given in equation 4.

The boundary conditions coecient B I can be found via the boundary condition -D dn dr ±ri = ∓κ (n eq (±r i ) -n(±r i )) [START_REF] Mutaftschiev | The atomistic nature of crystal growth[END_REF] with n eq (r i ) = n eq (-r i ) and n(r) = n(-r i ). We thus nd B I = n eq (r i ) -J im τ I 0 ( r i ) + d xs I 1 ( r i )

The net ux now is j 2 = -D dn dr ri so that equation dA2 dt = -2πr i Ωj 2 gives the contribution dA 2 dt = -2πDΩ r i (n eq (r i ) -J im τ ) I 0 ( r i ) + d xs I I ( r i )

The total change of area thus reads:

dA dt = dA 1 dt + dA 2 dt ( 14 
)
where dA 1 /dt and dA 2 /dt are given by equations 10 and 13.

When using the Gibbs Thomson relation, the equilibrium concentration at the island boundary reads n eq (r) = n eq exp βΩ rk B T (15) where β is the edge energy per unit length of inner and outer islands.

Notice that in this description a wedding-cake conguration (2D island sit on a 2D island) simply diers form a 2D island-in-a-hole conguration by the sign of the radius R (positive or negative for island and hole respectively).

In absence of any impinging ux J im = 0) and without sublimation (x s = 0), one recovers the classical expression [13,15,16,28] : Notice that for large R, dA/dt no more depends on R so that wedding-cake (R > 0) and island in a hole (R < 0) lead to similar results.

The existence of such asymptotic laws helps to identify the leading mechanism in experiments (DL or AD) by measuring the exponent α in the experimentally recorded scaling law A(t) ∝ (t 0 -t) α .

When the two uxes J in and J des exist, the solution of equation 14 is much more complex than equation 16. Using more drastic approximations enables to recover classical scaling laws (see table 1 in the main I 0 ( R) exp(ξ/R)-I 0 ( r i ) exp(ξ/r i I 1 ( r i )K 0 ( r i )+I 0 ( r i )K 1 ( r i ) I 0 ( r i ) I 1 ( r i )K 0 ( R)-I 0 ( R)K 0 ( r i ) Table 2: A few asymptotic behaviors obtained for J im = 0 with ξ = βΩ kT the capillary length and r ≡ r/xs. Let us recall that since dA/dt = 2πr i dr i /dt asymptotic expressions of A(t) may be obtained (see table 1).

  growth and sublimation experimental studies respectively require a complete control of the supersaturation or undersaturation conditions. From an historical point of view, most of the rst surface science experiments have been performed in Ultra High Vacuum conditions that means without any control of the super or undersaturation conditions.

Figure 1 :

 1 Figure 1: (a) Experimental system used to compensate the sample (substrate) sublimation by an impinging ux originating from a second sample (source). (b) Sketch of atomic exchanges on a surface formed by two terraces of width separated by a monoatomic step (height a). The width 2xs corresponds to the capture zone.

2 2 .

 2 Figure 1b.

Figure 2a shows that

  Figure 2a shows that the sublimation rate of the vicinal surface depends on the step density that means on its vicinality. The black squares in Figure 2b show the total number of atoms versus time in pure sublimation regime for a surface with two terraces separated by an atomic step. The sublimation rate is obtained from the slope of the linear t through the data. The red dots in Figure 2b refer to a simulation performed with an additional impinging ux equal to the sublimation ux found in the pure sublimation regime. Contrary to what a naive view would suggest, in spite of the supposedly perfect compensation, the number of adatoms still decreases with time. In other words an impinging ux equal to the sublimation ux is not enough to compensate the sublimation. Actually a true compensation (that means a constant number of atoms) is only reached when the sublimating ux is overcompensated (blue triangles).The empty green triangles in Figure2brefer to a surface with a step density twice that of the previous surface (black squares) having thus a higher sublimation rate. However, less intuitively at a rst sight, the total impinging ux necessary to exactly compensate the sublimation (that means impinging ux equal to the sublimation ux + overcompensation) is the same for the two surfaces. More generally, this compensation ux does not depend on the step density (or the vicinality angle).

Figure 2 :

 2 Figure 2: (a): Average time between the sublimation of two atoms (black squares) obtained by KMC versus the vicinality measured by the number of steps for a simulation box with 600x600 atomic positions (k B T =0.25, Eev = 1)The continuous line corresponds to a t from equation 2 with J in = 0, (b) Normalized number of atoms on the surface for a surface with 2 terraces (black squares). This number decreases due to the sublimation. When the sublimation ux is balanced by an impinging ux (red points) corresponding to the evaporation ux measured for the black squares (id-est 1 atom every 9 10 7 ν -1 o ) the supposed compensation does not allow to reach a constant number of atoms on the surface. An overcompensatig ux is necesssary (blue triangles, 1 atom deposited every 4 10 6 ν -1 o ). A surface with 4 steps (green triangles) sublimates more but the total ux (impinging ux equal to the sublimating ux+ overcompensation) necessary to reach a constant number of atoms on the surface is the same as that found with two steps (blue triangles).

Figure 3 :

 3 Figure 3: Classical BCF description of the adatom density on a terrace between two steps in the sublimation regime.

Figure 4 :

 4 Figure 4: Illustration of equation 3.In the diusion limited regime, a stepped (S) surface (top) is equivalent to an alternance of kinked (K) and at (F) areas (bottom)[START_REF] Mutaftschiev | The atomistic nature of crystal growth[END_REF]. Adatoms trapped by the K zones may detach and diuse on the F zone (horizontal red arrows) before desorbing (vertical red arrows) whereas atoms landing on F parts because of the impinging ux (black arrows) directly desorb after a mean time τ (blue arrows). The desorbing ux thus has two contributions (red and blue arrows) the ratio of which depends on /xs that means, for a given value of xs, on the vicinality angle θ given by tan θ = a/ where a is the atomic height of a step.

Figure 5 :

 5 Figure 5: Studied congurations of a 2D island (radius r i ) on : (a) a terrace framed by two steps, (b) a hole (radius R), (c) on top of another 2D island (radius R). This last case is also called wedding cake conguration. The cross-hatched zones schematize the capture zones of width 2xs around steps.

αFigure 6 :

 6 Figure 6: Snapshots of KMC simulation of island decay in the wedding cake conguration. The inner island of radius r i = 46 (yellow) ion a blue terrace of radius R = 250 disappears with time whatever the conguration (island in a hole or wedding cake conguration). (k B T = 0.25J, simulation box 600x600).Notice that the step edges of both the inner and the outer islands uctuate. These uctuations are neglected in the analytical developments reported in the following.

Figure 7 :

 7 Figure 7: (a) Fit of the island area A(t) ∝ (t 0 -t) α for three congurations: island in a hole (black squares), island between two steps (green triangles) and wedding cake conguration (red circles). (k B T =0.25 J, r i = 45, R = 250,Simulation box 600x600). (b) Evolution of the exponent α versus the radius R of the outer island for two temperature and two congurations (island in a hole and wedding conguration).

Figure 8

 8 Figure 8 shows the results of the KMC simulations for a 2D island in a hole in three cases: (a) limited by the diusion, (b) limited by sublimation and (c) in presence of an impinging ux that exactly compensates the sublimation. In our KMC simulations the additional impinging ux is implemented with the following procedure: every desorbed atom that leaves the surface is replaced by a new adatom deposited on the surface at a random position. In evaporation, since the number of atoms that leave the surface depends on the adatom concentration which depends on the island size (Gibbs-Thomson eect), the island shrinking leads to a desorbing ux that varies with time (see following section). Thus, in the KMC simulations of gures 8c and 9b, the additional impinging ux exactly compensates the desorbing ux. Thus it is not constant but varies with time. The best t of the island area again scales as A(t) ∝ (t 0 -t) α with respectively α ≈ 0.78, α ≈ 1.7 and α ≈ 0.99 for the casesof Figures 8 a,b and c respectively. Figure9ashows that the exponent α increases with temperature T for a given sublimation

  b and c respectively. Figure9ashows that the exponent α increases with temperature T for a given sublimation energy barrier.

Figure

  Figure 9b shows the values of the exponent α for various sublimation energiy barriers (let us remind that the greater the sublimation energy is, the weaker the sublimation is). The black squares correspond to simulations without any external ux (only sublimation and surface diusion), the exponent varies from α ≈ 1.7 for high sublimation rate (close to α = 2 ex-

Figure 8 :

 8 Figure 8: Islanf area as a function of time simulated by KMC in dierent regimes: (a) Diusion limited (d → 0), the scaling law is A(t) ∝ t 0.78 close to t 2/3 expected for pure diusion, (b) sublimation limited (xs → 0) , A(t) ∝ t 1.72 close to t 2 expected for pure sublimation, (c) The impinging ux exactly compensates the sublimation, A(t) ∝ t 0.9 close to t 1 (see table1). (k B T =0.25 J, R = 250, r i = 45,Simulation box 600x600. For (b) the evaporation energy is 0.3 J).

Figure 9 :

 9 Figure 9: Variation of the exponent α (a) with temperature for a given sublimation energy Eev = 3J (see appendix I), (b) withthe sublimation energy for a given temperature. The reported results correspond to the conguration island in a hole and are similar to those of the wedding cake conguration. Let's notice that for Eev = 3.5 there is no more sublimation so that the last red circle actually corresponds to the limit value of α without any sublimation nor deposition. (R = 250, r i = 45,Simulation box 600x600).

Figure 10 :

 10 Figure 10: dA/dt (arbitrary units) versus r i : Diusion limited (d → 0), xs varying between 100 and 30 (a) , between 1 and 0.3 (b) and between 10 and 5. In absence of sublimation (xs → ∞) dA/dt → -1/r i whereas for strong sublimation xs → 0 dA/dt → -kr i . (d) For attachment detachment limited (d → ∞) dA/dt → -k in absence of sublimation but → -kr i for strong sublimation. (The external radius has been xed to R = 2. The vertical axis has been multiplied by 10 4 , 10 3 ,10 1 and 10 4 respectively for a, c, b and d graphs respectively).

Figure 11 :

 11 Figure 11: Flux eect on dA/dt (arbitrary units) versus x: (a) diusion limited (d → 0 and xs = 10) J im τ varying between 0.09 and 0.105. and (b) Attachment/Detachment limited (d → ∞ and xs = 10) with J im τ varying between 0 and 0.4. Vertical axis are given in 10 -4 units

Figure 12 : 4 .

 124 Figure 12: (a) Number of atoms on the surface for a bare surface with two steps (green triangles) and an island between two steps (red circles). The sublimation ux of the bare surface is obtained from the slope of the green curve, (b) Eect of an impinging ux equal to the sublimation ux of the bare surface: the number of atoms reaches a constant value only after complete disapperance of the circular island. (c) Eect of an impinging ux slightly larger than the sublimation ux: the step motion engulfes the island. ( k B T =0.25 J, R = 250, r i = 45, = 375Simulation box 600x600). The impinging ux in (b) is 1 atom every 4 10 6 ν -1 o , in (c) it is 3.83 10 6 ν -1 o .

ure 12 )

 12 deposition does not compensate sublimation, but sublimating atoms are removed and atoms are added in a random position on the surface at denned time intervals. At each move (atomic jump, sublimation or sublimation/deposition) the time advances by the inverse of the sum of all jump rates and can thus be expressed in units ν -1 0 .Appendix II Analytical modelLet us consider a circular island of radius r i inside a larger circular hole of radius R. In such conditions, following references[15,16] the adatom concentration is obtained by solving equation 1 in circular coordinates id est with ∇ 2 n = ∂ 2 n ∂r 2 + 1 r ∂n ∂r .

ri

  dA dt = -2πDa 2 n eq e βΩ/rik B T -e βΩ/Rk B T ln ri With this condition, two asymptotic cases naturally arise [13, 15, 28]: (i) the Diusion Limited (DL) regime when d → 0, which leads to A(t) ∝ t 2/3 and the (ii) Attachment-Detachment (AD) regime when d → ∞ (actually d >> r 0 ln ro R ) that leads to A(t) ∝ t.

  exp(ξ/R)-exp(ξ/r i ) ln(R/r i )+d(1/R+1/r i ) d → 0 xs >> R, r i exp(ξ/R)-exp(ξ/r i ) ln(R/r i )

  2 x s J im -

		neq τ	that
	means that only the adatoms landing within a cap-
	ture zone of witdth 2x s are incorporated. In the gen-
	eral case	> 2x s , we can describe a vicinal surface
	in the diusion limited regime as a successive alter-
	nance of Kinked (K) zones (where landing adatoms
	are trapped) and of Flat (F) zones (where landing
	adatoms sublimate), see Figure 4.

Table 1 :

 1 Asymptotic scaling laws for dierent mechanisms (limited by diusion, limited by attachment/detachment, pure growth or pure sublimation). The last column has been obtained by writting for a circular island dA/dt = 2πr i dr i /dt.

Directly solving equation 1 with J in = n/τ and dn/dt = 0 leads to n = neq constant on the whole surface.