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Abstract The understanding of subsurface information on the Earth is crucial
in numerous fields such as economics of oil and gas, geophysical exploration, ar-
chaeology and hydro-geophysics, particularly in a context of climate change. The
methodology consists in reconstructing the seismic velocity model of the near
surface, that contains information about the basement structure, by solving the
inverse problem and resolving the related complex nonlinear systems with the
data collected from seismic experiments and measurements. In the last few years,
many deep neural networks have been proposed to simplify the seismic inversion
problem based for instance on automatic differentiation of the adjoint operator,
or on automatic arrival time picking. However, such approaches require a large
amount of labeled training data, which are hardly available in real applications.
We present here a deep learning approach for arrival time picking, aimed to deal
with unlabeled data. The main building blocks are transfer learning, as well as a
semi-supervised learning strategy where the pseudo-labels are greedily computed
with robust regression, and classification algorithms. The proposed model and
methodology showcase a very high score when evaluating on synthetic data, and
its application to a real dataset containing a limited amount of labeled data shows
very accurate results.
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1 Introduction

Seismic exploration is the use of seismic imaging to investigate the subsurface
structures of the Earth (Talwani and Kessinger, 2003). It plays a crucial role in
the delineation of near surface geology for economic deposits of oil, gas, or minerals,
but also for engineering purposes, archaeological, geophysical and geotechnical sci-
entific studies. Among the parameters used for seismic exploration purpose, seismic
velocities are some of the most important ones. They can be defined as the speed
with which an elastic wave propagates through a medium, and thus considered to
be seismic properties. Seismic inversion consists in reconstructing the subsurface
velocity model by processing the data collected from seismic experiments (Fig. 1).

Fig. 1. Illustration of the seismic inversion problem.

Basically, such velocity information can be derived by travel-time tomography
(Hole, 1992; Hobro et al., 2003; Bording et al., 1987) or full-waveform inversion
(FWI) (Virieux et al., 2017; Xu et al., 2012; Virieux and Operto, 2009; Taran-
tola, 1987, 1988, 1984; Tarantola and Valette, 1982; Baeten et al., 2013; Plessix,
2006; Zhu et al., 2009; Tromp et al., 2005), that have proven to be efficient for
acoustic model building in many geological scenarios. However, these techniques
are sophisticated to implement and still have limitations affected by human in-
terventions (Kosloff et al., 1996; Jones, 2010). Currently, most seismic inversion
problems are addressed by:

– physics-driven seismic inversion based on adjoint theory (commonly used in the
geophysical community). This method attempts to minimize iteratively a cost
function defined by the l2-norm of the differences between the observed and
calculated data. The inversion process is non-linear and the model corrections
are thus generally estimated iteratively by computing the gradient of the cost
function at each step of the inversion algorithms. This gradient is based on
some model parameters such as the density ρ and the speed of seismic phases
VP , VS , and calculated by the adjoint state method, permits the computation of
the first derivative of a physical observable or an associated objective function



Near-surface seismic arrival time picking with transfer and semi-supervised learning 3

with respect to model parameters (Fichtner et al., 2006). These gradients are
also called sensitivity kernels (Liu and Tromp, 2006; Peter et al., 2011; Tromp
et al., 2008, 2005; Zhu et al., 2009; Plessix, 2006).

– data-driven seismic inversion based on deep learning techniques, that uses the
supervised learning method to reconstruct the velocity model directly from
recorded seismic data via deep convolutional neural networks (CNN) (Adler
et al., 2021; Yang and Ma, 2019; Zheng et al., 2019; Li et al., 2020). Apart
from those end-to-end deep inversion models, deep learning can also be used
to help or improve a physical inversion, we will term those approaches hybrid.
Several works for instance considered the automatic differentiation power of
deep learning to help computing the adjoint operator (Cao and Liao, 2015;
Richardson, 2018; Zhu et al., 2021; Baydin et al., 2018). Other approaches
used deep neural networks for extracting dispersion curves in the frequency
domain (Dai et al., 2021) to get information on the different seismic modes
(surface wave modes, guided modes, etc.), or directly in the time domain for
arrival time picking (Wang et al., 2019; Zhu and Beroza, 2018).

Although appealing, the deep end-to-end inversion techniques require a huge
amount of labeled data, which either costs a lot of time and money, or massively
relies on simulations. On the contrary, the hybrid approaches require less com-
plex models and smaller datasets, while keeping relying on well grounded physical
models. Among them, automatic arrival time picking is one of the solutions that
require the fewest data labels, as shown in Table 1. It consists in detecting the
first arrival time of body or surface waves (Rayleigh waves) and thus helps recon-
struct the P and S seismic velocity model thanks to the inversion of the P and S
wave phases arrival times picked in the time series (seismograms). The P velocity
phases are first arrival times that are picked and the Rayleigh waves are slower
than the P-waves but are more energetic with high amplitudes and can also be
detected to give information on the S velocity model close to the (free-) surface.
Namely, these times allow us to access to the time windows and thus compute
the gradient of the cost function by using adjoint-based inversion techniques for
FWI or travel-time inversion methods (tomography) based on ray tracing method
approaches (Lecomte et al., 2015; Podvin and Lecomte, 1991; Qian et al., 2007;
Fomel et al., 2009; Huang et al., 2019; Billette and Lambare, 1998).

However, all the components (both vertical and horizontal) of the recorded sig-
nals are generally available in teleseismic and geophysical exploration setup config-
uration contexts and allow to detect first P and S travel times as well as different
converted waves and even Rayleigh waves. But, as it is often the case in many near-
surface geophysics surveys (like in our present seismic experiment for instance),
only the vertical component is available and the P first arrivals can be essentially
and accurately picked while the first S-wave arrival times and Rayleigh train-waves
can not be accurately picked and can rather only be partially and qualitatively
detected. Generally, in the near-surface community, only the P-waves are picked
manually or automatically, while the S and Rayleigh (dispersive)-train waves are
not picked in the time domain due to too many converted waves generated by
the heterogenous medium under study and they are thus rather studied in the
frequency domain through dispersion analysis. However, these qualitative arrival
times can sometimes provide an estimate of the time windows giving information at
far offset on the dispersive train-waves corresponding to surface (Rayleigh) waves
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that could be inverted in the frequency domain and provide estimates of Rayleigh
and S-wave speeds at depth. Here in this study we will thus show how the P-waves
arrival times can be very well detected for only one vertical component using deep
learning techniques when only one component is available while dispersive wave-
trains can only be detected qualitatively and for receivers far away enough from
the source. We also show here, as a matter of preliminary information, what our
deep learning approach can provide (even partially or inaccurately) in terms of
surface (dispersive) wave detection, even if deeper investigations should be done
in the future to process them better (in the time or frequency domain).

Method Data sample

Arrival time picking 1 seismogram
Extraction of dispersion curves r seismograms
End-to-end inversion s× r seismograms

Table 1. Illustration of required seismic data for different deep learning ap-
proaches. A seismic experiment with s sources and r receivers makes a single
data sample for an end-to-end inversion, but r × s samples for time picking.

Note that arrival time picking is not a novel technique in seismic inversion.
Manual time picking has been used a lot in the past decades, as well as automatic
time picking methods such as AR-picker (Akazawa, 2004). But none of them were
fully satisfactory, manual techniques being too much expensive in terms of time
spent in human supervision, while automatic techniques suffered from a limited
accuracy. Data-driven techniques have successfully solved those drawbacks in some
specific seismic configurations, especially with the use of deep neural networks that
led to a significant improvement in terms of accuracy. State-of-the-art techniques
are PickNet (Wang et al., 2019) and PhaseNet (Zhu and Beroza, 2018). PickNet
is constructed from VGG-16 (Simonyan and Zisserman, 2014), a very deep CNN
for large-scale image recognition. PhaseNet on the other hand is based on U-Net
(Ronneberger et al., 2015), that was introduced for biomedical image segmentation
and particularly, has shown its efficiencies for segmentation of neuronal structures
in electron microscopic stacks. The numerical experiments performed in Mousavi
et al. (2020) have shown that PhaseNet has a better score and standard deviation of
error than PickNet. PhaseNet has been designed for three component (one vertical
and two horizontal components) teleseismic data and we want to use and improve
it for our near surface application (active seismic) even when only the vertical
component is available. In this paper, we thus focus on an automatic arrival time
picking method based on PhaseNet and we improve this method as well as discuss
different strategies in transfer learning complemented by support-vector-machine-
based semi-supervised techniques for pseudo-labeling.

The paper is organized as follows. In Section 2, we first describe PhaseNet,
including its architecture and its use for passive seismic data. Then, in Sections 3
and 4, we describe our dataset and the transfer and semi-supervised methodology
we use to adapt PhaseNet to this context. Experimental results and discussion are
then provided in Section 5, while Section 6 concludes this paper.



Near-surface seismic arrival time picking with transfer and semi-supervised learning 5

2 PhaseNet

PhaseNet (Zhu and Beroza, 2018) is built on a U-Net, a deep CNN strategy that
was previously developed for biomedical image segmentation in 2015 (Ronneberger
et al., 2015). It consists of two connected symmetrical branches containing down-
sampling and upsampling layers (Fig. 2). Each layer is made of a convolution
followed by ReLU activation function. The downsampling branch is similar to a
classification CNN. Its role is to extract interesting features, it reduces the spatial
size while expands the number of channels or features. Conversely, the upsampling
branch uses transpose convolution to reduce the number of features and expands
the spatial dimension, in order to obtain a segmentation map with same size as
the input image. To ease this upsampling process, U-Nets contain skip connec-
tions that link each corresponding layers of the two branches. Those connections
are concatenative: some channels of the downsampling layer are directly passed
to the corresponding upsampling layer. This can be seen as a way to keep high-
frequency coefficients, which help reconstructing the segmentation map with the
same resolution as the input image, in a similar manner as the discrete wavelet
transform (used in data compression techniques). The inputs are three-component
seismograms while the outputs are the predicted probability distributions of ob-
serving a P-wave, S-wave and noise/background.

Fig. 2. PhaseNet architecture, taken from Zhu and Beroza (2018).

Note here that the problem has been changed from a detection task to a seg-
mentation task. This means that instead of directly detecting the arrival times
of the P and S waves, PhaseNet aims to predict probabilities of such events to
occur at each time. A pre-processing is thus needed to create those labels in the
training data from the time stamps, which is done simply by generating Gaussians
centered at the arrival time and with a fixed standard deviation, chosen to be 10%
of the total length of the signal. Conversely, the network output needs to be post-
processed, in order to detect arrival times from the segmentation maps (Fig. 3).
This is achieved with a simple peak detection algorithm, where several parameters
can be used to impose a minimum peak height or a minimum delay between two
successive peaks (Duarte and Watanabe, 2021).
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Fig. 3. Top: a seismogram from our real data. Bottom: input segmentation map
or probability distribution of P-wave and S-wave provided by analysts (continuous
lines) and output segmentation map predicted by pre-trained model in PhaseNet.
The vertical lines are the detected peaks from the segmentation maps.

3 Data

We describe here a typical near-surface acquisition performed by the real exper-
imental setting done by members of the METIS laboratory at Paris-Sorbonne
(Paris, France) to record and detect such seismic wave phases for the character-
ization of near-surface layers (first 40 meters). In this experiment seismic data
were collected in a dry land area located in the Vaucluse region (south of France),
and have been originally processed with classical picking techniques (Dangeard,
2019) inspired by the methodology of Bauer et al. (2003); Baumann-Wilke et al.
(2012); Bauer et al. (2010). This is a test case before applying the data processing
techniques to more complex media and monitoring water-saturated media, etc.
as in Dangeard et al. (2018, 2021). For this purpose, a seismic survey has been
deployed along a studied profile of around 120 m length (Carriere et al., 2016), on
which the sources and geophones (receivers) are lined up as described in Fig. 4.
A 96-channel seismic recorder with 14 Hz vertical component geophones was used
with a 1 m spacing. The source is generated by a 1.25 kg hammer hitting verti-
cally a metal plate. Sources are located between two geophones, and two sources
are located before and after the geophone line (the first source is located at 10 m
before the first geophone and the last source at 10 m from the last geophone). At
each receiver position, seismograms are repeatedly recorded for a source triggered
several times at the same location and are stacked in the time-domain to increase
signal-to-noise ratio. The sampling rate is 0.5 ms for a 2 s total recording time and
a pre-triggering delay of -0.02 s (i.e the time shift between the recording starting
time and the actual beginning of the seismic signal) to include the full surface-wave
trains and background noise. Once the source takes place, each receiver records the
wave signals into a seismogram for the vertical component which is very sensitive
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to the P-waves and also to the Rayleigh-waves. Besides, only the time windows
involving the dispersive Rayleigh train waves (which are much slower than the first
P-wave arrival times) can be recovered at receivers located far from the sources
(around more than 40 receivers away from the sources in this experiment). These
time pickings can only give a qualitative estimate of the time windows of those dis-
persive waves, help extracting them from some seismic traces and possibly invert
their related dispersion curves (essentially the fundamental mode as commonly
done in the community) in the frequency domain. However, here, it is very in-
teresting to see how powerful our automatic picking method can be to retrieve
the signals even with only one vertical component, and more specifically the first
P-wave travel times. In this experiment, we are considering 96 sources and 96 re-
ceivers, so the data consist of 9,216 (= 96× 96) seismograms recorded by a single
(vertical) component.

Fig. 4. Measuring experiment method.

4 Methodology

We present here how we adapted PhaseNet to process our data presented above.
This data-set of a near-surface active seismic experiment is indeed very different
from the data used to train PhaseNet in Zhu and Beroza (2018). The characteristics
of both datasets are shown in Table 2, showing in particular that our samples are
shorter and contain only the z component.

NCEDC Our real data

Type Passive imaging Active imaging
Number of samples 700 000 9216
Labels Yes No
Input channels 3 (x, y, z) 1 (z)
Input length 9000 time samples 4000 time samples
Sampling rate 100 Hz 2000 Hz

Table 2. Differences between the dataset in PhaseNet (NCEDC) and our real
dataset

This section explains how we managed to adapt the PhaseNet model to our real
dataset, by means of synthetic data generation, transfer learning, and a custom
semi-supervised learning strategy.
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4.1 Generating simulated datasets

SPECFEM2D (Komatitsch et al., 2012) is a computational software for 2D and
2.5D (i.e. axisymmetric) simulations of acoustic, elastic, viscoelastic, and poroe-
lastic seismic wave propagation in heterogeneous media as well as for data gradi-
ent computations used in FWI or adjoint tomography applications (Tromp et al.,
2008). SPECFEM2D is based on the spectral-element method (SEM) (Komatitsch,
1997; Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999; Peter et al.,
2011). It is written in Fortran2003 and performs a parallel programming based
upon the Message Passing Interface and also includes support for GPU graphics
card acceleration, that permits to remarkably speed up the simulation process.

We aim to simulate the seismograms with 2 channels (2 components, in x/horizontal
and z/vertical) that are similar enough in terms of complexity to our real data,
and we can thus create a training dataset for our training model. Some specific
model parameters can be adjusted in order to achieve a diverse dataset for our
database. For instance, we can simulate the waveforms and seismograms with a
range of natural states of the material depending on their densities, their absorb-
ing boundary elements, the number of layers and the thickness between them, the
seismic velocities VP and VS associated to each layer as well as the nature of each
layer (acoustic or elastic), etc.. Generally a VP /VS ratio between

√
3 and 2.5 is

taken depending of the level of partial fluid saturation or unconsolidated granular
compaction of the solid medium. We perform two series of synthetic simulations to
build a learning database: one with a flat topography and the other with a realistic
topography. We thus first realize simple simulations by introducing flat interfaces
and a flat free surface that defines the topography, typically as in Fig. 5.

Fig. 5. Simple interface model consisting of 5 layers and 6 flat interfaces with
a length of 120 m and a depth of 25 m. We have 101 receivers in total and 1
source (located at the free surface). The dominant source frequency is 80 Hz and
the source type is a Gaussian wavelet in time. The total number of time steps is
24000 and the time step of recording is 0.000025 s. The element size is around
1 m. The P and S seismic velocities vary from 900 up to 4000 m/s and from 500
up to 2300 m/s respectively.

The input parameters must respect a dispersion relation. This relation de-
scribes the effect of dispersion on the properties of waves in a medium. To avoid
too much dispersion in the simulated signals, a minimum number of grid points per
minimum wavelength must be defined: here around 5 discretization mesh points
per minimum wavelength are needed in SPECFEM2D to describe and sample ac-
curately the wavelengths of the seismic signal. The parameters must also respect
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the Courant–Friedrichs–Lewy numerical stability condition (in SPECFEM2D, usu-
ally we take CCFL ≤ 0.68) while solving the elastodynamic partial differential
equations numerically. Absorbing PML boundary conditions optimized at graz-
ing incidence (Martin et al., 2008) are introduced to attenuate spurious reflected
waves that could come back into the inner computational domain from the outer
boundaries. This allows to mimic a semi-infinite medium.

Now by adding a topography to the simulation, we can increase the complex-
ity of the basement model. Based on the arrival times obtained by hand-picking
methods, we will thus be able in a near future to solve the seismic inversion prob-
lem that involves the forward and adjoint problems solved for instance through
ray tracing methods (Lecomte et al., 2015; Podvin and Lecomte, 1991; Qian et al.,
2007; Fomel et al., 2009; Huang et al., 2019; Billette and Lambare, 1998). In order
to build the synthetic database we build a complex velocity model that mimicks
the typical kinds of models encountered with seismic velocity variations increasing
with depth from a few hundred meters per second close to the topography up
to 3900 m/s at 30 m depth. The variations in depth are taken into account by
introducing 28 layers and 29 interfaces which are enough in our 30 m deep case. In
this case, Fig. 6 shows the model with the real topography of the field experiment
with the 1 m spacing between geophones of Fig. 4.

Fig. 6. Interface model consisting of 28 layers and 29 interfaces with a length of
126 m and a depth of 23.5 to 31 m. We have 96 receivers in total and 1 source
located at the free surface. The dominant source frequency is 80 Hz and the source
type is Gaussian. The total number of time steps is 60000 and the time step of
recording is 0.0000125 s. The element size is around 1 m. The P and S seismic
velocities are from 640 up to 3900 m/s and from 370 up to 2200 m/s respectively.

4.2 Data augmentation

To increase the size of our dataset, we apply three different transforms to our
simulated database: time shifting, waveform sign reversal and noise. Time shifting
is a classical data augmentation method, and from a sample of the training set,
we create for instance 2 additional time-shifted versions with random translation
parameters, so that a version will contain a S and P-wave with a probability of
0.95, and not with a probability of 0.05. In addition to time shifting method, we
duplicate the samples by reversing the waveform sign through a multiplication of
the signals by −1. We then add white Gaussian noise (AWGN) to all the samples
with signal-to-noise ratio (SNR) randomly chosen between 15 and 30 dB. Recall
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that, if we denote by S and N the signal and the noise, respectively, the SNR is
defined as:

SNR(S,N) = 10 log

(
∥S∥22
∥N∥22

)
(1)

An illustration of the data augmentation is given in Fig. 7, which shows a simulated
seismogram and its augmented versions.

Fig. 7. Top: a simulated seismogram. Bottom, from left to right: noisy sample,
noisy and reversed and shifted sample, pure noise (not containing P-wave nor S-
wave).

4.3 Transfer Learning

To maximize the performance of the network, we aim to use the features already
learnt by PhaseNet when trained on the huge Northern California Earthquake Data
Center Catalog (NCEDC 2014) (Zhu and Beroza, 2018). Yet, this dataset is quite
different from ours, in terms of scale, frequencies, experimental conditions, sensors,
etc.. We thus propose to use part of the original PhaseNet features while retraining
part of the network on our simulated data, a process referred to as transfer learning.
Such a methodology has already been used in Chai et al. (2020), where the pre-
trained PhaseNet is successfully fine-tuned with only 3,500 seismograms, which
represent 0.45% of the data used to train the original PhaseNet model.

To this end, we started by rewriting the code of PhaseNet from Tensorflow to
Keras. Tensorflow is a Python-based open-source library that particularly show-
cases its efficiency when working with large datasets requiring an excellent func-
tionality and a high performance. Keras on the other hand is a high-level neural
network library that runs on top of Tensorflow. Keras is more user-friendly and
more convenient to implement transfer learning strategies, since the user can easily
initialize and fine-tune each layer separately.



Near-surface seismic arrival time picking with transfer and semi-supervised learning 11

Let us remark that contrary to classification networks, whose final layers can
be easily fine-tuned, transfer learning with U-Nets is more challenging. The main
reason is that the corresponding layers from the down-sampling and up-sampling
stage need to be consistent, thus it is not possible to only fine-tune the last layers.
We investigated different transfer learning strategies that could work well given
this setting, by considering different settings for both the initialization and the fine-
tuning. For each layer, we thus decide i. whether its weights should be initialized
randomly or with the pre-trained weights from PhaseNet, and ii. if we allow those
weights to change during the training or if we freeze them. The model trained
from scratch (scenario 1 in Table 3) will be compared to different transfer learning
settings. For example, in scenario 2, we load all weights from the pre-trained model
into our new model and fine-tune all layers. In scenario 3, we do the same thing
but the weights of the two deepest layers are frozen. Namely, the weights in frozen
layers are not updated during the training. In the next setting, we load weights only
from downsampling and upsampling layers (i.e. the weights of input and output
layers are randomly initialized) and freeze weights of the two deepest layers. These
three strategies were those that provided the best results. Other strategies were
also performed as those depicted in cases 5 and 6.

Table 3. Different transfer learning settings. Two criteria are defined for each
case: i. weight initialization, that is either random (yellow) or pre-trained (pink),
ii. if the weights are initialized from a pre-trained model, then they are either
fine-tuned (green) or frozen (blue).

4.4 Semi-supervised learning for real near-surface seismograms

In near-surface active imaging, the seismograms are measured by an array of sen-
sors, so that each experiment generates thousands of seismograms. Manually pick-
ing the entire dataset would require a huge effort. Instead, we propose here a
semi-supervised strategy, where the CNN time picking previously described can
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be applied with only a few known labels. The main idea is to exploit the strong cor-
relation between the seismograms from close receivers, through robust regression
and outlier detection.

The first step is to label for a small dataset, that can be manually done by
hand picking, combining with the predictions from the model trained on the simu-
lated dataset with topography (especially for S-wave picking, that could be hardly
achieved only with hand picking method). For instance, this labeling process can
be performed with 2 leftmost sources and 2 rightmost sources, that are enough
to scan all the lateral heterogeneities inside the whole physical domain between
the center of the domain and its endings. Subsequently, we train a model on this
dataset using transfer learning with the pretrained model in PhaseNet. In the next
step, we perform a pseudo-labeling process, that aims at building up iteratively
pseudo-labels in order to retrain the model on a dataset combining the real- and
pseudo-labels. In each iteration, we use the model trained on the previous labeled
dataset to generate pseudo-labels for an unlabeled dataset of equal size. Then
we make an effort to improve the quality of pseudo-labels using robust regression
methods. Finally, the size of labeled dataset is doubled until we obtain all labels
for the entire real dataset (Algorithm 1).

Algorithm 1 Semi-supervised algorithm applied to our real data, where N = 96
and n = 2.
Let (Si)i=1..N be N unlabeled sets of seismograms.

For j = 1..⌊N
2
⌋, denote: Dj =

(⋃
l=1..j Sl

)
∪
(⋃

r=N−j+1..N Sr

)
be the set of j-leftmost and

j-rightmost sources. We assume here that Dj =
⋃

i=1..N Si if j > ⌊N
2
⌋.

Step 1. Given a natural number n≪ N , label for small dataset Dn.
Step 2. Train model M1 on Dn using data augmentation and transfer learning.
Step 3. Build up pseudo-labels and retrain model:

k ← 1
while k ≤ log2(⌈N2 ⌉) do

Generate pseudo-labels for D
min(2k+1,⌈N

2
⌉) \Dn using model Mk

Correct these pseudo-labels using robust regression methods.
Train model Mk+1 on D

min(2k+1,⌈N
2
⌉) using data augmentation and transfer learning

with pretrained model Mk

k ← k + 1
end while

Step 4. Generate labels for
(⋃

i=1..N Si

)
\Dn using model Mk.

In our semi-supervised procedure, enhancing the quality of pseudo-labels is
crucial to achieve a model with accurate predictions. For this, we successively use
parametric and non-parametric robust regression techniques, to first get rid of the
main outliers, and correct them with the less possible assumptions thanks to the
non-parametric formulation. Physically, the larger the distance between the source
and the receiver, the larger the arrival times, which also helps to individualize the
wave arrivals (P waves and more particularly the S and Rayleigh waves). For each
source, let us consider a set of seismograms recorded by all the receivers. As we
can see in Fig. 8, some points (represented by red dots) are not coherent with the
main trend of all these arrivals and we aim to detect them and correct them.
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Fig. 8. Outlier detection of P-wave pseudo-labels (time arrivals normalized by
the 0.5 ms sampling time step) for the leftmost located source (i.e. source 1) using
Huber logarithmic regression, where ϵ = 1.55 is a threshold controlling the number
of samples that should be classified as outliers.

Robust regression methods can be chosen to make such classification. They
provide an alternative to least squares regression by requiring less restrictive as-
sumptions. These methods attempt to dampen outlier influences in the model to
provide a better fit to the majority of the data. For example, Huber regression
(Huber, 1964) uses a particular loss function that penalizes the points having a
large residual. To detect the outliers of pseudo-labels, we employ logarithmic re-
gression model for the first P-wave arrival time (and linear regression model for
the S-wave).

Although we observed that the data almost take the shape of a line (or a curve),
we have no reason to assume that the linear regression model (or logarithmic
regression model) is the best fit to the data. But at least, robust regression methods
are helping us detect the anomalies that are unusually far from other observations.
Next, we apply SVR to the data with standard observations. The SVR is an
application of support vector machine (SVM) in regression and was first developed
in Drucker et al. (1997). While many regression algorithms attempt to minimize
the l2-norm errors, that aims at reducing the number of features used in the
final model, SVR tries to minimize the l2-norm of the coefficient vector (not the
squared error) within a constraint on the error term. This constraint is handled
with a boundary line based on a maximum error and support vectors to find an
appropriate line or hyperplane (in higher dimensions) to fit the data.

5 Results and Discussion

In this section, we will discuss the performance of the network (with and without
using transfer learning) on two datasets. The first data set is the one simulated
without adding realistic topography, that is divided into a training-validation set
and a test set with 3,890 (88%) and 480 (12%) samples respectively (after imple-
menting data augmentation). The second one is the dataset simulated by adding
realistic topography that is divided into a training-validation set and test set with
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2,880 (90%) and 288 (10%) samples respectively (also after implementing data
augmentation). Then we will apply our semi-supervised framework to the real
dataset.

Let us consider the model trained on the synthetic data without realistic to-
pography. Fig. 9 displays the training loss for the 6 different transfer learning
scenarios described in Table 3. It clearly shows that all transfer learning strate-
gies (corresponding to cases 2 to 6) converge faster than the training from scratch
(case 1). The best curve is the one of case 3 while case 2 seems to converge to
a bad local minimum. Fig. 10 showcases the training and validation loss in these
different cases. We don’t nearly have the problem of over-fitting or under-fitting
in cases 1, 2 and 3 while the three remaining cases may run into the problem
of over-fitting in which the model memorizes the training samples and does not
generalize well to samples belonging to the test set. To avoid this phenomena, we
can, for instance, employ some regularization parameters in order to simplify the
complexity of the model. Table 4 shows the scoring metrics in different transfer
learning strategies. We can interpret that the score of case 3 is the best among
transfer learning strategies. Perhaps, the hidden features of deepest layers the neu-
ral network has learnt from the original data are more useful for our new data.
By freezing these two deepest layers, the network just needs to learn features of
surface layers to adapt to the new data. Overall, the picking for P-phase is not as
successful as for S-phase. This may come from the fact that P-wave amplitudes
are much weaker than S-wave amplitudes in our simulations. Consequently, the
network may struggle to learn to detect the first P-wave arrivals times.

Fig. 9. Comparison of training loss for different transfer learning strategies with-
out adding realistic topography to the simulated dataset.

Now, by training and testing on the synthetic data with realistic topography, we
can see the impressive scores (greater than 0.954) for both picking P and S phases
in Table 5.
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Fig. 10. Training and validation loss for different transfer learning strategies
without adding realistic topography to the simulated dataset.

Phase Precision Recall F1-score

Case 1 P 0.694 0.612 0.650
S 0.965 0.98 0.973

Case 2 P 0.595 0.535 0.564
S 0.983 0.987 0.985

Case 3 P 0.636 0.548 0.589
S 0.983 0.999 0.991

Case 4 P 0.562 0.518 0.539
S 0.967 0.963 0.965

Case 5 P 0.540 0.414 0.469
S 0.980 0.985 0.982

Case 6 P 0.630 0.547 0.586
S 0.998 0.980 0.989

Table 4. Scoring metrics for different transfer learning strategies without adding
realistic topography to the simulated dataset.

Phase Precision Recall F1-score

Case 3 P 0.972 0.968 0.970
S 0.954 0.954 0.954

Table 5. Scoring metrics by adding realistic topography to the simulated dataset.

Next, by using the best model trained on simulated data and the best con-
figuration of transfer learning in our case, we attempt to label for our real data
with the methodology mentioned in 4.4. Fig. 11 shows an improvement of pseudo-
labels while employing our semi-supervised algorithm (Algorithm 1) at iteration
5 where we observe ”smooth” predictions (less outliers) comparing to the predic-
tions at iteration 1 with many outliers. Once all real data are labeled, Fig. 12
shows the seismograms and their arrival times labeled for sources 1, 48 and 96.
In general, P-wave detection is much easier than S-wave detection because the
first signal of P-wave is more energetic and clearly distinguished from the noise.
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Furthermore, picking the S-wave is harder when the source and the receiver are
too close to each other (this corresponds to near wave field context). The S-wave
is thus difficult to detect because it emerges from the noise and is too close to the
P-wave. However, the S-wave detection is easier when the source is sufficiently far
away from the receiver (far wave field context) but this still remains qualitative
due to the different wave conversions and the dispersive nature of the stratified
and heterogeneous medium. In this case, the signal of the S-wave (and the highly
energetic Rayleigh/surface wave stuck just behind it) can be distinguished from
the noise and the first P-wave signal. High frequency surface waves (i.e. Rayleigh
waves) are also picked (see Fig. 12) but only at medium or large offset (beyond
more than 48 receivers from the sources) because in the near-field they can not
be really well individualized. The first arrivals related to the P-waves give more
accurate information on medium or larger depths but not on very shallow depths
due to the near-field effect close to the sources. Rayleigh labels can be detected
only qualitatively (not very accurately) at medium/large offset (clearly visible for
sources 1 and 96 in Fig. 12). Those labels have larger values than the ones of P-
wave and correspond to smaller velocities and weathered shallow layers. However,
all these S and surface (Rayleigh) wave labels can only be estimated qualitatively.
Therefore, in this study, we will thus only be able to consider the P first arrivals
and estimate them quantitatively.

Fig. 11. Correcting P-wave pseudo-labels (time arrivals normalized by the 0.5
ms sampling time step) at iteration 1 (left) and at iteration 5 (right) using SVR,
where the maximum error ϵ = 0.1 and the regularization parameter C = 200.

In Fig. 13, we represent all the 9126 detected travel time labels in a shot-offset
(i.e. source versus receiver) diagram. This travel-time labels distribution for each
source-receiver position pair allows to check lateral coherency of the data. In the
diagonal of the diagrams the labels correspond to the zero-offset first arrival times.
Below the diagonal, the labels are mainly influenced by the upstream geological
structures and those above the diagonal are influenced by the downstream struc-
tures. With such representation we can have preliminary and qualitative estimates
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Fig. 12. Seismograms for sources 1 (picked by hand), 48 (labeled using semi-
supervised learning) and 96 (picked by hand). The labels of first arrival times
are shown (red) and are detected for all seismograms. This is not the case for
the surface (Rayleigh) train-waves (green) which are detected very far from the
sources because only one component is recorded at all receivers.
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of subsurface apparent P-velocities and of course the lateral variations along the
seismic line. The apparent P velocities increase with depth. When the source-
receiver distance increases, the detected labels are more and more sensitive to the
P-velocities of the heterogeneities at depth. More generally, the longer the offset
the greater is the depth of probing.

We can also see in Fig. 14 that at first sight the first arrival times of the direct
(i-th source/j-th receiver pair) and reverse shots (j-th source/i-th receiver pair)
can be compared and give some cross-validation information about the influence
of significant lateral heterogeneities, time arrivals picking consistency and also
another metric of label error estimates. Despite a significant noise level at far
offsets, P-waves can be easily identified.

Fig. 13. Source-offset diagram showing the P-wave (first time arrivals) picked
labels. For each source-receiver position pair this travel-time labels distribution
allows to check lateral coherency of the data. With such representation we can
have a preliminary estimate of subsurface apparent P-velocities and of course the
lateral variations along the seismic line. In the diagonal the labels correspond
to the zero-offset first arrival times. Below the diagonal, the labels are mainly
influenced by the upstream geological structures and those above the diagonal
are influenced by the downstream structures. When the source-receiver distance
increases, the detected labels are more and more sensitive to the P-velocities of
the heterogeneities at depth. They also indicate an increase of P-velocities with
depth. More generally, the longer the offset the greater is the depth of probing.

However, the picking uncertainties are estimated in a very constraining way
because of the strong variations in data quality observed along the seismic line.
As we can see in the source-receiver diagram, some values are not really consistent
physically and have poor quality. This can be due to the fact that the data have
not been recorded properly due to different instrument responses, poor coupling



Near-surface seismic arrival time picking with transfer and semi-supervised learning 19

between sources and geophones, tilt angles of geophones and sources, near-field
offset physical effects, changes in waveforms generated by lateral heterogeneities
or attenuation of the signal or sensitivity to ambient noise. The data have possibly
not been reproduced exactly because the source shape is not the same from a
location to another. Even with an automatic source generation, the reproducibility
can not been guaranteed (in terms of orientation, frequency content, amplitude,
etc.), and thus the first P-arrival waveforms neither. These label picking drawbacks
can also be due to similar problems for both the sources and geophones in terms
of their orientations and acquisition specifications. All these issues are not really
discussed in the literature. However, as in other experiments like those of Pasquet
et al. (2015a,b); Dangeard et al. (2018); Dangeard (2019), we have very similar
configurations of measurement, for a same survey equipment and a same analyst
operator on a same site.

These drawbacks can also be seen in Fig. 14 where we show the normalized
difference between labels of each symmetric source-receiver pairs (i, j) and (j, i). As
can be seen in Fig. 15, we can see clearly that the cumulated differences (”errors”)
between symmetric (i, j) and (j, i) source-receiver pairs can be considered as small
for the picked P-labels. Indeed, in general these differences for the P-labels (relative
errors lower than 6% corresponding to maximum variations of 2 to 3 ms time
delays) are small for almost 96% of the whole dataset and have almost the same
order of time-arrival magnitudes because these pairs are coherently seeing the
same medium between them. Those relative errors around 6% are close to around
the 5 upto 7% relative errors found for other setup configurations that are very
similar to those studied here (Pasquet et al., 2015a,b; Bergamo et al., 2016) or
those studied at laboratory scales (Bodet et al., 2010, 2014; Pasquet et al., 2016)
(for unconsolidated granular characterization with or without fluidization). But
this is not really the case for the Rayleigh train-wave labels for which only 60%
of the labels show relative errors (not shown here) lower than 8%. This can be
due to the fact that the surface waves are not well enough individualized at a far
enough distance from the sources. All these differences and strong errors are more
important close to the zero-offset source receiver pairs (i, i), at very far offsets
and also at some sources (source 44 for instance for the P-wave time arrivals) and
also at some receivers (75 to 79 and also 84). This can be associated to the signal
spectra that are not correlated to neighbouring receivers and also to bad contact
of sources and stations with the ground. But these inaccurate data still remain
very few and can thus be removed from the set of labels before performing any
inversion/imaging process without too much lack of accuracy.

In recent advanced works in near surface geophysics, this time picking process
is commonly applied only to the first P-wave time arrivals and is generally done
randomly many times (between 15 to 30 times) for each seismogram, a minimum
of 15 times being necessary (Dangeard et al., 2018; Dangeard, 2019; Dangeard
et al., 2021). A standard deviation (STD) is then estimated to have an idea of the
picking errors. Commonly, for seismic setup configurations close to our experiment
(in terms of geometry, spatial scale, source frequency content, etc.), first arrival
time variations between -0.5 to 0.5 ms or -0.8 ms to 0.8 ms (Dangeard, 2019;
Dangeard et al., 2021) are generally considered as insignificant and correspond
approximately to P-velocity error values between 6 and 10 m/s for the kind of
surveys configurations we are studying. These values are close to our values ranging
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around 2 ms mainly, which makes our method competitive in terms of accuracy
and speed of the time arrival labels when compared to the more classical methods.

Fig. 14. Source-offset diagrams showing the normalized differences between the
P-wave (first time arrivals) picked labels computed for (i, j) and (j, i) symmetric
source-receiver pairs. This metric allows to measure if the travel-time labels distri-
bution is able to check the lateral coherency of the data and if the symmetric pairs
of sources and receivers are able to see the same medium and its lateral variations
in a coherent way. The same objects should be seen by the seismic rays coming
from opposite ways (from source i to receiver j or source j to receiver i). In the
diagonal the labels correspond to the zero-offset first arrival times: we have i = j
there and both the source and the receiver are located at the same place. In dark
blue, the relative errors are very small (generally lower than 0.1). We can see that
for a few number of sources (like source 44), all the corresponding seismograms
are not very well picked and this is due to a bad quality in the data measurements
by itself. The same thing is observed at receivers 75 to 80 (receiver 77 mainly).
However, generally the picking of the P-labels are much better (errors generally
lower than 6% when compared to the Rayleigh-waves label errors not shown here).
Only 2% of the P-labels have errors between 8 and 20%.

In order to estimate the good ability of prediction by our method, we have
trained a model on the whole real dataset (with the labels obtained from semi-
supervised learning procedure) and have tested it on other datasets obtained by
filtering the real datasets via different strategies: 3 sets of 96 seismograms each
are built for sources 24, 48 and 72 through a 10-110 Hz band-pass filter (around
10Hz filtering cutoff frequencies being used in similar survey configurations), and
4 sets of 96 seismograms are built through a 300 Hz low-pass filter for sources 24
and 48, and through 100 Hz and 200 Hz low-pass filters for the source 72. For each
set, the labels of the first-arrivals (only for P-wave) have been picked manually
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Fig. 15. Cumulated relative errors of the differences of picked labels between (i, j)
and (j, i) source-receiver pairs for the P-wave. The relative errors of the picked P-
labels are smaller than 6% over almost 96% of the global dataset of seismograms.
As a matter of information, the cumulated relative errors are also provided for
the Rayleigh waves just to show that they are much higher than for the P-waves.
All these dispersive Rayleigh wave time pickings can not be accurate because the
surface waves can hardly become well individualized even at some reasonably far
distance from the sources and also many wave conversions are occurring due to
the heterogeneous nature of the medium.

and are compared to the labels predicted by the model. As can be seen in Fig. 16,
good predictions are obtained with errors between 1% and 10% in the case of low
frequency filters. The worst errors correspond to bad quality measurements at some
stations or at offsets close to the sources. Indeed, very close to the sources, picking
errors are almost systematically greater than those at medium offsets because the
near-field waveforms are generally not well defined: P, S and Rayleigh waves are all
mixed and have not the time to develop and be well individualized. For the far-field
(i.e. large enough offset distances), the errors can also contain a significant error
because a lot of heterogeneities are located in the ray-path of the seismic wave
travelling through all the heterogeneous medium at depth between the source and
the receiver.

6 Conclusion

Deep learning methods for seismic inversion problems are being improved rapidly.
An end-to-end deep learning is however unachievable because of the complexity
and the lack of labeled datasets. Automatic arrival time picking is one of the less
expensive methods in helping resolve the inversion problem. In spite of that, label-
ing of thousands of seismograms to train a deep neural network is still complicated
and labour intensive. We proposed an approach for automatic arrival time picking
with unlabeled data based on PhaseNet. By generating a dataset that is close to
our real data with SPECFEM2D, we tested many transfer learning strategies on
the simulated dataset and selected the best one to help the labeling of our real
data. The best strategy consisted in loading the pre-existing layers, freezing the 2
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Fig. 16. P-wave label prediction relative errors for different sources at all receivers
and for different frequency filters: 10-110 Hz band-pass filter (left), for 100, 200 or
300 Hz low-pass filters (right). The predicted errors are low and acceptable except
close the sources due to near-wave field issues.

deepest layers and fine-tuning all the others. The models trained on the simulated
data showcased very high scores for the detection of the first P-wave arrival times
and finally helped label for thousands of seismograms of the real data by using
semi-supervised learning. Moreover, robust regression methods and SVM are em-
ployed in order to detect outliers in the pseudo-labeling and to enhance the quality
of pseudo-labels. This can demonstrate the efficiency of automatic time picking by
deep learning in helping to detect time arrivals and to prepare the time arrival
datasets to be inverted for FWI or tomography applications.

Finally, another advantage of our method is that the semi-supervised algorithm
permits to train the model by adding smaller information to the training dataset
through relatively small manually picked labels (4 sources and 96 seismograms
each) when compared to the more classical detection procedures. Even if recent
STD-based detection procedures (Dangeard et al., 2018) can be efficient, they will
need random manual picking over 9126 seismograms many times (15 up to 30
times manual pickings for around 6 to 10 sources taken randomly) which is still
very time consuming (more than 50 times lower than our method in the best case).
Furthermore, all our machine learning database can be enriched little by little
through new surveys with new data and by just adding a few more seismograms
for a few selected sources. The network will learn more and more and will increase
its accuracy in the medium term.

As another perspective, future work should still be done to improve for in-
stance time arrival detections related to the different converted waves or surface
(Rayleigh) waves detection, which is not trivial to perform due the heterogeneous,
stratified and dispersive nature of the media often studied in near-surface geo-
physics context. Indeed, only qualitative estimates of time windows involving suf-
ficiently high energetic surface waves has been detected here and this can be ob-
tained only far enough from the sources.
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