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Abstract

In the future, artificially intelligent algorithms will make more and more decisions
on behalf of humans that involve humans’ social preferences. They can learn these
preferences through the repeated observation of human behavior in social encounters.
In such a context, do individuals adjust the selfishness or prosociality of their behavior
when it is common knowledge that their actions produce various externalities through
the training of an algorithm? In an online experiment, we let participants’ choices
in dictator games train an algorithm. Thereby, they create an externality on future
decision making of an intelligent system that affects future participants. We show that
individuals who are aware of the consequences of their training on the payoffs of a future
generation behave more prosocially, but only when they bear the risk of being harmed
themselves by future algorithmic choices. In that case, the externality of artificially

intelligence training increases the share of egalitarian decisions in the present.
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1 Introduction

Technological progress moves artificial intelligence (AI) from performing narrow, well-defined
tasks in highly controlled environments to becoming an actor in the real world that actively
decides on behalf of humans. Computer agents will increasingly need to make decisions
with a social component that also affect others. Increasing Al autonomy induces a host
of ethical questions related to fair machines and teaching robots to distinguish right from
wrong. In extreme cases, Al systems may experience moral and social dilemma situations
with life-or-death consequences, such as in the context of self-driving cars (Bonnefon et al.,
2016; Shariff et al., 2017; Awad et al., 2018) or kidney exchanges (Dickerson and Sand-
holm, 2015). But in everyday life as well, the scaling of algorithms will lead to a higher
frequency of decisions that have a moral or a fairness component and affect a large number

1 This is the case especially in situations characterized by equivocality, that is,

of people.
potentially conflicting preferences or social norms. For example, bots have to detect inap-
propriate contents on social media, which depends on what humans define as being morally
appropriate or inappropriate. Al is and will be increasingly used to solve public and private
management issues, such as allocating risk between parties (for example, algorithms that
propose insurance plans), deciding how to prioritize access to limited resources (such as
environmental goods, schools, or medical services), how to best administer firms’ benefits
and invest in social and economic activities, how to appraise employees’ performance and
select whom to promote and whom to fire, etc. For such decisions, Al needs to incorporate
social preferences as a parameter in its representation of the world, notably to determine

the acceptability of a policy in domains like environment, transportation, labor, or health.

If an Al shall make decisions on behalf of an individual or a society, it needs to learn
the preferences of that individual or society. Since a multitude of social factors, such as
altruism, selfishness and reciprocity have been shown to mediate people’s play in strategic

interactions, this comprises algorithms learning and modeling social preferences.

If social preferences should be incorporated into intelligent algorithms, they can either
be directly prescribed at the stage of the algorithm design or learnt by the AI from actual
behavioral data. Training algorithms with human decisions has the advantage that it is not
necessary to decide in a charged public debate which moral values need to be handed over
to the algorithm in its design and for the benefit of which stakeholders moral trade-offs are
resolved. On the negative side, however, this approach runs the risk of imitating undesirable
human behavior, causing the Al to exhibit biases or inefficiencies in some of its predictions.

Many Al systems learn from human choices of today to augment decision making of to-

!Today, computers already approve credit card transactions (Bhattacharyya et al., 2011; Adewumi and
Akinyelu, 2017); with predictive policing, Al forecasts where crimes are likely to occur (Ensign et al., 2018);
algorithms advise decision making in courts by predicting who will re-offend (Brennan et al., 2009; Flores
et al., 2016), and recommend bail decisions (Kleinberg et al., 2018; Cowgill, 2018). In these examples, the
AT does not need to know the distribution of social preferences.



morrow. Biased predictions could then result from contamination of the training data, for
example, through feedback loops or discriminatory choices that then substantially affect
decision making of the algorithm (Rahwan et al., 2019; Cowgill and Tucker, Forthcoming).?
As long as our society exhibits biases or unethical behavior, these biases will be reflected
in the data that are collected and the choices self-learning algorithms make for us and for
others. Identifying and counteracting those biases, e.g., via affirmative actions regulating
the algorithm’s outcome, is a multilayered challenge and often hard to resolve. In addi-
tion, many factors can influence the decision itself to share data for a public good such as
machine training (Rockenbach et al., 2020; Hillebrand and Hornuf, 2021), and people are
likely to adjust their behavior when interacting with machines or when they know that their
decisions will be used to train an algorithm (e.g., Cao et al., 2020). Hence, focusing on the
transmission of social preferences through the training of an AI, our first research question
is: How does human behavior that expresses selfish vs. prosocial preferences react to the

use of today’s decisions for the training of an Al that will make decisions in the future?

This naturally also raises the question of attribution of responsibility. In his perspective
on Al ethics, Coeckelbergh (2020) describes obstacles when attributing moral responsibility
in human-machine interaction. Who is responsible for errors of biased algorithms or for
immoral predictions? Al lacks consciousness, moral reasoning, free will, or emotions. Thus,
it cannot be responsible for its decisions. Nevertheless, taking an anthropocentric ethical
position and attributing responsibility to the humans designing or training the Al is difficult,
as well. In his Nicomachean Ethics, Aristotle defines two conditions that must be satisfied for
moral responsibility. First, each action must have its origin in the agent. This implies that
having the possibility to decide means responsibility for one’s choices. Second, the agent
must be aware of her actions and their consequences. Especially the latter requirement
is difficult to satisfy in the case of humans training an Al. Human agents might not be
fully conscious of the externalities generated through the seemingly neutral technology.
Scalability or self-reinforcement through feedback loops aggravate this concern. Hence, our
second research question is: Is it possible to strengthen individuals’ sense of responsibility
when training algorithms by informing them about the direct impact of their actions on

training and by emphasizing the consequences for the well-being of future generations?

This study contributes to the recent literature on AI and ethics by highlighting the train-

ing aspect of Al and its ability to operate across individuals and generations. Compared

2For example, algorithms allocating police officers to parts of the city based on crime rate data may lead
to feedback loops. With the police relying on the algorithm without patrolling also in other areas, they
induce the system to allocate officers in the future to the same neighborhoods over and over again. In
predictive justice, a frequent critique is that using algorithms may reduce the feeling of responsibility of
judges who may be less willing to take the risk of deviating from the recommendation of the algorithm
based on other judges’ decisions. Conformity might then lead to decision errors. Another example was
Microsoft’s one-day experiment with the Twitter chatbot Tay launched in 2016, which learned from other
tweets and was influenced by politically incorrect and racist messages. Through this learning process it
began to post content with misogyny, racism, and anti-semitic ideas, finally leading to its withdrawal (see
https://www.theguardian.com/world /2016 /mar /29 /microsoft-tay-tweets-antisemitic-racism).


https://www.theguardian.com/world/2016/mar/29/microsoft-tay-tweets-antisemitic-racism

to intergenerational learning, advice, or norm transmission between humans (Schotter and
Sopher, 2003, 2006, 2007), human-algorithm learning can be considered a particular envi-
ronment. First, social image concerns and social desirability vis-a-vis machines compared
to humans are reduced at the transmission stage. Individuals probably care less about
exhibiting selfish behavior when human presence is reduced (see examples in the survey
on image pressure of Bursztyn and Jensen (2017)). Second, early studies have identified a
tendency to individuation (a refocus on the self) when interacting with computers (Lea and
Spears, 1991; Conger et al., 1995); this tendency may be strengthened in the AI context.
With algorithms, reduced social image pressure and higher individuation may affect ethi-
cal behavior (for example, in Cohn et al. (2022) individuals cheat three times more when
they interact with a machine rather than a human, which results from a reduced sense of
human presence). At the same time, algorithmic decisions have higher potential impact on
the many people that simultaneously or subsequently interact with the algorithm. Social
learning or learning by observation between artificial and human agents can develop a whole
new dynamic. Algorithms can simultaneously take up and aggregate much more different
behaviors or biases than their human counterparts. Digital technology may influence social
transmission processes between generations by providing new and faster ways to mimic oth-
ers and find patterns in data. Al may even end up playing an active role in shaping cultural

evolutionary processes (Brinkmann et al., 2022).

Observational data, when they exist, do not allow us to vary exogenously the externalities
generated by the training of AI. Thus, we designed an online experiment to test whether
individuals behave more prosocially in an allocation game (i) when they know that their
decisions will be used to train an algorithm whose decisions impact the payoffs of a future
generation and their own future payoff, and (ii) when they bear themselves the risk of being
harmed by the algorithm through a change in their future relative status. As is required
by the European Union’s proposed Al regulation, participants were fully aware that their
behavior trained a machine learning algorithm.? They also knew that the algorithm was
sophisticated and did not simply play a mixed strategy. Rather, it aimed to predict their
preferences with the greatest possible accuracy by exploiting features of the decision space

and randomization techniques. It then made an allocation decision on their behalf.

The Baseline condition comprised a set of 30 mini-dictator games inspired by Bruhin
et al. (2019).4 Participants were paired, and one pair member repeatedly chose between
two options that determined the payoff allocation in the pair. By manipulating the sum

of payoffs, payoff inequality, and whether the dictator was in an advantageous or disadvan-

3The European Union’s proposed Al regulation, released on April 21, 2021, contains the following paragraph
“Providers shall ensure that Al systems intended to interact with natural persons are designed and developed
in such a way that natural persons are informed that they are interacting with an AI system, unless this is
obvious from the circumstances and the context of use.” (Title IV, Article 52)

4This particular game captures the main characteristics of the decision making process we are looking for: it
is non strategic and it entails an externality on others’ well-being, making decision makers’ social preferences
potentially relevant.



tageous position with both options, we measured revealed social preferences (i.e., selfish-
ness, advantageous and disadvantageous inequity aversion, spite, efficiency concerns). After
participants made their 30 decisions, an intelligent (random forest) algorithm used these
decisions as training data to predict a hypothetical allocation choice of the dictator in a
315 period, with monetary consequences for the two pair members. Using dictator games
is simpler than using strategic games, as we did not need to account for the individuals’

beliefs on how partners were affected by the perspective of training an algorithm.

The treatments varied: (i) whether the algorithm made an allocation decision only for
the current pair of players or also for a future pair of participants and how this affected the
current pair’s payoff; and (ii) whether it was possible that the payoffs of the dictator and

receiver from the AI’s allocation choice were swapped through a switching of roles.

The aim of the first variation was to increase the size of the externality. The Externality
treatment had the same features as the Baseline, except that we informed participants that
the dictator’s choices generated training data also for another group who would participate in
the future. We thereby followed up on Aristotle’s epistemic condition for moral responsibility
and aimed at raising awareness for the consequences of training on the well-being of a future
generation. The Offspring treatment was similar to the Externality treatment, except that
we added a monetary interdependence between the current pair (the “parents”) and the
future pair (the “offspring”). Current generation players received an additional payoff at a
later date that depended on the future generation’s payoff. This interdependence of payoffs
was similar in previous intergenerational experiments (Schotter and Sopher, 2003, 2006,

2007) and can induce solidarity across generations.

The second variation aimed to test whether uncertainty on their future status when
the algorithmic decision will be implemented changes the fairness of the dictators’ present
decisions. Indeed, if there is a risk that the dictator who trains the Al will become a receiver
when the algorithm makes the future decision, dictators may train the algorithm to make
less selfish decisions to avoid being harmed themselves by the future decisions. This is in
the spirit of John Rawls’s thought experiment, putting participants in the so-called original
position when they create training data. Previous studies (e.g., Huang et al., 2019) showed
that placing decision makers into the original positions induces more utilitarian and socially
beneficial choices. The Switch treatment mimicked the Baseline except that the payoffs of
the dictator and the receiver, as determined by Al in period 31, could be switched with 50%
probability. Finally, in the Offspring Switch variation, we combined the intergenerational
dependence of payoffs and the uncertainty about the own position. With 50% probability,

the additional future payoffs of the current generation dictator and receiver were swapped.

Our results show that dictators did not consider the externality of generating training
data for AI when they were simply informed about the existence of an externality for a future
generation of players in the Externality treatment. The same behavior was observed in the

Offspring treatment, that is, when dictators could benefit from their offspring’s payoffs,



provided relative positions across generations were stable and certain.

Behavior changed dramatically when relative positions for the algorithmic prediction
became uncertain and subjects faced the risk of being harmed themselves by future algo-
rithmic choices through a change of role, to a degree that cannot be explained by expected
payoff maximization. In Offspring Switch, we found evidence for intergenerational responsi-
bility in terms of participants showing higher preferences for fairness when teaching the Al
They chose (i) the efficient option more frequently, even if this choice decreased their own
immediate payoff, (ii) the selfish option less frequently, even if their own payoff was lower
than the one of the receiver in both options, and (iii) the altruistic option more often if it
reduced inequity and was fairer compared to the alternative. One possible interpretation
is that future uncertainty forces individuals to take more distance with immediate selfish

interests and help them take perspective by envisioning the situation more broadly.

To test whether the null effect of informing about the externality of Al training on the
future persists under stated rather than revealed preferences, we ran a follow-up study in
which dictators directly stated the social preferences they want the algorithm to incorpo-
rate. We compared choices in the Baseline and the Externality treatment. We show that
introducing and informing about the externality yields a shift in stated preferences away
from selfishness towards altruism. This adds a new angle to the main experiment which
reported no changes in behavior nor in revealed social preferences between the Baseline and

the Externality treatment.

Overall, our findings draw attention to the risks of teaching Al systems that are derived
from legitimate concerns about algorithms imitating human behavior. Most humans are not
ideal models of ethical agents, although they might have been taught egalitarian principles.
In terms of policy implications, our experiment thus suggests a need for designing machines
as agents with explicit ethical guidelines, instead of aggregating the individual data of
human decision makers. This need is particularly vivid when machines operate in less

mobile societies in which social hierarchies are characterized by high inertia.

The remainder of this paper is organized as follows. The next section highlights our
contributions to the literature. Section 3 describes our experimental design. We formulate
behavioral predictions in section 4. Section 5 presents the experimental results. Section 6

offers concluding remarks.

2 Contributions to the Literature

Our findings primarily complement the booming literature on Al, ethics, and algorithmic
biases (see, for example, Anderson and Anderson (2007); Bostrom and Yudkowsky (2014);
Bonnefon et al. (2016); Awad et al. (2018); Lambrecht and Tucker (2019); Rahwan et al.
(2019); Awad et al. (2020)). This literature has started to explore the ethical principles



that should guide Al in the presence of moral dilemmas. It has highlighted the cultural and
individual diversity of moral preferences and the resulting complexity of combining these
preferences to define acceptable guidelines for ethical AI. We contribute to this literature
by considering a setting in which machines need to learn social preferences because the
decisions to be made have an impact on several humans and do not depend on the answer
to a true/false question. By focusing on general social preferences that play a role in many
settings, we try to inform more broadly about situations in which an Al needs to learn such

social preferences from repeated observation of human behavior.

Further, our study adds to the literature that has used laboratory experiments to investi-
gate human machine interactions. We refer to Chugunova and Sele (2020) for a comprehen-
sive overview. The experimental research thus far has concentrated on settings where human
subjects play against computers in strategic situations. Starting with Houser and Kurzban
(2002), several papers have aimed at muting social preferences by replacing human players
with computers in standard economic games, such as public goods or bargaining games (Fer-
raro et al., 2003; Yamakawa et al., 2016; Benndorf et al., 2020). In contrast to our design,
these studies either implemented predefined decision rules for the computer players or left
participants uninformed of their impact on machine behavior. Closer to our approach of
training that allows machines to learn from observed behavior are the studies in the context
of auctions. Van den Bos et al. (2008) and Ivanov et al. (2010) allowed computers to mimic
the bidding strategy of players to study the winner’s curse, and Teubner et al. (2015) used
this method to investigate how playing against a computer affects individuals’ bidding be-
havior and emotions. Hence, similar to our study, the players’ decisions determined machine
behavior that ultimately affected their payoff. Finally, Corgnet et al. (2019) showed that
social incentives are reduced when replacing human team members with robots. In general,
one novelty of our paper is to introduce the Al not as an opponent in a strategic situation
(in contrast also to Houy et al., 2020) but as a third-party observer that evaluates and learns

from others’ behavior and uses it for out-of-sample prediction and decision making.

Finally, operating through the data that underlies self-learning and intelligent algo-
rithms, our analysis broadly relates to studies on the intergenerational transmission of pref-
erences and economic outcomes (Bisin and Verdier, 2001; Sacerdote, 2002; Bjorklund et al.,
2006). As in Schotter and Sopher (2003, 2006, 2007) and Chaudhuri et al. (2006), we used
a sequence of nonoverlapping generations of individuals playing a stage game for a finite
number of periods. Differently from them, we introduced an algorithm and additionally,
we considered intergenerational income mobility as an additional factor influencing prefer-
ences and decision making (Bénabou and Ok, 2001; Alesina et al., 2018). By introducing
uncertainty on future status in some treatments, our study also relates to the experimental
literature on role uncertainty (e.g., Engelmann and Strobel, 2004; Iriberri and Rey-Biel,
2011) and on the impact of playing both roles in games (e.g., Gueth et al., 1982; Andreoni
and Miller, 2002; Charness and Rabin, 2002; Burks et al., 2003). Although some studies



showed that in such settings behavior is less selfish and more efficiency-oriented than when
roles are certain and fixed (Iriberri and Rey-Biel, 2011), others have found that trust and

reciprocity are reduced only in the absence of uncertainty (Burks et al., 2003).

3 Design and Procedures

In this section, we first present the design of the experiment and our treatments. Next, we

describe our recruitment methods and experimental procedures.

3.1 Design

The experiment consisted of three parts. In part 1, participants performed real effort tasks.
Part 2 comprised two stages. In the first stage, participants played several rounds of a mini-
dictator game. The second stage comprised the prediction of a machine learning algorithm,
based on the observed participants’ behavior in the role of the dictator in stage 1, and its

implementation. In the last part, we elicited sociodemographics and other information.

Part 1 In part 1, each participant had to complete five tedious real effort tasks that
comprised finding a sequence of binary numbers within a matrix of zeros and ones (Figure
B.11 in Appendix B). Participants were informed upfront that completing these tasks would
earn them 1200 points to be used in the second part of the experiment. Our objective was
to generate a feeling of ownership without introducing any earnings inequality in this part.

On average, participants spent approximately 90 seconds per task.

Part 2 The first stage of part 2 comprised 30 periods of a mini-dictator game.> Each
player was anonymously paired with another participant and matching was fixed for the
whole part. One of the two pair members was randomly assigned the role of the dictator
(“participant A” in the instructions); the other pair member played the role of the receiver
(“participant B”). Roles remained fixed throughout the part. The dictator’s task in each
period was to select one of two options on how to split points between herself and the receiver
she was matched to. All participants were informed upfront that these decisions would later
serve as the only source of training data for a machine learning algorithm that would make
a prediction and a decision in the second stage of this part and that this decision of the
algorithm would affect their earnings. Points earned in this part were convertible into Euros
at the rate 100 points = 1 Euro.

In each period, the dictator could choose one of two possible payoff allocations, X =
(I, 11%) or Y = (II},, 112 ), for which the sum of all four payoffs was kept constant in each
period. The dictator’s amount was always weakly higher with option X (the “selfish option”)

5See Appendix B for an English translation of the instructions and of the control questionnaire.



than with option Y. Because both participants had to complete the same set of tasks in
the first part to generate the endowments, opting for the selfish option X when the receiver
would receive strictly higher payoff with option Y would indicate that the dictator takes

advantage of her exogenously assigned power of decision.

Across the 30 games, we systematically varied the payoffs in the two options to manip-
ulate the inequality between pair members, the sum of payoffs in each option, and whether
the dictator was in an advantageous or disadvantageous position relative to the receiver
with both options. The calibration of payoffs was inspired by Bruhin et al. (2019). As in
Bruhin et al. (2019), Figure 1 illustrates the payoff space and represents each game by a
solid line that connects options X and Y. Table C.1 in Appendix C lists all pairs of options.

We categorize the decisions along two dimensions. First, there were games in which
option X Pareto-dominated option Y (H}( > H%/ and Hg( > H%), games in which the
receiver or the dictator was monetarily indifferent between both choices (II}, = IIj, or
H§( = H%), and games in which the dictator receives strictly higher payoff with option X
while the receiver receives strictly higher payoff with option Y (Hﬁ( > H%/ and H% > H?X)
Second, either the receiver or the dictator earns more money than the other player in both
alternatives (I > II% and I3, > II3, or I3 > IIY and II3. > II}), or the dictator’s
decision determined whose payoff was higher (Hﬁ( > H§( and H% > IIL, or Hg( > H}(
and I3, > I13). The aim of these variations was to identify the individual’s distributional
preferences. The order of the 30 decisions was random but was fixed for all the participants.
At the end of this stage, one of the 30 decisions was picked at random. This step determined

the payoffs of both the dictator and receiver in this stage.
In stage 2, there was another 315 pair of options X and Y. But instead of the dictator

choosing one option, there was a random forest algorithm used as a standard supervised
classification method making the choice (see Appendix A for details). Participants received
detailed information on the concept of machine learning and classification in an information
box included in the instructions (see Appendix B). Notably, the exact functionality of the
algorithm is not crucial for the research question and, as kept constant across conditions,
does not affect the treatment differences. The focus is the training of Al as an a priori
neutral technology with behavioral data. As explained to the participants before they made
their first decision in stage 1, the algorithm used the dictator’s 30 decisions as training data
to make an out-of-sample prediction of how this dictator would have decided in period 31
when facing a new game.® The machine learning tool did not build models or estimate
parameters; it simply predicted from patterns in the data. We used the payoffs and the
sum and difference of points allocated to the players in the chosen and rejected options as

features for classification. For the prediction of the AI, one of the six games represented

5Note that in many settings, algorithms are trained based on the behavior of many individuals. For our
purpose of focusing on intergenerational responsibility, we let the algorithm learn from one individual only.
We extensively study the question how behavior changes when a multiplicity of individuals provide training
data as compared to a single one in our companion paper (Klockmann et al., 2021).
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Figure 1: Dictator Games

Notes: Each circle represents 12 binary dictator games. Each game is represented by a line that connects
option X (in blue) and option Y (in red). The dotted lines correspond to games that were not presented to
the participants. Rather, one of them was picked at random for the AI’s prediction and decision in stage 2.
The slope of each line represents the cost for the dictator to increase the receiver’s payoff. In the top-left
circle, both options in each game represent disadvantageous inequality for the dictator. In the bottom-right
circle, both options in each game represent advantageous inequality for the dictator. In the middle circle,
the relative position depends on the chosen option.

by a dashed line in Figure 1 was chosen at random. Table C.2 in Appendix C lists all six

possible out-of-sample decisions of the AL

The prediction made by the Al in period 31 was implemented for the payment of the pair
members. Thus, this decision weighted as much as the 30 prior decisions in the determination
of the participants’ earnings in this part. This design choice was made to motivate the
participants to pay attention to each of their decisions because not only each one could
directly count for payment in stage 1 but was also used with certainty as training material
for the AI, which affected payoffs in stage 2. If we had paid instead each of the 30 periods,
the weight of the AI decision in period 31 would have been too small to identify the training
effect, and a wealth effect through the length of training could have biased this identification.

Part 3 In the last part, we elicited sociodemographic information (gender, age, field and
length of study, average weekly spending, and school graduation grade — Abitur). We further

asked about familiarity with AI and machine learning, confidence in these technologies,

"For the six pairs of options, the sum of all four payoffs was held constant and equaled 2400 points, as it
was the case for the first 30 periods. Since we paid out one selected option from the first 30 periods and the
option the algorithm picked in period 31, the average total amount of points distributed was equal to 2400
points, i.e., the sum of endowments the dictator and the receiver earned in part 1.



satisfaction with the prediction made by the algorithm in period 31, and how accurate this
prediction of the Al reflected the dictator’s preferences. In addition, one question assessed

the participants’ understanding of the functionality of the random forest algorithm.

3.2 Treatments

As summarized in Table 1, the experiment includes a baseline condition and four between-

subjects treatments.

Table 1: Owverview of the Treatments

Treatments Externality Payoff Possible
on Future Dependency  Role Switch
Baseline No No No
Externality Yes No No
Offspring Yes Yes No
Offspring Switch Yes Yes Yes
Switch No No Yes

Our Baseline condition follows the aforementioned experimental design. The random
forest algorithm made an allocation that was paid out exclusively to the current pair. There

was no externality for any other player.

In the Externality treatment, participants were told that the dictator’s choices generated
training data not only for the AI’s allocation decision in their group but also for another
group that would participate in the same experiment with a similar basic design in the
future, as described in sub-section 3.1.8 Except for the mere information on this externality
via the Al, there was no impact on payoffs in the current pair. The monetary incentives of

the dictator therefore did not change between the Baseline and the Externality treatment.

The Offspring treatment added one payoff dimension to the Externality treatment. In
this variation, the algorithm again learned from the dictator’s choices to make a prediction
not only for the dictator in the current pair but also for another dictator in a future pair.
By contrast with the Externality treatment, the earnings of the first pair members were
affected by the implementation of the prediction made by the Al for the future pair. The
first generation received an additional payoff equal to half of the payoff allocated by the Al in
the 315 period in the future generation. The dictator in the first generation received half of
the payoff of the dictator in the future generation, and the receiver received half of the payoff
of the receiver in the future generation. The objective of this monetary interdependence

between the first pair (the “parents”) and the future pair (the “offspring”) was to make the

8Precisely, participants were informed that in period 31 in their successor pair, the algorithm would decide
based on the 30 decisions of the dictator in their pair and on the 30 decisions of the future dictator in their
successor pair. The training data generated by their pair and by their successor pair were given the same
weight in the prediction of the algorithm. The data of the participants in future pairs are not used in the
current paper but in our companion paper (Klockmann et al., 2021).
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externality through Al training more salient. Thereby, dictators were expected to internalize
the monetary externality they exerted on the future through their generated training data.
This payoff was added to the earnings made in one of the first 30 periods and in the 31st
period, but was wired to participants at a later point in time. Compared to the Externality
treatment, the Offspring treatment preserves the impact on the future generation, but alters

the monetary consequence of this impact for the parent generation.

The Offspring Switch treatment combined the externality of the decisions of the dictators
from the current generation on the future generation’s payoffs through the Al training with
the risk of a switch in the payoff matching with the future generation. With 50% chance,
payoff matching for the future, additional payoff was switched: If this occurred, dictators
(receivers, respectively) in the current generation received half of the payoff of the receiver
(dictator, respectively) from the AI’s allocation in the future generation. Otherwise, payoff
matching was not affected. The objective of this treatment was to increase dictators’ aware-
ness of the monetary consequences of their decisions for the receiver through Al training.
Participants were not informed on whether the switch occurred or not during the session,

but they could infer it when receiving their additional payment.

Finally, we used the Switch treatment as a control treatment aiming to isolate the pure
effect of the possibility of swapped payoffs between the dictator and the receiver for the Al’s
allocation decision in period 31. This treatment mimicked the Baseline condition, except for
the payoff stemming from the AI’s prediction. With 50% probability, payoffs were switched
between the dictator and the receiver: If this occurred, the dictator would receive the payoff
assigned by the Al algorithm to the receiver in period 31, and the receiver would receive
the payoff assigned to the dictator in period 31. Thus, after training the algorithm, the
dictators had a self-interest to weigh more the receiver’s payoff in their evaluation of the
options. Nevertheless, in both treatments Switch and Offspring Switch with possible payoff
swapping, the largest share of the dictator’s total expected monetary outcome stems from
the payoff initially allocated to the dictator (75% in Switch and 90% in Offspring Switch).

3.3 Stated Preferences

We further investigated whether the type revealed by players through their 30 decisions in
the dictator games differed from the prosocial guidelines they claimed the algorithm should
follow in its allocation decision. For this purpose, we designed a follow-up experiment

repeating the Baseline condition and the Externality treatment with stated preferences.

Instead of repeatedly choosing in the binary dictator games and thereby disclosing their
social preferences, dictators in the new study could pick one of four different preference
types representing a subset of the type space. The options were (a) the algorithm should
maximize the payoff of the dictator, regardless of the payoff of the receiver, (b) the algorithm

should minimize the inequality in the payoff between the dictator and the receiver, (c) the
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algorithm should maximize a sum of the payoffs of the dictator and the receiver, and (d)
the algorithm should maximize the payoff of the dictator compared to the payoff of the
receiver. After the decision, 10 previous participants of the main experiment whose behavior
matched the selected type were randomly selected to train a random forest algorithm. This
algorithm decided between two options X and Y, just as in period 31 of the main experiment.

Participants earned the payoff resulting from the algorithm’s choice.

In the Baseline, the algorithm made an allocation decision that only affected the current
pair of participants. In the Externality treatment, we informed players that their type
choice would also affect the Al’s training for a future pair of dictator and receiver. We first
conducted the Externality condition and afterward the Baseline condition. We implemented
the externality on the future by a surprise payoff in the Baseline. The algorithm in this
surprise stage made its prediction based on training data from a total of 20 individuals:
10 belonged to the preference type selected by the dictator in the (previous) Externality
treatment and 10 belonged to the preference type selected by the dictator in the Baseline.

3.4 Procedures

Due to the 2020 coronavirus pandemic and the enforced social distancing rules to prevent its
spread, we could not invite students to the laboratory to participate in an onsite experiment.
Alternatively, we implemented a “virtual” laboratory experiment in the framework of the
Frankfurt Laboratory for Experimental Economic Research (FLEX). Using ORSEE software
(Greiner, 2015), we recruited students from Goethe University Frankfurt who provided their
consent for participation in online experiments. We informed them about the new format
and asked them to register for experimental sessions in the same manner used for a usual
lab experiment.”? Volunteers were informed that the experiment would be embedded in a
virtual Zoom meeting, in which they would communicate with the experimenters, and that

they would receive individual log-in information by email in advance.

To guarantee anonymity, we assigned each registered participant a unique ID in the
form of a random alphanumeric string. The second purpose of these IDs was to ensure that
only participants who registered for a given session participated in the meeting, and prevent
individuals from participating multiple times. The third purpose was to identify participants
from the Offspring and Offspring Switch treatments so that they could be assigned their
payoff from the future generation. We programmed the experiment in oTree (Chen et al.,
2016) and hosted it on a Heroku server.

Once participants logged in, we assessed whether they had registered for the respective
session. Participants were muted, and their video was disabled. After a short welcome from

the experimenters, the oTree link to the experiment was posted to everyone on the chat

9Less than 1% of all students registered in the participants pool of the Frankfurt Laboratory for Experimental
Economic Research opted out of online experiments. Therefore, there is no reason to fear a selection bias
due to the novel format of the experiment.
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function. The experiment started as soon as everyone was present in the oTree room. If
there was an odd number of participants, one person was selected at random, who then
received 4 Euros for arriving on time and who was dismissed. Participants could use the
chat function to ask questions to the experimenters. To prevent the dictators from simply
clicking through the 30 decisions to finish as soon as possible, we forced them to wait for 3

seconds after each choice of option before they could validate their decision.

A statistical power analysis with a significance level of 5%, an intended power of 80%,
and a medium-size effect of about 7pp determined a target sample size of 30 dictators per
treatment in our main experiment. For the underlying distribution of decisions, we chose a
binomial distribution where we varied the probability of selecting the selfish option X.10 A
total of 322 participants (161 dictators or independent observations, excluding the offspring
subjects) were recruited between July and August 2020. 34 dictators participated in the
Baseline, 34 in the Externality treatment, 30 in the Offspring treatment, 31 in the Offspring
Switch treatment, and 32 in the Switch treatment. There were no dropouts in any treatment,
and we did not exclude any observation. For the follow-up experiment, we determined by
means of a power analysis (with the same significance level and the same intended power)
with an effect of 30pp on a y2-test a sample size of 50 dictators per condition. A total of 204
participants (102 dictators) took part between May and June 2022, with 102 participants
(51 dictators) each in the Baseline and the Externality treatment.

The participants’ average age was 24.7 years, 51.7% were female, their predominant field
of study was economics, and they were on average in their 7*" to 8" semester. Table C.3 in
Appendix C summarizes the main sociodemographic variables in each treatment. The only
significant differences are that participants in the Externality treatment were on average 1.9
years older and there were fewer female participants than in the Baseline condition. If we

only consider the dictators, there are no significant differences across treatments.

On average, participants earned 13.17 Euro (S.D. 3.21) in the main experiment and 8.40
Euro (S.D. 3.02) in the follow-up study, and received their payoff via PayPal. Participants in
the Offspring and Offspring Switch treatments received a second payoff once their successor

pair participated in the experiment. Each session lasted approximately 45 minutes.

4 Behavioral Predictions

To investigate how treatment manipulations influenced how individuals trained the Al al-
gorithm, we developed behavioral conjectures based on the comparisons of the dictators’
revealed distributional preferences across treatments. With standard preferences and indi-

viduals exclusively motivated by the maximization of their payoffs, we expected no difference

10We preregistered the project, the sample size, and our hypotheses on AsPredicted (#44011) in July 2020
before starting the data collection. Before, we ran two pilot sessions in June 2020 to check for technical
functionality and calibrated the decision space of the dictators.
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across treatments Baseline, Externality, and Offspring. Since the expected payoff of dicta-
tors in the Switch and Offspring Switch partially depended on the amount allocated to the
receiver, we expected that a fully rational player would choose option Y in some cases (see

below for details).

To identify the distributional preferences revealed by the dictator’s decisions, we consid-
ered the frequency of choosing a certain option and estimated parameters of social prefer-
ences. We refer to Bruhin et al. (2019), who built on Fehr and Schmidt (1999) and Charness
and Rabin (2002), to set up a two-player model of social preferences that was fitted to the
data, using maximum likelihood. Denoting the payoffs of the dictator by mp and that of

the receiver by mg, the dictator’s utility function is given by
up(mp,mr) = (1 — as — pr)np + (as + pr)ng. (1)

Hereby, s = 1{np—7p > 0} and r = 1{mrp —7r > 0} are indicators of disadvantageous and
advantageous inequality for the dictator, respectively. Following Bruhin et al. (2019), the
sign of the parameters o and 8 describe the preference type of the dictator. a < 0 reveals
“behindness averse” decisions motivated by envy of the receiver’s payoff whenever receiving
a lower amount. Similarly, 5 > 0 reveals “aheadness averse” decisions motivated by a

t.!1 Depending

willingness to increase the other’s payoff whenever receiving a larger amoun
on the absolute value of o and 3, the choices reveal more envious or more empathetic
preferences. Furthermore, the parameters may have the same sign. First, if a,8 < 0,
choices are spiteful, independent of whether the receiver earns more or less than the dictator.
In this case, the dictator always wants to maximize her outcome relative to the receiver’s
payoff, while simultaneously directly caring for the own payment. Second, if « = 8 = 0,
choices are purely selfish and the dictator does not put any weight on the other’s payoff.
Finally, if a;, 8 > 0, choices are altruistic because the dictator always derives utility from the
receiver receiving a payoff. Here, the dictator shows social-welfare preferences and efficiency

concerns as she seeks to increase the payoff of her own and of the receiver.

When estimating the social preference parameters of a dictator representative for the be-
havior observed in the respective treatment, we closely adhered to above described method
by Bruhin et al. (2019) for the following reasons. First, though dictators in the Offspring
treatment can benefit repeatedly from selfish training of the algorithm, we need not incor-
porate this in the utility functions. The estimated parameters o and § only describe the
relative weighting of payoffs rather than absolute weights. The additional future payoff in
the Offspring treatment proportionately increases stakes for both dictator and receiver and

does not affect our parameter estimation.'? Second, we did not explicitly model the exter-

HEor the sake of simplicity, we assume that the parameters of the model can capture the same preferences
when the dictator is oneself and when the dictator is another individual (i.e., when one’s decisions train an
algorithm that will decide for another couple of individuals). We simply allow the values of these parameters
to vary cross conditions.

12In technical terms, we followed the econometric strategy by Bruhin et al. (2019) that builds on a
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nality of training data on the future that dictators create in the Externality, Offspring, and
Offspring Switch treatments and thus, did not directly incorporate the payoffs of the future
pair(s) in the utility functions. If we just added these future payoffs of the other dictator
and receiver, we would implicitly assume that the dictator assigns equal weights to her own
payoff and the payoff of the other (future) dictator, which is most likely not true. Our aim
was to measure how changes in the externality of Al training and its consequences affect
revealed social preferences as defined in the dictator’s utility function in (1). Finally, the
utility function in (1) can already capture the possibility of switched payoffs between dic-
tator and receiver in the Offspring Switch and Switch treatments. The dictator’s expected
payoff in these treatments is a weighted sum of mp and wr rather than only mp. This can
directly be represented by positive weights a and 5 beyond any social preferences. We refer

to this in more detail in what follows.

We then formulated behavioral conjectures regarding the dictators’ choices and the dif-
ferences in the parameters capturing social preferences across treatments. In the first set of
treatments (Baseline, Externality, and Offspring), the experimental design manipulated the
relationship between dictators and another pair of participants in a future generation, and

highlighted the transfer of data and choice preferences via the Al’s training.

We first tested whether an externality of today’s behavior on future predictions and
payoffs through the AI affected today’s decisions, by comparing the Baseline and the Ex-
ternality treatment. The salience of such an externality could influence its internalization
by the dictators. For example, if an individual was inequity averse, she might be even more
willing to reduce inequality in a future group that would be affected by her training of the
algorithm. We thus conjectured that the information on an externality of Al training for
the future, if anything, would make selfish choices that increase the dictator’s payoff at the

expense of the receiver’s payoff less likely.

Conjecture 1. Compared with the Baseline, dictators in the Externality treatment choose
the selfish option weakly less frequently in decisions in which the receiver would be monetarily
better off with the alternative. The estimated social preferences parameters, o and 3, are

weakly larger in the Fxternality treatment than in the Baseline.

We expected that introducing a monetary dependence between generations would induce

stronger self-interest in the dictators in the Offspring treatment than in the Externality

random utility model. When choosing an allocation X = (7p,7x), the dictator’ utility is given by
U, mh;a,B,0) = up(ny, mh; o, B) + ex, where up is the deterministic utility from (1) and ex is a
random component following a type 1 extreme value distribution with scale parameter 1/0. The likelihood
of choosing allocation X over Y then reads (see Bruhin et al., 2019)

B.o) = exp(oup (5, 7k ; @, B))

Pr(X —
(Xl mi, w, s exp(oun(h, 7%; 0, B)) + exploun(rh, 750, B))

The additional future payoff in the Offspring treatment would simply correspond to multiplying the objective
function — i.e., the deterministic utility up — with a positive factor. This only inversely proportionally
changes o, but leaves the estimated values of a and 8 unchanged.
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treatment. This is because the dictators could now benefit twice from the AI’s predictions
favoring them since a second payment was based on how many points the algorithm allocated
to the dictator in the offspring pair. Therefore, dictators might be willing to opt more
frequently for the selfish option in the Offspring than in the Externality treatment.

Conjecture 2. Compared with the Externality treatment, dictators in the Offspring treat-
ment choose the selfish option more frequently in decisions in which the receiver would be
monetarily better off with the alternative. The estimated social preferences parameters, o

and B, are smaller in the Offspring than in the Externality treatment.

In the second set of treatments (Switch and Offspring Switch), we introduced the possi-
bility of switching payoffs in period 31 or in the future generation between the dictator and
the receiver on the training data created by the dictator. In the Switch treatment, the dicta-
tor in periods 1-30 may receive in period 31 the receiver’s payoff based on the Al prediction.
Her expected payoff then directly depends on the amount allocated to the receiver. Assum-
ing that in each round the dictator takes only the current set of options into account, her
expected payoff would amount to mp + %(ﬂ'D + 7r). An individual maximizing this expres-
sion would choose option X in 70% of all rounds (all except games 1,2,10,11,12,20,21,22,30
in Table C.1). Apart from that, her estimated social preference parameters would, by de-
sign, raise to @ = 8 = 0.25 when normalizing the expected payoff to get the relative weights
as defined in (1). Thus, this treatment was expected to increase dictators’ weighting of

self-interest in the receiver’s monetary outcome from the very beginning of the game.

Conjecture 3. Compared with the Baseline, dictators in the Switch treatment choose the
selfish option less frequently in decisions in which the receiver would be monetarily better off
with the alternative. The estimated social preferences parameters, o and 3, become closer
to 0.5, as dictators weight their payoff and that of the receiver more equally in the Switch

treatment than in the Baseline condition.

Finally, the Offspring Switch treatment combined the externality of Al on a future
generation with the possible switching of payoffs. Thus, this treatment could be directly
compared with both, the Switch and the Offspring treatments. Without discounting the
future, the dictator’s expected payoff now amounts to 27 D—i—%(ﬂ' p+7r). The relative weight
a purely payoff-maximizing individual puts on the receiver’s payoff amounts to a = § = 0.1
when normalizing the expected payoff. This individual would choose option X in 80%
of all rounds (all except games 1,10,11,20,21,30 in Table C.1). Hence, we expected less
choices of option X in Offspring Switch compared to Offspring where a selfish individual
would pick option X in all cases. Considering only the expected payoff, one would further
conjecture that participants choose option X more frequently in Offspring Switch compared
to Switch (where a selfish individual would do so in 70% of all cases). Nevertheless, the

Offspring Switch variation also introduced the externality through training that did not exist
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in Switch. Since we perceived this mechanism to dominate, we also hypothesized dictators

to act more egalitarian in Offspring Switch compared to Switch.

Conjecture 4. Compared with the Switch and Offspring treatments, dictators in the Off-
spring Switch treatment choose the selfish option less frequently in decisions in which the
receiver would be better off with the alternative. The estimated social preferences parameters,

a and B3, are larger in Offspring Switch compared with both other treatments.

5 Results

5.1 Revealed Preferences

To test our conjectures, we primarily considered two measures that proxy moral behav-
ior. One measure directly refers to the proportion of selfish choices of option X by the
dictator in the different scenarios. The other measure is given by the estimated social pref-
erences parameters, a and 3, of an agent representative for the observed behavior, following
Bruhin et al. (2019). Tables 2 and 3 report pairwise tests that compare the differences in
the two aforementioned measures of preferences, as revealed by the actual choices, across
treatments.'® In what follows, we refer to the set of decisions characterized by conflicting
interests, that is, the decisions in which the dictator gets a strictly higher payoff with option
X and the receiver gets a strictly higher payoff with option Y, as the “restricted sample”. For
these decisions, choosing more frequently the selfish option can be considered a less moral
action (because both players produced a similar effort in part 1). We report all games in

appendix Table C.1 and mark those belonging to the restricted sample with an asterisk.

Surprisingly, Table 2 reveals no significant differences in the share of dictators’ choices of
the selfish option X between Baseline, Externality, and Offspring (the smallest p-value from
pairwise t tests is 0.592), in line with the prediction of a model with standard economic
preferences. The share of selfish choices was relatively high in each of these treatments
(70.29% in the Baseline, 71.08% in the Externality treatment, and 73% in the Offspring
treatment). Similarly, in Table 3, the estimated social preferences parameters for the agent
representative for the observed behavior did not differ significantly across these three treat-
ments (the smallest p-value from pairwise comparisons is 0.200). Thus, being informed that
training the Al algorithm would affect third parties’ earnings in the Externality treatment

did not affect the dictators’ choices. Dictators did not care about the externality of their

13Unless specified otherwise, all the non-parametric statistics reported in this paper were two-sided, and
each individual provided one independent observation. We did not report regression analyses comparing
treatments because there was no control group to compare all the treatments with. The only regression
analysis that was conducted both at the aggregate level and for each treatment separately aimed at checking
for the influence of individual sociodemographic characteristics on the probability to choose the selfish option.
The results are reported in Table C.7 in Appendix C. At the aggregate level, only the variable “studying in
economics” had a significant effect on this probability. Most variables have no effect in any regression.

11 addition, Figures D.1 and D.2 in Appendix D display the distribution of the shares of selfish option X
chosen by the dictators, by treatment, in the full sample and the restricted sample, respectively.
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Table 2: QOverview of the Frequency of Choices of the Selfish Option X across Treatments

Treatments # Obs. Option X  p-walues Option X p—values
Restricted Sample
. 70.29% 66.01%
Baseline 34 (0.029) 0 ss6 (0.046) o3
Externalit 34 71.08% > 4 68.30% > ’
xternality (0.028) 0 502 (0.042) 0991
Offsprin 30 73.00% > 73.00% > '
pring (0.021) 0000 (0.033) 0000
Offspring Switch 31 58.71% > ' 48.39% > '
pring (0.018) > 0081 (0.030) > 0.039
Switch 39 63.85% ’ 58.16% ’
(0.023) 0087 (0.035) 019
Baselin 34 70.29% > 66.01% >
seimne (0.029) (0.046)

Notes: The table reports the relative frequency of the choice of the selfish option X in each treatment, with
standard errors of means in parentheses. Each dictator in periods 1-30 gives one independent observation.
Column “Option X [Restricted sample]” includes only the decisions in games characterized by conflicting
interests, that is, those in which the dictator obtains a strictly higher payoff with option X and the receiver
gets a strictly higher payoff with option Y. p-values refer to two-sided t tests for differences in means. The
Baseline appears twice to report comparisons with both Externality and Switch treatments.

Table 3: Estimated Parameters of Social Preferences across Treatments

Treatments # Obs.  Dictators « p—values B8 p—values

Baseline 1020 34 8)‘_0083;) 0('3%55*1*)*
; > 0.863 4, > 0.441

Externality 1020 34 (8852) 0(8 0147)
0.041 > 0.200 0.343*** > 0.974

Offspring 900 30 (0,()68) (-0,051)
0.246%** > 0.000 0.506*** > 0.007

Offspring Switch 930 31 (0.034) (0.033)
> 0.030 > 0.801

Switch 960 32 0.123 Y

(0.045) (0.046)
0.082* > 0.536 0.395*** > 0.158

Baseline 1020 34 (0.048) (0_051)

Notes: The table reports the estimates of the « and 8 parameters of advantageous and disadvantageous
inequality aversion, respectively, for an agent representative for the observed behavior in the treatments,
with robust standard errors clustered at the individual level in parentheses. One observation corresponds
to one dictator in one period. The number of observations shows how many data were used to estimate
inequity aversion for an agent representative for the observed behavior in each treatment. p-values refer to
z-tests for differences in estimates. The Baseline appears twice to report comparisons with both Externality
and Switch treatments. * p < 0.10, ** p < 0.05, *** p < 0.01.

behavior in terms of income inequality in the whole experimental group. Comparing the
Baseline and the Offspring treatments reveals that dictators neither altered their behavior
when they could additionally benefit at a future point in time from teaching the Al with

selfish decisions.

This analysis rejects both Conjectures 1 and 2, and leads to Result 1.

Result 1. Being informed of the externality of training data for an Al did not affect the

selfishness of decisions when the future status was certain (i.e., no offspring existing or
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the offspring holding the same relative position). Neither the share of the selfish option
nor the estimated social preference parameters differed significantly between the Baseline,

Externality, and Offspring treatments.

In line with Conjecture 3 but without reaching a standard level of significance (t test,
p = 0.087), we found a lower fraction of selfish choices in Switch than in the Baseline,
considering the full sample (63.85% vs. 70.29%). The percentage was close to a 70% share
of option X that a payoff maximizer would choose (see section 4). The effect mainly stemmed
from the decisions in which choosing option Y would reduce the absolute distance in payoffs
between the dictator and the receiver (see Table C.6 in Appendix C).!® In this subsample,
dictators chose the selfish option — which in this case also raised inequality — less often when
there was the uncertainty of switching payoffs (48.13% wvs. 57.65% in the corresponding
Baseline), but this remained only marginally significant (t test, p = 0.087). Players tended
to hedge the risk of a future lower payoff by opting more frequently for the alternative
that offered a lower inequality in the training data. The estimates indicate that the dictator
representative for the observed behavior in Switch values the payoff of the receiver positively
(a >0 and > 0 with p < 0.01) regardless of whether the other player is monetarily better
or worse off.1¢ In the Baseline, however, the dictator representative for the observed behavior
weights the receiver’s payoff significantly positively only in case of advantageous inequality
(8 > 0 with p < 0.01), while in the other cases the weighting is small and only marginally
significant (o > 0 with p = 0.084). This increasse in the relative weighting of the receiver’s
payoff in Switch goes in line with what changed monetary incentives would predict, though
less pronounced. Finally, in the cases in which they were in an advantageous position in this
treatment, dictators weighted their and the receiver’s payoffs almost equally (8 = 0.492, see
Table 3).

This analysis (mildly) supports Conjecture 3 and leads to Result 2.

Result 2. When dictators were aware that they could receive the payoff of the receiver when
the AI’s prediction determined the allocation of payoffs (Switch treatment), there is some
(weak) evidence that they tended to reduce payoffs’ inequality when training the Al, compared
with the Baseline condition. This goes in line with changed monetary incentives, though less

pronounced than what these would predict.

The most striking and stronger effects emerged when comparing the Offspring Switch
treatment with the Offspring and with the Switch treatments. Table 2 shows that when
dictators could earn a fraction of the receiver’s payoff in the future generation, they chose

highly significantly less often the selfish option compared with the players who received

5This corresponds to games 1 to 7, 10, 28 and 29 in Table C.1 in Appendix C.

16This observation is not in line with the inequity aversion literature (e.g., Fehr and Schmidt, 1999), but
it is consistent with previous studies like Andreoni and Miller (2002) who reported a large heterogeneity
in individual preferences. Apart from a significant minority of envious participants, they observed many
subjects who give money to others already getting more money, which is the opposite of inequity aversion.
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the dictator’s payoff with certainty at both points in time (58.71% in the full sample and
48.39% in the restricted sample; t tests, p < 0.001 in both samples). In line with this effect,
the estimated parameters o and (§ for the agent representative for the observed behavior
were both highly significantly higher in Offspring Switch than in Offspring (a: 0.246 vs.
-0.041; z-test, p = 0.0002. B: 0.506 vs. 0.343; z-test, p = 0.007). As in Switch, the
dictator representative for the observed choices in the Offspring Switch treatment values
the payoff of the receiver positively (o > 0 and 5 > 0 with p < 0.01), independent of
advantageous or disadvantageous inequity. Note that the increase in the weight the dictator
puts on the receiver’s payoff is about twice as large in the case of disadvantageous inequity
compared to advantageous inequity (Aa = 0.287 vs. A = 0.163). The strongest behavioral
change hence occurs in those decisions where the dictator is monetarily worse off than
the receiver. Weighting the receiver’s payoff positively is then a sign of prosociality or of
efficiency concerns, as a larger amount of money is appreciated with less interest in who
receives it and its distribution. Still, both parameters rise by more than 0.1, that is, by more
than what the change in monetary incentives would predict (see Section 4). Thus, when
holding the intergenerational impact of Al training constant and introducing the possibility
of swapped payoffs, dictators selected overwhelmingly more frequently the option favoring
the receiver. Our findings suggest that individuals only take the externality through Al
training into account when we exogenously put them in the original position and let them
decide behind a “veil of ignorance” regarding their future position, in the spirit of John

Rawls.

The observed treatment difference replicated independent of the advantageousness or
disadvantageousness of the dictator’s position (Table C.4 in Appendix C), and of which
alternative exhibited lower inequality (see Table C.6). The treatment effect vanished only
when considering those decisions in which option X increased the sum of payoffs, namely,
when they were more efficient.!” If both motives, increasing the immediate payoff and
raising efficiency, favored option X, dictators chose this alternative in over 90% of cases in
both treatments (Table C.5).

This analysis supports Conjecture 4 for the comparison between the Offspring Switch

and Offspring treatments, and is summarized in Result 3.

Result 3. When future status became uncertain and dictators could be harmed by the ex-
ternality of their training data, intergenerational responsibility arose and the selfishness of
decisions decreased. The percentage of choices of option X was significantly lower and the
estimated social preference parameters significantly increased in the Offspring Switch treat-
ment compared with the Offspring treatment. Changes in monetary incentives alone cannot

explain the change in revealed social preferences.

Finally, we compared the Offspring Switch and the Switch treatments. This comparison

" This corresponds to games 6 to 9, 16 to 19, and 26 to 29 in Table C.1 in Appendix C.
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maintains the possibility of payoff switching but varies the existence of an externality of
the Al training data on a future generation. If payoff switching occurs, the consequences
for the dictator are relatively less important in Offspring Switch than in Switch because
it affects only the additional payment from the future generation (equal to 50% of the
future generation’s payoff). This comparison showed similar but weaker effects as in Result
3. Participants in the former treatment chose the selfish option X less often (full sample:
58.71% wvs. 63.85%; t test, p = 0.081; restricted sample: 48.39% wvs. 58.16%; p = 0.039).
Recall from Section 4 that a purely selfish individual would choose option X more often in
Offspring Switch compared to Switch as the receiver’s payoff made up a smaller share of the
dictator’s total expected outcome, supporting a greater role of social preferences. In both
treatments with uncertainty regarding future outcomes, dictators assigned positive weight

to the receiver’s payoff in all situations.

The behindness-aversion parameter, o, was significantly higher in Offspring Switch than
in Switch (0.246 vs. 0.123; z-test, p = 0.030). The aheadness-aversion parameter, 3, did
not differ between these two treatments and remained at approximately 0.5 (precisely, 0.506
vs. 0.492; p = 0.80). The changes in behavior can be observed only in case of disadvanta-
geous inequity, when assigning positive weight to the receiver’s payoff is the strongest sign
of prosocial preferences. From the perspective of an expected payoff maximizer, however,
both parameters would, by design, go down by 0.15 in Offspring Switch compared to Switch
(see Section 4), which is not what we observe. We detect an increase in prosociality despite
the relatively small size of the potential monetary loss when roles are switched. Returning
to Rawls, one could interpret that only an effect on an independent future pair of players
makes participants adopt the original position behind a veil of ignorance. Then, the in-
tergenerational transmission of training data becomes particularly salient. In fact, Rawls’
thought experiment originally intended to improve decisions on a societal level also affecting

others rather than just oneself.

In line with this finding, the likelihood of selecting the selfish option differed significantly
when considering the subset of decisions in which the dictator was always in a disadvantaged
position compared with the receiver (67.4% wvs. 75%; p = 0.045),'® but not in the cases in
which the dictator was in an advantageous (46.77% vs. 50%; p = 0.416) or in a mixed
position (61.94% wvs. 66.56%); p = 0.227; see Table C.4). In the scenarios in which she was
in a disadvantaged position, the intergenerational impact of training made individuals put
relatively more weight on the payoff of others. Finally, introducing the externality triggered
efficiency concerns. Indeed, in Offspring Switch only approximately one quarter of decisions
were selfish when option X was inefficient (Table C.5). This share was significantly lower
than that in Switch (26.88% vs. 38.33%; t test, p = 0.033). No differences were observed
when the selfish choices were the efficient ones (95.70% wvs. 92.45%; t test, p = 0.287).

Result 4 provides additional support for Conjecture 4.

8 This corresponds to games 21 to 30 in Table C.1 in Appendix C.
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Result 4. When the future status was uncertain and for a given possibility of switched pay-
offs, introducing an externality of Al training on the future significantly reduced the frequency
of selfish choices. This was particularly the case when efficiency could be improved by an
altruistic choice. Individuals in the Offspring Switch treatment chose option X significantly
less often than those in the Switch treatment did. The parameter o of aversion against dis-
advantageous inequality was significantly higher in the Offspring Switch treatment, though

monetary self-interest in the receiver’s payoff decreases.

Overall, our results show that in stable settings with role certainty, awareness of ex-
ternalities on others when teaching an Al algorithm did not induce participants to exhibit
less selfishness (Baseline vs. Externality vs. Offspring). In contrast, if individuals could
face harm once their Al training led to less moral decisions in a future generation, they
took into account the external effects when teaching an Al algorithm (Switch vs. Offspring
Switch). Strikingly, it is uncertainty regarding both the own and the offspring’s status and
thus earning mobility that let individuals put higher weight on the others’ outcome and

seemed to trigger intergenerational responsibility.

To test the robustness of these findings, we additionally adjusted the statistical results for
multiple hypotheses testing within each column of Tables 2 and 3. We used the family-wise
error rate (FWER) by employing the Holm-Bonferroni and Holm-Sidak methods (Holm,
1979). We used the false discovery rate (FDR) by employing the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995). Comparing the Offspring Switch and Offspring
treatments, we found that the observed differences in all four measures (i.e., the share of
option X in all decisions and in the restricted sample, a and /) remained significant at a 5%
level. Comparing the Offspring Switch and Switch treatments, we observed that the effect of
introducing an externality under a given mobility regime survived the FDR correction only
at the 10% level when considering the share of option X in the restricted sample and the

envy parameter «. The other comparisons between these two treatments lost significance.

Finally, using a non pre-registered, exploratory, analysis, we examined how dictators
formed their decisions beyond the analysis of their actual choices. As an assessment of
how much attention the individuals paid to the menu of options, we measured the time
in seconds dictators stayed on the page before submitting their choice of option. Table 4
reports how long dictators on average weighed alternatives before submitting their decisions.
The comparison between the Baseline and the Externality treatments indicated that the
awareness of their intergenerational impact through Al training did not significantly affect
the dictators’ decision time. By contrast, the comparison between the Offspring and the
Externality treatment revealed a highly significant difference. Although the decisions did
not differ between these treatments (see Result 1), dictators needed on average less time
for making their decision when these choices involved a higher personal monetary stake,

namely, when they could benefit another time in the future from how they trained the Al
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Table 4: Awverage Decision Time in Seconds, by Treatment

Treatments # of Obs. Mean Time p—values Mean Time p—values
Restricted Sample
. 11.44 12.64
Baseline 34 (0.573) (0.781)
11.89 > 0.552 12.91 > 0.780
Externality 34 (0.505) (0.606)
- > 0.001 10.52 > 0.002
1 > 0.001 1 > 0.001
Offspring Switch 31 (13183) (154§%
> 0.243 > 0.241
Switch 32 12.28 13.71
(0.795) (1.121)
11.44 > 0.385 12.64 > 0-432
Baseline 34 (0'573) (0.7'81)

Notes: The table reports the dictators’ average decision time, in seconds. These values include the three
seconds they had to wait between selecting an option and submitting it. Standard errors of means are in
parentheses. One observation corresponds to one dictator. The column “Mean Time [Restricted Sample]”
includes only the decisions in games characterized by conflicting interests, that is, in which the dictator
obtains a strictly higher payoff with option X and the receiver gets a strictly higher payoff with option Y.
p-values refer to two-sided t tests for differences in means.

Although the risk of swapped payoffs in period 31 in the Switch treatment did not
significantly affect decision time compared with the Baseline, such a risk in the future in the
presence of a monetary dependence between generations raised the average decision time
in the Offspring Switch treatment in comparison with the Offspring treatment. Individuals
used approximately 41% more time to select one option if the externality their Al training
data generated could harm them in the future. This difference in timing is highly significant
(p = 0.001) and it reflects the difference in decisions described in Result 3.1

This exploratory analysis supports our next result.

Result 5. Dictators made on average faster decisions in the Offspring treatment than their

counterparts did in the Offspring Switch and Externality treatments.

5.2 Stated Preferences

Result 1 showed no significant differences in behavior and revealed preferences between the
Baseline and the Externality treatment. In our follow-up study, we investigated whether

this null effect changes under stated preferences.

Table 5 reports the distribution of stated types between the two conditions. Remember
that dictators had to pick one of four different preference types representing a subset of the
type space. If they chose that (a) the algorithm should maximize the payoff of the dictator,

regardless of the payoff of the receiver, they were categorized as “selfish” and the training

9When splitting the sample by decision (X or Y), the same treatment differences in terms of decision time
persist, independent of the decision. Dictators were always faster in the Offspring than in the Externality
and Offspring Switch treatments. This also holds when splitting by decision type, namely, restricted sample,
advantageousness, fairness, and efficiency.
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Table 5: Distribution of Stated Types

Treatments # of Obs. Inequity averse  p-value Selfish p-value

Baseli 51

ase 1ne. 17.65% > 0.8016 60.78% > 0.0295
Externality 51 19.61% 39.22%
Treatments # of Obs. Altruistic pvalue  Spiteful p-value
Baseli 51

aseline 9.80% > 0.0067 11.76% > 0.7595
Externality 51 31.37% 9.80%

Notes: The table reports the dictator’s stated types across treatments. p-values refer to two-sided t tests
for differences in means.

data represented previous participants with social preference parameters a and 3 close to
zero (below 0.1 in absolute value). For any other option, the remaining participants used
for training were sorted based on the sign of a and 8. In case of (b) the algorithm should
minimize the inequality in the payoff between the dictator and the receiver, dictators were
labeled “inequity averse”, meaning participants with o < 0 < 8 were used for training. When
(c) the algorithm should maximize a sum of the payoffs of the dictator and the receiver,
we called them “altruistic” and the algorithm relied on players with «, 8 > 0 for training.
Finally, if (d) the algorithm should maximize the payoff of the dictator compared to the
payoff of the receiver, dictators were categorized as “spiteful” and «, 8 < 0 was the relevant

subset of the type space.

Overall, there is a significant difference in stated preferences types when we informed
participants about their externality on future generations (p = 0.041 from a x? test). t tests
comparing the share of types across conditions show that this difference results from a shift
in selfish and altruistic types. Once we introduced the externality, the share of selfish types
significantly decreased by more than one third, while the share of altruistic types more than
tripled. These results suggest that programming an algorithm for making decisions with
social implications on the basis of such stated preferences could favor more socially oriented

decisions. This analysis supports our last result.

Result 6. Being informed of the externality of training data for an Al shifted the stated
preferences away from selfishness towards altruism. The share of stated selfish types was
significantly lower and the share of stated altruistic types was significantly higher in the

Ezxternality treatment compared to the Baseline.

6 Discussion and Conclusion

Technological progress, strongly accelerated by an ever-increasing amount of available data

and growing capacities of automated agents, comes along with ethical questions. Machines
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will more and more often have to include in their decision models parameters that represent
the social preferences of individuals in the society. Either they have to be directly prescribed
in the algorithm design or they need to be learnt based on the repeated observation of human
decision making in social environments. Al is thus far not an abstract, self-deciding super-
intelligence, but primarily consists of prediction machines that make decisions based on
training data (Agrawal et al., 2018). If these training data reflect unethical behavior (e.g.,
discrimination, egoism, imposition of the law of the strongest), this influences AI’s decision

)

models across scenarios and generations. With the growing use of “black box” algorithms,
making humans accountable for Al predictions is becoming increasingly difficult (Pasquale,
2015). An obvious approach to managing this challenge could be to ensure algorithmic
transparency. However, making individuals fully aware of their responsibility in training Al,
not only in terms of immediate consequences but also regarding the impact on the future,
may not be sufficient to make them more attentive to the externalities they generate through
their actions. Our study suggests that this may differ depending on whether individuals are

living in societies with high or low intergenerational income mobility.

Our findings reveal that intergenerational responsibility in human behavior when train-
ing an Al cannot be triggered by information or own monetary incentives alone. It was
only in settings where individuals understood that there was a risk of being harmed by
immoral algorithmic decisions (through harming their offspring) that they considered inter-
generational transmission of data when teaching the machines and exhibited less selfishness.
Uncertainty regarding their own future position and their offspring’s payoff allowed individ-
uals to put higher weight on the others’ outcome when providing training data. Though we
implemented interdependence of earnings across generations, this effect cannot be explained
by monetary self-interest alone. Under standard economic preferences, an expected payoff
maximizing individual would have neglected the uncertainty in future earnings because the
affected share of total payoff is small. Indeed, in the Switch treatment, 25% of the total
payoff corresponds to the receiver’s payoff in expectation; in the Offspring Switch treatment,
it is only 10%. As we observe higher weights on the receiver’s payoff in Offspring Switch
than in Switch, self-interest cannot explain more egalitarian choices when training the Al
also for future generations. By contrast, in stable settings with no mobility, individuals

disregarded the negative externalities of their decisions on the future generation.

One possible interpretation is that being more uncertain about one’s future situation
leads individuals to take more distance from their immediate selfish interests and leads them
to envision the situation more broadly from the beginning, in the spirit of John Rawls’ idea
of taking decisions behind a veil of ignorance. Another possible interpretation building
on Prospect Theory (Kahneman and Tversky, 1979) is that pessimistic individuals who
are more anxious about their future status and payoffs might overweight the subjective
probability of switching payoffs in the last period and overweight the possibly occurring

losses. Since in the current design the dictator is not always in advantageous position (and
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thus in period 31, switching position is not necessarily bad in terms of absolute payoff), we
tend to favor the first interpretation. However, to neatly disentangle between these different
interpretations it might be interesting in future work to elicit subjective beliefs about the

risk of getting a lower payoff in the last period.

Currently, in real-world applications, those who develop Al are a tiny minority, and
those who train Al are often not affected (or not substantially affected) by the outcomes of
their decisions. That even aggravates our concern that individual decision-making in stable
social contexts does not adequately consider the external effects of training algorithms on
the future. When there is no risk of being harmed by immoral algorithmic choices in the
future, human decision-making that serves as the data source for intelligent systems is likely
to reflect higher selfishness. This will certainly be reinforced in human-machine interactions,
where social image concerns are likely to be less pronounced than in interactions with human
counterparts because of a reduced sense of human presence. Algorithms could perpetuate
or even amplify existing unfairness in the data. When the outcome of these algorithms is
fed into real-world systems, it can again affect users’ decisions, resulting in even more data

reflecting selfish behavior for training future algorithms.

If knowledge of the external effect of training data on an AI’s decisions in the future
has no impact on the revealed selfishness in human behavior in a stable environment, would
direct specification of social preferences lead to better outcomes? We found evidence that
being informed about the external effects of Al training on others leads to a shift in the
direction of more altruistic stated preferences of the dictators. Thus, our findings suggest
that directly prescribing how an algorithm should make decisions in a social context can

lead to the implementation of possibly more altruistic decisions.

Our study has limitations in terms of external validity. In real settings, Al is obviously
not trained with the data of a single or just a few individuals. But the artificiality of the
experiment allows us to observe what is precisely impossible to observe in reality: How do
individuals alter their decisions when they are fully aware that their action has an impact
on future generations through the training of an AI? If we do not find any impact in this
specific context where individuals are the only source of the externality through training,
it is very unlikely that we would find an impact when individuals are not pivotal. With
this caveat in mind, our results suggest a need for building fairness-aware machine learning
models. An implication might be that machine learning algorithms should be extended with
classical programming that exogenously implements basic moral guidelines. Which moral
guidelines should be implemented must be subject to evaluations of both universal and more

culture-specific moral preferences (Awad et al., 2020).
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A Appendix Random Forest Algorithm

For predicting the out-of-sample choice of the dictator in the 31%* period, we relied on a random
forest algorithm as a standard classification method (Breiman, 2001). A Random Forest consists
of several uncorrelated Decision Trees as building blocks. The goal of using a Decision Tree is to
create a training model that can be used to predict the class of a target variable. It learns simple
decision rules inferred from prior data (training data). In our experiment, the target variable was the
decision of the dictator in period 31 and the training data corresponded to the dictator’s previous
decisions in periods 1 to 30. The algorithm took eight features as input variables to predict the
binary outcome option X or option Y in period 31. Apart from the four payoffs for both players from
both options, we further added the sum and difference between payoffs for each option as features.

All decision trees have grown under two types of randomization during the learning process.
First, at each node, a random subset of features was selected to be considered when looking for
the best split of observations. Hereby, we relied on the usual heuristics and allowed up to v/8 ~ 3
features. Second, only a random subset of observations was used to build each tree (bootstrapping).
For each dictator, a forest consisted of ten different classification trees. To make the final decision
on whether option X or option Y was the dictator’s hypothetical 315¢ choice, each tree in the forest

made a decision and the option with the most votes determined the final classification.

Due to the Python foundation of oTree, we made use of the random forest implementation of the
scikit-learn package (Pedregosa et al., 2011). We further set a fixed random state or seed to ensure
reproducibility of results. To assess the accuracy of the algorithm ex post, we split the decision data
of each dictator in a training and test data set with 24 (80%) and 6 (20%) observations, respectively.
For each individual, we thus trained a random forest with 24 randomly selected allocation choices
and let it predict the six remaining ones. For all 161 dictators, this yielded an average predictive
accuracy of about 81.8%, a precision of 86.6%, a recall of 86.6%, and a Fj score of 0.866. Note that
this number should be rather taken as a lower bound on the actual accuracy of the algorithm in
the experiment that actually used all 30 decisions for training to make the out-of-sample prediction.
In Table A.1, we report the precision, recall, and F1 score of the random forest algorithm in each

treatment. We conclude that the performance of the algorithm was not different across treatments.

Table A.1: Performance Metrics of the Random Forest Algorithm by Treatment

Treatment Dictators  Accuracy Precision Recall  F}) score
Baseline 34 84.31% 89.93%  87.41%  0.8865
Externality 34 80.39% 85.16%  88.59%  0.8684
Offspring 30 83.89% 87.50%  90.84%  0.8914
Offspring Switch 31 77.96% 81.90%  82.61%  0.8225
Switch 32 80.21% 81.34%  89.34%  0.8516

Notes: The table provides an overview of different performance metrics of the random forest algorithm,
separate for each treatment. For each dictator, we made an 80:20 split, i.e., 24 observations for training
and 6 observations for testing.

The questionnaire in the final stage included questions about the participants’ attitudes toward
AT in general and toward the machine learning algorithm in our experiment. On a scale from 1
to 5, we asked dictators to rate their familiarity with and confidence in this technology (averages

of 2.8 and 3.7, respectively), their satisfaction with the prediction in period 31 (average of 4.0),
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and their assessment of how accurately the Al’s decision matched their true preferences (average
of 4.3). There were no significant differences across treatments in any of these variables. There is
also no correlation of these variables with observed behavior and treatment differences. Satisfaction
with and assessed accuracy of the algorithm were not only very high, but also strongly correlated

(Spearman rank correlation: 0.717, p < 0.001).

For the follow-up experiment with stated preferences, we first categorized all participants from
the main study into four different preference types based on an individual estimation of social
preference parameters. First, individuals with social preference parameters o and 3 close to zero
(below 0.1 in absolute value) are categorized as being “Selfish” (30 participants). The sorting of the
remaining participants is based on the sign of o and 8. If @ < 0 < 3, they are “Inequity averse” (56
participants), if o, 8 > 0 “Altruistic” (138 participants), and if «, 8 < 0 “Spiteful” (12 participants).
After the dictator in the follow-up experiment picked their preferred type, ten participants falling
in the selected category were randomly selected and their 30 decisions each were used as training

data for the random forest algorithm.
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B Instructions

The experiment was conducted online with student subjects from Goethe University Frankfurt in

German language. This section provides the instructions translated into English and the screenshots.

Overview

Today's experiment consists of two parts.
In the first part you earn points by solving tasks.
You will receive more detailed information on the second part at the end of the first part.

Instructions of Part 1

In the first part you will earn points by performing 5 tasks.

For each task you will see a different block of numbers.

In each block, you must select a specific combination of numbers.

By completing all 5 tasks successfully you will earn 1200 points that will be used in the second part of the experiment.

Figure B.1: Instructions — Real Effort Tasks

Note: This screen was displayed in all treatment pairs before participants performed the real effort tasks.

End of Tasks

You have successfully completed all tasks and earned 1200 points that you will be able to use in the second part of the
experiment.

Figure B.2: Instructions — End of Real Effort Tasks

Note: This screen was displayed in all treatment pairs after participants completed the real effort tasks.
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Instructions of Part 2
Instructions

The following instructions are shown to all participants. Please read carefully.
Afterwards, you need to answer a set of control questions to ensure your understanding before you can continue.

Overview

This part consists of 30 independent periods and a period 31 which differs from the previous 30 periods, as explained
below.

At the beginning of the part, you will be randomly assigned a role, either participant A or participant B. You will keep this
role throughout this part.

At the beginning of the part, you are going to be randomly matched with another participant to form a pair.

The pair of participant A and participant B will remain the same throughout the rest of the experiment.

Decisions in Periods 1 to 30

In each of these 30 periods, participant A has to choose between two options: option X and option Y.

Each option represents the share of a number of points between participant A and participant B.

The points that are distributed correspond to your earnings and the earnings of the other participant in your pair in the
first part of the experiment.

In each option, the first number corresponds to the payoff of participant A, the second amount corresponds to the payoff
of participant B.

In the entire experiment, 100 points correspond to one euro.

To validate his or her choice, participant A has to click on the option he or she prefers and then, validate by pressing the
OK button.

It is very important to look carefully at the two amounts of each option before choosing the preferred option.

Note that participant B has no decision to make in this part.

Figure B.3: Instructions — Main Part and Decisions

Note: This screen was displayed in all treatment pairs.

Instructions of Part 2
Period 31

You will receive also a payoff for period 31 that will be added to your payoff in one of the previous periods.
Thus, your total payoff is determined by one of the 30 decisions made in periods 1 to 30, and by the unique decision made
in period 31.

Your payoff in period 31 is determined as follows.

The previous 30 decisions of participant A are used to train an artificially intelligent Random Forest algorithm (see Info
Box).

It is a machine learning algorithm that observes and learns from participant A's behavior.

Based on the 30 decisions of the participant A in your pair today, the algorithm makes a prediction.

The algorithm gives the full weight of 100% to participant A in your pair in forming its prediction.

Building on this source of training data, the algorithm chooses between option X and option Y in period 31.
Note that the two options X and Y between which the algorithm decides are randomly chosen.
They are of the same type as in the 30 previous decisions made by participant A.

In fact, participant A in your pair does not make a decision in period 31: it is the algorithm that makes the decision
based on its prediction what participant A would prefer, given this participant A's choices of options in the first 30 periods.
This option chosen in this prediction determines your payoff in period 31 and the payoff of the other participant in your
pair.

Figure B.4: Instructions — Prediction of the Algorithm in Period 31
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[Baseline, Externality, Offspring,
The option chosen by the algorithm in this prediction determines your payoff in period 31 and the payoff of the other
participant in your pair.

Example: If the algorithm predicts that participant A would prefer option X with payoffs (K, V): A in the pair receives K
points and B receives V points.

[

Note that with 50% probability, the roles in your pair are reversed for this payoff in round 31.

If you were participant A in periods 1 to 30, you will become participant B in period 31 with 50% probability and you will
remain participant A with the remaining 50%.

Similarly, if you were participant B in periods 1 to 30, you will become participant A in period 31 with 50% probability
and you will remain participant B with the remaining 50%.

Thus, with 50% probability each, you get the payoff of participant A or of participant B in your pair, independent of your
role in the previous 30 periods.

Example: If the algorithm predicts that participant A would prefer option X with payoffs (K, V): With 50% probability, A
in the pair receives K points and B receives V points; with 50% probability, A in the pair receives V points and B receives
K points.

Info box: Random Forest Algorithm

A Random Forest is a classification method.

Classification is a two-step process in machine learning: there is a learning step and a prediction step.

In the learning step, the model is developed based on given training data.

In the prediction step, the model is used to predict the response for given data.

A Random Forest consists of several uncorrelated Decision Trees as building blocks.

The goal of using a Decision Tree is to create a training model that can be used to predict the class or value of a
target variable.

It learns simple decision rules inferred from prior data (training data).

In this experiment, the target variable is the decision of participant A in period 31.
The training data correspond to previous decisions in periods 1 to 30.

All decision trees have grown under a certain type of randomization during the learning process.
For a classification, each tree in that forest makes a decision and the class with the most votes decides the final
classification.

Figure B.4: Instructions — Prediction of the Algorithm in Period 31 (cont’d)

Notes: This screen was displayed in all treatment pairs. The content of the paragraphs which dynamically
varied across treatments is marked accordingly.
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Instructions of Part 2

The 30 decisions of participant A in your pair generate additional training data for further predictions.
These affect the payoffs of a successor pair in period 31 that will take your place in this same experiment in the next days.

The artificially intelligent algorithm is trained with the decisions of participant A in your current pair.
The algorithm will make two predictions.

1. As mentioned above, there will be a prediction for a decision of participant A in your pair today.
In period 31, the algorithm decides once between option X and option Y based on participant A's previous decisions
in periods 1 to 30.

2. There will be a prediction that determines the decision of participant A in your successor pair.
The algorithm will decide based on the 30 decisions of participant A in your pair today and on the 30 decisions of
the future participant A in your successor pair.
The training data generated by your pair and by your successor pair are given the same weight in the prediction of

the algorithm.

Summarizing, based on the 30 decisions of participant A in your pair today, the algorithm decides once between option X
and Y for your pair today and once for your successor pair in the future.

Thus, the 30 decisions of participant A today have monetary consequences for your pair today and for another future pair,
through the predictions of the algorithm.

Figure B.5: Instructions — Impact on Future Session (Externality Treatment)

Note: This screen was displayed in the Externality treatment pairs.
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Instructions of Part 2

For both participants A and B, there is an additional payoff.
This amount will be paid out at a future point in time.
We will give details concerning the payment at the end of the session.

The 30 decisions of participant A in your pair generate additional training data for further predictions.

On the one hand, these affect the payoffs in period 31 of a successor pair that will take your place in this same experiment
in the next days.

On the other hand, they also affect your own additional payoff.

The artificially intelligent algorithm is trained with the decisions of participant A in your current pair.
The algorithm will make two predictions.

1. As mentioned above, there will be a prediction for a decision of participant A in your pair today.
In period 31, the algorithm decides once between option X and option Y based on participant A’s previous decisions
in periods 1 to 30.

2. There will be a prediction that determines the decision of participant A in your successor pair.
This second prediction may be for another pair of options.
The algorithm will decide based on the 30 decisions of participant A in your pair today and on the 30 decisions of
the future participant A in your successor pair.
The training data generated by your pair and by your successor pair are given the same weight.
In particular, participant A accounts for one half of the data the algorithm deciding for your successor pair builds
on.

Summarizing, based on the 30 decisions of participant A in your pair today, the algorithm decides once between option X
and Y for your pair today and once for your successor pair in the future.

Thus, the 30 decisions of participant A today have monetary consequences for your pair today and for another future pair,
through the predictions of the algorithm.

On top of today's payoff, we pay your pair an amount equal to one half of the payoff your successor pair gets from the
prediction of the algorithm in the future.

This prediction forms the third part of your payoff.

[

Note that with 50% probability, the roles in your pair are reversed for this future payoff.
With 50% probability each, you receive 50% of the payoff of participant A or of participant B in your successor pair,
independent of your role today.

[Offspring]

Note that your role as participant A or participant B remains the same for this future payoff.

If you are participant A today, your additional payoff will be determined as 50% of the payoff of participant A in your
successor pair.

If you are participant B today, your additional payoff will be determined as 50% of the payoff of participant B in your
successor pair.

Figure B.6: Instructions — Impact on Future Session (Offspring and Treatments, cont’d)

Notes: This screen was displayed in the Offspring and Offspring Switch treatment pairs. The content of the
paragraphs which dynamically varied across treatments is marked accordingly.
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Control Questions

Please answer the following control questions.
You must answer all questions correctly before you can continue with the experiment.

Question 1

Will your pair of participant A and participant B remain the same throughout the whole experiment?

® Yes
O No

Question 2

Which kind of decisions will be made and who will make them?

® Participant A decides upon the distribution of the earnings of both participants (A and B) from solving tasks in
the first part of the experiment.

O Participant B decides upon the distribution of the earnings of both participants (A and B) from solving tasks in
the first part of the experiment.

O Both participants jointly decide upon the distribution of the earnings of both participants (A and B) from solving
tasks in the first part of the experiment.

O Participant A proposes a distribution of the earnings of both participants (A and B) from solving tasks in the first
part of the experiment. Participant B can accept or reject this proposal.

Question 3

Does participant B make any decision with regard to the distribution of the endowment earned by both participants within
your pair?

O Yes

@ No, participant A decides upon the allocation of the endowment of both participants.
Question 4
How will your payoff from the first 30 periods be determined?

O There is no payoff from the first 30 periods.
O All decisions of participant A in all periods will be paid out.

® One decision of participant A in one randomly selected period will be paid out.

Figure B.7: Control Questions
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Question 5

How will your payoff from period 31 be determined?

O There is no payoff from period 31.
O Participant A makes another decision that is paid out.

® Participant A makes no decision, but there is an artificially intelligent algorithm that makes a prediction for period
31 based on learned behavior, which determines the payoffs in the pair.

Question 6

Where does the artificially intelligent algorithm in the experiment get its training data from?

® Exclusively from the 30 decisions of participant A in your pair.
O Exclusively from the 30 decisions of participant A in another pair in your session.
O From the 30 decisions of participant A in your pair and the 30 decisions of participant A in another pair.

O From the 30 decisions of participant A in your pair and the 30 decisions of participant A in 99 other pairs.

Question 7

For the algorithm of which pair do the 30 decisions of participant A in your pair generate training data?

O Exclusively for your pair. [Baseline, |
O Exclusively for another pair in your session.

O For your pair and for another successor pair of yours in the future. [Externality, Offspring, ]

Question 8

What is the composition of your final payoff? (Multiple selections possible!)

® One decision of participant A in the first 30 periods is implemented for your pair.
® The decision of the artificially intelligent algorithm in period 31 is implemented for your pair.

O The decision of the artificially intelligent algorithm in period 31 of your successor pair in the future is implemented
for your pair. [Offspring, ]

Question 9

Can roles within your pair be switched for payoff?

O No, | always keep my role. [Baseline, Externality, Offspring]

O VYes, it might be that with 50% probability | get the payoff of the other participant in my pair for the decision in
the randomly selected period between 1 and 30.

O VYes, it might be that with 50% probability | get the payoff of the other participant in my pair for the decision by
the artificially intelligent algorithm in period 31. [ ]

O Yes, it might be that with 50% probability | get the payoff of the other participant in my pair for the future payoff
of my successor pair. [

Figure B.7: Control Questions (cont’d)

Notes: The selected answers are the correct ones for all treatment groups. Some answers to the control
questions varied across treatments and the correct ones are marked accordingly.
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Results

Randomly selected round: Period 5

Options in this round: (640, 410) and (560, 790)
Decision in this round: Option X

Your payoff: 640 points

Period 31: Prediction

The artificially intelligent algorithm decided between (760, 490) and (440, 710) in this period 31.
Based on the previous decisions of participant A in your pair, the prediction and decision of the algorithm was option X.

[ for groups with payoff swapping)]
For this payoff, the roles in your group have been swapped.
You will receive the payoff of participant B.

Your payout from period 31 is therefore 760 [490] points.

Figure B.8: Feedback in Parts 2 and 3 (Example)

Notes: This screen was shown to all participants after the dictator’s and the algorithm’s decisions. The num-
bers and option choice are for illustrative purposes only. The content of the paragraphs which dynamically

varied across treatments is marked accordingly.

Final Results

Your payoff from the randomly selected period 5 is 640 points.
Your payoff from period 31 is 760 points.

In total, you will thus receive a payoff of 1400 points.

This is equivalent to 14 euros.

[Offspring, ]
You will receive an additional payoff at a future point in time.
Once your successor pair has participated in the experiment, you will receive this additional payoff.

It is equal to 50% of the payoff from period 31 in your successor pair.

Figure B.9: Final Results (Ezample)

Notes: This screen was shown to all participants at the end of the experiment before the final questionnaire.
The numbers and option choice are for illustrative purposes only. The content of the paragraphs which
dynamically varied across treatments is marked accordingly.
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Instructions of Part 2
Instructions

The following instructions are shown to all participants. Please read carefully.
Afterwards, you need to answer a set of control questions to ensure your understanding before you can continue.

Overview

At the beginning of the part, you will be randomly assigned a role, either participant A or participant B. You will keep this
role throughout this part.

You are going to be randomly matched with another participant to form a pair.

The pair of participant A and participant B will remain the same throughout the rest of the experiment.

Decisions and Payment

In this experiment, your payoff is determined by an artificially intelligent random forest algorithm (see info box).
Participant A in your pair determines how this algorithm should decide.

There are the following choices:

1. The algorithm shall maximize the payoff of participant A itself, regardless of the payoff of participant B.
2. The algorithm shall minimize the inequality in the payoff between participant A and participant B.
3. The algorithm shall maximize a sum of the payoffs of participant A and participant B.

4. The algorithm shall maximize the payoff of participant A compared to the payoff of participant B.

With his/her decision, participant A determines which training data will be used for the algorithm.
All training data comes from previous participants in this study.

These previous participants made repeated decisions between two options: Option X and Option Y.
Each option represents the share of a number of points between participant A and participant B.

Ten fitting previous participants are selected according to participant A’s choice.

The repeated choices of these previous participants are then used as training data.

Based on these choices, the algorithm chooses between option X and option Y.

The two options X and Y that the algorithm decides between in your pair are determined randomly.

In fact, participant A in your pair does not make a direct decision about the options.

It is the algorithm that makes the decision based on its prediction of which option Participant A would prefer.
The option chosen by the algorithm determines your payout and that of the other participant in your pair.
Example: the algorithm predicts that participant A would prefer option X with payouts (K, V).

Then A in the pair will receive K points and B will receive V points.

In the whole experiment, 100 points correspond to one euro.

Figure B.10: Instructions — Follow-up Study with Stated Preferences
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[Externality]

Effects on Other Groups

The choice of participant A in your pair also determines the training data for further algorithmic predictions.

These affect the payoffs of a future pair (successor pair) that will take your place in this experiment in the next few days.
On the one hand, the algorithm in the successor pair will be trained with the same data as the algorithm in your current
pair.

On the other hand, the algorithm will be trained with the data corresponding to the choice of participant A in the
successor pair.

The training data determined by your pair and by your successor pair are given the same weighting for the algorithm’s
decision.

The payoff in the successor pair happens independently of the payoff in your pair.

Info box: Random Forest Algorithm

A Random Forest is a classification method.

Classification is a two-step process in machine learning: there is a learning step and a prediction step.

In the learning step, the model is developed based on given training data.

In the prediction step, the model is used to predict the response for given data.

A Random Forest consists of several uncorrelated Decision Trees as building blocks.

The goal of using a Decision Tree is to create a training model that can be used to predict the class or value of a
target variable.

It learns simple decision rules inferred from prior data (training data).

In this experiment, the target variable is the decision of participant A in period 31.
The training data correspond to previous decisions in periods 1 to 30.

All decision trees have grown under a certain type of randomization during the learning process.
For a classification, each tree in that forest makes a decision and the class with the most votes decides the final
classification.

Figure B.10: Instructions — Follow-up Study with Stated Preferences (cont’d)

Notes: This screen was displayed in all treatment pairs in the follow-up experiment. The content of the
paragraphs which dynamically varied across treatments is marked accordingly.
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Aufgabe 1

Markieren Sie die folgende Zahlenfolge in einer Zeile: 0001001

1100111000001111111001101011010011101001100000010111100001110000010101
110110110111101110111111010011100101000110(9fsJemyeleRi000000000010001100111
1101101001011000001101010110100111100001011101011000011111111110010101
1001011000010001010011001011010010000101110000100000111010000001101000
10010001111110110101110101101011011110101101111111711100101011010111110
101100100010001100111111211011111101102111111101111001101111110101111101
0101001001011110110010110100010000000011001000000000001100100000100000

Figure B.11: Real Effort Task

Notes: Exemplary real effort task from the first part of the experiment. The correct solution needed to be
marked as shown in the screenshot.
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C Appendix Tables

Table C.1: Decision Space of the Dictator Games

Game Option X Option Y Category 1 Category 2 Category 3  Category 4
(Selfish) (Altruistic) (Slope) (Dictator’s (Highest (Lowest
Position) Efficiency)  Inequality)
1* (890, 140) (850, 520) Selfish Advantageous Y Y
2% (910, 140) (830, 520) Selfish Advantageous Y Y
3% (940, 150) (800, 510) Selfish Advantageous Y Y
4* (980, 170) (760, 490) Selfish Advantageous Y Y
5% (1010, 190) (730, 470) Selfish Advantageous None Y
6* (1050, 270) (690, 390) Selfish Advantageous X Y
7 (1060, 330) (680, 330)  Receiver indiff. Advantageous X Y
8 (990, 480) (750, 180) X Pareto Advantageous X X
9 (930, 510) (810, 150) X Pareto Advantageous X X
10 (870, 140) (870, 520)  Dictator indiff. Advantageous Y Y
11* (620, 410) (580, 790) Selfish Mixed Y None
12% (640, 410) (560, 790) Selfish Mixed Y None
13* (670, 420) (530, 780) Selfish Mixed Y None
14* (710, 440) (490, 760) Selfish Mixed Y None
15% (740, 460) (460, 740) Selfish Mixed None None
16* (780, 540) (420, 660) Selfish Mixed X None
17 (790, 600) (410, 600)  Receiver indiff. Mixed X None
18 (720, 750) (480, 450) X Pareto-dom. Mixed X None
19 (660, 780) (540, 420) X Pareto-dom. Mixed X None
20 (600, 410) (600, 790) Dictator indiff. Mixed Y None
21* (350, 680) (310, 1060) Selfish Disadvantageous Y X
22%* (370, 680) (290, 1060) Selfish Disadvantageous Y X
23%* (400, 690) (260, 1050) Selfish Disadvantageous Y X
24%* (440, 710) (220, 1030) Selfish Disadvantageous Y X
25% (470, 730 (190, 1010) Selfish Disadvantageous None X
26%* (510, 810) (150, 930) Selfish Disadvantageous X X
27 (520, 870) (140, 870)  Receiver indiff.  Disadvantageous X X
28 (450, 1020) (210, 720) X Pareto-dom. Disadvantageous X Y
29 (390, 1050) (270, 690) X Pareto-dom. Disadvantageous X Y
30 (330, 680) (330, 1060) Dictator indiff. =~ Disadvantageous Y X

Notes: The first entry of option X and option Y is the dictator’s payoff, the second one is the receiver’s
payoff. In category 1, selfish decisions are characterized by conflicting interests, i.e., the dictator strictly
prefers option X and the receiver strictly prefers option Y. Category 2 describes the relative position of the
dictator. Category 3 states which option maximizes the sum of payoffs. Category 4 states which option
minimizes the absolute difference of payoffs. Stars in column 1 refer to the sub-set of games characterized by
conflicting interests, that is, games in which the dictator strictly prefers option X while the receiver strictly
prefers option Y; these games correspond to what is characterized in the analysis as the “restricted sample”.

45



Table C.2: Possible Out-of-Sample Decisions of the Al

Prediction Option X Option Y Category 1 Category 2 Category 3  Category 4
(Selfish) (Altruistic) (Slope) (Dictator’s (Highest (Lowest
Position) Efficiency)  Inequality)
1 (1030, 220) (710, 440) Selfish Advantageous X Y
2 (960, 500) (780, 160) X Pareto Advantageous X X
3 (760, 490) (440, 710) Selfish Mixed X None
4 (690, 770) (510, 430) X Pareto Mixed X None
5 (490, 760) (170, 980) Selfish Disadvantageous X X
6 (420, 1040) (240, 700) X Pareto Disadvantageous X Y

Notes: One of the decision scenarios was randomly picked for the AI’s prediction. The first entry of option
X and option Y is the dictator’s payoff, the second one is the receiver’s payoff. In category 1, selfish
decisions were characterized by conflicting interests, i.e., the dictator strictly preferred option X and the
receiver strictly preferred option Y. Category 2 describes the relative position of the dictator. Category 3
states which option maximized the sum of payoffs. Category 4 states which option minimized the absolute
difference of payoffs.

Table C.3: Summary Statistics, by Treatment

Treatments Baseline  Externality  Offspring  Offspring Switch  Baseline  Externality

Switch (stated) (stated)

% Females 60.29 41.18** 51.67 51.61 57.81 48.04 52.94
Mean age in years 24.28 26.18** 23.28 23.97 25.14 24.93 24.61
(0.60) (0.66) (0.34) (0.39) (0.61) (0.40) (0.36)

% Studies in Economics 33.82 44.12 41.67 38.71 43.75 58.82 50.98

Mean # Semesters 7.01 7.94 6.60 7.55 7.33 6.87 7.29
(0.42) (0.57) (0.41) (0.54) (0.41) (0.45) (0.99)

Mean grade 1.96 2.06 1.97 1.88 1.97 1.99 2.05
(0.08) (0.07) (0.07) (0.07) (0.07) (0.05) (0.06)

Mean expenses 1.41 1.53 1.47 1.58 1.47 1.63 1.63
(0.07) (0.08) (0.08) (0.08) (0.08) (0.07) (0.07)

N 68 68 60 62 64 102 102

Notes: The table displays summary statistics on the participants’ sociodemographic characteristics, by
treatment. Standard errors of means are in parentheses. Grade refers to the German Abitur grade and
ranges from 1.0 (best) to 6.0 (worst). Expenses are on a weekly basis and coded by 1 (less than 100 Euros),
2 (between 101 and 200 Euros), and 3 (more than 200 Euros). The tests reported are based on comparisons
with the Baseline condition for treatments Externality, Offspring, Offspring Switch, and Switch, and with
the Baseline (stated) condition for Externality (stated). These tests are Fisher’s exact tests for all the
variables, except age, grade and semester, for which we use t-tests. ** p < 0.05.
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Table C.4: Relative Frequency of Choices of the Selfish Option X, by Treatment and Relative Position of
the Dictator

Treatments # Obs. Option X p—values Option X p—values
[Advantageous| |Disadvantageous]|
: 57.94% 79.42%
Baseline 34 (0.0417) > ) s (0.0273) > 0816
. 61.18% ' 78.53% ’
Externality 34 (0.0407) > 005 (0.0261) > 056
: 59.00% ' 81.00% ’
Offspring 30 (0.0399) > o ois (0.0188) > 0 000
. . 46.77% ' 67.42%
Offspring Switch 31 (0.0243) 0416 (0.0266) 0015
Switch 39 50.00% ’ 75.00%
(0.0308) > 0.185 (0.0258) > 0.246
. 57.94% ' 79.42%
Baseline 34 (0.0417) (0.0273)
Treatments # Obs. Option X  p—walues
[Mixed]
Baseline 34 (%305335?)
- % > 1.000
Externality 34 (03052386?)
79.00% > 0177
Offspring 30 (0'62770)
1.94% > 0.000
Offspring Switch 31 (%0%290)
66.56% > 0.227
. - . 0
Switch 32 (0.0300)
o > 0.141
Baseline 34 (7030533550)

Notes: The table reports the relative frequency of the choice of option X, by treatment and according to
the relative position of the dictator in the game (advantageous, disadvantageous, or mixed), with standard
errors of means in parentheses. One observation corresponds to one dictator. p-values refer to two-sided
t-tests for differences in means. The Baseline appears twice to report comparisons with both Externality
and Switch treatments.
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Table C.5: Relative Frequency of Choices of the Selfish Option X, by Treatment and Efficiency

Treatments # Obs. Option X p-values Option X p—values
[X efficient| [Y efficient]

. 96.32% 48.63%

Baseline 34 (0.0101) (0.0502)
95.10% > 0:200 19.61% > 0599

. .10% 61%

Externality 34 (0.0150) (0.0526)
91.94% > 022 5644 > 0500

. . (o) . 0

Offspring 30 (0.0228) (0.0376)
95.70% > 0156 96889 > 0000

Offspring Switch 31 (0.[')2290) (0,(.)3440)
92.45% > 0.287 38.33% > 0.033

. .45% .33%

Switch 32 (0.0268) (0.0395)
96.32% > 0171 48.63% > 0-115

. . 0 . 0

Baseline 34 (0.0101) (0.0502)

Notes: The table reports the relative frequency of the choice of option X, by treatment and according to
the efficiency of the option in the game, with standard errors of means in parentheses. Efficiency refers
to the sum of payoffs. One observation corresponds to one dictator. p-values refer to two-sided t-tests for
differences in means. The Baseline appears twice to report comparisons with both Externality and Switch
treatments.

Table C.6: Relative Frequency of Choices of the Selfish Option X, by Treatment and Relative Inequality

Treatments # Obs. Option X  p—walues Option X  p-wvalues
[X fairer] [Y fairer]
Baseline 34 79.711% 57.65%
(0.0272) > 0.940 (0.0420) > 0.656
. 79.41% ’ 60.29% ’
Externality 34 (0.0277) > 015 (0.0417) > o660
o 82.33% ’ 57.67%
Offspring 30 (0.0213) > voop (0044 > o026
: : 68.06% ’ 46.13%
Offspring Switch 31 (0.0280) > 0 oos (0.0253) > 0605
. 76.88% 48.13%
Switch 32 (0.0263) o yss  (00343) .
Baseline 34 79.71% > 4 57.65% >
(0.0272) (0.0420)
Treatments # Obs. O[ption]X p-values
equal
Baseline 34 (70305335?)
1.000
. 73.53% >
Externality 34 (0.0286)
0.177
. 79.00% >
Offspring 30 (0.0277)
0.000
. . 61.94% >
Offspring Switch 31 (0.0229)
0.227
. 66.56% >
Switch 32 (0.0300)
0.141
. 73.53% > 4
Baseline 34 (0.0355)

Notes: The table reports the relative frequency of the choice of option X, by treatment and according to
whether the option is fairer than the other option or not, with standard errors of means in parentheses.
Fairness refers to the absolute difference in payoffs. One observation corresponds to one dictator. p-values
refer to two-sided t-tests for differences in means. The Baseline appears twice to report comparisons with
both Externality and Switch treatments.
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Table C.7: Probability of Choosing the Selfish Option X - Regression Analysis with Socio-Demographic
Controls

Dependent variable: Aggregate  Baseline  Externality  Offspring  Offspring Switch Switch
Share of choices of option X
Female 0.0294 0.0497 0.000833 0.0612 0.0484 0.0162
(0.0232) (0.0614) (0.0549) (0.0496) (0.0434) (0.0508)
Age 0.000379 0.0111** -0.0167* 0.00947 0.00191 -0.00907
(0.00305)  (0.00524) (0.00847) (0.0121) (0.00778) (0.00741)
# Semesters 0.00135 -0.00813 0.0152** 0.00647 -0.00280 -0.00119
(0.00321)  (0.0103)  (0.00683)  (0.00837) (0.00491) (0.00681)
Studies in Economics 0.0709*** 0.0769 0.0886 0.0752 0.0186 0.0274
(0.0245) (0.0623) (0.0580) (0.0442) (0.0488) (0.0495)
Abitur grade 0.0102 -0.0690 0.0824 0.00458 0.0121 -0.0435
(0.0214) (0.0470) (0.0516) (0.0525) (0.0416) (0.0464)
Average weekly spending 0.0363* 0.0694 0.0568 0.0368 0.0550 -0.0165
(0.0191) (0.0559) (0.0405) (0.0428) (0.0386) (0.0402)
Constant 0.540*** 0.480*** 0.718*** 0.332 0.430* 0.954***
(0.0787) (0.144) (0.204) (0.217) (0.242) (0.175)
N 161 34 34 30 31 32
R? 0.086 0.300 0.323 0.222 0.174 0.179

Notes: The table reports the estimation results from OLS regressions of the share of selfish options X on
socio-demographic measures. Standard errors are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table C.8: Probability of Choosing a Preference Type - Regression Analysis with Socio-Demographic Controls
for Whole Sample

Stated type Inequity averse Selfish Altruistic Spiteful
Sample Aggregate Aggregate  Aggregate  Aggregate
Female -0.0191 0.0189 0.00629 -0.00614
(0.104) (0.0823) (0.0809) (0.0654)
Age 0.00425 -0.0176 0.0235* -0.0101
(0.0154) (0.0122) (0.0120) (0.00968)
# Semesters 0.0104 0.00827 -0.0124 -0.00627
(0.0151) (0.0120) (0.0118) (0.00950)
Studies in Economics 0.203* -0.0124 -0.173* -0.0172
(0.114) (0.0898) (0.0882) (0.0713)
Abitur Grade -0.143 -0.00356 0.0753 0.0717
(0.0969) (0.0767) (0.0753) (0.0609)
Average weekly spending -0.0675 -0.0106 0.0631 0.0150
(0.0796) (0.0629) (0.0619) (0.0500)
Constant 0.615 0.588** -0.443 0.240
(0.373) (0.295) (0.290) (0.234)
N 102 102 102 102
R? 0.059 0.029 0.130 0.035

Notes: The table reports the estimation results from OLS regressions of the indicators to pick a certain
preference type on socio-demographic measures when pooling the Baseline condition and the Externality
treatment. Standard errors are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table C.9: Probability of Choosing a Preference Type - Regression Analysis with Socio-Demographic Controls
Separate by Treatment

Stated type Inequity averse Selfish Altruistic Spiteful
Sample Baseline Baseline Baseline Baseline
Female 0.0620 -0.217* 0.205** -0.0506
(0.156) (0.119) (0.0845) (0.103)
Age 0.00540 -0.0121 0.00960 -0.00295
(0.0216) (0.0165) (0.0117) (0.0143)
# Semesters 0.0113 0.0179 -0.0165 -0.0128
(0.0236) (0.0180) (0.0128) (0.0156)
Studies in Economics 0.245 -0.0646 -0.151 -0.0292
(0.166) (0.126) (0.0899) (0.110)
Abitur Grade -0.113 0.0112 -0.0325 0.135
(0.158) (0.120) (0.0854) (0.104)
Average weekly spending -0.0533 0.000381 0.00369 0.0493
(0.123) (0.0935) (0.0665) (0.0814)
Constant 0.527 0.469 0.0408 -0.0370
(0.515) (0.392) (0.279) (0.341)
N 51 51 51 51
R? 0.058 0.105 0.256 0.051
Stated type Inequity averse Selfish Altruistic Spiteful
Sample Externality Externality  Externality  Externality
Female -0.0805 0.216* -0.143 0.00683
(0.150) (0.118) (0.130) (0.0893)
Age -0.00530 -0.0177 0.0493** -0.0263*
(0.0246) (0.0195) (0.0213) (0.0147)
# Semesters 0.0115 0.00462 -0.0213 0.00520
(0.0218) (0.0172) (0.0188) (0.0130)
Studies in Economics 0.115 0.0211 -0.147 0.0107
(0.167) (0.132) (0.144) (0.0993)
Abitur Grade -0.133 -0.0275 0.126 0.0348
(0.134) (0.106) (0.116) (0.0802)
Average weekly spending -0.0732 0.0119 0.0672 -0.00598
(0.115) (0.0909) (0.0995) (0.0685)
Constant 0.817 0.516 -0.970* 0.637*
(0.598) (0.473) (0.518) (0.357)
N 51 51 51 51
R? 0.052 0.104 0.214 0.092

Notes: The table reports the estimation results from OLS regressions of the indicators to pick a certain
preference type on socio-demographic measures when separating the Baseline condition from the Externality
treatment. Standard errors are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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D Appendix Figures
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Figure D.1: Distribution of the Shares of Selfish Choices by the Dictators, by Treatment

Notes: The figure displays the distribution of the shares of choices of the selfish option X by the dictators
in the 30 periods of the game, by treatment.

o1



Restricted Sample

Baseline Externality Offspring
L o L
~ A ~
o o '
= uw (=3¢ [=HTs]
27 2 27
I3 15 o
8. g 8 |
£ = | || £ =
" I " I I "
I 2 o hillll ol
o 111 InRsnm o in imn o i i
T T T T T T T T T T T T T T T T T T
0 2 4 6 8 1 0 2 A4 6 8 1 0 2 4 6 8 1
Share of Option X Share of Option X Share of Option X
Offspring Switch Switch
[Tp] L
™7 (2"
o o 4
[='] [ty ]
=Rl 2=
o 15
o _ | g—
3 ‘ || 3
wy w
o] mil o |
T T T T T T T T T T T T
0 2 4 6 8 1 0 2 4 & & 1

‘Share of Option X Share of Option X
Figure D.2: Distribution of the Shares of Selfish Choices by the Dictators, by Treatment (Restricted Sample)

Notes: The figure displays the distribution of the shares of choices of the selfish option X by the dictators
in the sub-set of games characterized by conflicting interests (that is, games in which the dictator strictly
prefers option X while the receiver strictly prefers option Y), by treatment. These games correspond to
what is characterized in the analysis as the “restricted sample”.
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