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Re�ections on the e�ect of an external �ux in surface physics

S. Curiotto, F. Leroy, F. Cheynis, P. Müller

Aix Marseille Univ, CNRS, CINaM, AMUTECH, Marseille, France

Abstract

Sublimating surfaces are out of equilibrium. It has been proposed that sublimation can be compensated by an
impinging atomic �ux to obtain equilibrium. This work concerns the e�ect of such an impinging �ux on the
stability of surfaces in various situations. For this purpose we combine Kinetic Monte Carlo Simulations with
analytical developements based on the Burton-Cabrera-Frank (BCF) classical theory. We show that a perfect
compensation of the sublimation is possible for vicinal surfaces but not when 2D islands are present on a surface.
We thus study the e�ect of an impinging �ux on the dynamic of a 2D island on a surface. We show that the
2D island area generally varies with time t as −tα. In absence of any impinging �ux the value of the exponent
α enables to identify the main mechanism at work (di�usion limited or attachment-detachment limited). On
the contrary, in presence of an impinging �ux the value of the exponent α is not enough to identify the main
mechanism limiting the area change.

1. Introduction

Crystal growth and sublimation experimental stud-
ies respectively require a complete control of the su-
persaturation or undersaturation conditions. From an
historical point of view, most of the �rst surface sci-
ence experiments have been performed in Ultra High
Vacuum conditions that means without any control of
the super or undersaturation conditions.
At the end of the sixties, Bethge et al. [1�3] proposed
a simple method to control super(under)saturation
conditions in a microscope. This method has been
systematically used by J.J. Metois and coworkers [4�
7] for studying silicon growth and silicon sublima-
tion in a Re�ection Electron Microscope (REM). The
method consisted in mounting face-to-face in the same
sample-holder two silicon wafers (called the substrate
and the source) that can be heated independently at
two di�erent temperatures Tsource and Tsample high
enough to ensure Si sublimation. In such experimen-
tal conditions two �uxes exist on the substrate: the
desorbing �ux Jdes (due to the substrate sublimation)
and the impinging �ux Jim (due to the source subli-
mation). If Jdes > Jim the substrate sublimates, if
Jim > Jdes the substrate grows and if Jim = Jdes a
steady state is expected. For a simple vicinal sub-
strate, the monoatomic steps thus recede in sublima-
tion conditions (Jdes > Jim) or advance in growth
conditions (Jim > Jdes) but �uctuate on the spot and
thus do not displace in steady conditions (Jim = Jdes).
Such an impinging �ux has thus been used to balance
the sublimation for studying step �uctuations at equi-
librium [4�7]. In the semiconductor industry, wafers
are often annealed in stacks where the �ux of atoms
sublimating from a wafer constitutes an impinging
�ux for nearby wafers. Therefore the compensation
of sublimation is also important in applications [8].

Figure 1: (a) Experimental system used to compensate the
sample (substrate) sublimation by an impinging �ux originating
from a second sample (source). (b) Sketch of atomic exchanges
on a surface formed by two terraces of width ` separated by a
monoatomic step (height a). The width 2xs corresponds to the
capture zone.

In this paper we discuss the conditions for a pos-
sible compensation of sublimation. We will start de-
scribing vicinal surfaces. We will show that, if a bal-
ance between sublimation and an additional imping-
ing �ux can be reached for a vicinal surface, it is not
the case for 2D islands on a surface. In this last case
we will discuss the e�ect of sublimation and deposi-
tion on the dynamical evolution of a 2D-island. For
this purpose we will combine KMC simulations with
analytical models.
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2. Simple case of a vicinal surface

A �at surface in equilibrium with a saturated vapour
exhibits an adsorbed layer characterized by a constant
adatom density n(x) = neq maintained by atomic ex-
changes with the saturated vapour. A vicinal sur-
face at equilibrium is also characterized by a constant
adatom density, however if far from the steps the equi-
librium density neq is still maintained by atomic ex-
changes with the saturated vapour, at the steps the
atomic exchanges essentially take place between the
steps and the adsorption layer so that direct exchanges
with the vapor can be neglected at the steps (see Fig-
ure 1b).

In out-of-equilibrium conditions (growth or sub-
limation), the classical BCF description [9] assumes
that a positive (growth) or negative (sublimation) �ux
does not perturbate the equilibrium density at the
steps. The step velocity is thus directly proportionnal
to the supersaturation Jin − Jdes.

We use Kinetic Monte Carlo simulations to study
the sublimation of a vicinal surface (for details on the
methodology see appendix I) formed by monoatomic
steps separated by �at terraces of width ` as shown in
Figure 1b.

Figure 2a shows that the sublimation rate of the
vicinal surface depends on the step density that means
on its vicinality. The black squares in Figure 2b show
the total number of atoms versus time in pure sub-
limation regime for a surface with two terraces sep-
arated by an atomic step. The sublimation rate is
obtained from the slope of the linear �t through the
data. The red dots in Figure 2b refer to a simulation
performed with an additional impinging �ux equal to
the sublimation �ux found in the pure sublimation
regime. Contrary to what a naive view would sug-
gest, in spite of the supposedly perfect compensation,
the number of adatoms still decreases with time. In
other words an impinging �ux equal to the sublima-
tion �ux is not enough to compensate the sublima-
tion. Actually a true compensation (that means a
constant number of atoms) is only reached when the
sublimating �ux is overcompensated (blue triangles).
The empty green triangles in Figure 2b refer to a sur-
face with a step density twice that of the previous
surface (black squares) having thus a higher sublima-
tion rate. However, less intuitively at a �rst sight, the
total impinging �ux necessary to exactly compensate
the sublimation (that means impinging �ux equal to
the sublimation �ux + overcompensation) is the same
for the two surfaces. More generally, this compensa-
tion �ux does not depend on the step density (or the
vicinality angle).

Figure 2: (a): Average time between the sublimation of two
atoms (black squares) obtained by KMC versus the vicinality
measured by the number of steps for a simulation box with
600x600 atomic positions (kBT=0.25, Eev = 1) The contin-
uous line corresponds to a �t from equation 2 with Jin = 0, (b)
Normalized number of atoms on the surface for a surface with
2 terraces (black squares). This number decreases due to the
sublimation. When the sublimation �ux is balanced by an im-
pinging �ux (red points) corresponding to the evaporation �ux
measured for the black squares (id-est 1 atom every 9 107 ν−1

o )
the supposed compensation does not allow to reach a constant
number of atoms on the surface. An overcompensatig �ux is
necesssary (blue triangles, 1 atom deposited every 4 106 ν−1

o ).
A surface with 4 steps (green triangles) sublimates more but the
total �ux (impinging �ux equal to the sublimating �ux+ over-
compensation) necessary to reach a constant number of atoms
on the surface is the same as that found with two steps (blue
triangles).

All these results may be understood within the
classical BCF model [9] which states that the change
of the adatom density n(x) at a location x on the
surface is described by the di�usion equation:

dn

dt
= Jin +D∇2n− n

τ
(1)

where Jim is the impinging external �ux, D∇2n
the di�using surface �ux induced by the concentra-
tion gradient (D being the surface di�usion constant)
and Jdes = n/τ the desorption �ux with τ the mean
adatom sublimation time.

In the stationary state
(
dn
dt = 0

)
, the solution reads

n(x) = Jimτ +Aex/xs +Be−x/xs where xs =
√
Dτ is

the mean length of surface di�usion. Thus a region of
width 2xs centered on a step corresponds to a �cap-
ture zone� where the probability of adatoms to be cap-
tured by the step is higher than the sublimation prob-
ability (see Figure 1b). The constants A and B are
determined by boundary conditions that describe the
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Figure 3: Classical BCF description of the adatom density on
a terrace between two steps in the sublimation regime.

relationship between the �ux towards the steps fram-
ing a terrace and the rate of incorporation at these
step-edges. They read D dn

dx = ±κ(n − neq) at the
step positions ±`/2 with neq the equilibrium adatom
density and κ a kinetic coe�cient for adatom attach-
ment/detachment at the steps (see Figure 3 where is
reported n(x) in the pure sublimation regime). We

thus �nd A = B =(Jim − neq/τ)
[(

1− d
xs

)
e−`/2xs +

(
1 + d

xs

)
e`/2xs

]−1
.

The new characteristic kinetic length d = D/κ
roughly corresponds to the mean length an adatom
runs along a step before being incorporated into it
[10]. The step velocity corresponds to the net �ux of
adatoms reaching the step (horizontal blue arrows in
Figure 1b) , that means

V = a2D

[
dn

dx

⌋
−`/2
−dn
dx

⌋
+`/2

]

(a2 being an atomic area), and thus:

V = 2a2xs
(
Jim −

neq

τ

)
2 sinh (`/2xs)(

1− d
xs

)
e−`/2xs +

(
1 + d

xs

)
e`/2xs

(2)

For instantaneous adatom incorporation, also called
di�usion-limited regime, (D << κ or d→ 0) the usual
classical BCF result is recovered:

V0 = 2a2xs

(
Jim −

neq
τ

)
tanh

(
`

2xs

)
(3)

When ` << 2xs this last expression gives V0 = a2`
(
Jim − neq

τ

)
that means that all the adatoms landing on a given
terrace of size ` are incorporated in the steps whereas
when ` >> 2xs there is V0 = 2a2xs

(
Jim − neq

τ

)
that

means that only the adatoms landing within a cap-
ture zone of witdth 2xs are incorporated. In the gen-
eral case ` > 2xs, we can describe a vicinal surface
in the di�usion limited regime as a successive alter-
nance of Kinked (K) zones (where landing adatoms
are trapped) and of Flat (F) zones (where landing
adatoms sublimate), see Figure 4.

For pure sublimation the steps recede with a ve-
locity Vev obtained by putting Jim = 0 in equation
2. We can extract a mean time for adatom desorption

< tdes >=
a2

VevNL
where a2 is an atomic area, L the

step length and N the number of steps in the sim-
ulation box. The sublimation �ux thus depends on

Figure 4: Illustration of equation 3. In the di�usion limited
regime, a stepped (S) surface (top) is equivalent to an alter-
nance of kinked (K) and �at (F) areas (bottom) [11]. Adatoms
trapped by the K zones may detach and di�use on the F zone
(horizontal red arrows) before desorbing (vertical red arrows)
whereas atoms landing on F parts because of the impinging �ux
(black arrows) directly desorb after a mean time τ (blue ar-
rows). The desorbing �ux thus has two contributions (red and
blue arrows) the ratio of which depends on `/xs that means,
for a given value of xs, on the vicinality angle θ given by
tan θ = a/` where a is the atomic height of a step.

the vicinality. The analytical expression of < tdes >
perfectly �ts the vicinality dependence deduced from
KMC (with d as a �tting parameter 1) in Figure 2a
. However since

(
Jim − neq

τ

)
is a prefactor in equa-

tion 2 the true impinging �ux necessary to reach the
steady state V = 0 is still Jim =

neq
τ and thus does not

depend on the vicinality, as found in the KMC simula-

tions 2. Because of the vicinality factor 2 sinh(`/2xs)

(1− d
xs
)e−`/2xs+(1+ d

xs
)e`/2xs

smaller than unity that appears in the expression 2 of
Vev, the sublimation rate depends on the interstep dis-
tance and is smaller than

neq
τ . This explains why an

overcompensation of the sublimation is necessary in
KMC simulations.

3. Case of 2D islands

In the following we reconsider the evolution of a
2D island on a surface with the two main underly-
ing questions: (i) What is the dynamical evolution of
a 2D-island in presence of both sublimation and ex-
ternal �uxes ? (ii) Is it possible to compensate the
desorption ? For this purpose we will consider three
con�gurations (see Figure 5): a 2D island on a terrace
framed by two steps, a 2D island in a hole, and a 2D
island on top of another, larger, 2D island (wedding
cake con�guration).

1We take neq corresponding to the simulated equilibrium
concentration found by counting the number of atoms on the
surface without sublimation.

2Directly solving equation 1 with Jin = n/τ and dn/dt = 0
leads to n = neq constant on the whole surface.
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Figure 5: Studied con�gurations of a 2D island (radius ri)
on : (a) a terrace framed by two steps, (b) a hole (radius R),
(c) on top of another 2D island (radius R). This last case is
also called wedding cake con�guration. The cross-hatched zones
schematize the capture zones of width 2xs around steps.

3.1. Dynamical evolution of a 2D-island in presence

of sublimation and external �ux

The stability and the dynamical evolution of 2D
nanostructures have been studied in many di�erent
works. Among them the case of a single 2D island on
a surface has received an increasing interest [12�19].
Indeed, the kinetics of growth or decay of a 2D island
may give information on the relative importance of
surface di�usion and attachment/detachment mech-
anisms at step edges. More precisely, at low tem-
perature (no sublimation and no external �ux) the
islands simply shrink because of the Gibbs-Thomson
e�ect [20, 21], which states that the chemical poten-
tial of a nano-object increases when its size decreases.
The area of a 2D circular island is often considered to
change with time according to a scaling law A(t) ∝
(t0 − t)α where the exponent α varies in a complex
way. However two limiting cases have been described:
α → 2/3 for di�usion limited regime but α → 1 for
attachment/detachment limited regime [12�16]. J.J.
Metois et al. used the experimental con�gurations of
Figure 1 and assumed that the impinging �ux com-
pensates sublimation [4, 6, 22].

This section is thus devoted to a complete study
of the behaviour of a 2D island in presence of subli-
mation (as done by Altman and coworkers [16, 23])
but with an additional external impinging �ux. The
main question is: is it still possible to describe the
dynamics of island shrinking by universal scaling laws
A(t) ∝ (t0 − t)α with an exponent α that, at least in a
few limiting cases, simply depends on the mechanism
at work (di�usion or attachment/detachment limited)
?

Figure 6: Snapshots of KMC simulation of island decay in the
wedding cake con�guration. The inner island of radius ri = 46
(yellow) ion a blue terrace of radius R = 250 disappears with
time whatever the con�guration (island in a hole or wedding
cake con�guration). (kBT = 0.25J, simulation box 600x600).
Notice that the step edges of both the inner and the outer islands
�uctuate. These �uctuations are neglected in the analytical
developments reported in the following.

At �rst let us use KMC simulations to study the
behaviour of an island of radius ri in two con�gura-
tions (i) in a hole of larger radius R, (ii) on top of
another 2D island of radius R (wedding cake con�gu-
ration). We �nd that the island area can be �tted by a
power law A(t) ∝ (t0 − t)α (see Figure 7a). However
the value of the exponent α depends on the con�gura-
tion and leads to a faster shortening for a island in a
hole than for the wedding cake. The evolution of the
exponent α versus the size of the external radius R
is reported in �gure 7b for a starting value ri=45 for
di�erent con�gurations and temperatures. For large
values of ri/R, the distance between the edge of the is-
land and that of the hole or of the lower island is small
so that the di�usion distance is small and the 2D is-
land shrinking is mainly limited by the time necessary
to attach and detach atoms from the edges (see Fig-
ure 5). On the contrary, for small values of ri/R, the
mechanism is di�usion limited and α tends towards
2/3 as experimentally found by Leroy and cowork-
ers for Si(111) [24]. Actually, the absolute value of
R plays a role and not only the ratio ri/R. If both
values of ri and R are small the island decay can be
attachment/detachment limited.
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Figure 7: (a) Fit of the island area A(t) ∝ (t0 − t)α for three
con�gurations: island in a hole (black squares), island between
two steps (green triangles) and wedding cake con�guration (red
circles). (kBT=0.25 J, ri = 45, R = 250,Simulation box
600x600). (b) Evolution of the exponent α versus the radius
R of the outer island for two temperature and two con�gura-
tions (island in a hole and wedding con�guration).

Figure 8 shows the results of the KMC simulations
for a 2D island in a hole in three cases: (a) limited by
the di�usion, (b) limited by sublimation and (c) in
presence of an impinging �ux that exactly compen-
sates the sublimation.

In our KMC simulations the additional impinging
�ux is implemented with the following procedure: ev-
ery desorbed atom that leaves the surface is replaced
by a new adatom deposited on the surface at a random
position. In evaporation, since the number of atoms
that leave the surface depends on the adatom con-
centration which depends on the island size (Gibbs-
Thomson e�ect), the island shrinking leads to a des-
orbing �ux that varies with time (see following sec-
tion). Thus, in the KMC simulations of �gures 8c
and 9b, the additional impinging �ux exactly compen-
sates the desorbing �ux. Thus it is not constant but
varies with time. The best �t of the island area again
scales as A(t) ∝ (t0 − t)α with respectively α ≈ 0.78,
α ≈ 1.7 and α ≈ 0.99 for the casesof Figures 8 a, b and
c respectively. Figure 9a shows that the exponent α
increases with temperature T for a given sublimation
energy barrier.

Figure 9b shows the values of the exponent α for
various sublimation energiy barriers (let us remind
that the greater the sublimation energy is, the weaker
the sublimation is). The black squares correspond to
simulations without any external �ux (only sublima-
tion and surface di�usion), the exponent varies from
α ≈ 1.7 for high sublimation rate (close to α = 2 ex-

pected for pure sublimation) to weaker values → 0.7
when sublimation vanishes (close to α = 2/3 expected
for pure di�usion). The red squares correspond to the
same simulations in presence of a non constant ex-
ternal �ux that exactly balances the desorbing �ux.
The exponent α now remains close to unity for high
sublimation then again tends towards α → 2/3 when
there is no more sublimation (and thus no more exter-
nal �ux). In other words the exponent, valid for pure
di�usion, increases when increasing the supplemental
impinging �ux.

Figure 8: Islanf area as a function of time simulated by KMC
in di�erent regimes: (a) Di�usion limited (d→ 0), the scaling
law is A(t) ∝ t0.78 close to t2/3 expected for pure di�usion, (b)
sublimation limited (xs → 0) , A(t) ∝ t1.72 close to t2 expected
for pure sublimation, (c) The impinging �ux exactly compen-
sates the sublimation, A(t) ∝ t0.9 close to t1 (see table 1).
(kBT=0.25 J, R = 250, ri = 45,Simulation box 600x600. For
(b) the evaporation energy is 0.3 J).
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Figure 9: Variation of the exponent α (a) with temperature for
a given sublimation energy Eev = 3J (see appendix I), (b) with
the sublimation energy for a given temperature. The reported
results correspond to the con�guration island in a hole and are
similar to those of the wedding cake con�guration. Let's notice
that for Eev = 3.5 there is no more sublimation so that the last
red circle actually corresponds to the limit value of α without
any sublimation nor deposition. (R = 250, ri = 45,Simulation
box 600x600).

The behaviour of a 2D circular island with subli-
mation and impinging �ux may be analytically studied
on the basis of the BCF approach [9]. For the sake of
clarity, all the analytical developments are reported in
appendix II. They give access to an analytical expres-
sion of the variation dA/dt versus the island radius
but cannot be directly integrated to get an explicit
expression of A(t). A few universal scaling laws of
dA/dt and A(ri) = πr2

i obtained as limiting cases of
appendix II are reported in table 1.

The area variation dA
dt of equation 14 of appendix

II is a function of seven parameters neq,D, ri, R,
xs,Jinτ , d. For the discussion we will �x the size
of the external radius R as well as the values of neq
and D. There remains three parameters: xs, Jinτ, d.
For the discussion we will represent dA/dt versus ri
for d varying from the so-called di�usion limited case
(d→ 0) to the so-called attachment/detachment case
(d→∞). We will thus study the e�ect of sublimation
(the smaller xs is, the greater the sublimation is) with
and without the presence of a �ux Jin.

�Limited Assumptions dA
dt ∝ A(t) ∝

Di�. Jim = 0, xs →∞, d→ 0 −1/ri −t2/3

At/Det Jim = 0, xs →∞, d→∞ 1− ri
R −t

Growth xs →∞, Jimτ > neq ri t2

Sublim. xs →∞, Jimτ > neq, ri = R -ri -t2

Table 1: Asymptotic scaling laws for di�erent mechanisms
(limited by di�usion, limited by attachment/detachment, pure
growth or pure sublimation). The last column has been obtained
by writting for a circular island dA/dt = 2πridri/dt.

We report in the following �gures various plots of
dA/dt versus ri. All the following �gures have been
calculated with R = 2 and 0 < ri < 1. In this case
we consider that R variations (that are not considered
in the analytical model) do not a�ect signi�cantly ri
variations.

Figures 10a, b, c report the evolution of dA/dt
versus ri for decreasing values of xs (that means for
increasing sublimation) in absence of any external �ux
(Jin = 0) calculated in the di�usion-limited case (d→
0). Figure 10d shows a similar trend in the attach-
ment/detachment limited case (d → ∞). In the dif-
fusion limited case, the asymptotic behaviours agree
with those reported in table 1: they show that in
absence of sublimation (xs → ∞) dA/dt → −1/ri
whereas for strong sublimation (xs → 0) dA/dt →
−kri. Also, in the attachment/detachment limited
case, dA/dt → −k in absence of sublimation (xs →
∞) but there is still → −kri for strong sublimation
(xs → 0).

Figure 10: dA/dt (arbitrary units) versus ri: Di�usion limited
(d → 0), xs varying between 100 and 30 (a) , between 1 and
0.3 (b) and between 10 and 5. In absence of sublimation (xs →
∞) dA/dt → −1/ri whereas for strong sublimation xs → 0
dA/dt → −kri. (d) For attachment detachment limited (d →
∞) dA/dt → −k in absence of sublimation but → −kri for
strong sublimation. (The external radius has been �xed to R =
2. The vertical axis has been multiplied by 104, 103,101 and
104 respectively for a, c, b and d graphs respectively).

Figure 11 shows dA/dt as a function of ri in pres-
ence of an impinging �ux Jim > 0. For the di�u-
sion limited case (d→ 0, Figure 11a) the initial curve
dA/dt → −1/ri valid for Jim = 0 becomes dA/dt →
+kri whereas for the attachment/detachment limited
case (d→∞) the curve dA/dt→ −kri valid for strong
sublimation (weak values of xs) becomes dA/dt →
+kri in presence of high enough external �ux as ex-
pected.
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Figure 11: Flux e�ect on dA/dt (arbitrary units) versus x: (a)
di�usion limited (d → 0 and xs = 10) Jimτ varying between
0.09 and 0.105. and (b) Attachment/Detachment limited (d→
∞ and xs = 10) with Jimτ varying between 0 and 0.4. Vertical
axis are given in 10−4 units

The graphs of Figures 10 and 11 thus con�rm the
asymptotic scaling laws and explain the results of the
KMC simulations. However the analytical results are
only valid for R >> ri and thus do not really allow to
discuss geometrical e�ects as the di�erence between
wedding cake and island-in-a-hole.

3.2. Is it possible to balance the desorption ?

Let us now consider the simpler case of a terrace
framed by two steps. Figure 12a shows the number
of atoms versus time, extracted from KMC simula-
tion, for a bare surface with two steps (green trian-
gles) and for a 2D island between two steps (red cir-
cles). The slope of the line passing through the red
circles is larger than that passing through the green
triangles. This means that the presence of the 2D is-
land of radius ri increases the number of sublimating
atoms with respect to the bare terrace since additional
atoms detach from the island edge.

The e�ect of an impinging �ux in simulations with
an island between two steps is shown in Figures 12b
and c. Figure 12b shows the total number of atoms
as a function of time for a 2D island between two
steps with an impinging �ux adjusted to stop the step
motion that exists in absence of the 2D island. In
these conditions, the total number of atoms decreases
as long as the island exists. Only when the island
disappears the number of atoms becomes then remains
constant.

Figure 12: (a) Number of atoms on the surface for a bare
surface with two steps (green triangles) and an island between
two steps (red circles). The sublimation �ux of the bare sur-
face is obtained from the slope of the green curve, (b) E�ect
of an impinging �ux equal to the sublimation �ux of the bare
surface: the number of atoms reaches a constant value only
after complete disapperance of the circular island. (c) E�ect
of an impinging �ux slightly larger than the sublimation �ux:
the step motion engulfes the island. ( kBT=0.25 J, R = 250,
ri = 45, ` = 375Simulation box 600x600). The impinging �ux
in (b) is 1 atom every 4 106 ν−1

o , in (c) it is 3.83 106 ν−1
o .

Figure 12c shows the number of atoms versus time
for an impinging �ux slightly larger than the �ux used
in Figure 12b. At the beginning the total number of
atoms increases because the island curvature is large
and its edges behave almost like straight steps that
supply adatoms. Then, because of the Gibbs-Thomson
e�ect, the island shrinks so that its perimeter supplies
less adatoms to the surface. When the island has dis-
apperared the linear increase simply corresponds to
the step motion induced by step incorporation of the
additional impinging atoms3.

Results are similar for an island in a hole or for
the wedding cake con�guration: the presence of a 2D
island modi�es the adatom concentration and thus
makes impossible to properly de�ne a steady state sit-
uation.

More generally, the system (island + steps) can
never be stabilized by an external �ux because what-
ever the conditions (with or without sublimation), the
island tends to disappear or the steps advance and in-
corporate the island.

4. Discussion and conclusion

Let us consider the possible compensation of the
sublimation by an additional impinging �ux as de-
scribed in Figure 1. In case of a vicinal surface it
is perfectly possible to exactly compensate the subli-
mation by a constant additional �ux since a vicinal
surface may correspond to an equilibrium situation4.

3Notice that it should be possible to choose a higher value of
the additional �ux that should stabilize the 2D island (no more
shrinking), however in this case the steps advance then engulfe
the 2D island which again disappears.

4A crystal can have various facets but in equilibrium with a
vapour.
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This is not the case for 2D islands on a surface since
their situation never corresponds to an equilibrium
state (see subsection 3.2). In KMC simulations it is
possible to exactly compensate at each time the des-
orbing �ux with a deposition �ux but, due to the is-
land shrinking, this �ux must vary with the island
perimeter and thus with time. In experiments (Fig-
ure 1) it is far from trivial to adjust in real time the
deposition �ux.

A �rst remark thus is that the experimental con�g-
uration depicted in Figure 1a does not generally force
the system to be in equilibrium.

Let us now consider the dynamic evolution of 2D
islands on a surface. Generally, the area of a 2D is-
land may be �tted by a power law A(t) ∝ (t0 − t)α.
The exponent α depends on the mechanism at work
but also on the experimental conditions (geometri-
cal con�gurations and existing �uxes). In absence
of sublimation and external �ux, α → 2/3 in the
di�usion-limited regime and α → 1 in the attach-
ment/detachment regime. When, in the di�usion lim-
ited regime, sublimation is supplemented by an exter-
nal �ux the exponent α increases from 2/3 (zero ex-
ternal �ux) towards 2 (pure growth) and thus passes
through unity for a speci�c value of the �ux. Such
a variation thus cannot be interpreted by a transi-
tion from a di�usion-limited regime towards an at-
tachment/detachment regime. Our KMC simulations
con�rm the prediction of the analytical expressions
and the exponents α approach the asymptotic values
(0.78 close to 2/3, 1.72 close to 2 and 0.9 close to
1). KMC simulations also evidence some geometri-
cal e�ects, as for instance, the di�erence of behaviour
between an island in a hole and a wedding cake con-
�guration.

A second remark is thus that the value of the ex-
ponent α in the scaling law A(t) ∝ (t0 − t)α is not
enough to identify the mechanism at work, at least in
presence of sublimation and impinging �uxes.

Several possible e�ects have not been considered in
these simpli�ed approaches. For instance one might
wonder about the e�ect of speci�c edge properties
as step transparency [3], Ehrlich-Schwoebel barrier
[25] or deviations from Gibbs Thomson equations that
could exist for small islands and high vapour densi-
ties [13]. Following Ref [3], edge transparency change
is generally due to non-equilibrium steps present at
low temperature and thus should not play in the high
temperature range we have considered. The Ehrlich-
Schwoebel barrier introduces two new kinetic lengths
d+ and d− (for up and down hops) that can be usu-
ally merged in an e�ective kinetic length [10] and
thus should not modify the asymptotic scaling laws.
Last but no least, deviations from the classical Gibbs-
Thomson e�ect only occur for very small islands [13]
beneath the size usually studied in experiments. In
our analytical calculations we have neglected the ef-
fect of advacancies that could play a role especially
when sublimation takes place. However, on the basis
of ref [26] the e�ect of ad-vacancies should not modify
asymptotic laws as con�rmed by our KMC simulations

(where advacancies exist).
To conclude, our work provides a basis for further

experiments, in particular for studying the evolution
of experimental scaling laws far from the classical case
(no sublimation nor impinging �ux). Beyond these
fundamental considerations, the study of the e�ect of
an external �ux on the surface dynamics could be im-
portant in a few industrial processes in which Si wafers
are stacked at high temperature and thus exposed to
�uxes generated by each other [8].

Appendix I KMC model

KMC simulations have been used to complete the
analytical approach of the area evolution of 2D cir-
cular islands. Indeed, KMC simulations (i) enable to
relax the strong assumptions used to obtain asymp-
totic analytical expressions, (ii) take into account the
edge �uctuation of both ri and R.

In our KMC model [27] the atoms jump from a po-
sition to a nearest neighbor empty position, in a 3D
face centered cubic lattice (fcc). The island surface
corresponds to a (111) plane of a fcc crystal. Atoms
of the �rst layer are in contact with a frozen layer un-
derneath. The distance between two nearest neighbor
positions is the lattice unit, that we take equal to 1.
Atoms jump with a rate equal to ν0 exp[−nJ/(kBT )],
where n is the number of nearest neighbors (for in-
stance, for an adatom n = 3 because of the three
neighbors in the layer under the adatom), J is a bond
energy, taken as the energy unit in our system, kB
is the Boltzmann constant and T is the temperature.
The attempt frequency ν0 is taken equal to 1 for all
atoms. In simulations with sublimation, atoms can
also sublimate, i.e. can be removed from the sim-
ulation, if they have less than 12 neighbors. Simi-
larly to atomic jumps, the sublimation rate is equal
to ν0 exp[−(nJ +Eev)/(kBT )], where Eev is an subli-
mation energy that we have typically taken between 0
and 4 J . To simulate a deposition that compensates
sublimation, when an atom sublimates, it is not re-
moved from the simulation, but it is put in a random
position on the surface. In some simulations (see Fig-
ure 12) deposition does not compensate sublimation,
but sublimating atoms are removed and atoms are
added in a random position on the surface at de�nned
time intervals. At each move (atomic jump, sublima-
tion or sublimation/deposition) the time advances by
the inverse of the sum of all jump rates and can thus
be expressed in units ν−1

0 .

Appendix II Analytical model

Let us consider a circular island of radius ri inside
a larger circular hole of radius R. In such conditions,
following references [15, 16] the adatom concentration
is obtained by solving equation 1 in circular coordi-

nates id est with ∇2n = ∂2n
∂r2 + 1

r
∂n
∂r .

The general solution is

n(r) = BII0(r/xs) +BKK0(r/xs) + Jimτ (4)
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where In(r) and Kn(r) are the nth order modi-
�ed Bessel functions of the �rst and second kind re-
spectively and BI and BK two constants that can be
determined from the following boundaries conditions
that describe the net �ux that detach from the inner
island towards the surrounding step (for impermeable
edges)

−Ddn
dr

⌋
ri

= κ (neq(ri)− n(ri)) (5)

−Ddn
dr

⌋
R

= −κ (neq(R)− n(R)) (6)

where κ is a kinetic coe�cient and neq(r) the adatom
concentration at equilibrium.

We thus obtain

BI =
DK (θeq(R/xs)− Jimτ) + CK (θeq(ri/xs)− Jimτ)

DKCI + CKDI
(7)

BK =
DI (θeq(R/xs)− Jimτ)− CI (θeq(ri/xs)− Jimτ)

DKCI + CKDI
(8)

with

CK = K0 (R/xs)−
(
d
xs

)
K1 (R/xs)

CI = I0 (R/xs) +
(
d
xs

)
I1 (R/xs)

DK = −K0 (ri/xs)−
(
d
xs

)
K1 (ri/xs)

DI = I0 (ri/xs)−
(
d
xs

)
I1 (ri/xs)

(9)

where d = D/κ is the so-called kinetic length.
The rate at which the island area A changes by

di�usion towards the surrounding step is given by
dA1

dt = −2πriΩjnet where jnet = κ [neq(ri)− n(ri)]
Putting altogether we �nd

dA1

dt
= − 2πDΩ

DKCI + CKDI
.r̃i

{neq(R). [DIK1(r̃i)−DKI1(r̃i)]
−neq(ri). [CKI1(r̃i) + CIK1(r̃i)]

+Jimτ. [(CK +DK) I1(r̃i) + (CI −DI)K1(r̃i)]} (10)

Which is the area change due to the adatom �ux
from the inner island towards the outer step.

However adatoms may also detach from the island
edge then di�use on the island itself before being des-
orbed.

This supplementary contribution to the area change
may be calculated by solving the equation 1 whose so-
lution simply reads n(r) = BII0(r/xs)+Jimτ to avoid
the divergence of K0(ri=0) that should appear with
the solution given in equation 4.

The boundary conditions coe�cient BI can be found
via the boundary condition

−Ddn
dr

⌋
±ri

= ∓κ (neq(±ri)− n(±ri)) (11)

with neq(ri) = neq(−ri) and n(r) = n(−ri). We

thus �nd

BI =
neq(ri)− Jimτ
I0(r̃i) +

d
xs
I1(r̃i)

(12)

The net �ux now is j2 = −D dn
dr

⌋
ri

so that equation

dA2

dt = −2πriΩj2 gives the contribution

dA2

dt
= −2πDΩr̃i

(neq(ri)− Jimτ)
I0(r̃i) +

d
xs
II(r̃i)

(13)

The total change of area thus reads:

dA

dt
=
dA1

dt
+
dA2

dt
(14)

where dA1/dt and dA2/dt are given by equations
10 and 13.

When using the Gibbs Thomson relation, the equi-
librium concentration at the island boundary reads

neq(r) = neq exp

(
βΩ

rkBT

)
(15)

where β is the edge energy per unit length of inner
and outer islands.

Notice that in this description a wedding-cake con-
�guration (2D island sit on a 2D island) simply di�ers
form a 2D island-in-a-hole con�guration by the sign of
the radius R (positive or negative for island and hole
respectively).

In absence of any impinging �ux Jim = 0) and
without sublimation (xs = 0), one recovers the classi-
cal expression [13, 15, 16, 28] :

dA

dt
= −2πDa2neq

eβΩ/rikBT − eβΩ/RkBT

ln
∣∣ ri
R

∣∣+ d
ri

(16)

This last expression may be simpli�ed using the

approximation exp
(

βΩ
rkBT

)
'
(
1 + βΩ

rkBT

)
valid for

βΩ
rkBT

<�<1 so that

dA

dt
= −2πDa2neq

βΩ

kBT

1
ri
− 1

R

ln
∣∣ ri
R

∣∣+ d
ri

With this condition, two asymptotic cases naturally
arise [13, 15, 28]: (i) the Di�usion Limited (DL) regime
when d → 0, which leads to A(t) ∝ t2/3 and the (ii)
Attachment-Detachment (AD) regime when d → ∞
(actually d >> r0ln

∣∣ ro
R

∣∣) that leads to A(t) ∝ t. No-
tice that for large R, dA/dt no more depends on R
so that wedding-cake (R > 0) and island in a hole
(R < 0) lead to similar results.

The existence of such asymptotic laws helps to
identify the leading mechanism in experiments (DL
or AD) by measuring the exponent α in the experi-
mentally recorded scaling law A(t) ∝ (t0 − t)α.

When the two �uxes Jin and Jdes exist, the solu-
tion of equation 14 is much more complex than equa-
tion 16. Using more drastic approximations enables to
recover classical scaling laws (see table 1 in the main
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text)

1
neq

dA
dt

xs → ∞
(
exp(ξ/R)−exp(ξ/ri)

)
ln(R/ri)+d(1/R+1/ri)

d → 0
xs >> R, ri

(
exp(ξ/R)−exp(ξ/ri)

)
ln(R/ri)

(
1 − 1

4

(
r̃i
)2)

d → 0
r̃ = ri/xs

ri
xs

[
I0(R̃) exp(ξ/R)−I0(r̃i) exp(ξ/ri

][
I1(r̃i)K0(r̃i)+I0(r̃i)K1(r̃i)

]
I0(r̃i)

[
I1(r̃i)K0(R̃)−I0(R̃)K0(r̃i)

]

Table 2: A few asymptotic behaviors obtained for Jim = 0 with
ξ = βΩ

kT
the capillary length and r̃ ≡ r/xs. Let us recall that

since dA/dt = 2πridri/dt asymptotic expressions of A(t) may
be obtained (see table 1).
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