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Abstract
This paper presents an approach to estimate mode-choice models from spatially 
anonymized revealed preference travel survey data. We propose an algorithm to find a fea-
sible sequence of activity locations for each individual that minimizes the maximum error 
of each trip’s Euclidean distance within the activity chain. The synthetic activity locations 
are then used to create unchosen alternatives within the choice set for each individual. This 
is followed by the mode-choice model estimation. We test our approach on three large-
scale travel surveys conducted in Switzerland, Île-de-France, and São Paulo. We find that 
our methodological approach can reconstruct activity locations that accurately match trip 
Euclidean distances but with location errors that still provide location protection. The dis-
crete mode-choice models estimated on the synthetic locations perform similarly, in terms 
of goodness of fit and prediction, to the ones obtained from the observed activity locations.

Keywords Anonymization · Data privacy · Travel survey · Discrete choice model

Introduction

One of the most critical parts of transport planning is transport modeling. It should be able 
to support transport planners in anticipating the impacts of policies and infrastructure pro-
jects. The collection of various transport-related data supports transport modeling. While 
today information can be collected through smartphone applications, transit tap-in/tap-out 
data, or mobile phone data, the traditional approach is to utilize (household) travel surveys. 
These surveys, also referred to as revealed preference (RP) surveys, usually collect detailed 
sociodemographic information on individuals living in the area of interest together with 
their activity and trip behavior on one or multiple days of the week. The activities can 
frequently be identified by a GPS coordinate or detailed address. Typically, the gathered 
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information on mobility behavior is enriched with unchosen alternatives for each trip based 
on the choice set for each individual. This serves as a preparatory step for subsequent mode 
choice modeling.

Due to privacy concerns and governing laws in many countries, the information in travel 
surveys has to be anonymized at a level that protects the identity of individuals and their 
link to the survey data. For this reason, identifying information like first and last name, 
home address, or coordinates of activities are removed. The location of activities in pub-
licly available versions of surveys is usually published on a zonal level (i.e., traffic analysis 
zone, census zone). While this protects the interviewed individuals, it is unknown how this 
aggregation affects the generation of the unchosen alternatives, and subsequently, the mod-
eling of the data and the forecasting power of the created models. Therefore, in this paper, 
we aim to answer these questions.

The paper is organized as follows.  "Background" Section discusses the current litera-
ture in data anonymization, its application to the field of transportation and issue associated 
with data aggregation. "Methodology" Section  proposes a heuristic to reconstruct activity 
locations based on zone-based trip data and explains the subsequently used mode choice 
modeling approach. "Case study" Section  explains the data sets used, and  "Results" Sec-
tion  presents the results. Finally, "Discussion and Conclusion" Sections provide discussion 
and closing remarks.

Background

With the increasing popularity of the open-data concept, the need to protect the privacy of 
individuals that provided their data has increased. One of the most common pieces of infor-
mation that needs to be anonymized is the location. Techniques used to provide location 
protection aim to obscure the location of activities of individuals. Some of these techniques 
involve aggregation, spatial cloaking, or random perturbation [for a detailed overview of 
different mechanisms, please refer to Krumm (2009)]. A typical example is perturbation of 
residential locations of surveyed individuals, where the anonymization procedure aims to 
maintain the usefulness of the data (Badu-Marfo et al. 2019). The authors of Badu-Marfo 
et al. (2019) focus on analyzing the performance of different perturbation mechanisms for 
protecting the privacy of survey respondents. They also point out that current methods 
mainly deal with the anonymization of single points and that further research is needed in 
developing methods for multi-point data.

Travel surveys that collect the mobility behavior of respondents over a day or week have 
to deal with such multi-location data. Since each respondent reports multiple activities, a 
suitable technique needs to be utilized that protects the privacy of individuals while still 
maintaining the usefulness of the data. Most surveys utilize zone aggregation mechanisms 
(i.e., activity locations are provided on a zone level). In the United States, each activity 
is usually aggregated to the census tract [i.e., California Household Travel Survey (Cali-
fornia Department of Transportation 2021), or My Daily Travel Survey conducted in the 
Chicago Metropolitan Region (Chicago Metropolitan Agency for Planning 2021)]. In the 
case of France, multiple surveys exist. The publicly accessible national survey has a high 
degree of aggregation on the level of departments, which cover thousands or millions of 
residents. More local surveys, such as the one for the Île-de-France region around Paris, are 
only accessible on request and provide locations aggregated to a grid of 100x100 meters. 
A commonly used aggregation level in French data sets are municipalities with thousands 
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to tens of thousands inhabitants. In São Paulo, the publicly available travel survey does not 
provide location protection. In contrast, publicly available Brazilian census data is aggre-
gated to a census zone containing between 20 and 55 thousand people.

The problems of spatial data aggregation presented above are also known as the Modi-
fiable Areal Unit Problem (MAUP), which was first formally explained by Openshaw 
(1981). MAUP arises when data is aggregated and presented on various scales and zoning 
systems, leading to different interpretations and model estimations. In the case of choice 
modeling, similar issues arise. Guo and Bhat (2004) show, for the case of residential choice 
modeling, how MAUP can lead to worse model fit. What is notable in the study by Gao 
and Bhat, and most of the studies highlighting the impact of MAUP on model estimates 
is that they mostly rely on aggregated, zonal variables (i.e., average accessibility, safety, 
income). The modeling problem tackled in this paper uses disaggregated, individual data 
as choice variables, which avoids MAUP. On the other hand, the potential impact of zoning 
system employed on mode-choice model estimates remains unclear.

Even when privacy protection techniques, like aggregation are used, confidential data 
can be at risk if additional information obtained from other sources can uniquely iden-
tify individuals. For example, De Montjoye et  al. (2013) show that mobile-phone traces 
provided in hourly intervals and with the spatial resolution provided by antennas can be 
uniquely identified in 95% of the cases with only four spatio-temporal points. Golle and 
Partridge (2009) show that by revealing home and work census tract information, the ano-
nymity set (i.e., the number of potential matching individuals) has a median size of 21 
for the case of the U.S. working population. This raises a potential privacy concern for 
anonymized travel or commuting surveys. Nevertheless, identifying the level of privacy 
that the location protection techniques bring to the respondents in these surveys is not a 
direct aim of this paper, even though we provide some insights. However, we aim to show 
how much the level of aggregation provided by the travel surveys could affect the predic-
tion power of downstream models.

Therefore, to the best of our knowledge, we provide a first documented effort of the fol-
lowing aspects:

• We propose a heuristic that, based on anonymized and aggregated zone-based trip data, 
creates disaggregated activity locations for all trips conducted by the interviewed indi-
viduals.

• We perform analyses on the prediction accuracy of discrete choice models estimated on 
the basis of non-anonymized location information versus reconstructed locations.

• We show the universality of our findings based on survey data from three different 
countries.

Methodology

Problem statement

Figure 1 shows a motivating example for our approach. It shows an activity chain with four 
activities, where a person starts his/her daily travels at home in the 13th arrondissement 
in Paris, then goes to work close to the Eiffel tower which is located in the 16th arron-
dissement, continues to the Opera (2nd arrondissement) in the evening and then goes back 
home. In an anonymized travel survey, we may only know the Euclidean (and/or routed) 
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distances between the activities, but also the zones in which the activities occur, repre-
sented by the arrondissements in this example. In dark gray, a set of possible activity loca-
tions in the zones has been obtained (here based on OpenStreetMap data). Furthermore, the 
Euclidean distances between all activities are known (exemplified by the dotted lines). If 
one now starts to move the locations of the four activities under the two conditions that (1) 
both “home” activities need to be at the same place, (2) Euclidean distances between the 
locations need to deviate no more than 50 meters from the reference distances, we arrive at 
a feasible set of locations which is colored in blue. The smaller the allowed deviation gets 
(e.g., 10 meters, 5 meters), the smaller the feasible set of locations will become. Ideally, if 
our set of possible activity locations is small and contains original coordinates, recovering 
the exact locations would substantially increase.

Location search problem

The algorithm to find locations for the activities in a chain of a specific person is described 
in the following. As input, we know the number of activities in the chain N, as well as 
whether each of the activities i ∈ {1, ...,N} is a “home” activity. The indices of those activ-
ities are noted in the index set H . Furthermore, reference Euclidean distances are given as 
ri ∈ ℝ.

Fig. 1  Example of a feasible set of candidate points
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The potential locations for the ith activity correspond to the potential locations in the 
respective zone. We denote the set of those locations as Li and the set of all potential loca-
tions in the activity chain is L = L1 ∩ ... ∩ LN . Let k ∈ {1, ����(L)} reference the elements 
of L , then yk,i indicates whether location k is a potential location for the zone of activity i. 
The Euclidean distance between location k and k′ is denoted as d(k, k�).

The aim of the algorithm is then to find a sequence l = (l1, ..., lN ) with li ∈ Li such that 
(1) the location for each activity is located in the respective zone, and (2) “home” activi-
ties always take place at the same location. To select among the feasible locations, the 
maximum deviation of the generated distances along the chain, compared to the reference 
distances, is minimized. The optimization problem is defined by the following objective 
function

with the following constraints:

The first constraint makes sure that activities along the sequence only take place in loca-
tions that belong to the respective zone. The second constraint requires that all home activ-
ities take place at the same location.

Solution strategy

The solution strategy aims to find a feasible and optimal sequence (l1, ..., lN) for each per-
son. The most straightforward approach would use a depth-first branch-and-bound algo-
rithm, where we would start a chain at any location in the first zone, then extend these 
chains with locations from the second zone and after with succeeding zones until one com-
plete chain is found. The maximum deviation along this chain can then be used to bound 
further exploration steps of the graph. Additionally, locations for home activities are set to 
the first occurrence of a home location along the constructed chain.

Our experiments have shown that such an approach causes very long run times if multi-
ple times hundreds of potential locations need to be examined, especially for long activity 
chains. Hence, we perform a directed search where candidates in the following zones are 
chosen such that the local error is minimized. While the solutions of such an algorithm are 
not optimal, they perform well for the following modeling steps, as will be shown further 
below. Formally, the following depth-first branch-and-bound algorithm is proposed:

(1)minimize
(l1,...,lN )

max
i∈{1,...,N−1}

{|d(li, li+1) − ri|}

(2)
yli,i = 1 ∀i ∈ {1, ...,N}

li = lminH ∀i ∈ H
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Note that location sequences are only extended in a best-response fashion using the clos-
est successor in terms of minimizing the Euclidean distance error, rather than enumerating 
all possible options. However, the algorithm can be easily modified to perform a complete 
enumeration if necessary.

Choice model

To test the impacts of location error on mode choice model estimates, we make use of 
a multinomial Logit (MNL) model (e.g. McFadden 1986; Train 2009). We model the 
choice among the three mode alternatives car (C), public transport (PT) or walk (W). 
To obtain the relevant characteristics of the three alternatives, we perform a minimum 
generalized cost path routing for car trips, based on road networks obtained from Open-
StreetMap (OSM) data and free flow speeds. For public transport, we use an imple-
mentation of the RAPTOR algorithm (Delling et al. 2015) to find routes in the public 
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transport network provided in GTFS format which minimize the total travel time of the 
trips. The data sets are documented in the development of synthetic populations for 
agent-based transport simulation for the three cases of São Paulo (Sallard et al. 2021), 
Switzerland (Tchervenkov et al. 2021) and Île-de-France (Hörl and Balac 2021). Since a 
public transport route cannot be found for some trips (i.e., the trip is too short, or public 
transport is not accessible), those trips are filtered out, which creates some minor differ-
ences in the size of the data set for the reconstructed and original coordinates (see also 
Table 1 at the bottom). The travel time for the walk alternative is calculated based on 
the routed distance and an average speed of 5 km/h. Since we are using revealed prefer-
ence data, note that including travel costs in the model is problematic, as they are highly 
correlated with distance (Train 2009), providing only limited trade-off information to 
obtain a robust estimate for the value of travel time (e.g. Schmid et al. 2019). However, 
this does not affect our general research design, investigating if the reference and recon-
structed data sets lead to similar behavioral parameters and predictions.

The utility function of alternative i ∈ {C, PT,W} and individual n ∈ {1, 2, ..,N} in 
each choice situation t ∈ {1, 2, ..,Tn} is given by

where C (car) is the reference alternative for identification purposes (i.e. �C = 0 ). The util-
ity function Ui,n,t includes the following components:

• �i : Parameter of alternative-specific constant (ASC).
• xi,n,t : Vector of level-of-service (LOS) attributes. Car (C): In-vehicle travel time [h]; 

public transport (PT): In-vehicle travel time [h], access and egress time [h], number 
of transfers [#] and transfer waiting time [h]; walk (W): Travel time [h]

• ��� i : Alternative-specific parameter vector of LOS attributes.
• distn,t : Crow-fly distance [km]; dist = sample mean [km].
• �k,i : Parameter capturing non-linear changes in LOS sensitivity of attribute k accord-

ing to trip distance (included for car in-vehicle travel time, public transport in-vehi-
cle travel time, sum of access and egress time, and transfer waiting time. 𝜆k,i > 0 : 
Increasing LOS sensitivity; 𝜆k,i < 0 : Decreasing LOS sensitivity (e.g. Schmid et al. 
2021).

• �i,n,t : Remaining IID extreme value type I error term.

The availability of alternative j varies depending on sociodemographic information 
and network characteristics and is coded as a dummy variable aj,n,t that enters the Logit 
choice probability, as shown in Eq. (4):

• C Available if a respondent has a driving license and/or stated that he/she has access 
to a car.

• PT Available if a PT route was identified by the routing algorithm.
• W Available if trip distance < 5km.

The probability that alternative i among the set of available alternatives j ∈ {C, PT,W} 
for trip t by individual n is chosen is given by

(3)Ui,n,t = �i + xi,n,t� i

(
distn,t

dist

)�k,i

+ �i,n,t
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where � is the set of all parameters to be estimated and Vi,n,t is the deterministic part of 
utility.

Case study

We make use of the already existing travel surveys from Switzerland (Swiss Federal Office 
of Statistics (BFS) and Federal Office for Spatial Development (ARE) 2018), Île-de-France 
(2010), and Greater São Paulo Metropolitan Region (Secretaria Estudal dos Transportes 
Metropolitanos, Companhia do Metropolitano de São Paulo-METRÔ 2019) to create the 
inputs for the reconstruction algorithm and the downstream mode choice model estimation.

Switzerland

The Mikrozensus Mobilität und Verkehr (Swiss Federal Office of Statistics (BFS) and Fed-
eral Office for Spatial Development (ARE) 2018) is a national travel survey conducted 
every five years in Switzerland. For the last edition conducted in 2015, about 56 000 per-
sons ( ≃ 0.6% of the total Swiss population) are asked questions about their mobility behav-
ior and their socio-demographic attributes. Disaggregated, coordinate-level information 
about activities is available to the research community upon request. The aggregated zonal 
information used in this study comes from the National transport Model (Bundesamt für 
Raumentwicklung 2020).

Île‑de‑France

The Enquéte globale de transport (EGT, Île-de-France Mobilités et al. 2010) is a house-
hold travel survey conducted in the Île-de-France region, mainly during the year 2010. The 
EGT contains the trip chains of around 35,000 respondents in 15,000 households in the Île-
de-France region. These numbers translate to a sample of around 0.3% of people living in 
the region. Within Île-de-France, around 122,000 trips are reported of all the members in 
each household. EGT is only available on request from the regional authorities and there-
fore not publicly available. Activity locations are reported on a grid of 100 × 100 meters. 
As zoning data, French municipalities are used.

São Paulo

The last household travel survey in the Greater São Paulo Metropolitan Region was con-
ducted in 2017 and is publicly available (Transportes Metropolitanos 2017). It contains 84 
889 weighted samples. For each sample, both person and household-level information is 
provided. Unfortunately, no driver’s license information is available. Locations of activities 
performed by the respondents are reported with coordinate accuracy. The dataset also pro-
vides a traffic zone for each of the activities, which are then used to test the performance of 
the disaggregation algorithm.

(4)P(in,t��) =
ai,n,texp(Vi,n,t)∑
j
aj,n,texp(Vj,n,t)
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Candidates

For the three cases, multiple sets of candidate points are created, among which the loca-
tions of the activities can be chosen.

A straightforward approach to obtain candidate locations would be to use centroid 
points of all zones as potential activity locations. However, in this case all within zone trips 
would have a same starting and ending locations, which in our experiments show a strong 
negative effect on the reconstructed location quality and subsequnetly on model estimates. 
Therefore, we focus on the following two ways to generate candidate points.

First, we sample points at random for each zone in the three use cases. To do so, we 
obtain the axis-aligned bounding box around each zone’s complex geometry, sample N 
points within the bounding box, and then keep those points that fall inside the zone shape. 
The number of points is defined as N = A ⋅ � with A being the bounding box area and � a 
configurable density. In the experiments below, densities of 1, 5, 10, and 20 km−2 are used.

Second, we obtain OpenStreetMap (OSM) data for each case. We filter for all road 
geometries that are included or intersect with the case study area and use the nodes of the 
remaining road shapes (this includes all nodes along the road geometry, and not just start 
and end points) as location candidates.

Estimation and model evaluation

For each of the three case studies denoted by s, we estimate two choice models, one based 
on the original coordinates Mo

s
 and one based on the reconstructed (OSM) coordinates Mr

s
 . 

It is important to note that in contrast to other studies that used imputation of missing/noisy 
information (e.g. Steimetz and Brownstone 2005), the reconstructed (imputed) coordinates 
are deterministic in the sense that the algorithm minimizes the maximum deviation of the 
Euclidean distance of the trips, such that a multiple imputation approach is not applicable. 
To compare the predictive power of these three models, we split each data set into a train-
ing set containing 70% ( To

s
 and Tr

s
 ) and a test set containing 30% ( Vo

s
 and Vr

s
 ) of the data 

(i.e., To
s
 and Tr

s
 in the majority of cases contain the same trips, but with different routing 

data). We re-estimate Mo
s
 and Mr

s
 on the respective training sets To

s
 and Tr

s
 . Finally, we ana-

lyze the prediction accuracy (PA) of the trained models on Vo
s
 data (original 30% test set), 

investigating to what extent a model based on original coordinates outperforms the one 
based on anonymized coordinates.

The models are estimated using the mixl package in R 4.0.4 (Molloy et al. 2021). Clus-
ter-robust (by individual) standard errors are obtained by using the Eicker–Huber–White 
sandwich estimator.

Results

Reconstruction process

First, the results of the reconstruction algorithm are presented. We examine the distance 
errors and the location errors produced by the reconstruction algorithm. The distance 
error is defined as the absolute difference between the Euclidean distance of a trip from 
the original data set and the Euclidean distance between the selected location candidates. 
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It is, hence, a measure of how well the algorithm can recover the reference distances. The 
location error represents the distance between an activity’s location in the reference data 
set and its location. Therefore, it is a measure of how well the algorithm reconstructs the 
original locations. Note that it is a validation measure, as in the general case (with an 
anonymized data set), the original locations would not be available.

Figure 2 shows the cumulative distribution function of both error types for the three use 
cases. In all cases, we observe that the distance error decreases strongly with an increased 
density of the location candidates, as more options allow a more fine-grained assignment. 
Furthermore, the OSM-based assignment performs the best in terms of reducing the dis-
tance error. For the location error, the same effects can be observed.

Interestingly, using the OSM-based candidates, the distance error is reduced to zero for 
almost all trips, i.e., point sequences that match the actual distances can be found in almost 
every case. The Euclidean distances are, hence, replicated almost perfectly.

The results on the location error are essential in terms of identifying specific activity 
locations. Even with the high-density OSM-based data, locations can not be reconstructed 

(a)

(b)

(c)

Fig. 2  Distance and location errors after the matching process
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perfectly. For Switzerland, however, 90% of activities are located within 1km of the origi-
nal location. For Île-de-France and São Paulo, this threshold is reached at about 2km. On 
the contrary, more than 50% of locations in Switzerland can be reconstructed with an accu-
racy of 300m.

While Figure 2 gives a general impression on the matching performance of the algo-
rithm, it is interesting to analyze how errors are distributed spatially. Figure 3 shows the 
location error, capped at 2km, for the three use cases. A high matching performance can 
be observed for Switzerland for the finely zoned and highly populated areas around Zurich 
in the North and along the Geneva lake in the South-West. On the contrary, the sparsely 
populated and coarsely zoned areas in the Alps can be identified clearly as a strip of high 
location errors. For Île-de-France, errors are distributed somewhat randomly across space, 
especially no increase in accuracy can be observed for Paris and its metropolitan region, 
which would otherwise stick out in the center of the map. For São Paulo, the accuracy is 
very low in the outer regions, where enormous zones contain large, unpopulated areas. 
However, the accuracy increases towards the city center of São Paulo.

Model estimation

In what follows are the model estimates based on the reference data and OSM-based recon-
structed data, as it has been shown to be superior to random sampling approach. For the 
sake of comparison, we also present the results using the centroids of zones as activity 
points.

Table 1 presents the models estimated for the different study areas (i.e., Switzerland, 
Île-de-France and São Paulo) and complete data sets (i.e., reference, OSM-based and cen-
triod-based data sets). In the reference data set, all parameters have the expected sign and 
are, in most cases, significant at the 1% level. The parameters are in most cases very simi-
lar between models estimated on original and OSM activity locations. Only one substan-
tial and significant difference is observable (i.e., 95% confidence bands not overlapping), 
which is the case for �̂travel time,C in Île-de-France. This shows that the OSM-based recon-
structed data set would lead to very similar behavioral indicators (e.g., such as elasticities 
and marginal rates of substitution) and therefore would be an appropriate alternative to 
original coordinates. After all, the models all perform very similarly in terms of goodness-
of-fit, as indicated by the �2.

Fig. 3  Spatial distribution of the location error for OSM-based reconstruction (from left to right: Switzer-
land, Île-de-France, São Paulo)
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Results look considerably different for the centroid-based data set. While in case 
of Switzerland, the �2 is close to the reference case, it drops considerably for São Paulo 
(–3%-points) and, most pronounced, for Île-de-France (–5%-points). Also, in all three 
cases, many parameter estimates are considerably different than in the reference case.

Findings are confirmed when comparing the marginal rates of substitution [MRS; 
see e.g. Train (2009)], i.e. the ratio of coefficients of level-of-service attributes using 
�̂travel time,C as the reference1, as shown in Table  2. In the case of Switzerland, while the 
95% confidence bands of the OSM and centroid always overlap with the reference case, the 
MRS are substantially different for the centroid data set (most pronounced for PT transfers 
by more than factor 3, followed by walk travel time). E.g., while one PT transfer is valued 
0.03 hours of car travel time in both the reference and OSM case, it is valued 0.1 hours in 
the centroid case. In the case of Île-de-France, the MRS for walk travel time is significantly 
different for the OSM case, while the MRS for PT access time is significantly different in 
the centroid case. Finally, in the case of São Paulo, the reference and OSM case exhibit 
very similar MRS, while in the cetroid case, three of them are significantly different. To 
summarize, while in only one case, the OSM-based data set performs significantly worse 
than the reference data set, the MRS obtained based on the centroid data set often differ 
substantially.

Table 2  Marginal rates of 
substitution (MRS) with the 
coefficient of car travel time 
( ̂�travel time,C ) in the denominator 
based on the models shown in 
Table 1

* 95% confidence band not overlapping with reference

Reference OSM Centroid

Switzerland

M̂RStravel time,W
4.39 4.15 6.32

M̂RStravel time,PT
0.21 0.21 0.17

M̂RSaccess time,PT
1.61 1.66 1.65

M̂RStrans. wait. time,PT
2.93 2.26 2.28

M̂RStransfers,PT
0.03 0.03 0.10

Île-de-France

M̂RStravel time,W
2.72 3.86∗ 2.58

M̂RStravel time,PT
0.40 0.39 0.41

M̂RSaccess time,PT
0.45 0.41 0.67∗

M̂RStrans. wait. time,PT
1.43 1.46 1.16

M̂RStransfers,PT
0.01 −0.01 −0.01

São Paulo

M̂RStravel time,W
0.32 0.34 0.35

M̂RStravel time,PT
0.14 0.12 0.11

M̂RSaccess time,PT
0.02 0.03 0.07∗

M̂RStrans. wait. time,PT
0.44 0.43 0.12∗

M̂RStransfers,PT
0.06 0.06 0.01∗

1 Since our models do not include travel costs, we (arbitrarily) chose the coefficient of car travel time to be 
in the denominator. Confidence intervals are calculated using the Delta method (Daly et al. 2012).
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Table  3 shows the prediction accuracy (PA) of the models re-estimated for the 70% 
training data sets and validated on the 30% test data sets, an evaluation method that is fre-
quently used in machine learning (e.g., Yadav and Shukla 2016; Schmid et al. 2022). For 
each model and test data set, the PA is obtained by simulating how many choices are, on 
average, predicted correctly. Specifically, we draw R = 500 times from the multivariate 
normal distribution N(�̂, �̂) , where �̂ is the vector of estimated parameters and �̂ is the 
robust variance-covariance matrix of a model, to predict the alternative-specific probabili-
ties in the test data set (e.g., Bierlaire 2017). In each repetition, we use a probabilistic cal-
culation of the PA by sampling the predicted choices according to the probabilities of each 
alternative. As discussed in Train (2009), this measure is more appropriate than the per-
cent of correctly predicted choices according to the highest probabilities (first preference 
recovery; e.g., Ortúzar and Willumsen 2011; Parady et al. 2021), since it better reproduces 
the market shares and reflects the probabilistic nature (uncertainty) of the Logit model 
(see also Palma et al. 2016). If the choices were to be repeated many times, or observed 
by many individuals with the same attributes, each alternative would be chosen by a cer-
tain fraction. Finally, the 95% confidence interval is approximated by calculating the 2.5% 
and 97.5% quantiles of the resulting distribution as a lower and upper bound, respectively 
(Bierlaire 2017).

As expected (given by the very similar �2 values and parameter estimates), results indi-
cate that there is only a minor difference between the reference and OSM-based data set, 
with the latter always performing worse. However, the PAs are not significantly different, 
as indicated by the always overlapping 95% confidence intervals. When investigating the 
alternative-specific PA differences (not reported), only the Île-de-France model with origi-
nal coordinates exhibits a significantly higher PA (1.09%-points; p < 0.05) for the car alter-
native, which goes in line with the substantial difference of the coefficient for car travel 
time, �̂travel time,C . Finally, as expected, the centroid-based data set again performs worse 
than the OSM-based data set, and in case of Île-de-France the drop in the PA of more than 
3%-points is significant.

As shown in Table 4, the models based on the reference and OSM coordinates are 
able to predict the observed mode shares in the test data set sufficiently. However, 
while the models based on the original coordinates (reference) significantly ( p < 0.05 ; 
using the same method as for the PA) under/overestimate the mode share of PT (Swit-
zerland) and Walk (São Paulo and Switzerland, respectively), the models based on the 
OSM data set under/overestimate the mode shares of Car (Switzerland), PT (Île-de-
France) and Walk (São Paulo and Switzerland, respectively), therefore performing only 
slightly worse. Nevertheless, the absolute differences of mode shares are not substantial. 

Table 3  Prediction accuracy 
(PA; in %) and 95% confidence 
intervals (in brackets) of 
estimated models (70% training 
data sets of original coordinates, 
reconstructed coordinates 
using OSM and centroid-based 
coordinates) for 30% test data set 
(original coordinates)

* 95% confidence band not overlapping with reference

Reference OSM Centroid

Switzerland 70.01 69.44 69.15
(69.27; 70.75) (68.69; 70.12) (68.40; 69.96)

Île-de-France 61.17 60.29 57.26∗

(60.49; 61.84) (59.60; 60.98) (56.52; 58.15)
São Paulo 58.88 58.75 58.23

(58.20; 59.57) (58.13; 59.37) (57.69; 58.77)
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After all, we also do not find any substantial differences in the confidence intervals 
between the two approaches (original and reconstructed coordinates). Finally, the mod-
els based on the centroid coordinates perform notably worse (in eight of nine cases, 
the confidence bands do not overlap with the observed mode share), and in the case of 

Table 4  Observed and predicted mode shares (in %; 95% confidence intervals in brackets) of estimated 
models (70% training data sets of original/reference, OSM- and centroid-based coordinates) for 30% test 
data set (original coordinates)

* 95% confidence band not overlapping with observed mode share

Car (C) Observed Reference OSM Centroid

Switzerland 61.65 61.92 60.90∗ 60.13∗

(61.41; 62.37) (60.34; 61.40) (59.58; 60.70)
Île-de-France 47.49 47.80 46.37 42.94∗

(47.10; 48.42) (45.58; 47.02) (41.99; 43.79)
São Paulo 33.37 33.16 34.14 34.33∗

(31.93; 34.38) (31.83; 36.45) (33.59; 35.03)
Public transport (PT) Observed Reference OSM Centroid
Switzerland 23.03 21.93∗ 23.16 24.48∗

(21.51; 22.32) (22.72; 23.67) (23.92; 25.02)
Île-de-France 31.00 30.81 32.28∗ 38.65∗

(30.30; 31.41) (31.75; 32.99) (37.74; 39.72)
São Paulo 46.88 48.33 47.68 48.16∗

(46.77; 49.88) (45.20; 50.17) (47.48; 49.03)
Walk (W) Observed Reference OSM Centroid
Switzerland 15.32 16.15∗ 15.94∗ 15.39

(15.82; 16.52) (15.62; 16.29) (15.03; 15.73)
Île-de-France 21.51 21.39 21.35 18.41∗

(21.03; 21.74) (20.97; 21.69) (17.77; 19.04)
São Paulo 19.75 18.52∗ 18.18∗ 17.51∗

(17.67; 19.36) (17.37; 18.98) (17.09; 17.81)

Fig. 4  Car mode-share in 1km distance bins for observed data from the surveys, and the models based on 
reference and reconstructed locations
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Île-de-France the deviations are very substantial (e.g., overestimation of 7.65%-points 
of PT mode share).

Figure  4 shows the car mode share in 1km distance bins for two models and the 
observed data. Once more, all models show similar patterns and forecasting quality. For 
Switzerland, reference and OSM models are almost identical.

Towards longer distances, both models start to deviate from the observed mode-share. 
This could be accredited to the small number of observations for large distances leading to 
a higher likelihood of error.

Discussion

Based on the three data sets, the results show that the models estimated from reconstructed 
activity locations perform similarly as those estimated on the observed activity locations. 
The proposed reconstruction algorithm together with the OSM data can provide a useful 
alternative to observed non-anonymized data set. This finding is important as it suggests 
that anonymized data can be used successfully for mode-choice modelling. However, we 
demonstrate that just using the centroids of the zones as activity points is not sufficient, as 
indicated by the substantial differences in marginal rates of substitution, prediction accu-
racy and mode shares.

The following describes the limitations of our work and possible future directions:

• For trips made with public transport, origin or destination activity locations with rea-
sonable access to public transport could be sampled within the zones. Consequently, 
unrealistic locations can be avoided, and higher location precision may be obtained.

• Currently, we only consider Euclidean distances between consecutive activities. Taking 
into account network distances could potentially improve the accuracy of the algorithm. 
Even (congested) network travel times could be used to reconstruct activity-to-activity 
travel times, if available.

• In the current approach, we extract all road nodes from the OSM network. In areas 
where OSM data has good quality, like in Switzerland or France, one could sample 
from potential locations based on the origin and destination activity. This way, possible 
locations for shopping activities would come from the location of shopping facilities 
present in OSM. More importantly, this could speed up the reconstruction algorithm. 
On the other hand, it could potentially increase the chances of precisely identifying 
activity locations of individuals, which would violate the anonymity requirement. If 
this is the case, suitable measures would need to be taken to further anonymize the 
data.

• During location reconstruction, we only restrict home activities to happen at the same 
location. Similarly, we could impose restrictions on education and work activities. 
However, some individuals perform work activities in different places during the day. If 
this is the case, we could identify (to some extent) this change in the activity chain by 
the change of the zone where the work activity is performed.

• In certain cases the activity location reconstruction problem could have a large number 
of possible solutions (see also 1). This can potentially also be avoided by better repre-
sentation of candidate locations, thus limiting the choice set, as explained above.

• The modeling approach used in the study is purposely simple in terms of choice 
model and variables, as we aim to show the first tradeoffs between models estimated 
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on anonymized and raw datasets. It must be kept in mind that other, more sophisti-
cated models with different specifications might exhibit different tradeoffs.

Improving the activity location reconstruction could further enhance the model esti-
mates, especially in areas where certain zones are large, like in São Paulo. On the other 
hand, from the location protection perspective, an improved reconstruction approach 
could endanger the privacy of the survey respondents. If this is the case, it would signal 
to the maintainers that a more sophisticated anonymization procedure is needed. Finally, 
from the aspect of cyber security, it would be interesting to investigate how knowing the 
exact location of one of the activities would affect the knowledge about the other activ-
ity locations in the chain, which would give insights into the potential vulnerability of 
the data to outside attacks.

Conclusion

This paper demonstrates that discrete choice models estimated from disaggregated zone-
based trip data obtained with the proposed reconstruction methodology exhibit similar 
goodness of fit as those based on non-anonymized data. These results are encouraging 
as they imply that by using spatial cloaking on the level employed in the three datasets 
described for Switzerland, Île-de-France, and São Paulo, the usefulness of the data sets for 
mode-choice modeling can be preserved. We also show that using centroids of zones as 
activity locations is insufficient and leads to considerably different parameters estimates. 
Finally, the reconstruction algorithm presented in this paper can easily be applied to other 
data sets (such as California Household Travel Survey (California Department of Transpor-
tation 2021)), which are spatially anonymized by default.

We observe that our methodological approach does not endanger the anonymity of indi-
viduals. However, we have highlighted some essential future investigations that can help 
answer whether additional data could threaten the surveyed individuals’ privacy. As differ-
ent entities are increasingly collecting data from their users, the possibility of identifying 
individuals from anonymized surveys is increasing, which could affect how future datasets 
should be anonymized. Therefore, future work should focus on finding the potential weak 
points of current anonymization techniques, especially when combined with other data 
sources, to inform on potential risks and vulnerabilities.
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