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Stability analysis of an industrial blade accounting for a blade-tip/casing
nonlinear interface
Y. Colaïtis1, A. Batailly1

Abstract
This paper investigates the local stability analysis of periodic solutions corresponding to the nonlinear vibration response
of an industrial compressor blade, NASA rotor 37, on which are applied different types of nonlinearities. These solutions
are obtained using a harmonic balance method-based approach presented in a previous paper. It accounts for unilateral
contact and dry friction of the rotating blade against a rigid casing through a regularized penalty law. A Lanczos
filtering technique is also employed to mitigate spurious oscillations related to the Gibbs phenomenon thus enhancing
the robustness of the solver. In addition, a component mode synthesis technique is used to reduce the dimension of
the numerical model. Stability assessment of the computed solutions relies on Floquet theory. It is performed through
the computation of the monodromy matrix as well as Hill’s method. Both methodologies are applied and thoroughly
compared as the severity of the nonlinearity is gradually increased from a cubic spring to 3D contact conditions on a
deformed casing. While the presented results underline the applicability of both stability assessment methodologies for
all types of nonlinearities, they also put forward the much higher computational effort required when computing the
monodromy matrix. Indeed, it is shown that Hill’s method yields converged results for significantly lower values of both
the number of retained harmonics and the considered number of time steps thus making it a far more efficient method
when dealing with industrial models. It is also underlined that the presented results are in excellent agreement with
reference solution points obtained with time domain solution methods. Specific implementation tweaks that were found
to be of critical importance in order to efficiently assess the stability of computed solutions are also detailed in order to
provide a comprehensive view of the challenges inherent to such numerical developments.

Keywords
harmonic balance method; blade-tip/casing contacts; rotor/stator interaction; Floquet theory; Hill’s method; stability
analysis
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Analyse de stabilité d’une aube industrielle impliquant une interface
non-linéaire de type aube/carter
Y. Colaïtis1, A. Batailly1

Résumé
Cet article porte sur l’analyse de la stabilité locale de solutions périodiques associées à la réponse vibratoire non-linéaire
d’une aube de compresseur industriel, le rotor 37 de la NASA, sur lesquelles sont appliquées différents types de non-
linéarités. Ces solutions sont obtenues en utilisant une approche basée sur la méthode de l’équilibrage harmonique
présentée dans un article précédent. Elle tient compte du contact unilatéral et du frottement sec de l’aube en rotation
avec un carter rigide par le biais d’une loi de pénalité régularisée. Une technique de filtrage de Lanczos y est également
utilisée afin d’atténuer les oscillations parasites liées au phénomène de Gibbs, ce qui améliore la robustesse du solveur.
En outre, une technique de réduction modale est utilisée pour réduire la dimension du modèle numérique considéré.
L’évaluation de la stabilité des solutions calculées repose sur la théorie de Floquet. Elle est effectuée par le calcul de
la matrice de monodromie ainsi que par la méthode de Hill. Les deux méthodologies sont appliquées et comparées de
manière approfondie lorsque la sévérité de la non-linéarité est progressivement augmentée de ressorts cubiques à des
conditions de contact 3D sur un carter déformé. Si les résultats présentés soulignent l’applicabilité des deux méthodologies
d’évaluation de la stabilité pour tous les types de non-linéarités, ils mettent également en avant l’effort de calcul beaucoup
plus important requis lors du calcul de la matrice de monodromie. En effet, il est démontré que la méthode de Hill
donne des résultats convergents pour des valeurs significativement plus faibles du nombre d’harmoniques retenus et du
nombre de pas de temps considérés, ce qui en fait une méthode beaucoup plus efficace pour les modèles industriels. Il est
également souligné que les résultats présentés font preuve d’un excellent accord avec les solutions de référence obtenues à
l’aide d’un algorithme d’intégration temporelle. Les ajustements spécifiques de mise en œuvre qui se sont avérés d’une
importance critique pour évaluer efficacement la stabilité des solutions calculées sont également détaillés afin de fournir
une vue d’ensemble des défis inhérents à de tels développements numériques.

Mots-clés
méthode de l’équilibrage harmonique ; contacts aube/carter ; interaction rotor/stator ; théorie de Floquet ; méthode de
Hill ; analyse de stabilité
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1 Introduction
The nonlinear vibration response of aircraft engine blades has been the focus of a variety of research investigations
over the past decades [1, 2]. One of the reason why this is still a very active field of research relates to the fact that,
contrary to other complex mechanical systems, aircraft engine blades feature several nonlinear interfaces. Among
these interfaces, particular attention has been paid to the blade/disk friction interface [2], the blade/blade contact
interface [3] and the blade-tip/casing contact interface [4, 5]. In addition, in certain stages of an engine, blades’
significant amplitudes of vibration may also require to account for geometric nonlinearities [6] thus making these
components very challenging to analyze in a comprehensive manner.

Because of the very high relative speeds between stator and rotor components and due to very small operating
clearances, the blade-tip/casing contact interface induces specific numerical challenges and requires a very accurate
contact treatment procedure. As a consequence, nonlinear vibrations resulting from blade-tip/casing contacts
have mostly been investigated using time domain solution methods [4, 7]. To the contrary, frequency methods
have been shown to be very accurate and efficient to predict a blade’s dynamics accounting for blade/disk friction
phenomena [2]. Besides of the fact that this compartmentalization is making it impossible to carry out efficient
multi-nonlinear analyses, designers are still facing a roadblock since time domain solution methods are ill-suited to
get a qualitative understanding of blade’s dynamics undergoing blade-tip/casing contacts.

In this context, the recent development of a harmonic balance method-based approach [8, 9]—referred to as
RL-HBM (Regularized-Lanczos Harmonic Balance Method) in the remainder—for the analysis of blade-tip/casing
contact interactions is promising. While it may allow to efficiently combine distinct nonlinear interfaces within a
homogeneous solution framework, the RL-HBM also opens new avenues to provide designers with a much needed
qualitative understanding of blade-tip/casing contacts. Results obtained with the RL-HBM for industrial blade
models are in agreement with those obtained with time integration [8]. They also advantageously yield an accurate
estimate of a blade’s actual nonlinear resonance as it impacts the surrounding casing [9].

The assessment of the local stability of solutions computed with the RL-HBM has not been performed yet.
More generally, stability analyses of solutions computed by frequency methods on large industrial models remain
a significant computational challenge [10, 11] and has been the focal point of recent research works [12, 13]. In
this article, the local stability of solutions computed with the RL-HBM is assessed using the Floquet theory.
Two methodologies are employed: one relying on the computation of the monodromy matrix [14, 15] and Hill’s
method [16, 12]. Presented results are numerically verified by confronting both methodologies for different types
of nonlinearities. The relevance of the obtained results is also assessed through a direct comparison with results
obtained with time domain solution methods where apparent sudden changes in the blade’s vibration response were
previously reported [9] but never explained.

The first section of the paper recalls the key steps of the RL-HBM. In the second section, the theory of stability
analysis is briefly mentioned for the sake of completeness before the industrial blade model be presented in the third
section. In the fourth section, four nonlinear configurations, featuring an increasingly complex numerical treatment
are presented on the industrial blade model: from cubic springs along the blade-tip to the enforcement of unilateral
contact constraints with a deformed rigid casing and the inclusion of centrifugal effects.

2 Regularized-Lanczos harmonic balance
Further details on the numerical aspects introduced throughout this section may be found in references [17, 9]. The
normalized equation of motion of a n-dof nonlinear mechanical system reads:

α

β2 Mẍ(t) + α

β
Cẋ(t) + αKx(t) + fnl(x(t), ẋ(t), ω) = fext(t, ω) (1)

where M, C, K are the mass, damping and stiffness matrices, x is the displacement vector, fnl is the nonlinear
forces and fext corresponds to the periodic excitation forces of angular frequency ω. The overdots refer to derivatives
with respect to time t. Scaling factors α and β are used to enhance floating-point accuracy during numerical
computations by normalizing the different quantities in both space and time so that ||αx|| ' 1 and ω/β ' 1. In
the case of blade-tip/casing interactions, α is the average operating clearance and β is the middle of the angular
frequency range of interest.
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2.1 The Harmonic Balance Method
The HBM relies on the assumption that the solutions x(t) of Eq. (1) may be expressed as H-truncated Fourier
series:

x(t) ' 1
2a0 +

H∑
j=1

[aj cos (jωt) + bj sin (jωt)] (2)

where vectorial quantities aj and bj are the unknown real Fourier coefficients. Each of these coefficients are defined
as follows: {

aj =
[
a1
j , a

2
j , . . . , a

n
j

]
for j ∈ J0..HK

bj =
[
b1
j , b

2
j , . . . , b

n
j

]
for j ∈ J1 ..HK

(3)

The same spectral decomposition is also applied to forces fnl and fext. For the sake of clarity, all Fourier coefficients
are gathered in n(2H + 1)-dimensional vectors resulting in the following frequency-domain variables:

x̃ = [a0, a1, b1, . . . , aH , bH ]>

f̃nl =
[
anl

0 , a
nl
1 , b

nl
1 , . . . , a

nl
H , b

nl
H

]>
f̃ext =

[
aext

0 , aext
1 , bext

1 , . . . , aext
H , bext

H

]> (4)

After substituting the displacement vector x(t) of Eq. (2), its derivatives ẋ(t) and ẍ(t) as well as forces into Eq. (1),
a Fourier-Galerkin projection [11] yields a set of n(2H + 1) nonlinear algebraic equations in the frequency domain:

R(x̃, ω) = Z(ω)x̃+ f̃nl(x̃)− f̃ext(ω) = 0 (5)

where Z(ω) is the dynamic stiffness matrix, a block diagonal matrix accounting for the linear dynamics of the
response of the system and is defined as follows:

Z(ω) = ω2∇2 ⊗ α

β2 M + ω∇⊗ α

β
C + I2H+1 ⊗ αK (6)

where ⊗ denotes the Kronecker product and I2H+1 is the identity matrix of size 2H + 1. The matrix ∇ is a
frequency-domain differential operator, it is defined as:

∇ = diagblock(0, ∇1, . . . , ∇j , . . . , ∇H) and ∇2 = ∇∇ (7)

with the elementary first order derivative matrix ∇j :

∇j = j

[
0 1
−1 0

]
for j ∈ J1..HK (8)

Solutions of Eq. (5) may be obtained using a Newton-Raphson algorithm. Starting from an adequate initial
guess x̃0, a converged solution is obtained iteratively:

x̃k+1 = x̃k + ∆x̃k with Rk
,x̃∆x̃k = −Rk (9)

where Rk = R(x̃k, ω) is the residual at iteration k and Rk
,x̃ is the Jacobian matrix of the system with respect to x̃k:

Rk
,x̃ = ∂R

∂x̃
(x̃k, ω) = Z(ω) + f̃nl,x̃ = Z(ω) + ∂f̃nl(x̃k)

∂x̃
(10)

Iterations end based on a relative error convergence criterion. In the following, quantities relating to a converged
solution are highlighted by ( ? ).
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2.2 Path following: continuation
Nonlinear mechanical systems’ dynamical responses often exhibit amplitude jumps during frequency sweeps. These
phenomena indicate that coexisting stable solutions may exist for a given angular frequency ω. By coupling the
HBM to a continuation technique [18], it becomes well-suited for the prediction of such coexisting solutions as it
allows Newton’s solver to overcome limit or turning points where the Jacobian matrix R,x̃ is singular. Besides,
continuation also greatly increases the robustness of Newton’s solver by providing it well-chosen initial guesses.
In this paper, a commonly used predictor-corrector strategy [18, 19] is considered: the arc-length continuation
technique.

2.3 Computation of nonlinear contact forces
Alternating Frequency/Time scheme
In order to evaluate the residual in Eq. (5), it is necessary to determine f̃nl. However, as it is generally not possible
to have an explicit analytical expression of the nonlinear forces in Fourier domain, the Alternating Frequency/Time
(AFT) scheme [20] is often used. It consists in using an inverse Discrete Fourier Transform (DFT) to translate
the Fourier coefficients x̃ into displacements x and velocities ẋ in the time domain—using N time steps over one
period—in order to evaluate nonlinear forces fnl(x, ẋ) and their partial derivatives fnl,x, fnl,ẋ and fnl,ω. Using a
DFT, the latter may then be projected back in the frequency domain to obtain f̃nl, f̃nl,x̃ and f̃nl,ω. The inverse and
forward DFT may be conveniently written as linear operators so that, the rectangular (nN ×n(2H + 1))-dimensional
inverse DFT matrix reads:

Γ =

 In ⊗


1/2
...

1/2

 In ⊗


cos (ωt0)

...

cos (ωtN−1)

 In ⊗


sin (ωt0)

...

sin (ωtN−1)

 . . .

. . . In ⊗


cos (Hωt0)

...

cos (HωtN−1)

 In ⊗


sin (Hωt0)

...

sin (HωtN−1)


 (11)

and the forward DFT matrix reads:

Γ−1 = 2
N



In⊗ [1 . . . 1]
In⊗ [cos (ωt0) . . . cos (ωtN−1)]
In⊗ [sin (ωt0) . . . sin (ωtN−1)]

...

In⊗ [cos (Hωt0) . . . cos (HωtN−1)]
In⊗ [sin (Hωt0) . . . sin (HωtN−1)]


(12)

Semi-analytical computation of derivatives
The accuracy and the efficiency of the AFT procedure highly depend on N . While the Nyquist-Shanon criterion
gives a theoretical lower bound value such as N ≥ 2H + 1 to prevent aliasing errors, the AFT scheme often requires
a much larger number of time samples when considering nonlinearities such as structural contact [19]. The numerical
accuracy of derivatives f̃nl,x̃ and f̃nl,ω is then critical to ensure the robustness of the iterative solver [14]. The
linearity of DFT operators Γ and Γ−1 along with the chain rule provide an efficient general analytic formulation of
derivatives [2]:

∂f̃nl(x̃)
∂x̃

= ∂f̃nl

∂fnl

∂fnl

∂x

∂x

∂x̃
+ ∂f̃nl

∂fnl

∂fnl

∂ẋ

∂ẋ

∂x̃

= Γ−1 ∂f̂nl

∂x
Γ + Γ−1 ∂f̂nl

∂ẋ
Γ(ω∇⊗ In)

(13)
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where the (nN × nN) matrices of partial derivatives of fnl evaluated at N time steps1 are defined by:

∂f̂nl

∂x
= α


diag

(
∂f1

∂x1

)
. . . diag

(
∂f1

∂xn

)
...

. . .
...

diag
(
∂fn
∂x1

)
. . . diag

(
∂fn
∂xn

)


∂f̂nl

∂ẋ
= α

β


diag

(
∂f1

∂ẋ1

)
. . . diag

(
∂f1

∂ẋn

)
...

. . .
...

diag
(
∂fn
∂ẋ1

)
. . . diag

(
∂fn
∂ẋn

)


(14)

and where:

∂f̃nl(x̃, ω)
∂ω

= ∂f̃nl

∂fnl
β
∂fnl

∂ω
+ ∂f̃nl

∂fnl

∂fnl

∂ẋ

∂ẋ

∂ω

= Γ−1β
∂fnl

∂ω
+ Γ−1 ∂f̂nl

∂ẋ
Γ(∇⊗ In)x̃

(15)

The AFT scheme usually relies on Fast Fourier Transforms (FFT). Using real input FFT algorithms that exploit the
spectrum’s symmetry of real-valued sequences increases numerical performances. It also significantly enhances the
accuracy of the Jacobian matrix ∂f̃nl/∂x̃.

2.4 Nonlinear condensation
When considering large industrial systems featuring nonlinear interfaces, it is common practice to distinguish
linear and nonlinear dof. This yields a reorganization [21] of Eq. (5) which leads to significant gains in terms of
computational efficiency.

2.5 Regularization of contact forces
Blade-tip/casing contact forces are generally expressed in a cylindrical coordinate system (r, θ, z). Their computation
follow the evaluation of the gap function g(t) defined as the signed distance between contact nodes and the casing:

gj,i = x3j−2,i − dj,i for j ∈ J1 ..nbK, i ∈ J0..N − 1K (16)

where x3j−2 is the radial displacement of the j-th contact node, dj,i the radial position of the casing and nb is the
number of contact nodes so that:

g = [g1, . . . , gnb ]>

= [g1,0, . . . , g1,N−1, . . . , gnb,0, . . . , gnb,N−1]>
(17)

In the RL-HBM framework, radial components of the contact forces are evaluated by means of a regularized penalty
law:

f3j−2,i = κ
gj,i
2 +

√(
κ
gj,i
2

)2
+ γ2 (18)

where κ ∈ R+ is the penalty coefficient and γ ∈ R+ is a smoothing coefficient. To better visualize the impact of
such a regularization, regularized normal force-displacement relationship is compared to the classically used contact
laws in Fig. 1.

1These may be seen as Jacobian matrices diagonally extended to contain all evaluated time samples over one period of motion.
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Figure 1 – Contact laws: penalty ( ), regularized penalty ( ) and unilateral contact ( ) as functions of one
of the radial displacement components.

Taking dry friction into account through the Coulomb law implies that the contact force has a circumferential
component:

f3j−1,i = µ
ẋ3j−1,i + rjω√

(ẋ3j−1,i + rjω)2 + ẋ2
3j,i

f3j−2,i = µ3j−1,if3j−2,i (19)

as well as an axial component:

f3j,i = µ
ẋ3j,i√

(ẋ3j−1,i + rjω)2 + ẋ2
3j,i

f3j−2,i = µ3j,if3j−2,i (20)

where µ is the friction coefficient with
√
µ2

3j−1,i + µ2
3j,i = µ, and ẋ3j−1,i, ẋ3j,i and rj are respectively the tangential

velocity, the axial velocity and the radial position of the j-th contact node. Because of the very high relative speed
between the blade-tip and the inner surface of the casing, permanent sliding is assumed at all time.

2.6 Lanczos filtering
Filtering of the contact forces is performed through a Lanczos σ-approximation. This is key to mitigate spurious
oscillations associated to the Gibbs phenomenon and reduces aliasing errors induced by the AFT scheme. Filtering is
achieved by directly applying some decaying multiplicative factors in Fourier domain to the contact forces obtained
at the end of an AFT cycle, so that:

fnl(x, ẋ, ω) ' 1
2a

nl
0 +

H∑
j=1

σj
[
anl
j cos (jωt) + bnl

j sin (jωt)
]

(21)

where:

σj = sinc(Xj)m with Xj =
{

0 for j < 1
j

H+1 for 1 ≤ j ≤ H
(22)

where m ∈ R+ is the smoothing exponent. For m = 0, contact forces are not filtered.

3 Stability analysis
The stability analysis of computed solutions, based on Floquet theory, and the detection of bifurcations [22] are key
to obtain a qualitative understanding of blade-tip/casing interactions.
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mailto:yann.colaitis@polymtl.ca


Stability analysis of an industrial blade accounting for a blade-tip/casing nonlinear interface

3.1 Time domain
In the time domain, the assessment of the stability of a solution x? relies on the computation of the monodromy
matrixM [14, 15]. ComputingM is numerically challenging as a compromise must be found between a high level
of accuracy that is needed for relevant results and computational efficiency. In this paper, we use the 2n-pass
algorithm [15] in whichM is evaluated by integrating 2n times over one period T the linear system:

α

β2 Mẍ(t) + α

β

[
C + ∂f?nl

∂ẋ

∣∣∣∣
t=τi

]
ẋ(t) + β

[
K + ∂f?nl

∂x

∣∣∣∣
t=τi

]
x(t) = 0 (23)

A set of 2n linearly independent initial conditions stacked in z(k)(t0) = [x(t0), ẋ(t0)]> with k ∈ J1 ..2nK at t0 = 0
are considered. In practice, these initial conditions correspond to the columns of the identity matrix I2n. The state
space Jacobian matrices of the nonlinear forces at each instant are obtained as a by-product of the AFT cycle
associated to the converged solution. The monodromy matrix may thus be constructed as a concatenation of the
resulting state vectors obtained at tN = T :

M =
[
z(1)(T ), . . . , z(k)(T ), . . . , z(2n)(T )

]
(24)

The eigenvalues ofM are called the Floquet multipliers, denoted ρm in the following. They are unique and linked
to the Floquet exponents αm by the following relations:

ρm = eαmT ⇔ αm = 1
T

ln(|ρm|) + i arg(ρm) + 2kπ
T

, k ∈ Z (25)

For a given x?, should one of the Floquet multipliers have a modulus greater than one, or, equivalently, one of
the Floquet exponents have a positive real part, then the solution would be unstable. Otherwise, it is considered
stable. The implicit Newmark scheme of average acceleration is used to integrate Eq. (23) as it is advantageously
unconditionally stable for linear systems. This method is referred to as the Newmark 2n-pass method in the
following.

3.2 Frequency domain
In order to evaluate the stability of a periodic solution in the frequency domain, the same procedure as described
in [18, 16] is applied to the equation of motion. It yields the following quadratic eigenvalue problem:

(R?
,x̃ + ∆1s+ ∆2s

2)q = 0 (26)

where (s,q) are the complex eigensolutions and where the terms ∆1 and ∆2 are given by:

∆1 = 2ω?∇⊗ α

β2 M + I2H+1 ⊗
α

β
C + Ĉ with Ĉ = Γ−1 ∂f̂

?
nl

∂ẋ
Γ

∆2 = I2H+1 ⊗
α

β2 M
(27)

where ∇ is given by Eq. (7). In the case where nonlinear forces explicitly depend on velocities, Ĉ has to be evaluated
separately [12, 13]. In order to be solved, Eq. (26) must be recast into an equivalent generalized eigenvalue problem
of double size using a first companion form linearization:[

0nH
InH

−R?
,x̃ −∆1

]
q̄ = s

[
InH

0nH

0nH
∆2

]
q̄ with q̄ =

[
q
sq

]
(28)

or, in a more compact eigendecomposition form:

(H− s I2nH
) q̄ = 0 with H =

[
0nH

InH

−∆−1
2 R?

,x̃ −∆−1
2 ∆1

]
(29)
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Solving Eq. (29) yields the Hill’s coefficients s defined as the 2n(2H + 1) complex eigenvalues of H.
In theory, the 2n(2H + 1) eigenvalues are clustered in 2H + 1 families of 2n eigenvalues having the same real

parts and imaginary parts shifted by integer multiples of ω. However, this structure is broken by the harmonic
truncation. That is why, among the full set of coefficients s, there only exists 2n eigenvalues that approximate
the Floquet exponents αm. The selection of these 2n eigenvalues relies on specific sorting algorithms that may be
divided in three categories: (1) eigenvalue sorting [23, 16], (2) spectral primitive cell sorting [24] (see theorem 3),
and (3) eigenvector sorting [25, 10]. For high dimension mechanical systems, it was found that Hill’s spectrum will
not necessarily be sufficiently converged to successfully apply the spectral primitive cell sorting algorithm. Also,
eigenvector sorting has not been considered as it should be applied on the full raw Hill’s spectrum [10]. Hence, only
the eigenvalue sorting algorithm is considered in the remainder. For the sake of numerical efficiency, only a subset of
Hill’s spectrum—the 4n eigenvalues with lowest magnitudes—is computed.

4 NASA rotor 37
Rotor 37 is a 36-blade transonic axial compressor stage that was designed at NASA’s Lewis research center in
the late 1970s [26, 27]. It is an open geometry extensively used in aerodynamic investigations, and served as a
benchmark in the field of Computed Fluid Dynamics. More recently, it has been employed as an reference test case
for the analysis of blade-tip/casing contact interactions in both time [7] and frequency [8, 9] domains.

The numerical model used in this paper is identical to the one used in previous works [8, 9]. Rotor 37 is made of
a nickel-based alloy, the mechanical properties of a 18-Ni 200-maraging alloy are here considered for the numerical
simulations: Young’s modulus E = 180 GPa, density ρ = 8000 kg·m−3 and Poisson’s ratio ν = 0.3. The 3D finite
element mesh of the blade comprises 1800 quadratic hexahedral elements with a total of 5745 nodes. The root of the
blade is clamped. For numerical efficiency reasons, a reduced-order model is computed with the Craig-Bampton
method [28]. The nonlinear interface features nb = 8 nodes evenly spaced along the blade-tip. The resulting reduced
order model contains 24 physical dof and η = 10 modal dof. Convergence of the blade eigenfrequencies for the first
five free vibration modes with respect to the mesh discretization and the reduction parameter η has been checked
but is not detailed here for the sake of brevity. Modal damping is assumed with a coefficient ξ1−2 = 1 · 10−3 for the
first bending and torsional modes, and ξ3+ = 5 · 10−3 for all other modes.

5 Numerical results
In total, four distinct configurations are considered in this section. The whole methodology—including the application
of the RL-HBM and stability analyses—is first applied with (1) cubic springs in the tangential direction for each
contact node. The severity of the nonlinearity is then progressively increased considering (2) unilateral contact
constraints on a perfectly circular rigid casing, (3) unilateral contact constraints on a deformed rigid casing, and
(4) unilateral contact constraints on a deformed rigid casing accounting for centrifugal effects. For the first two
configurations only, an external forcing is imposed on the blade.

5.1 Cubic nonlinearity
While the blade model is different, the configuration of interest is inspired from the literature [12]. It is used as
a test case to verify the implementation of the stability assessment algorithms. Nonlinear smooth cubic springs
are considered in the tangential direction of each node in the blade’s contact interface, see Fig. 2. Nonlinear forces
components are expressed as:

f3j−1,i = αθ x
3
j−1,i for j ∈ J1..nbK, i ∈ J0..N − 1K (30)

with αθ = 1 · 109 N·m−3. An external forcing related along the blade’s first bending mode (ω1B = 5272.3 rad·s−1) is
considered:

fext(t, ω) = f̄extMφ1B cos(ωt) (31)
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Figure 2 – Configuration with a cubic nonlinearity, trajectory of the j-th contact node ( ).

where f̄ext = 125 N is the forcing amplitude and φ1B is the eigenvector corresponding to the first bending mode.
The Nonlinear Frequency Response Curve (NFRC) related to the blade’s leading edge radial displacements r1,

obtained for H = 40 and N = 2048 is depicted in Fig. 3a.

5000 l1B 5400 5800 6200
0

1

l [rad·s−1]

||r
1(C
)||
∞

[×
10
−3

m
]

(a) Linear forced response function ( ) and nonlinear frequency
response curve, stable ( ) and unstable ( ) solutions

0 T/2

−1

0

1

norm. time

r 1
(t
)

[×
10

−
3

m
]

(b) Time response at the nonlinear resonance ( )
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Figure 3 – Blade response with a cubic nonlinearity, comparison of stability assessment in time and frequency domains
for a cubic nonlinearity.
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The time response corresponding to the nonlinear resonance ( ) is plotted in Fig. 3b. Stability assessment is
performed in both time and frequency domains. The real part of the 2n = 68 Floquet exponents resulting from the
monodromy matrix and selected Hill coefficients as functions of the angular frequency ω are shown in Fig. 3c.

As a reminder, a solution is assumed unstable when one of the associated Floquet multipliers has a modulus
greater than one or, equivalently, when the real part of one of the Floquet exponents is positive, which corresponds
to the hatched area in Fig. 3c ( ). With respect to the different types of bifurcations, these may be assessed in the
complex plane. A zoom of the latter around the value 1 + 0i is depicted in Fig. 3d.

Limit points ( ) (LP), which are detected when a Floquet exponent leaves the unit circle through the point
1 + 0i, are static bifurcations corresponding to a singularity of the Jacobian R?

,x̃. They are characterized by a
vertical tangent on the NFRC. In addition, two Neimark-Sacker ( ) (NS) bifurcations, which are identified when a
pair of Floquet multipliers crosses the unit circle as complex conjugates, marks a new emanating branch of either
quasiperiodic or periodic solutions depending on the absolute value of the imaginary part of the corresponding
exponents.
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Figure 4 – Convergence of the Newmark 2n-pass method and Hill’s method.

Looking at both Figs. 3c and 3d, there is a perfect agreement between the results of the stability analysis
conducted with the monodromy matrix and Hill’s method. This result underlines that for cubic nonlinearities, both
methodologies may be employed in a computationally efficient manner.

In order to appreciate the influence of the values of H and N , on the results obtained with the Newmark 2n-pass
method and Hill’s method, results obtained for several values of these parameters are plotted in Fig. 4. For the sake
of brevity, convergence of each method is shown with respect to the numerical parameter to which it was found to
be most sensitive: N for the Newmark 2n-pass method, and H for Hill’s method. A close look at each set of results
underlines that H = 10 already yields converged results for Hill’s method while at least N = 1024 time steps are
required to reach convergence with the Newmark 2n-pass method. For both methods, it is found that results are
perfectly converged for N = 1024 and H = 20, they cannot be distinguished from those obtained with for N = 2048
and H = 40.

It was observed, yet not shown here for the sake of conciseness, that Hill’s method appears less sensitive to N
than the Newmark 2n-pass method and converges faster [25].

Overall, there is an excellent agreement between the Floquet exponents computed with the Newmark 2n-pass
method and the ones obtained with Hill’s method.

5.2 Contact on a circular casing
In this second test case, a perfectly circular rigid casing is considered around the blade. From a numerical standpoint,
this circular casing is implemented as a fixed gap facing the blade-tip as it rotates. Consequently, the relative
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distance coordinates dj,i from Eq. (16) thus read:

dj,i = cj (32)

where cj represents the nominal blade-tip/casing clearance in front of the j-th contact node, see Fig. 5. It is here
assumed that cj = 5 ·10−4 m for all contact nodes. Contact is initiated by means of an external forcing applied on the
blade, similarly to Eq. (31) with f̄ext = 150 N. The frequency range of excitation surrounds the first eigenfrequency
ω1B of the blade.

For this configuration as well as the other ones considered in the rest of the paper, normal contact forces are
computed with the regularized penalty law given in Eq. (18) considering κ = 1 · 109 N·m−1 and γ = 6 · 102 N.
Coulomb friction forces are accounted for with a friction coefficient µ = 0.15 through Eqs. (19) and (20). In the end,
the dimension of the nonlinear partition corresponds to the number of nonlinear dof: 3nb = 24.

Figure 5 – Configuration with a circular casing.

The NFRC of the blade’s leading edge radial displacement r1 is depicted in Fig. 6a. The value of the associated
numerical parameters (H = 80, N = 2048 and a Lanczos filter considering m = 1) results from a convergence
analysis not detailed here for the sake of brevity. The fixed gap is indicated ( ) on the figure as it defines the
vibration amplitude for which the system becomes nonlinear. Also, the radial displacement of the leading edge over
one period close to the nonlinear resonance ( ) is plotted in Fig. 6b. One may note that there is no significant
residual penetration of the blade within the casing, thus confirming a posteriori the parameters of the regularized
contact law.

For each solution, the real part of the Floquet exponents is presented in Fig. 7, they are obtained with the
Newmark 2n-pass method and Hill’s method for several values of H and N . In comparison to the results obtained
with a cubic nonlinearity, the results pictured in Fig. 7 underline the intricacy of the blade’s dynamics as it undergoes
contact constraints. Indeed, two limit points ( ) are predicted along with four Neimark-Sacker ( ) bifurcations on
the branch of higher amplitude. In addition, these results also underline an increased numerical sensitivity of both
stability assessment methodology. In particular, one may observe that results obtained with the Newmark 2n-pass
method converge very slowly towards those of Hill’s method. While it has been checked that results obtained with
Hill’s method for H = 80 and N = 2048 are converged, the Newmark 2n-pass method requires significantly higher
values of each of these parameters to converge, thus implying a significant increase in computational complexity.

In addition, the slow convergence of the Newmark 2n-pass method prevents an accurate prediction of bifurcations
contrary to what is observed with Hill’s method. As a matter of fact, for H = 80 and N = 2048, the predicted
bifurcations (see the symbols ( ) and ( ) in Fig. 7) are in good agreement with the NFRC, see Fig. 6a.

Observations made with respect to the good numerical behaviour of Hill’s method, and its ability to provide
accurate results for small values of H and N may go against previous observations [15, 11]. Indeed, while there is a
consensus on the fact that nonsmooth nonlinearities theoretically prevent the application of Hill’s method (and more
generally the Floquet framework), the regularization of the contact law considered in the RL-HBM may explain why
Hill’s method can here be successfully applied. In addition, it is found that the numerical specificities of the RL-HBM,
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Figure 6 – Blade response with a perfectly circular casing.
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Figure 7 – Real part of Floquet exponents H,N = {40, 1024}( ); {50, 2048}( ); {80, 2048}( ), selected Hill
coefficients H,N = {80, 2048}( ).

including Lanczos filtering and the semi-analytical computation of derivatives, alleviates numerical challenges so
that Hill’s method may be applied efficiently. Finally, it has also been observed that a careful application of sorting
algorithms is essential to avoid numerical artifacts.

5.3 Contact on a deformed casing
In this third configuration, blade-tip/casing contacts are initiated by the deformation of the casing. From a numerical
standpoint, this configuration is thus significantly more sensitive than the previous one since there is no linear
solution over the considered frequency range anymore. Numerically, the deformed casing is implemented by means of
a variable obstacle position, depending on the blade angular position. Components dj,i of Eq. (16) are now evaluated
as follows [8, 9]:

dj,i = cj − (cj + pj) exp
[
−
(

(τi + θj) (mod 2π/nl)− π/nl
wl

)2
]

(33)

where, nl is the number of lobes, wl the angular width of the contact areas, θj the initial angular location of contact
node j, cj the operating clearance and pj the penetration of the casing profile with respect to the trajectory of
contact node j when the blade does not vibrate ( ). The casing is assumed to be distorted in such a way that
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there are two symmetrical privileged contact areas along its inner circumference. The following values are considered
in the remainder: nl = 2, wl = 0.15, and ∀j, cj = 5 · 10−4 m and pj = 1.25 · 10−4 m. A partial view of the considered
casing featuring one of the two lobes may be seen in Fig. 8. Finally, there is no external forcing applied on the blade:
fext(ω, t) = 0.

Figure 8 – Configuration with a deformed casing in front of the j-th boundary node ( ).

Without forcing, the excitation of the system is related to contact only which means that the pulsation ω now
relates to the blade’s angular speed. For that reason, considered values of ω are smaller than in the previous
configurations: ω ∈ [1250, 1550] rad·s−1 which includes the crossing between the blade’s first bending mode and the
fourth engine order [8].

5.3.1 Results without centrifugal effects
The NFRC of the blade’s leading edge radial displacement r1 is depicted in Fig. 9a. The value of the associated
numerical parameters remain H = 80, N = 2048 and a m = 1 Lanczos filter. In order to assess the relevance
of the obtained solutions, the NFRC obtained from a reference time domain solution method ( ) is added in the
background of the same figure2. Where the predicted solutions are stable and periodic, only very minor differences
are observed despite of the fact that time and frequency methods rely on distinct contact treatment algorithms
(Lagrange multipliers are computed in the time domain while the regularized contact law is used with the RL-HBM).
Also, the radial displacement of blade’s leading edge at the nonlinear resonance is plotted in Fig. 9b. Once again, one
may check that residual penetrations theoretically allowed by the regularized contact law are negligible. As it was
evidenced in a previous publication [9], there is an excellent agreement between the RL-HBM and time integration.

Here again, both the Newmark 2n-pass method and Hill’s method are considered for stability assessment
of the solutions. Real parts of the computed Floquet exponents and Hill’s coefficients are depicted in Fig. 10.
The bifurcations predicted by Hill’s method (symbols ( ) and ( ) in Figs. 9a, 10a and 10b) for N = 2048 and
H = 80 are consistent with the NFRC. They are also in good agreement with time integration results since the
two Neimark-Sacker bifurcations surround an area where solutions were found to feature a sophisticated frequency
content [9].

Similarly to what was observed in the previous section with a perfectly circular casing, the Newmark 2n-pass
method is found to be much more sensitive to the employed numerical parameters. For H = 80 and N = 2048,
the obtained results are not converged and do not allow for an accurate assessment of the solutions’ stability, as
evidenced by the discrepancies between Hill’s method predicted bifurcations and the location of the real part of
Floquet exponents in Fig. 10a. Contrary to the perfectly circular casing configuration, the fundamental harmonics
is here 2ω due to the fact that two symmetric contact lobes on the casing. Accordingly, the blade’s response is
essentially located on even harmonics. Since the value of H = 80 is kept identical for the circular casing and
deformed casing configurations, there is actually a reduction of the number of relevant harmonics in the present

2Maximum amplitudes resulting from time integration ( ) were evaluated on the last revolution of the blade over a total of 230
computed revolutions starting from null initial conditions and using a time step h = 10−7 s.
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Figure 9 – Blade response with a deformed casing.
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Figure 10 – Application of the 2n-pass method and Hill’s method to the deformed casing contact configuration
(H = 80, N = 2048).

configuration (40 even harmonics instead of the full 80 harmonics). It is assumed that this observation is the key to
understanding why the convergence of the 2n-pass method is even lower for the present contact configuration.

While it is not detailed here for the sake of brevity, it is also observed that the convergence of the results obtained
with Hill’s method and eigenvalue sorting is significantly slower for this contact configuration. However and contrary
to what is observed for the Newmark 2n-pass method, it is found that this slower convergence does not alter, or at
least to a lesser extent, the accuracy of the stability assessment. When considering the full spectrum of eigenvalues,
it was also numerically checked that this slower convergence was not related to the computation of an inadequate
eigenvalues’ subset. Same as for the Newmark 2n-pass method, it seems likely that this slower convergence relates
to the fact that the blade’s dynamics is dominated by even harmonics only. Still, even with a partially accurate
eigenvalue sorting, which may be seen as some Floquet exponents appear to be most likely duplicates, Hill’s method
still provides the critical exponents that feature larger real part values with a faster convergence rate than the
Newmark 2n-pass method. As a result, Hill’s method appears as a suitable alternative to obtain a qualitative
stability assessment of an industrial blade undergoing severe contact interactions.
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5.3.2 Results with centrifugal effects
Centrifugal effects are now accounted for in order to increase the fidelity of the blade model. Centrifugal effects have
two main implications: (1) the stiffness of the blade and (2) the blade-tip/casing clearance configuration become
dependent on the angular speed ω. In this work, it is assumed that centrifugal effects only yields a dependence
of the blade’s stiffness matrix on the angular speed ω. As a matter of fact, while accouting for an angular speed
dependent clearance configuration would be straightforward with the RL-HBM, it would blur the analysis of the
results and is thus neglected in this study.

When accounting for centrifugal effects over the angular speed range ω ∈ [0, ωmax], it has been shown [29] that
the blade’s stiffness matrix may be written as follows:

K(ω) = K0 + K1ω
2 + K2ω

4 (34)

where the matrices K0, K1 and K2 are linear combinations of stiffness matrices computed at ω = 0, ω = ωmax/2
and ω = ωmax. Numerically, accounting for centrifugal effects implies a larger reduction basis when building the
reduced-order model which now features n = 3× 34 = 102 dof.

The NFRC of the blade’s leading edge radial displacement r1 is depicted in Fig. 11a. Same as in the previous
sections, the employed numerical parameters, for which convergence has been reached, are H = 80 and N = 2048.
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Figure 11 – Blade response with a deformed casing with centrifugal effects.

In agreement with the stiffening of the blade, the predicted nonlinear resonance occurs for ω ' 1900 rad·s−1, far
above the value predicted in the previous section, see Fig. 9a. The corresponding time response, looking at the radial
displacement of the blade’s leading edge, is plotted in Fig. 11b. The superimposition of reference time integration
results ( ) still shows an excellent agreement with the RL-HBM. Same as for the configuration without centrifugal
stiffening, it is evidenced that the solution obtained with time integration and null initial conditions always matches
the lowest amplitude solution predicted by RL-HBM. Also, one may notice small, yet non-negligible discrepancies
between amplitudes predicted in time and frequency domains for ω ∈ [1750, 1850] rad·s−1. It is possible to confirm
that these discrepancies are related to the distinct contact laws as it has been checked (but not shown here for
brevity) that time integration with the same regularized contact law as the RL-HBM yields practically no error
between the solutions.

Stability analysis carried out with Hill’s method yields four limit points ( ) and four Neimark-Sacker bifur-
cations ( ) that are consistent with the predicted NFRC and time integration results. Results obtained by both
stability assessment methodologies are pictured in Fig. 12.

While similar trends are found, results are not perfectly identical due to the fact that a much higher number of
harmonics and time steps would be required to converge with the Newmark 2n-pass method. In agreement with
observations made with the perfectly circular casing and the deformed casing without centrifugal stiffening, it is
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Figure 12 – Application of the 2n-pass method and Hill’s method to the deformed casing contact configuration with
centrifugal effects (H = 80, N = 2048).

evidenced here again that the convergence of the Newmark 2n-pass method is significantly slower than the one
of Hill’s method, thus making it a less suitable option for the stability analysis of industrial blades undergoing
unilateral contact constraints.

6 Conclusion
Building on the recent development of the RL-HBM, this paper deals with the stability analysis of an industrial
compressor blade undergoing unilateral contact constraints. To the best of the author’s knowledge, it is shown for
the first time that, for such complex and severely nonlinear system, Hill’s method converges significantly faster than
the Newmark 2n-pass method. Presented results on different contact configurations—featuring both a perfectly
circular and a deformed casing, with and without centrifugal stiffening—all underline the relevance of bifurcation
points obtained with Hill’s method. These bifurcations match perfectly with phenomena observed with results
obtained from a reference time domain solution method. Thus, they provide insight on physical phenomena that
were observed but could not be explained before. While the asymptotical convergence of the Newmark 2n-pass
method towards results obtained with Hill’s method is shown, it requires significantly higher values of both the
number of retained harmonics and the number of time steps, thus yielding detrimental computational complexity.
Nonetheless, despite of the fact that presented results demonstrate the applicability of Hill’s method on industrial
models, there remains theoretical challenges related to this approach. In particular, eigenvalue sorting remains
sensitive as it was found that convergence of Hill’s spectrum is dependent on the considered contact configuration.

Acknowledgments
This research was supported by the Canada Research Chairs Program (Funder ID: 10.13039/ 501100001804).

References
[1] Jacquet-Richardet, G., Torkhani, M., Cartraud, P., Thouverez, F., Baranger, T. N., Herran, M., Gibert, C.,

Baguet, S., Almeida, P. and Peletan, L. “Rotor to stator contacts in turbomachines. Review and application.”
Mech. Syst. Sig. Process. Vol. 40, No. 2 (2013): pp. 401–420. doi: 10.1016/j.ymssp.2013.05.010 - oai: hal-
00934050.

[2] Krack, M., Salles, L. and Thouverez, F. “Vibration prediction of bladed disks coupled by friction joints.” Arch.
Comput. Methods Eng. Vol. 24, No. 3 (2017): pp. 589–636. doi: 10.1007/s11831-016-9183-2 - oai: hal-01825517.

Y. Colaïtis et al. 17

https://doi.org/10.1016/j.ymssp.2013.05.010
https://hal.archives-ouvertes.fr/hal-00934050
https://hal.archives-ouvertes.fr/hal-00934050
https://doi.org/10.1007/s11831-016-9183-2
https://hal.archives-ouvertes.fr/hal-01825517
mailto:yann.colaitis@polymtl.ca


Stability analysis of an industrial blade accounting for a blade-tip/casing nonlinear interface

[3] Siewert, C., Panning, L., Wallaschek, J. and Richter, C. “Multiharmonic Forced Response Analysis of a
Turbine Blading Coupled by Nonlinear Contact Forces.” J. Eng. Gas Turbines Power Vol. 132, No. 8. doi:
10.1115/1.4000266.

[4] Batailly, A., Legrand, M., Millecamps, A. and Garcin, F. “Numerical-experimental comparison in the simulation
of rotor/stator interaction through blade-tip/abradable coating contact.” J. Eng. Gas Turbines Power Vol. 134,
No. 8 (2012): p. 11. doi: 10.1115/1.4006446 - oai: hal-00746632.

[5] Almeida, P., Gibert, C., Thouverez, F., Leblanc, X. and Ousty, J.-P. “Experimental analysis of dynamic
interaction between a centrifugal compressor and its casing.” J. Turbomach. Vol. 137, No. 3 (2015): p. 031008.
doi: 10.1115/1.4028328 - oai: hal-01574149.

[6] Delhez, E., Nyssen, F., Golinval, J.-C. and Batailly, A. “Reduced order modeling of blades with geometric
nonlinearities and contact interactions.” J. Sound Vib. Vol. 500 (2021): p. 116037. doi: 10.1016/j.jsv.2021.116037
- oai: hal-03152678.

[7] Piollet, E., Nyssen, F. and Batailly, A. “Blade/casing rubbing interactions in aircraft engines: Numerical
benchmark and design guidelines based on NASA rotor 37.” J. Sound Vib. Vol. 460 (2019): p. 114878. doi:
10.1016/j.jsv.2019.114878 - oai: hal-02281666.

[8] Colaïtis, Y. and Batailly, A. “The harmonic balance method with arc-length continuation in blade-tip/casing
contact problems.” J. Sound Vib. Vol. 502 (2021): p. 116070. doi: 10.1016/j.jsv.2021.116070 - oai: hal-03163560.

[9] Colaïtis, Y. and Batailly, A. “Development of a Harmonic Balance Method-Based Numerical Strategy for
Blade-Tip/Casing Interactions: Application to NASA Rotor 37.” J. Eng. Gas Turbines Power Vol. 143, No. 11
(2021): p. 12. doi: 10.1115/1.4051967 - oai: hal-03286205.

[10] Bentvelsen, B. and Lazarus, A. “Modal and stability analysis of structures in periodic elastic states: application
to the Ziegler column.” Nonlinear Dyn. Vol. 91, No. 2 (2018): pp. 1349–1370. doi: 10.1007/s11071-017-3949-4 -
oai: hal-01686514.

[11] Krack, M. and Gross, J. Harmonic Balance for Nonlinear Vibration Problems. Springer, Cham (2019). doi:
10.1007/978-3-030-14023-6.

[12] Petrov, E. P. “Stability Analysis of Multiharmonic Nonlinear Vibrations for Large Models of Gas Turbine
Engine Structures With Friction and Gaps.” J. Eng. Gas Turbines Power Vol. 139, No. 2 (2017): p. 022508.
doi: 10.1115/1.4034353.

[13] Petrov, E. P. “A Method for Parametric Analysis of Stability Boundaries for Nonlinear Periodic Vibrations
of Structures With Contact Interfaces.” J. Eng. Gas Turbines Power Vol. 141, No. 3 (2018): p. 11. doi:
10.1115/1.4040850.

[14] Cardona, A., Lerusse, A. and Géradin, M. “Fast Fourier nonlinear vibration analysis.” Comput. Mech. Vol. 22,
No. 2 (1998): pp. 128–142. doi: 10.1007/s004660050347.

[15] Peletan, L., Baguet, S., Torkhani, M. and Jacquet-Richardet, G. “A comparison of stability computational
methods for periodic solution of nonlinear problems with application to rotordynamics.” Nonlinear Dyn. Vol. 72,
No. 3 (2013): pp. 671–682. doi: 10.1007/s11071-012-0744-0 - oai: hal-00813265v1.

[16] Detroux, T., Renson, L., Masset, L. and Kerschen, G. “The harmonic balance method for bifurcation analysis
of large-scale nonlinear mechanical systems.” Comput. Methods Appl. Mech. Eng. Vol. 296 (2015): pp. 18–38.
doi: 10.1016/j.cma.2015.07.017.

[17] Seydel, R. Practical bifurcation and stability analysis. Vol. 5. Springer, New York, NY (2009). doi: 10.1007/978-
1-4419-1740-9.

[18] Von Groll, G. and Ewins, D. J. “The harmonic balance method with arc-length continuation in rotor/stator
contact problems.” J. Sound Vib. Vol. 241, No. 2 (2001): pp. 223–233. doi: 10.1006/jsvi.2000.3298 - oai:
hal-01333704.

Y. Colaïtis et al. 18

https://doi.org/10.1115/1.4000266
https://doi.org/10.1115/1.4000266
https://doi.org/10.1115/1.4006446
https://hal.archives-ouvertes.fr/hal-00746632
https://doi.org/10.1115/1.4028328
https://hal.archives-ouvertes.fr/hal-01574149
https://doi.org/10.1016/j.jsv.2021.116037
https://hal.archives-ouvertes.fr/hal-03152678
https://doi.org/10.1016/j.jsv.2019.114878
https://doi.org/10.1016/j.jsv.2019.114878
https://hal.archives-ouvertes.fr/hal-02281666
https://doi.org/10.1016/j.jsv.2021.116070
https://hal.archives-ouvertes.fr/hal-03163560
https://doi.org/10.1115/1.4051967
https://hal.archives-ouvertes.fr/hal-03286205
https://doi.org/10.1007/s11071-017-3949-4
https://hal.archives-ouvertes.fr/hal-01686514
https://doi.org/10.1007/978-3-030-14023-6
https://doi.org/10.1007/978-3-030-14023-6
https://doi.org/10.1115/1.4034353
https://doi.org/10.1115/1.4040850
https://doi.org/10.1115/1.4040850
https://doi.org/10.1007/s004660050347
https://doi.org/10.1007/s11071-012-0744-0
https://hal.archives-ouvertes.fr/hal-00813265v1
https://doi.org/10.1016/j.cma.2015.07.017
https://doi.org/10.1007/978-1-4419-1740-9
https://doi.org/10.1007/978-1-4419-1740-9
https://doi.org/10.1006/jsvi.2000.3298
https://hal.archives-ouvertes.fr/hal-01333704
https://hal.archives-ouvertes.fr/hal-01333704
mailto:yann.colaitis@polymtl.ca


Stability analysis of an industrial blade accounting for a blade-tip/casing nonlinear interface

[19] Woiwode, L., Narayanaa Balaji, N., Kappauf, J., Tubita, F., Guillot, L., Vergez, C., Cochelin, B., Grolet, A.
and Krack, M. “Comparison of two algorithms for Harmonic Balance and path continuation.” Mech. Syst. Sig.
Process. Vol. 136 (2020): p. 106503. doi: 10.1016/j.ymssp.2019.106503 - oai: hal-02424746.

[20] Cameron, T. M. and Griffin, J. H. “An alternating frequency/time domain method for calculating the steady-
state response of nonlinear dynamic systems.” J. Appl. Mech. Vol. 56, No. 1 (1989): pp. 149–154. doi:
10.1115/1.3176036 - oai: hal-01333697.

[21] Sarrouy, E. and Sinou, J.-J. “Non-Linear Periodic and Quasi-Periodic Vibrations in Mechanical Systems -
On the use of the Harmonic Balance Methods.” Ebrahimi, F. (ed.) Advances in Vibration Analysis Research,
Chap. 21. IntechOpen, Rijeka (2011): pp. 419–434. doi: 10.5772/15638 - oai: hal-00730895.

[22] Guckenheimer, J. and Holmes, P. “Local Bifurcations.” Nonlinear oscillations, dynamical systems, and
bifurcations of vector fields. Springer, New York (1983): pp. 117–165. doi: 10.1007/978-1-4612-1140-2_3.

[23] Moore, G. “Floquet theory as a computational tool.” SIAM J. Numer. Anal. Vol. 42, No. 6 (2005): pp.
2522–2568. doi: 10.1137/S0036142903434175.

[24] Zhou, J., Hagiwara, T. and Araki, M. “Spectral characteristics and eigenvalues computation of the harmonic
state operators in continuous-time periodic systems.” Systems & Control Letters Vol. 53, No. 2 (2004): pp. 141 –
155. doi: 10.1016/j.sysconle.2004.03.002.

[25] Thomas, O., Lazarus, A. and Touzé, C. “A harmonic-based method for computing the stability of periodic
oscillations of non-linear structural systems.” Proceedings of the ASME IDETC/CIE 2010 : pp. 883–892. 2010.
doi: 10.1115/DETC2010-28407 - oai: hal-01148758.

[26] Huebler, D. “Rotor 37 and stator 37 assembly. Records of the National Aeronautics and Space Admin-
istration, 1903 - 2006. Photographs relating to agency activities, facilities and personnel, 1973 - 2013.”
https://catalog.archives.gov/id/17468361, 1977 (accessed 2020-10-29).

[27] Reid, L. and Moore, R. D. “Design and overall performance of four highly loaded, high speed inlet stages for an
advanced high-pressure-ratio core compressor.” Technical report no., NASA Lewis Research Center Cleveland,
OH, United States. Url : https://ntrs.nasa.gov/citations/19780025165, 1978 (accessed 2020-10-29).

[28] Craig Jr, R. R. and Bampton, M. C. C. “Coupling of substructures for dynamic analyses.” AIAA J. Vol. 6,
No. 7 (1968): pp. 1313–1319. doi: 10.2514/3.4741.

[29] Sternchüss, A. and Balmès, E. “On the reduction of quasi-cyclic disk models with variable rotation speeds.”
Proceedings of the Int. Conference on Adv. Acoustics and Vib. Eng.: pp. 3925–3939. 2006. oai: hal-00266394.

Y. Colaïtis et al. 19

https://doi.org/10.1016/j.ymssp.2019.106503
https://hal.archives-ouvertes.fr/hal-02424746
https://doi.org/10.1115/1.3176036
https://doi.org/10.1115/1.3176036
https://hal.archives-ouvertes.fr/hal-01333697
https://doi.org/10.5772/15638
https://hal.archives-ouvertes.fr/hal-00730895
https://doi.org/10.1007/978-1-4612-1140-2_3
https://doi.org/10.1137/S0036142903434175
https://doi.org/10.1016/j.sysconle.2004.03.002
https://doi.org/10.1115/DETC2010-28407
https://hal.archives-ouvertes.fr/hal-01148758
https://catalog.archives.gov/id/17468361
https://ntrs.nasa.gov/citations/19780025165
https://doi.org/10.2514/3.4741
https://hal.archives-ouvertes.fr/hal-00266394
mailto:yann.colaitis@polymtl.ca

	Introduction
	Regularized-Lanczos harmonic balance
	The Harmonic Balance Method
	Path following: continuation
	Computation of nonlinear contact forces
	Nonlinear condensation
	Regularization of contact forces
	Lanczos filtering

	Stability analysis
	Time domain
	Frequency domain

	NASA rotor 37
	Numerical results
	Cubic nonlinearity
	Contact on a circular casing
	Contact on a deformed casing

	Conclusion
	References

