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Ising model on random triangulations of the disk: phase transition

In (Commun. Math. Phys.

( ): -, ), we have studied the Boltzmann random triangulation of the disk coupled to an Ising model on its faces with Dobrushin boundary condition at its critical temperature. In this paper, we investigate the phase transition of this model by extending our previous results to arbitrary temperature: We compute the partition function of the model at all temperatures, and derive several critical exponents associated with the in nite perimeter limit. We show that the model has a local limit at any temperature, whose properties depend drastically on the temperature. At high temperatures, the local limit is reminiscent of the uniform in nite half-planar triangulation (UIHPT) decorated with a subcritical percolation. At low temperatures, the local limit develops a bottleneck of nite width due to the energy cost of the main Ising interface between the two spin clusters imposed by the Dobrushin boundary condition. This change can be summarized by a novel order parameter with a nice geometric meaning. In addition to the phase transition, we also generalize our construction of the local limit from the two-step asymptotic regime used in (Commun. Math. Phys.

( ): -, ) to a more natural diagonal asymptotic regime. We obtain in this regime a scaling limit related to the length of the main Ising interface, which coincides with predictions from the continuum theory of quantum surfaces (a.k.a. Liouville quantum gravity).

Introduction

The two-dimensional Ising model is one of the simplest statistical physics models to exhibit a phase transition. We refer to [ ] for a comprehensive introduction. The systematic study of the Ising model on random twodimentional lattices dates back to the pioneer works of Boulatov and Kazakov [ , ], where they discovered a third order phase transition in the free energy density of the model, and computed the associated critical exponents. In their work, the partition function of the model was computed in the thermodynamic limit using matrix integral methods applied to the so-called two-matrix model, see [ ] for a mathematical introduction. Since then, this approach has been pursued and further generalized to treat other statistical physics models on random lattices, see e.g. [ , ].

In this paper, we will follow a more combinatorial approach to the model originated from a series of works by Tutte (see [ ] and the references therein) on the enumeration of various classes of embedded planar graphs known as planar maps, which is essentially another name for the random lattices studied in physics. The approach of Tutte utilizes a type of recursive decomposition satis ed by these classes of planar maps to derive a functional equation that characterizes their generating function. This method was later generalized by Bernardi and Bousquet-Mélou [ , ] to treat bicolored planar maps with a weighting that is equivalent to the Ising model. Before that, Bousquet-Mélou and Schae er already had studied the Ising model on planar maps using some general bijection between bipartite maps and blossoming trees [ ]. Another work of Bouttier, Di Francesco and Guitter also studied Ising model on quadrangulations using bijections between Eulerian maps and mobiles [ ].

From a probabilistic point of view, the aforementioned recursive decomposition can be seen as the operation of removing one edge from an (Ising-decorated) random planar map with a boundary, and observing the resulting changes to the boundary condition. By iterating this operation, one obtains a random process, called the peeling process, that explores the random map one face at a time. Ideas of such exploration processes have their roots in the physics literature [ ], and was revisited and popularized by Angel in [ ]. The peeling process proves to be a valuable tool for understanding the geometry of random planar maps without Ising model, see [ ] for a review of recent developments.

In our previous article [ ], we extended some enumeration results of Bernardi and Bousquet-Mélou [ ] to study the Ising-decorated random triangulations with Dobrushin boundary condition at its critical temperature. We used the peeling process to construct the local limit of the model, and to obtain several scaling limit results concerning the lengths of some Ising interfaces. In this paper, we extend similar results to the model at any temperature, and show how the large scale geometry of Ising-decorated random triangulations changes qualitatively at the critical temperature. In particular, our results con rm the physical intuition that, at large scale, Ising-decorated random maps at non-critical temperatures behave like non-decorated random maps.

A similar model of Ising-decorated triangulations (more precisely, a model dual to ours) has been studied in a recent work of Albenque, Ménard and Schae er [ ]. They followed an approach reminiscent of Angel and Schramm in [ ] to show that the model has a local limit at any temperature, and obtained several properties of the limit such as one-endedness and recurrence for a range of temperatures. However, they studied the model without boundary, and hence did not encounter the geometric consequences of the phase transition in terms of the in nite Ising interface. In the recent preprint [ ], the rst two of the aforementioned authors proved several exact results on the perimeter and volume of the spin clusters, demonstrating the phase transition through several critical exponents and geometric behaviors of the cluster in di erent phases. The model with spins on the vertices can also be studied with a boundary, and the methods introduced in [ ] and this article were recently applied to that model in [ ] by the second author of this work.

We start by recalling some essential de nitions from [ ].

Planar maps. Recall that a ( nite) planar map is a proper embedding of a nite connected graph into the sphere S 2 , viewed up to orientation-preserving homeomorphisms of S 2 . Loops and multiple edges are allowed in the graph. A rooted map is a map equipped with a distinguished corner, called the root corner.

All maps in this paper are assumed to be planar and rooted. In a (rooted planar) map , the vertex incident to the root corner is called the root vertex and denoted by . The face incident to the root corner is called the external face, and all other faces are internal faces. We denote by ( ) the set of internal faces of .

A map is a triangulation of the ℓ-gon (ℓ ≥ 1) if its internal faces all have degree three, and the boundary of its external face is a simple closed path (i.e. it visits each vertex at most once) of length ℓ. The number ℓ is called the perimeter of the triangulation. Figure (a) gives an example of a triangulation of the 7-gon.

Ising-triangulations with Dobrushin boundary conditions. We consider the Ising model with spins on the internal faces of a triangulation of a polygon. A triangulation together with an Ising spin con guration on it is written as a pair ( , ), where ∈ {+, -} ( ) . Observe that can also be viewed as a coloring, and by combinatorial convention, we sometimes refer to it as such. An edge of is said to be monochromatic if the spins on both sides of are the same. When is a boundary edge, this de nition requires a boundary condition which speci es a spin outside each boundary edge. By an abuse of notation, we consider the information about the boundary condition to be contained in the coloring , and denote by ( , ) the number of monochromatic edges in ( , ).

In this work we consider the Dobrushin boundary conditions under which the spins outside the boundary edges are given by a sequence of the form + -( +'s followed by -'s, where , ≥ 0 are integers and + ≥ 1 is the perimeter of the triangulation) in the clockwise order from the root edge. We call a pair ( , ) with this boundary condition an Ising-triangulation of the ( , )-gon, or a bicolored triangulation of the Although hardly visible in the graph, the third derivative of ( ) has a discontinuity at = .

in order to shed more light on the nature of the phase transition at = . For this reason we will write throughout this paper , ( ) = , ( ( ), ) , ( , ) = ( , ( ), ) and ( , , ) = ( , , ( ), ) . In [ ], we have characterized ( , , , ) as the solution of a functional equation, and solved it in the case of ( , ) = ( , ( )). In this paper we solve the equation for general ( , ) and give the solution in terms of a multivariate rational parametrization:

Theorem (Rational parametrization of ( , , , )). For > 1, ( , , , ) satis es the parametric equation

2 = ˆ ( , ), • = ˆ ( , , ), • = ˆ ( , , ) and ( , , , ) = ˆ ( , , , ) , ( ) 
where ˆ , ˆ and ˆ are rational functions whose explicit expressions are given in Lemma and in [ ].

To specialize the above rational parametrization of ( , , , ) to the critical line = ( ), one needs to replace the parameter by its value ( ) that parametrizes = ( ). It turns out that the function ( ) itself has rational parametrizations on (1, ) and ( , ∞), respectively. More precisely, ( ) satis es a parametric equation of the form = ˇ ( ) and ( ) = ˇ ( ) , where ˇ ( ) and ˇ ( ) are piecewise rational functions on the intervals ( 1 , ] and [ , ∞), where the values ( ) 2 = ˇ ( ), ( ) • = ˇ ( , ), ( ) • = ˇ ( , ), and ( , , ) = ˇ ( , , ). See Section . for more details.

In [ ], we computed the asymptotics of , ( , ) when ( , ) = ( , ( )) in the limit where → ∞ after → ∞. The following theorem extends this result to the whole critical line = ( ), and also to the limit where

, → ∞ at comparable speeds. These results are obtained by a close examination of the singular expansion of the multivariate generating function ( , , ( ), ) (in particular, by proving that ( , ) ↦ → ( , , ( ), ) is analytic in a product of two Δ-domains), see Sections -. Similar methods have been applied to more complicated generating functions and made partly systematic in two recent works [ , ] of the rst author.

Theorem (Asymptotics of , ( )). For any xed > 1 and 0 < min < max < ∞, we have

( ) • , ( ) = ( ) Γ(-0 ) • -( 0 +1) + -( 0 +1+ )
as → ∞ for each xed ≥ 0.

( ) • ( ) = ( ) Γ(-1 ) • -( 1 +1) + -( 1 +1+ ) as → ∞. ( ) + • , ( ) = ( ) • ( / ) Γ(-0 )Γ(-1 ) • -( 2 +2) + -( 2 +2+ )
as , → ∞ while / ∈ [ min , max ].

where the exponents , and the scaling function ( ) only depend on the phase of the model, and are given by

0 1 2 > 3/2 3/2 3 1/2 = 4/3 1/3 5/3 1/3 ∈ (1, ) 3/2 -1 1/2 1/2 ( ) =            -5/2
when > 4 3 ´∞ 0 (1 + ) -7/3 ( + ) -7/3 d when = (1 + ) -5/2 when ∈ (1, ) .

On the other hand, ( ), ( ) (for ≥ 0) and ( ) are analytic functions of on (1, ) and ( , ∞), respectively. And ( ) is continuous at = . An explicit parametrization of ( ) is given in Section . . Parametrizations of ( ) and of the generating function ( , ) := ( ) are explained in Section and given in [ ].

Remark . The exponents and the scaling function ( ) satisfy a number of consistency relations. First, one can exchange the roles of and in the last asymptotics of Theorem . Since we have , = , for all , , this implies that ( ) 2 +2 = ( -1 ) or, in a more symmetric form, ( ) ( 2 +2)/2 = ( -1 ) -( 2 +2)/2 . By replacing the factor ( ) in the rst asymptotics of Theorem with the dominant term in the second asymptotics, we obtain heuristically that

( ) + • , ( ) ∼ ( ) • ( / ) -( 0 +1) Γ(-0 )Γ(-1 ) • -( 0 + 1 +2)
when , → ∞ and .

This suggests that 0 + 1 = 2 and ( ) ∼ -( 0 +1) when → ∞. One can verify that both relations are indeed satis ed by and ( ) in all three phases. Notice that thanks to the equation ( ) 2 +2 = ( -1 ), the asymptotics

( ) ∼ →∞ -( 0 +1) is equivalent to ( ) ∼ →0 -( 1 +1) .
In nite Ising-triangulations and local limits. In nite bicolored triangulations are de ned as the local limits of nite bicolored triangulations. Formally, the local distance between two bicolored triangulations ( , ) and ( , ) is de ned by loc (( , ), ( , )) = 2 - where = sup { ≥ 0 :

[ , ] = [ , ] }
and [ , ] denotes the ball of radius around the origin in ( , ) which takes into account the colors of the faces. The set BT of ( nite) bicolored triangulations of a polygon is a metric space under loc . We denote its Cauchy completion by BT and de ne the set of in nite bicolored triangulations as BT \ BT. We recall from graph theory that an in nite graph is -ended if the complement of any nite subgraph has at most in nite connected components [ , . ], and the same notion naturally extends to maps by considering their underlying graphs. We denote by BT (1) ∞ the set of one-ended (in nite) bicolored triangulations with an external face of in nite degree. The elements of BT (1) ∞ are called bicolored triangulations of the half plane, since they have a proper embedding without accumulation points in the upper half plane such that the boundary coincides with the real axis. Moreover, let BT (2) ∞ be the set of two-ended bicolored triangulations with an external face of in nite degree.

Peeling process and perimeter processes. Recall that we consider bicolored triangulations ( , ) with a Dobrushin boundary condition. We denote by the root vertex of ( , ), and by † the other boundary vertex where the boundary condition changes sign.

An interface in ( , ) is a path on formed by non-monochromatic edges. Due to the Dobrushin boundary condition, the vertices and † are always connected by an interface. However, because the spins are on the faces of the triangulation, this interface is in general not unique. Similarly to [ ], we will consider peeling processes that explore one such interface at a time. More precisely, when ≥ , we will consider the peeling process that explores the left-most interface I from to † . (This is the same choice as in [ ]). When 1 < < , we will apply explorations along other interfaces, see Section . for details. In all of the cases, the exploration reveals one triangle adjacent to the interface at each step, and swallows a nite number of other triangles if the revealed triangle separates the unexplored part into two pieces.

Formally, we de ne the peeling process as an increasing sequence of explored maps ( ) ≥0 . The precise de nition of will be left to Section . . The peeling process is also encoded by a sequence of peeling events (S ) ≥1 taking values in a countable set of symbols, where S indicates the position of the triangle revealed at time relative to the explored map -1 . Again, the detailed de nition is left to Section . . The law of the sequence (S ) ≥1 can be written down fairly easily and one can perform explicit computations with it. We denote by P , the law of the sequence (S ) ≥1 under P , .

Let ( , ) be the boundary condition of the unexplored map at time and ( , ) its variation, that is, = -0 and = -0 . This de nition makes sense when the initial condition ( 0 , 0 ) = ( , ) is nite. When ( , ) is not nite, we need to de ne ( , ) di erently: we will show that ( , ) is a deterministic function of the peeling events (S ) 1≤ ≤ , whose law has a well-de ned limit when , → ∞. This allows us to de ne the law of the process ( , ) ≥0 under P ∞ := lim , →∞ P , . We will see that ( , ) ≥0 is a random walk on Z 2 under P ∞ . It was proven in [ ] for the corresponding expectations of the increments that

E ∞ ( 1 ) = E ∞ ( 1 ) = := 1 4 √ 7 > 0 when = , ( )
which implies that almost surely, the interface hits the boundary of the half-plane a nite number of times, and then escapes towards in nity. When viewed as a function of the temperature , the drift of the random walk ( , ) ≥0 actually de nes an order parameter:

Proposition (Order parameter). Let O( ) := E ∞ (( 1 + 1 )1 | 1 |∨ | 1 |<∞ ). Then O( ) = 0, if 1 < < ( ) if ≥ , where : [ , ∞) → R is a continuous, strictly increasing function such that ( ) = 2 > 0 and lim ∞ ( ) < ∞ exists. Moreover, for 1 < < , we have the drift condition E ∞ ( 1 ) = -E ∞ ( 1 ) > 0.
Notice that there is an asymmetry between the two components of the drift of the random walk ( , ) ≥0 under E ∞ . This is a consequence of the following asymmetry in the de nition of the perimeter process: In Section . , we de ne a peeling process that explores the left-most interface I from the vertex . The perimeter process ( , ) ≥0 and its variation ( , ) ≥0 are de ned relative to this peeling process. Therefore it is not surprising that the two components of ( , ) ≥0 have di erent drifts under E ∞ .

The function O de nes an order parameter for two reasons: First, its behavior ts formally the de nition of an order parameter in physics, namely: the value of O( ) is zero on one side of the critical temperature, and positive on the other side. (A classical example of such an order parameter is the magnetization of the Ising model on regular lattices.) More importantly, the positivity of O( ) really distinguishes the ordered phase ≥ from the disordered phase < via the behavior of the interface I in the local limit. We will explain this in the next paragraph.

Interface geometry. Recall that for a nite bicolored triangulation ( , ) with Dobrushin boundary condition, I is de ned as the left-most interface from to † imposed by the boundary condition. In the limit , → ∞, the interface I becomes a (possibly in nite) path on the in nite triangulation of distribution P ∞ . Many geometric properties of I -especially its visits to the boundary of the triangulation -are encoded by the random walk ( , ) ≥0 of law E ∞ . The next proposition summarizes some almost sure properties of the interface I which follow from Proposition . The geometric pictures behind these properties are discussed after the proposition.

Proposition (Geometry of the interface I). In the local limit P ∞ , the left-most interface I has the following properties almost surely

• When ∈ (1, ) : I is in nite and touches the boundary of the triangulation in nitely many times.

• When = : I is in nite, but touches the boundary of the triangulation only nitely many times.

• When ∈ ( , ∞) : I is nite.

When ∈ (1, ), due to the fact that E ∞ ( 1 ) = -E ∞ ( 1 ) > 0, the peeling process starting from theedge on the left of drifts to the left. This exploration also follows the left-most interface starting from , which stays near the in niteboundary segment hitting it almost surely in nitely many times. Similarly, the right-most interface starting from and explored via a peeling exploration starting from the edge on the right of drifts to the right following the + boundary. Since E ∞ ( 1 ) + E ∞ ( 1 ) = 0, these two interfaces have the same geometry up to re ection. Using this property, we will construct a peeling algorithm under which the peeling process explores the half-plane in layers, with a starting point alternating betweenand + edges. The new peeling exploration obtained in this way reveals that the local limit constructed via this peeling process has a percolation-like interface geometry. On the contrary, if ∈ [ , ∞), the peeling process explores an interface which drifts towards the in nity † after hitting the boundary only nitely many times. The fact that this drift is increasing in means that the lower the temperature is, the less the interface hits the boundary and the faster the interface tends to the in nity. In fact, it is also shown that if ∈ ( , ∞), the peeling process approaches a neighborhood of † in a nite time almost surely.

One should compare the statement of Proposition to the geometry of the percolation interface on the UIHPT (see [ , , ]). In that case, the interface hits the boundary in nitely many times almost surely. As Proposition suggests, in the high temperature phase (1 < < ), the Ising model in the local limit looks like a subcritical face percolation, whereas in the low temperature phase ( > ), the local limit contains almost surely a bottleneck separating the + andregions. In the latter case, the local limit is not almost surely one-ended, contrary to the usual case of local limits of random planar maps. This property re ects that our model in the low temperature phase is really a quantum gravity version of the Ising model on D regular lattices in the ferromagnetic low temperature phase: the energy minimizing property forces the bottleneck due to the coupling of matter with gravity. Both the high and the low temperature cases are predicted in physics literature, though not extensively studied (see [ , ]). More about the geometric interpretations is found in Section . . Now we consider again the law of a nite Boltzmann Ising triangulation P , and study how the interface length scales together with the perimeter of the disk as , → ∞ simultaneously. Let := inf { ≥ 0 : min{ , } ≤ }, which can be seen as the rst jump time of the interface to a neighborhood of the in nity. By its de nition, is also the rst hitting time of the stochastic process (min{ , }) ≥0 to [0, ], which is a stopping time with respect to the ltration generated by ( , ) ≥0 or ( , ) ≥0 . In the most interesting regime = , we nd an explicit scaling limit of under diagonal rescaling of , :

Theorem (Scaling limit of ). Let = and consider the limit where , → ∞ and / → for some ∈ (0, ∞). For all ∈ N and all ≥ 0, the jump time has the following scaling limit:

P , ( / > ) -----→ , →∞ 1 
( ) ˆ∞ (1 + ) -7/3 ( + ) -7/3 ( )
where ( ) = ´∞ 0 (1 + ) -7/3 ( + ) -7/3 d . In particular, when = 1, we have

P , ( / > ) -----→ , →∞
(1 + ) -11/3 .

An analogous result without the diagonal rescaling (via an intermediate local limit) was obtained in [ , Proposition ]. As explained in [ , Section ],

is, in some sense, an approximation of the interface length of a nite Boltzmann Ising-triangulation, though some technical di culties remain to show that its scaling limit gives the scaling limit of the interface length. Hence, we state a conjecture:

Conjecture (Scaling limit of the interface length). Let be the length of the left-most interface in ( , ). Then

P , ( / > ) -----→ , →∞ 1 ( ) ˆ∞ / (1 + ) -7/3 ( + ) -7/3 while → ,
where is the expected number of interface edges swallowed in a single peeling step.

The idea behind the above conjecture is explained in [ , Section ] in a similar setting. The main obstacle of the proof for the conjecture is that we lack information of with our current approach. One could nd an asymptotic estimate for the volume of a nite Boltzmann Ising-triangulation, which gives an upper bound for the length of a piece of interface swallowed by a peeling step, but it turns out not to be su cient. However, an analog of the conjecture could be proven for the model with spins on vertices, or with spins on faces and a general boundary. The former is conducted in the preprint [ ]. The conjecture is also supported by a prediction derived from the Liouville Quantum Gravity, seen as a continuum model of quantum surfaces studied eg. in [ ], which also inspired us to nd the correct constant in the scaling limit of Theorem . More discussion about this is given in Section . .

To understand the phase transition at the critical point in greater detail, one should also consider the so-called near-critical regime. In our context, this means that we let → simultaneously with the perimeters tending to in nity. Intuitively, one expects that if → fast enough compared to the growth of the perimeters, observables of the model will have the same limit as when = . On the contrary, if the convergence → is slow, the observables should have limits similar to those obtained at o -critical temperatures. An interesting question is to determine whether there is a critical window between the critical and the o -critical regimes, where the limits exhibits a qualitatively di erent behavior. These problems are considered in a work in progress.

Outline. The paper is composed of two parts, which can be read independently of each other.

The rst part, which spans Sections -, deals with the enumeration of Ising-decorated triangulations. We start by deriving explicit rational parametrizations of the generating function ( , , , ) and its specialization ( , , ) ≡ ( , , ( ), ) on the critical line (Section ). Using these rational parametrizations, we show that for each > 1, the bivariate generating function ( , , ) has a unique dominant singularity and an analytic continuation on the product of two Δ-domains (Section ). We then compute the asymptotic expansion of ( , , ) at its unique dominant singularity (Section ). Finally, we prove the coe cient asymptotics in Theorem using a generalization of the classical transfer theorem based on double Cauchy integrals (Section ).

The second part, which comprises Sections -and Appendix A, tackles the probabilistic analysis of the Ising-triangulations at any xed temperature ∈ (1, ∞). It uses the combinatorial results of the rst part as an input, and leads to the proofs of Theorems and . First, we introduce the di erent versions of the peeling process adapted to the three phases (high/low/critical temperature) and the two limit regimes examined in Theorem . Then, we study the associated perimeter processes, whose drifts in the limit , → ∞ de ne the order parameter introduced in Proposition (Section ). After that, we provide a general framework for constructing local limits, which we then use to prove the local convergence of Theorem when ≠ (Section ). Finally, we prove Theorem and complete the proof of Theorem by extending the above convergence result to the regime where = and , → ∞ simultaneously (Section ). A central tool in the proofs in this last section is an adaptation of the one-jump lemma for the perimeter process in the diagonal regime, whose proof we present separately in Appendix A as an adaptation of [ , Appendix B].

Rational parametrizations of the generating functions.

The functional equations satis ed by the generating functions 0 ( , , ) and ( , , , ) were derived in our previous work [ ]. The result were written in the form of E 0 0 ( ), , , , 1,0 , 3,0 = 0 and ( , , , ) = E 0 ( ), 0 ( ), , , , , 1,0 , 3,0 ( ) where E 0 and E are explicit rational functions with coe cients in Q. Let us brie y summarize their derivation:

. We start by expressing the fact that the probabilities of all peeling steps sum to one. This gives two equations (called loop equations or Tutte's equations) with two catalytic variables for ( , , , ). These equations are linear in ( , , , ).

. By extracting the coe cients of [ 0 ] and of [ 1 ] from these two equations, we obtain four algebraic equations relating the variable to the series ( , , ) for = 0, 1, 2, 3, whose coe cients are polynomials in , and 1,0 ( , ), 3,0 ( , ). These equations are linear in the three variable 1 , 2 and 3 . After eliminating these variables, we obtain the rst equation of ( ). This procedure is essentially equivalent to the method used in [ , Chapter ] to solve Ising model on more general maps.

. Using the four algebraic equations found in Step , one can also express 1 ( , , ) as a rational function of 0 ( , , ), , , and 1,0 ( , ), 3,0 ( , ). Then, plug this relation into one of the two loop equations, and we obtain the second equation of ( ).

In this section, we rst solve the equation for 0 ( , , ) with the help of known rational parametrizations of 1,0 ( , ) and 3,0 ( , ). Then, the solution is propagated to ( , , , ) using its rational expression in 0 ( , , ) and its coe cients. Finally, we specialize the parametrization of ( , , , ) to the critical line = ( ) by replacing two parameters ( , ) with a single parameter .

. Rational parametrization of 0 ( , , )

Lemma . 0 ( , , ) has the following rational parametrization:

2 = ˆ ( , ) := ( -) ( + -2) (4 3 -2 -2 + 2 -2 ) 32(1 -2 ) 3 2 ( ) = ˆ ( , , ) := • 2(4 3 -2 -2 + 2 -2 ) -4( + 1) 2 + 4 2 2 -3 16(1 -2 ) 2 ( ) 0 ( , , ) = ˆ 0 ( , , ) := ˆ ( , , ) ˆ ( , ) • ( -) ( + -2) + 2( -) -2 2 2 + 3 4(1 -2 ) . ( ) 
Proof.
The following rational parametrizations of 1,0 ( , ) and 3,0 ( , ) were obtained in [ ] by translating a related result from [ ]: 2 = ˆ ( , ) and + (32 4 -128 3 + 183 2 -110 + 20) 4 -4(7 2 -14 -2) 3

3 • 1,0 ( , ) = ˆ 1,0 ( , ) := ( -) 2 ( + -2) 64( 2 -1) 4 2 (3 3 -2 -+ 2 -2 ) , ( ) 9 • 3,0 ( , ) = ˆ 3,0 ( , ) := ( -) 5 ( + -2) 5 2 22 ( 2 -1)
+ ( -2) (9 2 -18 -20) 2 + 14 2 ( -2) 2 -3 3 ( -2) 3 .
Substituting by / , and then , 1,0 , 3,0 by their respective parametrizations in the rst equation of ( ), we obtain an algebraic equation of the form Ê0 ( 0 , , , ) = 0. It is straightforward to check that ( )-( ) cancel the equation, that is, Ê0 ( ˆ 0 ( , , ), ˆ ( , , ), , ) = 0 for all , and . See [ ] for the explicit computation.

/Λ ≡ /Λ * ( ). Now we ask Maple to display ˆ ( , , * ) as a polynomial in /Λ, and look for common factors among its coe cients (which are elements of Q( )). With some trial-and-error, we nd that the choice

Λ * ( ) = -8 • [( /Λ) 4 ] ˆ ( , , * ) [( /Λ) 3 ] ˆ ( , , * )
cancels all those common factors. This choice is also equivalent to the condition that [ 3 ] ˆ ( , , * )

[ 4 ] ˆ ( , , * ) = -8 . The prefactor 8 is not chosen for simpli cation reasons. Rather, it is chosen so that ( ˆ , ˆ 0 ), the rational parametrization that we get after interpolation in , will specialize to the rational parametrization given in our previous article [ ] when ( , ) = ( , ).

. The above choice of Λ * ( ) gives us the expressions of ˆ ( , , * ) and ˆ 0 ( , , * ) for all * ∈ N. Then, we apply the Maple routine CurveFitting[RationalInterpolation] to nd a pair ( ˆ , ˆ 0 ) ∈ Q( , , ) 2 that interpolates between these values of * . This gives the expressions ( )-( ).

One can run the above procedure with a larger set N, and check that the result does not change.

. Rational parametrization of ( , , , ).

We plug the parametrizations ( )-( ) into the second equation of ( ) to obtain a rational parametrization of ( , , , ) of the form

2 = ˆ ( , ) = ˆ ( , , ) = ˆ ( , , ) and ( , , , ) = ˆ ( , , , ) ,
where the rational functions ˆ and ˆ are de ned in Lemma , and the expression of ˆ is given in [ ].

. Specialization of ( , , , ) to the critical line = ( ).

Rational parametrization of the critical line. Recall that ( ) is de ned as the radius of convergence of the series 1,0 ( • , ). The series have nonnegative coe cients, and have a real rational parametrization of the form 2 = ˆ ( , ) and 3 • 1,0 = ˆ 1,0 ( , ) given by ( ) and ( ). As explained in [ , Appendix B], the value = ( ) that parametrizes the point = ( ) is either a zero of ˆ ( • , ) or a pole of ˆ 1,0 ( • , ). More precise calculation (see [ ]) using the method of [ , Appendix B] shows that ( ) is the largest zero of ˆ ( • , ) below = (which parametrizes = 0). The equation ˆ ( , ) = 0 factorizes, and ( ) satis es

2 3 -3 2 -2 + 2 = 0 if ∈ (1, ] , ( ) 
3 2 -2 + 2 = 0 if ∈ [ , ∞) , ( )
where = 1 + 2 √ 7. It is not hard to check that ( ) has the following piecewise rational parametrization:

= ˇ ( ) = 1 2 (2 -3 + 3 ) 27 13+2 -2 2 and ( ) = ˇ ( ) = 1 2 ( 2 -1) for ∈ ( 1 , ] 3(2 -1) 13+2 -2 2 for ∈ [ , ∞ ) ( ) where 1 = √ 3, = √ 7, ∞ = 1+3 √ 3 2
correspond respectively to the coupling constants = 1, = and = ∞. Plugging ( ) into ˆ ( , ) gives the following piecewise rational parametrization of ( ):

( ) 2 = ˇ ( ) :=              3 2 -1 2 3 (4 -3 + 3 ) 3 for ∈ ( 1 , ] (1 + ) 2 (13 + 2 -2 2 ) 3 (19 -10 -2 2 ) 128( -5) (4 + ) 3 (7 -+ 2 ) 3 for ∈ [ , ∞ )
Rational parametrization of ( , , , ) on the critical line. De ne ˇ ( , ) = ˆ ( , ˆ ( ), ˆ ( )) and ˇ ( , , ) = ˆ ( , , ˆ ( ), ˆ ( )). Then ( , , ) ≡ ( , , ( ), ) has the piecewise rational parametrization:

( ) • = ˇ ( , ) ( ) • = ˇ ( , ) and 
( , , ) = ˇ ( , , ) , where ˇ ( , ) :=                      (3 -10 2 + 3 4 ) + (1 -4 ) -2(1 -2 ) 2 -3 2 (3 -2 ) 2 (4 -3 + 3 ) 2 for ∈ ( 1 , ] - (13 + 2 -2 2 ) 2 256(5 -) 2 (4 + ) 2 (7 -+ 2 ) 2 8(1 + ) (5 -) 19 -10 -2 2 -3(1 -2 ) +12(1 -2 ) 13 + 2 -2 2 2 + 13 + 2 -2 2 2 3 for ∈ [ , ∞ ) ( )
whereas ˇ ( , , ), too long to be written down here, is given in [ ]. Since we look for the asymptotics of , ( ) when , → ∞ with xed values of , we will be interested in the singularity behavior of ˇ ( , ) and ˇ ( , , ) at xed values of . For this reason we introduce the shorthand notations ˇ ( ) := ˇ ( , ) and ˇ ( , ) := ˇ ( , , ) .

. Domain of convergence of ( , , ) and its parametrization.

De nition and parametrization of ( ). For all ∈ ( 1 , ∞ ), let ˇ ( ) be the smallest positive zero of the derivative ˇ . Using the expression ( ), it is not hard to nd that

ˇ ( ) :=            2 -3 2 for ∈ ( 1 , ] 5 + 4 -2 -3(5 -) (1 + ) ( 2 -7) 13 + 2 -2 2 for ∈ [ , ∞ ) ( )
For > 1, let ( ) be the function parametrized by = ˇ ( ) and ( ) • ( ) = ˇ ( ˇ ( )), where ∈ ( 1 , ∞ ).

Lemma . For all > 1, the double power series ( , ) ↦ → ( , , ) is absolutely convergent if and only if | | ≤ ( ) and | | ≤ ( ).

Proof. First, we notice that the proof can be reduced to the problem of estimating the radii of convergence of two univariate power series: it su ces to show that the series ↦ → ( , 0, ) ≡ (0, , ) is divergent when | | > ( ), and the series ↦ → ( , , ) is convergent at = ( ). Indeed, since the double power series ( , , ) has nonnegative coe cients, the divergence condition implies that ( , , ) is divergent when The univariate series ↦ → ( , 0, ) has nonnegative coe cients and the following rational parametrization:

| | > ( ) or | | > ( ),
( ) • = ˇ ( ) and ( , 0, ) = ˇ ( , 0) .
It is not hard to check that this rational parametrizations are real and proper (see [ , Appendix B] for the de nitions and characterizations of these properties), and the parametrization ( ) • = ˇ ( ) maps a small interval around = 0 increasingly to an interval around = 0. Hence the parametrization of the radius of convergence of ↦ → ( , 0, ) can be determined in the framework of [ , Proposition ]. More precisely, the radius of convergence * ( ) should satisfy ( ) * ( ) = ˇ ( ˇ * ( )), where ˇ * ( ) is the smallest positive number that is either a zero of ˇ , or a pole of ↦ → ˇ ( , 0). Comparing this to the de nition of ˇ ( ), we see that ˇ * ( ) ≤ ˇ ( ), and hence * ( ) ≤ ( ). This shows that ↦ → ( , 0, ) is divergent when Again, the rational parametrization is real and proper. Using its explicit expression, one can check that the rational function ↦ → ˇ ( , ) has no pole on [0, ˇ ( )]. With the same argument as for ↦ → ( , 0, ), we conclude that ( ) is the radius of convergence of ↦ → ( , , ) and the series is convergent at = ( ) (because ( ( ), ( ), ) = ˇ ( ˇ ( ), ˇ ( )) is nite). This concludes the proof of the lemma. The necessary explicit computations in the above proof can be found in [ ].

Notations: In the following, we will use the renormalized variables ( , ) = ( ) , ( ) . A parametrization of the function ( , ) ↦ → ( , , ) is given by = ˇ ( , ), = ˇ ( , ) and ˜ ( , , ) = ˇ ( , , ), where ˇ ( , ) ≡ ˇ ( ) := ˇ ( )/ ˇ ( ˇ ( )) is still a rational function in . In the low temperature regime ˇ ( , ) is no longer rational in due to the square root in ( ). However it remains continuous on ( 1 , ∞ ) and smooth away from . These regularity properties will be more than su cient for our purposes.

De nition of holomorphicity and conformal bijections:

We say that a function is holomorphic in a (not necessarily open) domain if it is holomorphic in the interior of the domain and continuous in the whole domain. This de nition is also valid for functions of several complex variables, in which case holomorphic means that the function has a multivariate Taylor expansion that is locally convergent. A conformal bijection is a bijection which is holomorphic and whose inverse is also holomorphic.

De nition of H 0 ( ): By [ , Proposition ], for each ∈ ( 1 , ∞ ), the mapping ˇ induces a conformal bijection from a compact neighborhood of = 0 to the closed unit disk D. We denote by H 0 ( ) this neighborhood and by H 0 ( ) its interior. It is not hard to see that H 0 ( ) is the connected component of the preimage ˇ -1 (D) which contains the origin. This characterization of H 0 ( ) will be used in the proof of Lemma . Notice that it implies in particular that H 0 ( ) is symmetric with respect to the real axis.

Dominant singularity structure of ( , , )

In this section, we prove that the bivariate generating function ( , ) ↦ → ( ( ) , ( ) , ) has a unique dominant singularity at ( , ) = (1, 1), and is "Δ-analytic" in a sense similar to the one de ned in [ ] for univariate generating functions. Before starting, let us brie y describe the state of the art for the singularity analysis of algebraic generating functions of one or two variables.

For a generating function ( ) = ≥0 of one complex variable, a dominant singularity of is by de nition a singularity with minimal modulus. Moreover, this minimal modulus is equal to the radius of convergence of the Taylor series , so the dominant singularities of are simply those on the circle

{ ∈ C : | | = }.
When is algebraic, it behaves locally near a singularity * like ( - * ) with some ∈ Q. In particular, one can nd a disk centered at * such that (a branch of) is analytic in the disk with one ray from * to ∞ removed. Since algebraic functions have only nitely many singularities, it follows that any univariate algebraic function ( ) with nite radius of convergence has an analytic continuation in a domain of the form ( • ), where are the dominant singularities of , and is the disk of radius 1 + > 1 centered at 0, with the segment [1, 1 + ] removed. This ensures that the classical transfer theorem (see [ , Chapter VI. ]) always applies to algebraic functions, and gives coe cient asymptotics of the form ∼

• -• -with ∈ C and ∈ Q. In particular, when the dominant singularity is unique, the asymptotics has the simple form of ∼

• - * • . When ( , ) = , ,
is an algebraic function of two complex variables, the situation is much more complicated. First, the singularities of ( , ) are in general no longer isolated points. Also, the de nition of dominant singularities has to be generalized: instead of minimizing | | in the univariate case, one needs to minimize the product | | | |, where = lim is de ned by the regime of , → ∞ in which one looks for the asymptotic of , . The general picture for the singularity analysis of bivariate algebraic functions is still far from being fully understood. The only systematic study we found in the literature concerns the case where ( , ) is rational or meromorphic. See [ ] for references. (A non-rational case has also been studied in [ ]. But it concerns functions of a special form, and does not cover the case we are interested in here.) When ( , ) is rational (or of the form studied in [ ]), the locus of singularities of is an algebraic sub-variety of C 2 . In that case, sophisticated tools from algebraic geometry can be used to locate the dominant singularities, and to study ( , ) locally near the dominant singularities.

For the Ising-triangulations, the singularity locus of the generating function ( , ) ↦ → ( , , ) is much harder to describe, since it involves describing branch cuts of the function in C 2 . Luckily, the structure of dominant singularities is very simple: regardless of the relative speed at which , → ∞, the dominant singularity is always unique and at ( , ) = (1, 1). Moreover, the function has an analytic continuation "beyond the dominant singularity" in both the and coordinates, in the product of two Δ-domains. Proposition gives the precise formulation of the above claim.

Notations. We denote by D the open unit disk in C and by arg( ) ∈ (-, ] the argument of ∈ C. For > 0 and 0 ≤ < /2, de ne the Δ-domain

, = { ∈ (1 + ) • D | ≠ 1 and |arg( -1)| > } . When = 0, the above de nition gives ,0 = (1 + ) • D \ [1, 1 + )
, which is a disk with a small cut along the real axis. We call this a slit disk, and use the abbreviated notation ≡ ,0 . We denote by , and , be the boundary and the closure of , . When ∈ (0, /2), these are taken with respect to the usual topology of C. When = 0 however, we view as a domain in the universal covering space of C \ {1}, and de ne and with respect to that topology. In this way the closed curve will be a nice limit of , when → 0 + , as illustrated in Figure (a).

Proposition . For all > 1 and ∈ (0, 2 ), there exists > 0 such that (an analytic continuation of) the function ( , ) ↦ → ( ( ) , ( ) , ) is holomorphic in × , . Moreover, when ≥ , we can take = 0, i.e., nd > 0 such that the function is holomorphic in × .

Remark . As mentioned at the end of the previous section, by "holomorphic in × ", we mean that a function has complex partial derivatives in the interior × of × , and is continuous in × . This will be later used to express the coe cients , ( ) as double Cauchy integrals on the contour × , so that their asymptotics when , → ∞ can be estimated easily. For this purpose, it is not absolutely necessary to prove the continuity of ( , ) ↦ → ( ( ) , ( ) , ) on the boundary of × (in particular, at the point (1, 1)). But not knowing this continuity would require one to approximate the contour × by a sequence of contours that lie inside × , which complicates a bit the estimation of the double Cauchy integral.

The rest of this section is devoted to the proof of Proposition . To this end, we will construct the desired analytic continuation of ( , ) ↦ → ( ( ) , ( ) , ) based on the heuristic formula ( ,

) = ˇ ( ˇ -1 ( ), ˇ -1 ( ))
. The proof comes in two steps: First, we show that for each xed , the rational function ˇ de nes a conformal bijection from a set H ( ) to for some > 0. Then, we try to show that for all small enough, the rational function ˇ ( , ) has no pole, hence is holomorphic, in H ( ) × H ( ). It turns out that this is true only when ≥ . When ∈ (1, ), one needs to reduce the domain H ( ) × H ( ) a bit, which corresponds to replacing one factor in the product × by a Δ-domain , with some opening angle > 0.

. The conformal bijection ˇ : H ( ) → Lemma (Uniqueness and multiplicity of the critical point of ˇ ). For all ∈ ( 1 , ∞ ), ˇ ( ) is the unique zero of the rational function ˇ in H 0 ( ). It is a simple zero if ≠ , and a double zero if = . Proof. By de nition, ˇ ( ) is a zero of ˇ . One can easily check that it is a simple zero if ∈ ( 1 , ∞ ) \ { }, and a double zero if = . It remains to show its uniqueness in H 0 ( ).

(a) (b) (c) θ ∂∆ ϵ ∂∆ ϵ,θ ∂D x = 0 H = 0 H = 0 Ȟc (R) Ȟc (R c ) ∂H ϵ (R) ∂H ϵ,θ (R) ∂H 0 (R) ∂H 0 (R c ) ∂H ϵ (R c )
By the de nition of H 0 ( ), the restriction of ˇ to this set is a conformal bijection. Therefore the derivative ˇ has no zero in H 0 ( ). On the other hand, ˇ is a polynomial of degree three for all ∈ ( 1 , ∞ ), so it has three zeros (counted with multiplicity), one of which is ˇ ( ). In the following we show that the two other zeros are not in the set H 0 ( ) \ { ˇ ( )}, and this will complete the proof.

When ∈ [ , ∞ ), we check by explicit computation (see [ ]) that all three zeros of ˇ are on the positive real line. Since H 0 ( ) is a topological disk containing = 0 and is symmetric with respect to the real axis, its boundary intersects the positive real line only once (at ˇ ( )). Hence ˇ has no zero on H 0 ( ) \ { ˇ ( )}.

When ∈ ( 1 , ), the zeros of ˇ are not always real. In this case we resort to a proof by contradiction: Let ( , ) = ˇ ( , ) -ˇ ( ) . Assume that for some * ∈ ( 1 , ), the quadratic polynomial ↦ → ( , * ) has a zero * in H 0 ( * ) \ { ˇ ( * )}. We will show that the pair ( * , * ) satis es the following system of algebraic equations

( , ) = 0 , ˇ ( , ) = + - and ˇ - • ˇ = • ˇ ( )
where , ∈ R are two auxiliary variables. Notice that this system contains complex equations, but only real variables (ℜ , ℑ , , and ). So we expect it to have no solution. We can check that this is indeed the case: First, we eliminate to obtain two complex polynomial equations relating , and . Since these variables are all real, the real part and the imaginary part of each equation must both vanish. We check that the resulting system of four polynomial equations has no real solution using a general algorithm [ ] implemented in Maple as RootFinding [HasRealRoot], see [ ]. By contradiction, this proves that ˇ ( ) is the unique zero of ˇ in H 0 ( ) for all ∈ ( 1 , ), and completes the proof of the lemma modulo a justi cation of the system ( ).

The rst equation of ( ) is true by the de nition of ( * , * ). The second equation expresses the fact that ˇ ( * , * ) ∈ D \ {1}, which is the image of our assumption

* ∈ H 0 ( * ) \ { ˇ ( * )} under the mapping ˇ * . Indeed, since ↦ → + -is a bijection from R to D \ {1}, we have ˇ ( , ) ∈ D \ {1} if and only if ˇ ( , ) = + -
for some ∈ R. The last equation of ( ) is a consequence of the following two facts:

(i) ( * , * ) ≠ 0. Hence the equation ( , ) = 0 de nes a smooth implicit function = ˇ * ( ) in a neighborhood of ( , ) = ( * , * ). ( * , * ) . On the other hand, we have

d d log ˇ ( ˇ * ( ), ) = d d ℜ log ˇ ( ˇ * ( ), ) = ℜ d d ˇ ( ˇ * ( ), ) ˇ ( ˇ * ( ), ) .
Expanding d d ˇ ( ˇ * ( ), ) using the chain rule, we see that the expression on the right hand side vanishes at = * if and only if the last equation of ( ) holds for some ∈ R and when ( , ) = ( * , * )

One can verify (i) by an explicit computation: If ( * , * ) = 0, then we can solve the pair of equations ( * , * ) = 0 and ( * , * ) = 0 (the rst equation is quadratic in , while the second one is linear), which has a unique solution that satis es * ∈ ( 1 , ). But this solution gives a numerical value | ˇ ( * , * )| ≠ 1 (see [ ]), which contradicts the fact that ˇ ( * , * ) ∈ D. Thus we have ( * , * ) ≠ 0. The justi cation of (ii) is a bit more technical. It is a consequence of the following observation: By de nition, ˇ * ( ) is a critical point of ˇ for all , thus it can never enter the open set H 0 ( ). However, the point * ≡ ˇ * ( * ) is on the boundary of H 0 ( * ). Intuitively, this implies that the movement of the point ˇ * ( ) must be in some sense stationary with respect to the domain H 0 ( ) when = * . To prove (ii), we will show that this stationarity constraint translates to the stationarity of the function

↦ → | ˇ ( ˇ * ( ), )| at = * .
For this, we will change our reference frame to the point ˇ * ( ). In other words, we will make a change of variable = ˇ (ℎ, ) such that ˇ (0, ) = ˇ * ( ), and study the evolution of the domain H 0 ( ) in the variable ℎ when varies around * .

To construct a change of variable that simpli es the expression of H 0 ( ), let us consider the function

( , ) = ˇ ( ˇ * ( )+ , ) ˇ ( ˇ * ( ), ) -1. Since (0, ) ≡ 0 and (0, ) = ˇ ( ˇ * ( ), ) ˇ ( ˇ * ( ), ) ≡ 0, the function ( , ) = -2 ( , ) is analytic in a neighborhood of (0, * ). Moreover, according to (i) we have 2 (0, * ) = 2 ˇ ( ˇ * ( * ), * )
ˇ ( ˇ * ( * ), * ) ≠ 0, hence (0, * ) ≠ 0. By the inverse function theorem, the mapping ( , ) ↦ → ( ( , ) , ) has a local inverse (ℎ, ) ↦ → ( ˇ (ℎ, ), ) that is jointly analytic in (ℎ, ) in a neighborhood of (0, * ). Let ˇ (ℎ, ) = ˇ * ( ) + ˇ (ℎ, ). One can check that the inverse function relation

( ˇ (ℎ, ), ) • ˇ (ℎ, ) = ℎ implies ˇ ( ˇ (ℎ, ), ) = ˇ ( ˇ * ( ), ) • (1 + ℎ 2 )
for all (ℎ, ) in a neighborhood of (0, * ). In the variable ℎ, the preimage of the unit disk D by ˇ is simply the set {ℎ : Remark . The second equation in ( ) implies ˇ ( ) ∈ D, but does not guarantee that ∈ H 0 ( ), because the mapping ˇ is not injective on C. In fact, if one removes the last equation from ( ), then the system does have a solution ( , , ) with ∈ ( 1 , ) and ∈ R. This solution corresponds to a critical point of ˇ which is not on H 0 ( ), but is nevertheless mapped to D \ {1} by ˇ .

|1 + ℎ 2 | < | ˇ ( ˇ * ( ), )| -1 }. More precisely, we have ˇ -1 (D) = ˇ (ℎ, ) : |1 + ℎ 2 | < | ˇ ( ˇ * ( ), )| -1 . in a neighborhood of = ˇ * ( ). When = * , we have | ˇ ( ˇ * ( * ), * )| -1 = 1. In this case, {ℎ : |1 + ℎ 2 | < 1} ≡ {ℎ : |ℜ (ℎ)| < |ℑ (ℎ)|} is a two-sided cone, as in Figure (b). Recall that H 0 ( ) is the connected component of ˇ -1 (D) containing = 0. Since the point * = ˇ * ( * )
Re(h) Im(h) Re(h) Im(h) Re(h) Im(h) |x( Ȟ * (R), R)| > 1 |x( Ȟ * (R), R)| = 1 |x( Ȟ * (R), R)| < 1 (R = R * ) (a) (b) (c)
The purpose of the last equation of ( ) is precisely to avoid this kind of undesired solutions. Without the last equation, the algebraic system ( ) contains two complex equations with four real unknowns (ℜ ( ), ℑ ( ), , ). So generically, we do expect it to have a nite number of solutions. The last equation adds one complex equation to the system while introducing only an extra real variable. With it, we expect generically that ( ) has no solution. In general, if the mapping ˇ ( ) depends on real parameters ( 1 , . . . , ) instead of , then provided that ˇ ( ) has continuous derivatives with respect to each of the parameters, one can replace the last equation of ( ) by complex equations with extra real variables. Then we would have a system of + 2 complex equations with 3 + + = 2 + 3 real variables, which generically would have no solution.

Our justi cation of last equation of ( ) came in two steps. The rst step (i) asserts that the critical point * has multiplicity one. It is checked by an explicit computation and depends on the speci c function ˇ . On the contraty, the second step (ii) derive the desired equation in ( ) using a variational argument which is mostly independent of speci c features of ˇ . Currently, the argument in (ii) still depends on the fact that * has multiplicity one. In the upcoming paper [ , Appendix A], the rst author gives a generalization of this variational argument which applies to critical points of any multiplicity. That general argument would allow us to bypass the veri cation of (i) in the above proof.

De nition of H ( ): For each ∈ ( 1 , ∞ ), the above lemma and Proposition (iii) of [ ] imply that there exists > 0 for which ˇ de nes a conformal bijection from a compact set H ( ) ⊃ H 0 ( ) to . For ∈ (0, /2), let H , ( ) be the preimage of the Δ-domain , ⊂ under this bijection. We denote by H ( ) and H ( ) the boundary and the interior of H ( ), and similarly for H , ( ).

Notice that the notation H ( ) ts well with the previously de ned H 0 ( ), since the latter is in bijection with the closed unit disk D, which can be viewed as a special case of the domain with = 0.

Geometric interpretation of Lemma . We know that analytic functions preserve angles at non-critical points. More generally, if is an analytic function such that ∈ C is a critical point of multiplicity (that is, a zero of multiplicity of , with ≥ 0), then maps each angle incident to to an angle ( + 1) . Since H 0 ( ) is mapped bijectively by ˇ to the unit disk (whose boundary is smooth everywhere), the boundary of H 0 ( ) forms an angle of /( + 1) at each ∈ H 0 ( ) which is a critical point of multiplicity of ˇ . Therefore, Lemma tells us that the boundary of H 0 ( ) is smooth everywhere except at = ˇ ( ), where it has two half-tangents forming an angle of /2 if ≠ , or an angle of /3 if = . This is illustrated by the red curves in Figure (b) and (c).

For the same reason, the boundary of H , ( ) has also two half-tangents at = ˇ ( ). They form an angle ofif ≠ , and an angle of 2 3 ( -) if = . (In particular, when = 0 and ≠ , the angle is equal to , i.e. the two half-tangents become a tangent.) This is illustrated by the blue and cyan curves in Figure (b) and (c). From this we deduce the following corollary, which will be used to derive the local expansion of the bivariate function ˇ ( , , ) at ( , ) = ( ˇ ( ), ˇ ( )) at critical and high temperatures.

Corollary . For all ∈ ( 1 , ∞ ) and ∈ (0, 2 ), there exist a neighborhood N of ( ˇ ( ), ˇ ( )) and a constant

< ∞ such that max | ˇ ( ) -|, | ˇ ( ) -| ≤ • ( ˇ ( ) -) + ( ˇ ( ) -) ( ) for all ( , ) ∈ N ∩ H ( ) × H , ( ) .
When = , one can take = 0 so that ( ) holds for all ( ,

) ∈ N ∩ H ( ) × H ( ) .
Proof. For ∈ ( 1 , ∞ ) \ { }, the boundary of H , ( ) has two half-tangents at = ˇ ( ), both at an angle of - 2 with the negative real axis. When = 0, the two half-tangents becomes a tangent that is orthogonal to the real axis. For any ∈ (0, 2 ), we can choose 1 > 2 and 2 > - 2 such that 1 + 2 < . Then there exists a neighborhood of ˇ ( ) such that arg( ˇ ( ) -) ∈ (-1 , 1 ) for all ∈ ∩ H ( ), and arg( ˇ ( ) -) ∈ (-2 , 2 ) for all ∈ ∩ H , ( ). In polar coordinates, this means that ˇ ( ) -

= 1 1 and ˇ ( ) -= 2 2 satisfy | 1 | ≤ 1 and | 2 | ≤ 2 , so that | 1 -2 | ≤ 1 + 2 < . It follows that ( ˇ ( ) -) + ( ˇ ( ) -) 2 = 1 1 + 2 2 2 = 2 1 + 2 2 + 2 1 2 cos( 1 -2 ) ≥ 2 1 + 2 2 + 2 1 2 cos( 1 + 2 ) = 1 -2 cos( 1 + 2 ) 2 + 2 sin( 1 + 2 ) 2 . This implies that 2 = | ˇ ( ) -| ≤ 1 sin( 1 + 2 ) • ( ˇ ( ) -) + ( ˇ ( ) -)
, and by symmetry, the inequality ( ) with = 1 sin( 1 + 2 ) , for all ( , ) ∈ ( × ) ∩ H ( ) × H , ( ) . When = , the boundary of H ( ) has two half-tangents at = ˇ ( ) at an angle of 3 with the negative real axis. In this case, we can take 1 = 2 = 5 12 > 3 so that 1 + 2 < . Then, the same proof as in the ≠ case shows that there exists a neighborhood of ˇ ( ) such that ( ) holds with 0 = 1 sin(5 /6) for all ( , ) ∈ ( × ) ∩ H ( ) × H ( ) .

. Holomorphicity of ˇ on H ( ) × H ( ).

The previous subsection showed that for > 0 small enough, × is mapped analytically by the inverse function of ( , ) ↦ → ( ˇ ( ), ˇ ( )) to the domain H ( ) × H ( ). Ideally, we want to show that the other part of the rational parametrization ( , ) ↦ → ˇ ( , ) does not have poles on H ( ) × H ( ). Then the formula ( ,

) = ˇ (( ˇ ) -1 ( ), ( ˇ ) -1 ( )) would imply that ( , ) ↦ → ( ,
) has an analytic continuation on × . By continuity, any neighborhood of the compact set H 0 ( ) × H 0 ( ) contains H ( ) × H ( ) for all small enough. On the other hand, the poles of ˇ form a closed set. Hence to prove that the domain H ( ) × H ( ) does not contain any poles for small enough, it su ces to show that the compact set H 0 ( ) × H 0 ( ) does not contain any poles of ˇ . It turns out that this is almost the case:

Lemma . For all ∈ ( , ∞ ), the rational function ˇ has no pole in H 0 ( ) × H 0 ( ).

For all ∈ ( 1 , ], ( ˇ ( ), ˇ ( )) is the only pole of ˇ in H 0 ( ) × H 0 ( ).

Proof. By de nition, a pole of ˇ is a zero of the polynomial in the denominator of ˇ ( , ) = ( , ) ( , ) , where and are coprime polynomials of ( , ). With an appropriate choice of the constant term (0, 0), we can take ( , , ) := ( , ) and ( , , ) := ( , ) to be polynomial in all three variables ( , , ). We check by explicit computation (see [ ]) that ( ˇ ( ), ˇ ( ), ) ≠ 0 for all ∈ ( , ∞ ), and ( ˇ ( ), ˇ ( ), ) = 0 for all ∈ ( 1 , ]. Then it remains to show that does not vanish for any

( , ) ∈ H 0 ( ) × H 0 ( ) \ {( ˇ ( ), ˇ ( ))} and ∈ ( 1 , ∞ )
. For this we use the following lemma, whose proof will be given later:

Lemma . If the polynomial vanishes at a point ( , , ) such that ( , ) ∈ H 0 ( )×H 0 ( ) and ∈ ( 1 , ∞ ), then both and • -• vanish at ( , , ). This lemma tells us that the poles of ˇ in the physical range of the parameters (that is, for ∈ ( 1 , ∞ ) and ( , ) ∈ H 0 ( ) × H 0 ( )) satisfy the system of three polynomial equations

= = • - • = 0 ( )
instead of just = 0. However, it is not easy to verify whether ( ) has a solution ( , , ) satisfying ( , ) ∈ H 0 ( ) ×H 0 ( ) \ {( ˇ ( ), ˇ ( ))}, for two reasons: On the one hand, the solution set of ( ) contains at least one continuous component: ( , , ) = ( ˇ ( ), ˇ ( ), ) is a solution of ( ) for all ∈ ( 1 , ]. On the other hand, it is not easy to distinguish between points in H 0 ( ) from points in the preimage ˇ -1 (D) which are not in H 0 ( ). To mitigate these issues, we construct an auxiliary equation that eliminates some solutions of the system which are known to be outside

H 0 ( ) × H 0 ( ) \ {( ˇ ( ), ˇ ( ))}.
Since ˇ is a conformal bijection from H 0 ( ) to the unit disk, we know that = 0 is its unique (simple) zero in H 0 ( ). Hence the polynomial ↦ → ˇ ( )/ does not vanish on H 0 ( ). (Recall that ˇ is de ned as ˇ divided by a constant that only depends on .) On the other hand, ˇ ( ) is the unique zero of ˇ in H 0 ( )

by Lemma . Thus if ( , ) ∈ H 0 ( ) × H 0 ( ) is di erent from ( ˇ ( ), ˇ ( )), then either ˇ ( ) ≠ 0 or ˇ ( ) ≠ 0. Let NZ ( , , ) = ˇ ( ) • ˇ ( ) • ˇ ( ). Then the above discussion shows that for ∈ ( 1 , ∞ ) and ( , ) ∈ H 0 ( ) × H 0 ( ) \ {( ˇ ( ), ˇ ( ))}, either NZ ( , , ) ≠ 0, or NZ ( , , ) ≠ 0. It follows that if ( , ) is a pole of ˇ in H 0 ( ) × H 0 ( ) \ {( ˇ ( ), ˇ ( ))}, then either ( , , ) or ( , ,
) is a solution to the system of equations

= = • - • = 0 and • NZ = 1 ( )
where ∈ C is an auxiliary variable used to express the condition NZ ≠ 0 as an algebraic equation. A Gröbner basis computation (see [ ]) shows that this system has no solution with real value of . By contradiction, ˇ has no pole in H 0 ( ) × H 0 ( ) \ {( ˇ ( ), ˇ ( ))} for all ∈ ( 1 , ∞ ). This completes the proof.

Proof of Lemma . In this proof we x an ∈ ( 1 , ∞ ) and drop it from the notations. Since the double power series ( , ) ↦ → ( , ) is absolutely convergent for all , in the unit disk D, and ˇ is a homeomorphism from H 0 to D, the rational function ˇ ( ,

) = ( • ˇ ( ), • ˇ ( )) is continuous on the compact set H 0 × H 0 .
Assume that vanishes at some ( , ) ∈ H 0 × H 0 . The boundedness of ˇ on H 0 × H 0 implies that also vanishes at ( ,

). If ( , ) = ( , ) = 0, then • - •
obviously vanishes at ( , ). Otherwise, consider the limit of ˇ ( + ℎ, + ) when → 0 + , where ℎ, ∈ C. By L'Hôpital's rule, for all (ℎ, ) such that ℎ • ( , ) + • ( , ) ≠ 0, we have lim

→0 + ˇ ( + ℎ, + ) = ℎ • ( , ) + • ( , ) ℎ • ( , ) + • ( , ) . ( )
By the continuity of ˇ on H 0 × H 0 , the above limit is independent of (ℎ, ) as long as the pair satis es that ( + ℎ, + ) ∈ H 0 × H 0 for all > 0 small enough. From Figure (or more rigorously the geometric interpretation of Lemma ), we see that for all ∈ H 0 , there exists ℎ * ≠ 0 such that + ℎ * ∈ H 0 for all > 0 small enough. Similarly, there exists * ≠ 0 such that + * ∈ H 0 for all > 0 small enough. By taking (ℎ, ) to be equal to (ℎ * , 0), (0, * ) and (ℎ * , * ) in ( ), we obtain that

ℎ * ( , ) ℎ * ( , ) = * ( , ) * ( , ) = ℎ * ( , ) + * ( , ) ℎ * ( , ) + * ( , ) ,
provided that the denominators of the three fractions are nonzero. By assumption, ( , ) and ( , ) do not both vanish. It follows that at least two of three fractions have nonzero denominators. From the equality between these two fractions, we deduce that

• - • = 0 at ( , ).
Now we use the continuity argument mentioned at the beginning of this subsection to deduce the holomorphicity of ˇ on H × H (or H × H , , see below) from Lemma . The low temperature case is easy, since ˇ does not have any pole in H 0 × H 0 for all ∈ ( , ∞ ). When ∈ ( 1 , ], one has to study the restriction of ˇ on H × H more carefully near its the pole ( ˇ ( ), ˇ ( )). This is done with the help of Corollary .

Lemma . For all ∈ [ , ∞ ), there exists > 0 such that ˇ is holomorphic in H ( ) × H ( ). For ∈ ( 1 , ) and ∈ (0, /2), there exists > 0 such that ˇ is holomorphic in H ( ) × H , ( ).

Proof. As in the previous proof, we x a value of ∈ ( 1 , ∞ ) and drop it from the notation.

Low temperatures. When ∈ ( , ∞ ), Lemma tells us that ˇ has no pole in H 0 × H 0 . Since the set of poles of ˇ is closed, and H 0 × H 0 is compact, there exists a neighborhood of H 0 × H 0 containing no pole of ˇ . By continuity, this neighborhood contains H × H for > 0 small enough. It follows that there exists > 0 such that ˇ is holomorphic in H × H .

Critical temperature. When = , Lemma tells us that ( ˇ , ˇ ) is the only pole of ˇ in H 0 × H 0 .
First, let us show that ˇ , when restricted to H × H , is continuous at ( ˇ , ˇ ). Notice that this statement does not depend on , since two domains H × H with di erent values of > 0 are identical when restricted to a small enough neighborhood of ( ˇ , ˇ ). We have seen in the proof of Lemma that the numerator and the denominator of ˇ both vanish at ( ˇ , ˇ ). Therefore their Taylor expansions give:

ˇ ( ˇ -ℎ, ˇ -) = ( ˇ , ˇ ) • (ℎ + ) + max(|ℎ|, | |) 2 ( ˇ , ˇ ) • (ℎ + ) + (max(|ℎ|, | |) 2 ) as (ℎ, ) → (0, 0). ( )
We check explicitly that ( ˇ , ˇ ) ≠ 0, see [ ]. On the other hand, thanks to Corollary (the critical case), we have max(|ℎ|, | |) = (|ℎ + |) when (ℎ, ) → (0, 0) in such a way that ( ˇℎ, ˇ -) ∈ H × H . Then it follows from ( ) that ˇ ( ,

) → ( ˇ , ˇ )/ ( ˇ , ˇ ) when ( , ) → ( ˇ , ˇ ) in H × H . That is, ˇ restricted to H × H is continuous at ( ˇ , ˇ ).
Next, let us show that for some xed 0 > 0, every point ( , ) ∈ H 0 × H 0 has a neighborhood V( , ) such that ˇ is holomorphic in V( , ) ∩ (H 0 × H 0 ). (Recall that this means ˇ is holomorphic in the interior, and continuous in the whole domain). For ( , ) = ( ˇ , ˇ ), the expansion of the denominator in ( ) shows that there exists 0 > 0 and a neighborhood V( ˇ , ˇ ) such that ( ˇ , ˇ ) is the only pole of ˇ in V( ˇ , ˇ ) ∩ (H 0 × H 0 ). Moreover, the previous paragraph has showed that ˇ is continuous at

( ˇ , ˇ ) when restricted to H × H . It follows that ˇ is holomorphic in V( ˇ , ˇ ) ∩ (H 0 × H 0 ). For ( , ) ∈ H 0 × H 0 \ {( ˇ , ˇ )}, since ( , )
does not belong to the (closed) set of poles of ˇ , it has a neighborhood V( , ) on which ˇ is holomorphic.

By taking the union of all the neighborhoods V( , ) constructed in the previous paragraph, we see that there is a neighborhood V of the compact set H 0 × H 0 such that ˇ is holomorphic in V ∩ (H 0 × H 0 ). By continuity, V contains H × H for some > 0 small enough. Hence there exists > 0 such that ˇ is holomorphic in H × H .

High temperatures. When ∈ ( 1 , ), Lemma tells us that ( ˇ , ˇ ) is also a pole of ˇ . The rest of the proof goes exactly as in the critical case, except that the domain H × H has to be replaced by H × H , for an arbitrary ∈ (0, /2) due to the di erence between the critical and non-critical cases in Corollary .

Remark . In fact, the above proof shows the holomorphicity of ˇ in a larger domain than the one stated in Lemma . In particular, one can check that the following statement is true: for each compact subset K of H , there exists a neighborhood V of H 0 such that ˇ is holomorphic in K × V. This remark will be used to show that ↦ → ( ) is analytic on in Corollary .

Proof of Proposition . The proposition follows from Lemma and the de nition of H ( ): At critical or low temperatures, the inverse mapping of ( ,

) ↦ → ( ˇ ( ), ˇ ( )) is holomorphic from × to H ( ) × H ( ). For > 0 small enough, ( , ) ↦ → ˇ ( , ) is holomorphic in H ( ) × H ( ).
Hence their composition de nes an analytic continuation of ( , ) ↦ → ˜ ( , , ) on × . At high temperatures, it su ces to replace × by × , , and H ( )×H ( ) by H ( )×H , ( ).

Asymptotic expansions of ( , , ) at its dominant singularity

In this section, we establish the asymptotic expansions (Proposition ) of the generating function ( , ) at its dominant singularity ( , ) = (1, 1). For this we de ne the function Z (h, k, ) by the change of variable

( ( ) , ( ) , ) = Z (h, k, ) with h = (1 -) and k = (1 -)
Recall that = 1/2 when ≠ (non-critical case), and = 1/3 when = (critical case).

The proof relies on Lemma (location and multiplicity of the zeros of ˇ ) and Lemma (location and multiplicity of the poles of ˇ ) of the previous section, as well as the following property of the rational function ˇ : for all ≠ 0,

ˇ ( , ˇ ( )) = 0 for all ∈ ( 1 , ∞ ), and 2 ˇ ( , ˇ ( )) = 0 . ( )
These identities can be easily checked using Maple (see [ ]).

The purpose of the following lemma is to translate the above constraints (Lemma , Lemma and ( )) on the rational functions ˇ and ˇ in terms of the structure of the local expansion of Z (h, k, ) near (h, k) = (0, 0). These constraints imply that some "leading coe cients" in the local expansion must vanish, and we check that no other leading coe cients vanish. In other words, if ( ˇ , ˇ ) was a pair of generic rational functions satisfying the above constraints, then the local expansions of (h, k, ) will have exactly the same structure and leading nonzero coe cients as those speci ed in Lemma . After establishing Lemma (and Lemma which is used in its proof), we will plug the change of variables (h, k) = ((1 -) , (1 -) ) into Z (h, k, ) to derive the asymptotic expansion of ( , , ) near ( , ) = ( ( ), ( )) in Proposition . Apart from expressing the results in di erent sets of variables, another key di erence between Lemma and Proposition is that the former gives an exact decomposition in terms of converging series, while the latter gives asymptotic expansions useful for the study of coe cient asymptotics.

From now on we hide the parameter and the corresponding parameter from the notations.

Lemma . For > , Z (h, k) is analytic at (0, 0). Its Taylor expansion Z (h, k) = , ≥0 Z , h k satis es Z 1, = Z ,1 = 0 for all ≥ 0 and Z 3,3 > 0.
For ∈ (1, ], we have a decomposition of the form

Z (h, k) = (h, k) + (hk) D (h,k)
, where (h, k), ( ) and D (h, k) are analytic at the origin. The denominator satis es D (0, 0) = 0 and h D (0, 0)

= k D (0, 0) = 1, whereas (h, k) = , ≥0 , h k and ( ) = ≥1 satisfy: If ∈ (1, ), then 1 > 0. If = , then 1, = ,1 = 2, = ,2 = 0 for all ≥ 0, 1 = 2 = 0 and 3 > 0.
The three nonzero coe cients in the above statements can be computed by:

Z 3,3 = 1 ˇ 3 2 ˇ 3,3 -2 ˇ 3 ˇ 2 ˇ 2,3 + ˇ 3 ˇ 2 2 ˇ 2,2 when > , ( ) 1 = 1 ˇ 1/2 2 lim → ˇ ˇ ( , ˇ ) when ∈ (1, ), ( ) 3 = 1 ˇ 5/3 3 • 4 13 lim → ˇ ˇ ( , ) ( ˇ -) 3 when = , ( )
where the numbers ˇ and ˇ , are the coe cients in the Taylor expansions

1 -ˇ ( ˇ -ℎ) = ≥2 ˇ ℎ and ˇ ( ˇ -ℎ, ˇ -) = , ˇ
, ℎ .

(The coe cients ˇ are not to be confused with the functions ˇ = ˇ ( • , ) de ned earlier. There should be no confusion because by the convention above this lemma, the parameter no longer appears in our notations.)

Proof. Recall that has the parametrization = ˇ ( ), = ˇ ( ) and ( , ) = ˇ ( , ). The function

ℎ ↦ → h = (1 -ˇ ( ˇ -ℎ))
is analytic and has positive derivative at ℎ = 0. (The exponent has been chosen for this to be true.) Let be its inverse function. Then the de nition of Z implies that

Z (h, k) = ˇ ˇ -(h), ˇ -(k) . ( )
The proof will be based on the above formula and uses the following ingredients: The form of the local expansions of Z will follow from whether ( ˇ , ˇ ) is a pole of ˇ ( , ) or not. The vanishing coe cients will be a consequence of the vanishing of ˇ ( , ˇ ) and of 2 ˇ ( , ˇ ) given in ( ). Finally, the non-vanishing of the coe cients Z 3,3 , 1 and 3 will be checked by explicit computation.

Low temperatures ( > ). By Lemma , ( ˇ , ˇ ) is not a pole of ˇ ( , ) when > . Thus ( ) implies that Z is analytic at (0, 0). By the de nition of ˇ 2 and ˇ 3 , we have 1 -ˇ ( ˇℎ)

1/2 = ˇ 1/2 2 ℎ 1 + ˇ 3 2 ˇ 2 ℎ + (ℎ 2
) . Then the Lagrange inversion formula gives,

(h) = 1 ˇ 1/2 2 h - ˇ 3 2 ˇ 2 2 h 2 + (h 3 ) .
In particular, (h) ∼ cst • h. Hence ( ) and the fact that ˇ ( , ˇ ) = 0 for all (Eq. ( )) imply that k Z (h, 0) = 0 for all h close to 0, that is, Z 1, = Z ,1 = 0 for all ≥ 0. On the other hand, we get the expression ( ) of Z 3,3 by composing the Taylor expansions of (h) and of ˇ ( ˇℎ, ˇ -), while taking into account that ˇ 1, = ˇ ,1 = 0. By plugging the expressions of ˇ ( ) and ˇ ( , ) into the relation ( ), one can compute the function Z 3,3 ( ˇ ( )), which gives a parametrization of Z 3,3 ( ). The explicit formula, too long to be written down here, is given in [ ]. We check in [ ] that it is strictly positive for all ∈ ( , ∞ ).

High temperatures (1 < < ). When ∈ (1, ), Lemma tells us that ( ˇ , ˇ ) is a pole of ˇ ( , ). Moreover, this pole is simple in the sense that the denominator of ˇ satis es that ( ˇ , ˇ ) = 0 and

( ˇ , ˇ ) = ( ˇ , ˇ ) ≠ 0.
Then it follows from ( ) that Z = N/D for some functions N(h, k) and D (h, k), both analytic at (0, 0), such that D (0, 0) = 0 and h D (0, 0) = h D (0, 0) = 1. We will show in Lemma below that there is always a pair of functions (h, k) and ( ), both analytic at the origin, such that N(h, k) = (h, k) • D (h, k) + (hk). This implies the decomposition Z (h, k) = (h, k) + (hk) D (h,k) . Notice that (0) = 0, because N(0, 0) = D (0, 0) = 0 by the continuity of ˇ | H 0 ×H 0 at ( ˇ , ˇ ).

Taking the derivatives of the above decomposition of Z (h, k)

at k = 0 gives h Z (h, 0) = h (h, 0) and k Z (h, 0) = k (h, 0) + 1 • h D (h, 0)
.

For the same reason as when > , we have k Z (h, 0) = 0 for all h close to 0. On the other hand, D (h, 0) ∼ h as h → 0 because h D (0, 0) = 1. Thus the limit h → 0 of the above derivatives gives lim h→0 h Z (h, 0) = h (0, 0) and k (0, 0) + 1 = 0. By symmetry, h (0, 0) = k (0, 0), therefore 1 = -lim h→0 h Z (h, 0). After expressing Z (h, 0) in terms of ˇ ( , ˇ ) and (h) using ( ), we obtain the formula ( ) for 1 .

We check by explicit computation in [ ] that 1 ( ) has the parametrization

1 ( ˇ ( )) = (1 + 2 ) (7 -2 ) 3 (14 2 -1 -4 ) 5 √ 2 (3 2 -1) (29 + 75 2 -17 4 + 6 ) 2
which is strictly positive for all ∈ ( 1 , ).

Critical temperature ( = ). When = , the point ( ˇ , ˇ ) is still a pole of ˇ ( , ) by Lemma , and one can check that it is simple in the sense that

( ˇ , ˇ ) = ( ˇ , ˇ ) ≠ 0. Therefore, the decomposition Z (h, k) = (h, k) + (hk)
D (h,k) remains valid. Contrary to the non-critical case, now we have ˇ 2 = 0 and = 1/3, thus (h) ∼ ˇ -1/3 3 h. Together with the fact that ˇ ( , ) = 2 ˇ ( , ) = 0 for all (Eq. ( )), this implies

k Z (h, 0) = 2 k Z (h, 0) = 0 for all h close to 0. Plugging in the decomposition Z (h, k) = (h, k) + (hk) D (h,k) , we obtain k (h, 0) + 1 ℎ D (h, 0) = 0 and 2 k (h, 0) + 2 h 2 D (h, 0) -1 h • k D (h, 0) D (h, 0) 2 = 0 . Since h D (0, 0) = 1
and D (h, 0) ∼ h as h → 0, the last term in the second equation diverges like 1 h -1 when h → 0, whereas the other two terms are bounded. This implies that 1 = 0. Plugging 1 = 0 back into the two equations, we get

h (h, 0) = 0 and 2 k (h, 0) + 2 h 2 D (h, 0) = 0 .
The rst equation translates to 1, = ,1 = 0 for all ≥ 0. Then, 1,2 = 0 tells us that in the second equation 2 k (h, 0) = 0,2 + (h 2 ), whereas 2 h 2 D (h,0) ∼ 2 h when h → 0. Therefore we must have 2 = 0, which in turn implies 2 k (h, 0) = 0, that is, 2, = ,2 = 0 for all ≥ 0. To obtain the formula for 3 , we calculate from the decomposition Z (h, k) = (h, k)

+ (hk) D (h,k) that h k Z (h, h) = h k (h, h) + 1 D (h, h) 2 (D (h, h) -2h h D (h, h)) (ℎ 2 ) -h k D (h, h) (ℎ 2 ) + 1 D (h, h) (ℎ 2 ) • ℎ 2 + 2 h D (h, h) D (h, h) 2 (ℎ 2 ) ( ) When h → 0, we have h k (h, h) = (ℎ 4 ) because 1, = ,1 = 2, = ,2 = 0. Moreover, using D (h, h) ∼ 2h D (h, h) -2h h D (h, h) = (h 2 ) h k D (h, h) = (1) h D (h, h) D (h, h) ∼ 1 2h and (h 2 ) ∼ 6 3 • h 2 (h 2 ) ∼ 2 3 • h 4 (h 2 ) ∼ 3 • h 6
we see that the rst line of ( ) is a (h 4 ), whereas the second line is 13 4 3 h 3 + (h 4 ). Therefore we have 3 = 4 13 lim h→0 h -3 h k Z (h, h). Finally, we obtain the expression ( ) of 3 using the relation

Z (h, h) = ˇ ( ˇ -(h), ˇ -(h)) and the fact that (h) ∼ ˇ -1/3 3 h when = . Numerical computation gives 3 = 27 20 3 2 2/3 > 0.
Lemma (Division by a symmetric Taylor series with no constant term). Let N(h, k) and D (h, k) be two symmetric holomorphic functions de ned in a neighborhood of (0, 0). Assume that (0, 0) is a simple zero of D, that is, D (0, 0) = 0 and h D (0, 0) = k D (0, 0) ≠ 0. Then there is a unique pair of holomorphic functions (h, k) and ( ) in neighborhoods of (0, 0) and 0 respectively, such that is symmetric and

N(h, k) = (h, k) • D (h, k) + (hk) . ( )
Remark . When D (0, 0) = 0, the ratio N (h,k) D (h,k) between two Taylor series N(h, k) and D (h, k) does not in general have a Taylor expansion at (0, 0). The above lemma gives a way to decompose the ratio into the sum of a Taylor series (h, k) and a singular part (hk) D (h,k) whose numerator is determined by an univariate function. The lemma deals with the case where N(h, k) and D (h, k) are symmetric, and the zero of D (h, k) at (0, 0) is simple. The following remarks discuss how the lemma would change if one modi es its conditions.

. In ( ), instead of requiring (h, k) to be symmetric, we can require the remainder term to not depend on k. Then the decomposition would become N(h, k) = (h, k) • D (h, k) + (h 2 ). Notice that the remainder term does not have any odd power of h, which is a constraint due to the symmetry of N and

D.

Without the assumption that N and D are symmetric, we would have a decomposition

N(h, k) = (h, k) • D (h, k) + (h)
where the remainder is a general Taylor series (h). The proof of Lemma can be adapted easily to treat the non-symmetric case.

. If (0, 0) is a zero of order > 1 of D (that is, all the partial derivatives of D up to order -1 vanishes at (0, 0), while at least one partial derivative of order is nonzero), then one can prove a division formula similar to ( ), but with a di erent remainder term. For example, when = 2, the remainder term can be written as 1 (hk) • (h + k) + 2 (hk) if 2 h D (0, 0) ≠ 0, or as 3 ( + ) if 2 h D (0, 0) = 0 but h k D (0, 0) ≠ 0. . As we will see in the proof below, the decomposition ( ) can be made in the sense of formal power series without using the convergence of the Taylor series of N and D. (In fact this is the easiest way to construct (h, k) and ( ).) The decomposition ( ) will be used in the proof of Proposition to establish asymptotics expansions of Z (h, k) = N (h,k) D (h,k) when (h, k) → (0, 0). For this purpose, it is not necessary to know that the series (h, k) and ( ) are convergent. Everything can be done by viewing ( ) as an asymptotic expansion with a remainder term (max(|h| , |k|) ) for an arbitrary . However, we nd that presenting (h, k) and ( ) as analytic functions is conceptually simpler. For this reason, we will still prove that the series (h, k) and ( ) are convergent even if it is not absolutely necessary for the rest of this paper.

Proof. The proof comes in two steps: rst we construct order by order two series (h, k) and ( ) which satisfy ( ) in the sense of formal power series, and then we show that these series do converge in a neighborhood of the origin.

We approach the construction of (h, k) and ( ) as formal power series as follows: Assume rst that (h, k) and ( ) are given together with the assumptions of the theorem. In that case, for all ≥ 0, let D ( , ) = [ ]D ( , ), and similarly de ne N ( , ) and ( , ). By construction, D , N and are homogeneous polynomials of degree . The assumptions of the lemma ensure that D and N are symmetric, D 0 = 0, and D 1 ( , ) = 1,0 ( + ) where 1,0 := ℎ D (0, 0) ≠ 0. On the other hand, let = [ ] ( ). Then ( ) is equivalent to

N = D 1 -1 + (D 2 -2 + • • • + D 0 ) + • ( ) • 1 =2 is even ( )
for all ≥ 0. Let us show that this recursion relation indeed uniquely determines and , such that ( , ) is a homogeneous polynomial of degree and ∈ C. When = 0, ( ) gives 0 = N 0 ∈ C. When ≥ 1, we assume as induction hypothesis that ( , ) is a symmetric homogeneous polynomial of degree for all < . Then ( ) can be written as

Ñ = 1,0 ( + ) • -1 + • ( ) • 1 =2 is even , where Ñ := N -(D 2 -2 + • • • + D 0
) is a symmetric homogeneous polynomial of degree . By the fundamental theorem of symmetric polynomials, a bivariate symmetric polynomial can be written uniquely as a polynomial of the elementary symmetric polynomials + and . Isolating the terms of degree zero in + , we deduce that there is a unique pair -1 ( , ) and ˜ ( ) such that -1 ( , ) is symmetric, and

Ñ ( , ) = 1,0 ( + ) • -1 ( , ) + ˜ ( ) .
Moreover, since Ñ ( , ) is homogeneous of degree , the polynomials -1 ( , ) and ˜ ( ) must be homogeneous of degree -1 and respectively. When is odd, this implies ˜ ( ) = 0, and when = 2 is even, we must have ˜ ( ) = • ( ) for some ∈ C. By induction, this completes the construction of ( , ) and ∈ C, such that the series de ned by ( , ) = ( , ) and ( ) = satisfy ( ) in the sense of formal power series. Now let us show that the series ( ) has a strictly positive radius of convergence. Since D (0, 0) = 0 and h D (0, 0) = k D (0, 0) ≠ 0, by the implicit function theorem, the equation D (h, k(h)) = 0 de nes locally a holomorphic function k such that k(0) = 0 and k (0) = -1. In particular, h • k(h) has a Taylor expansion with leading term -h 2 , so the inverse function theorem ensures that there exists a holomorphic function such that 2 = ( ) • k( ( )) near = 0. Taking h = ( ) and k = k( ( )) in ( ) gives that

N ( ), k( ( )) = ( 2 )
in the sense of formal power series. Since N, k and are all locally holomorphic, the series on both sides have a strictly positive radius of convergence.

It remains to prove that (h, k) also converges in a neighborhood of the origin. Even though D (0, 0) = 0, the Taylor series of D (h, k) still has a multiplicative inverse in the space of formal Laurent series C(( )) [[ ]]. Therefore we can rearrange Equation ( ) to obtain in that space

(h, k) = N(h, k) -(hk) D (h, k) .
The right hand side, which will be denoted by (h, k) below, is a holomorphic function in a neighborhood of (0, 0) outside the zero set of D (h, k). As seen in the previous paragraph, this zero set is locally the graph of the function k(h) ∼ -h when h → 0. It follows that there exists > 0 such that is holomorphic in a neighborhood of (D 3 \ D 2 ) × D , where D 3 \ D 2 is the closed annulus of outer and inner radii 3 and 2 centered at the origin. The usual Cauchy integral formula for the coe cient of Laurent series gives

, = 1 2 2 ˛ D dk k +1 ˛ D 3 dh h +1 (h, k) - ˛ D 2 dh h +1 (h, k)
. However, by construction, the Laurent series ∈Z , h does not contain any negative power of h. This implies that the integral over D 2 in the above formula has zero contribution. Therefore we have

, = 1 2 2 ‹ D 3 × D dh dk h +1 k +1 (h, k) ≤ (3 ) --• sup D 3 × D | | .

It follows that the series (h, k) =

, h k converges in a neighborhood of (0, 0).

Proposition (Asymptotic expansions of ( , )). Let = ( , ) > 0 be a value for which the holomorphicity result of Proposition and the bound in Corollary hold. Then for ( , ) varying in × (when ≥ ) or × , (when 1 < < ), we have

( , ) = (1) reg ( , ) + ( ) • (1 -) 0 + (1 -) 0 + for ≠ 1 and as → 1 , ( ) 
( ) = reg ( ) + • (1 -) 1 + (1 -) 1 + as → 1 , ( ) ( , ) = (2) reg ( , ) + • hom (1 -, 1 -) + max(|1 -| , |1 -|) 2 + as ( , ) → (1, 1) , ( )
where = ( ) is a number determined by the nonzero constants Z 3,3 , 1 and 3 in Lemma , and hom ( , ) is a homogeneous function of order 2 (i.e. hom ( , ) = 2 hom ( , ) for all > 0) that only depends on the phase of the model. Explicitly:

( ) =            Z 3,3 ( ) when > 1 ( ) when ∈ (1, ) -3 ( ) when = and hom ( , ) =            3/2 3/2 when > 1/2 1/2 1/2 + 1/2 when ∈ (1, ) - 1/3 + 1/3 when = .
On the other hand, (1) reg ( ,

) = ( , ) - ( , ) • • (1 -) is an a ne function of satisfying ( , ) = (1) and ( , ) = ((1 -) -1/2 ) when → 1 , ( )
whereas reg ( ) is an a ne function of , and (2) reg ( , ) = (1) reg ( , ) + ( 1) reg ( , ) -( , ) for some polynomial ( , ) that is a ne in both and . The functions reg ( ) and ( , ) will be given in the proof of the proposition.

Remark . For a xed , ( ) is an univariate asymptotic expansion in the variable . It has the form (analytic function of near = 1) + constant • (1 -) 0 + ((1 -) 0 ), which makes it a suitable input to the classical transfer theorem of analytic combinatorics. More precisely, when we extract the coe cient of [ ] from ( ) using contour integrals on , the contribution of the rst term will be exponentially small in , whereas the contributions of the second and the third terms will be of order -( 0 +1) and ( -( 0 +1) ), respectively. Similar remarks can be made for ( ) with respect to the variable .

The asymptotic expansion ( ) has a form that generalizes ( ) and ( ) in the bivariate case. Instead of being analytic with respect to or , the rst term (2) reg ( , ) is a linear combination of terms of the form ( ) ( ) or ( ) ( ), where ( ) is analytic in a neighborhood of = 1, and ( ) is locally integrable on the contour near = 1. (The local integrability is a consequence of ( ).) As we will see in Section . , a term of this form will have an exponentially small contribution to the coe cient of [ ] in the diagonal limit where , → ∞ and that / is bounded away from 0 and ∞. On the other hand, the homogeneous function hom (1 -, 1 -) is a generalization of the power functions (1 -) 0 and (1 -) 1 of the univariate case. Indeed, the only homogeneous functions of order of one variable are constant multiples of . We will see in Section . that the term hom (1 -, 1 -) gives the dominant contribution of order -( 2 +2) to the coe cient of [ ] in the diagonal limit.

Proof. First consider the non-critical temperatures ≠ . In this case we have = 1/2, and the de nition of Z (h, k) reads ( ,

) = Z ((1 -) 1/2 , (1 -) 1/2 ).
As seen in the proof of Lemma , for any h ≠ 0 close to zero, the function k ↦ → Z (h, k) is analytic at k = 0 and satis es k Z (h, 0) = 0. Hence it has a Taylor expansion of the form

Z (h, k) = Z (h, 0) + 1 2 2 k Z (h, 0) • k 2 + 1 6 3 k Z (h, 0) • k 3 + (k 4 ) .
Plugging h = (1 -) 1/2 and k = (1 -) 1/2 into the above formula gives the expansion ( ) with 0 = 3/2,

(1)

reg ( , ) = Z ((1 -) 1/2 , 0) + 1 2 2 k Z ((1 -) 1/2 , 0) • (1 -), and 
( ) = 1 6 3 k Z ((1 -) 1/2 , 0) .
We can identify the coe cients in the a ne function ↦ → ( 1) reg ( ,

) as Z ((1 -) 1/2 , 0) = ( , ) and 1 2 2 k Z ((1 -) 1/2 , 0) = -• ( , ).
The rst term is continuous at = 1, thus of order (1) when → 1. For the second asymptotics of ( ), it su ces to show that 2 k Z (h, 0) = (h -1 ).

Low temperatures ( > ). In this case,

Z (h, k) = , Z , h k with Z 1, = Z ,1 = 0. Hence ( ) = ≠1 Z ,3 (1 -) /2 = Z 0,3 + Z 2,3 • (1 -) + Z 3,3 • (1 -) 3/2 + (1 -) 2 ,
which gives the expansion ( ) with 1 = 3/2, reg ( ) = Z 0,3 + Z 2,3 • (1 -) and = Z 3,3 > 0. Moreover, since Z is analytic at (0, 0), we have obviously 2 k Z (h, 0) = (1), which is also an (h -1 ). On the other hand, by regrouping terms in the expansion Z (h, k) = , Z , h k , one can write

Z (h, k) = ≥0 Z ,0 h + ≥0 Z 0, k -Z 0,0 + ≥2 Z ,2 h • k 2 + ≥2 Z 2, k • h 2 -Z 2,2 h 2 k 2 + Z 3,3 h 3 k 3 + max(|h|, |k|) 7 .
After plugging in h = (1 -) 1/2 and k = (1 -) 1/2 , we can identify the rst line on the right hand side as

(2)

reg ( , ) = (1) reg ( , ) + (1) reg ( , ) -( , ) with ( , ) = Z 0,0 +Z 2,0 • (1-) +Z 0,2 • (1-) +Z 2,2 • (1-) (1-). The term Z 3,3 h 3 k 3 becomes • (1 -) 3/2 (1 -) 3/2 .
Thus we obtain the expansion ( ) with 2 = 3 and hom ( , ) = 3/2 3/2 .

High temperatures (1 < < ). In this case, we have

Z (h, k) = (h, k) + (hk) D (h,k) . Straightforward computation gives that 2 k Z (h, 0) = 2 k (h, 0) + 2 2 h 2 D (h, 0) -2 1 h • k D (h, 0) D (h, 0) 2 3 k Z (h, 0) = 3 k (h, 0) + 6 3 h 3 D (h, 0) -6 2 h 2 • k D (h, 0) D (h, 0) 2 -3 1 h • 2 k D (h, 0) D (h, 0) 2 + 6 1 h • ( k D (h, 0)) 2 D (h, 0) 3 .
Using the fact that (h, k) is analytic at (0, 0), and

D (h, 0) ∼ h, k D (0, 0) = 1 and 2 k D (h, 0) = (1) when h → 0, we see that 2 k Z (h, 0) = (h -1
), whereas all terms in the expansion of 3 k Z (h, 0) are of order (h -1 ), except the last term, which is asymptotically equivalent to 6 1 h -2 . It follows that

( ) = 1 6 3 k Z ((1 -) 1/2 , 0) = 1 • (1 -) -1 + (1 -) -1/2 ,
which gives the expansion ( ) with 1 = -1, reg ( ) = 0 and = 1 > 0.

On the other hand, Corollary and the relations ˇ

-∼ cst • h and ˇ -∼ cst • k imply that max(|h|, |k|) is bounded by a constant times |h + k| when ( , ) → (1, 1) in × , . It follows that 1 h + k = max(|h|, |k|) -1 and 1 D (h, k) = 1 h + k + ((h + k) 2 ) = 1 h + k + (1) . ( )
From these we deduce that (hk) D (h,k) = 1 hk h+k + max(|h|, |k|) 2 . Thus we can regroup terms in the decomposition

Z (h, k) = (h, k) + (hk) D (h,k) to get Z (h, k) = ≥0 ,0 h + ≥0 0, k -0,0 + 1 hk h + k + max(|h|, |k|) 2
After plugging in h = (1 -) 1/2 and k = (1 -) 1/2 , we can identify the rst three terms on the right hand side as (2) reg ( , ) = (1) reg ( , ) + ( 1) reg ( , ) -0,0 up to a term of order (max

(|1 -|, |1 -|)). The term 1 hk h+k becomes • (1-) 1/2 (1-) 1/2
(1-) 1/2 +(1-) 1/2 . Thus we obtain ( ) with 2 = 1/2 and hom ( ,

) = 1/2 1/2 1/2 + 1/2 .
Critical temperature ( = ). At the critical temperature, = 1/3 and the de nition of Z (h, k) reads ( ,

) = Z ((1 -) 1/3 , (1 -) 1/3 ). In this case, k ↦ → Z (h, k) has a Taylor expansion of the form Z (h, k) = Z (h, 0) + 1 6 3 k Z (h, 0) • k 3 + 1 24 4 k Z (h, 0) • k 4 + (k 5 ) , because k Z (h, 0) = 2 k Z (h, 0) = 0. Plugging h = (1 -) 1/3 and k = (1 -) 1/3 into the above formula gives ( ) with 0 = 4/3, (1) reg ( , ) = Z ((1 -) 1/3 , 0) + 1 6 3 k Z ((1 -) 1/3 , 0) • (1 -), and 
( ) = 1 24 4 k Z ((1 -) 1/3 , 0) .
As in the non-critical case, we identify Z ((1-) 1/3 , 0) = ( , ) and 1

6 3 k Z ((1-) 1/3 , 0) = -• ( , )
. The rst term is still continuous at = 1, thus of order (1) when → 1. Let us show that 3 k Z (h, 0) is analytic at h = 0 so that the second term is also continuous.

From the expansion Z (h, k) = (h, k) + (hk) D (h,k) with 1 = 2 = 0 and 1, = 2, = 0 for all , we obtain

3 k Z (h, 0) = 3 k (h, 0) + 6 3 h 3 D (h, 0) 1 24 4 k Z (h, 0) = 0,4 + ≥3 ,4 h + 4 h 4 D (h, 0) -3 h 3 • k D (h, 0) D (h, 0) 2 .
Recall that D (h, 0) ∼ h and k D (0, 0) = 1. Then it is not hard to see that 3 k Z (h, 0) is analytic at h = 0. On the other hand, the second and the third terms in the expansion of 1 24 4

k Z (h, 0) are (h 3 ), whereas the last term is equivalent to 3 h. It follows that

( ) = 1 24 4 k Z ((1 -) 1/3 , 0) = 0,4 -3 • (1 -) 1/3 + (1 -) 2/3 ,
which gives the expansion ( ) with 1 = 1/3, reg ( ) = 0,4 and = -3 < 0.

As in the high temperature case, we still have the estimate ( ) when (h, k) → (0, 0) such that the corresponding ( , ) varies in × . Moreover, at the critical temperature we have 1 = 2 = 0 and 1, = ,1 = 2, = ,2 = 0 for all . Therefore (hk) D (h,k) = 3 (hk) 3 h+k + max(|h|, |k|) 6 , and we can regroup

terms in the decomposition Z (h, k) = (h, k) + (hk) D (h,k) to get Z (h, k) = ≥0 ,0 h + ≥0 0, k -0,0 + ≥3 ,3 h • k 3 + ≥3 3, k • h 3 + 3 (hk) 3 h + k + max(|h|, |k|) 6
After plugging in h = (1 -) 1/3 and k = (1 -) 1/3 , we can identify the terms on the rst line of the right hand side as (2) reg ( , ) = (1) reg ( , ) + ( 1) reg ( , ) -( , ) up to a term of order max(|1 -|, |1 -|) 2 , where

( , ) = 0,0 + 3,0 • (1 -) + 0,3 • (1 -). The term 3 (hk) 3 h+k becomes -• (1-) (1-) (1-) 1/3 +(1-) 1/3 .
Thus we obtain ( ) with 2 = 5/3 and hom ( , ) = - 1/3 + 1/3 .

Corollary . The function ↦ → ( ) has an analytic continuation on .

Proof. We have seen in the proof of Proposition that ( ) = 1 ! k Z ((1 -) , 0), where = 1 + 1 is equal to 3 when ≠ , and equal to 4 when = . The change of variable h = (1 -) de nes a conformal bijection from ∈ to some simply connected domain U whose boundary contains the point h = 0. In the proof of Lemma , we have shown that the mapping ℎ

↦ → h = (1 -ˇ ( ˇ -ℎ)) has an analytic inverse (h) in a neighborhood of h = 0 such that Z (h, k) = ˇ ( ˇ -(h), ˇ -(k)). Let Ψ(h) = ˇ -(h),
then Ψ is a local analytic inverse of the mapping ↦ → (1 -ˇ ( )) , and

Z (h, k) = ˇ (Ψ(h), Ψ(k)) . ( )
By Lemma , ˇ de nes a conformal bijection from H to . On the other hand, ↦ → (1 -) is a conformal bijection from to U . It follows that Ψ can be extended to a conformal bijection from U to H . Now x some * ∈ and the corresponding h * = (1 - * ) ∈ U and * = Ψ(h * ) ∈ H . Let K ⊂ H be a compact neighborhood of * . According to Remark , there exists an open set V containing H 0 such that ˇ is holomorphic in K × V. As ˇ ∈ V, this implies in particular that ˇ is analytic at ( * , ˇ ). Since Ψ(h * ) = * and Ψ(0) = ˇ , and we have seen that Ψ is analytic at both h * and 0, the relation ( ) implies that Z is analytic at (h * , 0). It follows that ( )

= 1 ! k Z ((1 -) , 0) is analytic at = * .
Corollary . A parametrization of ↦ → ( ) is given by = ˇ ( ) and

ˇ ( ) =        1 ˇ 3/2 2 ˇ 3 ( ) -ˇ 3 ˇ 2 ˇ 2 ( ) when ≠ 1 ˇ 4/3 3 ˇ 4 ( ) -ˇ 4 ˇ 3 ˇ 3 ( ) when =
where ˇ are de ned as in Lemma , and ˇ ( ) are de ned by the Taylor expansion ˇ ( , ˇ -) = ˇ ( ) .

Proof. We have seen in the previous proof that ( )

= 1 ! k Z ((1 -) , 0) with = 3 if ≠ and = 4 if = . Moreover, Z satis es Z (h, k) = ˇ ( ˇ -(h), ˇ -(k)), where (ℎ) is the local inverse of ℎ ↦ → (1 -ˇ ( ˇ -ℎ)) . It follows that ˇ ( ) ≡ ( • ˇ ( )) = 1 ! k ˇ , ˇ -(k) k=0 . ( )
Using the de nition of the coe cients ˇ and the Lagrange inversion formula, it is not hard to obtain that

(k) =        1 ˇ 1/2 2 k -ˇ 3 2 ˇ 2 2 k 2 + (k 3 ) when ≠ 1 ˇ 1/3 3 k -ˇ 4 3 ˇ 5/3 3 k 2 + (k 3 ) when = . Now plug = (k) into ˇ ( , ˇ -) =
ˇ ( ) , and compute the Taylor expansion in k while taking into account the fact that ˇ 1 ( ) = 0 for all and ˇ 2 ( ) = 0 when = (see Equation ()). According to ( ), ˇ ( ) is given by the coe cient of k in this Taylor expansion. Explicit expansion gives the expressions in the statement of the corollary.

Coe cient asymptotics of ( , , ) -proof of Theorem

Theorem gives the asymptotics of , when , → ∞ in two regimes: either → ∞ after → ∞, or → ∞ and → ∞ simultaneously while / stays in some compact interval [ min , max ] ⊂ (0, ∞). We will call the rst case two-step asymptotics, and the second case diagonal asymptotics. Let us prove the two cases separately.

.

Two-step asymptotics

At the critical temperature = , the two-step asymptotics of , has already been established in [ ]. The basic idea is to apply the classical transfer theorem [ , Corollary VI. ] to the function ↦ → ( , ) to get the asymptotics of , when → ∞, and then to the function ↦ → ( ) to get the asymptotics of when → ∞. Proposition and provide all the necessary input for extending the same schema of proof to non-critical temperatures.

Proof of Theorem -two-step asymptotics. According to Proposition , for any xed ∈ , the function ↦ → ( , ) is holomorphic in the Δ-domain , . And ( ) of Proposition states that, as → 1 in , , the dominant singular term in the asymptotic expansion of ↦ → ( ) is ( ) • (1 -) 0 . It follows from the transfer theorem that

• ( ) ∼ →∞ ( ) Γ(-0 ) • -( 0 +1) ( )
(Recall that ( ) is the coe cient of in the generating function ( , ).) The above asymptotics is valid for all ∈ \ {1}. It does not always hold at = 1 because ( ) = ∞ in the high temperature regime. However, if we replace by 0 for some arbitrary 0 ∈ (0, ), then the asymptotics is valid for all ∈ . Then, by dividing the asymptotics by the special case of itself at = 1, we obtain the convergence

( 0 ) ( 0 ) ----→ →∞ ( 0 ) ( 0 )
for all ∈ . For each , the left hand side is the generating function of a nonnegative sequence 0 • , ( 0 ) ≥0

which always sums up to 1 (that is, a probability distribution on N). According to a general continuity theorem [ , Theorem IX. ], this implies the convergence of the sequence term by term:

0 • , ( 0 ) ----→ →∞ 0 • ( 0 )
for all ≥ 0. On the other hand, ( ) implies that

• ( 0 ) ∼ →∞ ( 0 ) Γ (-0 ) • -( 0 +1
) . Multiplying this equivalence with the above convergence gives the asymptotics of , when → ∞ in Theorem .

The asymptotics of in Theorem is a direct consequence of the transfer theorem, given the asymptotic expansion ( ) of ↦ → ( ) in Proposition and its Δ-analyticity in Corollary .

. Diagonal asymptotics

In the diagonal limit, we have not found a general transfer theorem in the literature that allows one to deduce asymptotics of the coe cients , from asymptotics of the generating function ( ,

). However, it turns out that with the ingredients given in Proposition and , we can generalize the proof of the classical transfer theorem in [ ] to the diagonal limit in the case of the generating function ( ,

). Let us rst describe (a simpli ed version of) the proof in [ ], before generalizing it to prove the diagonal asymptotics in Theorem :

Given a generating function ( ) = with a unique dominant singularity at = 1 and an analytic continuation up to the boundary of a Δ-domain , , one rst expresses the coe cients of ( ) as contour integrals on the boundary of ,

= 1 2 ˛ , ( ) +1 d .
Next, one shows that the integral on the circular part of , is exponentially small in and therefore

= 1 2 ˆ , ( ) +1 d + ((1 + ) -) ,
where , = , \ (1 + ) • D is the rectilinear part of the contour , (see Figure (b)). Then one plugs the asymptotic expansion of ( ) when → 1 into the integral. One shows that any term that is analytic at = 1 in the expansion will have an exponentially small contribution, and terms of the order (1 -) and

((1 -) ) have contributions of the order -( +1) and -( +1) , respectively.

Proof of Theorem -diagonal asymptotics. By Proposition , the function ( , ) ↦ → ( , ) is holomorphic in × , , and hence we can express the coe cient [ ] ( , ) as a double contour integral and deform the contours of integral to the boundary of that domain. This gives

+ • , = 1 2 2 ‹ × , ( , 
) +1 +1 d d .
First, let us show that the contour integral can be restricted to a neighborhood of the dominant singularity ( , ) = (1, 1) with an exponentially small error. Let = \ (1 + ) • D be the rectilinear portion of the contour . It consists of two oriented line segments living in the Riemann sphere with a branch cut along

(1, ∞). Similarly, de ne , = , \ (1 + ) • D. The two paths and , are depicted in Figure (a-b). For all ( , ) ∈ × , , we have

| | ≥ 1 and | | ≥ 1. Moreover, if ( , ) ∉ × , , then either | | = 1 + or | | = 1 + . Since ( , ) is continuous on × , , it follows that 1 2 2 ¨( × , )\( × , ) ( , ) +1 +1 d d ≤ 1 2 2 sup ( , ) ∈ × , | ( , )| • (1 + ) -min( , ) = (1 + ) -min
where we assume without loss of generality min ≤ 1, so that min( , ) ≥ min whenever / ∈ [ min , max ].

Thus we can forget about the integral outside × , with an exponentially small error in the diagonal limit.

Using the expansion ( ) in Proposition , we can decompose the integral on × , as

1 2 2 ¨ × , ( , 
) +1 +1 d d = reg + • hom + rem
where reg , hom and rem are de ned by replacing ( , ) in the integral on the left hand side by (2) reg ( , ), hom (1 -, 1 -) and (max(|1 -|, |1 -|) 2 + ) respectively.

As mentioned in Remark , (2) reg ( , ) is a linear combination of terms of the form ( ) ( ) or ( ) ( ), where is analytic in a neighborhood of 1, and is integrable on and , for small enough. Consider the component of reg corresponding to one such term: the integral factorizes as

¨ × , ( ) ( ) +1 +1 d d = ˆ ( ) +1 d • ˆ , ( ) +1 d . ( )
Since is analytic in a neighborhood of 1, we can deform the contour of integration in the rst factor away from = 1, so that it stays away from a disk of radius > 1 centered at the origin. It follows that the integral is bounded as an ( -). On the other hand, the second integral is bounded by a constant ´ , | ( )|d| | < ∞ thanks to the integrability of on , . Hence the left hand side of ( ) is also an ( -). Since reg is a linear combination of terms of this form, we conclude that there exists * > 1 such that reg = ( - * ) when , → ∞ and ∈ [ min , max ].

Next, let us prove that rem = ( -2 +2+ ) in the same limit. Consider the change of variables = (1 -) and = (1 -), and denote by V and V , respectively the images of and , under this change of variable, as in Figure (c-d). (Notice that these paths now depend on .) Then rem can be written as

rem = 1 2 2 ¨V ×V , max( -1 | |, -1 | |) 2 + (1 --1 ) +1 (1 --1 ) +1 d d 2 .
On the one hand, there exists a constant 1 such that max(

-1 | |, -1 | |) 2 + ≤ 1 • -( 2 + ) • (| | + | |) 2 + for all ( , ) ∈ V × V , . On the other hand, since | | ≤ and | cos | ≤ for all ( , ) ∈ V × V , , and 
≥ min , it is not hard to see that 1 - +1 = 1 + | | +1 ≥ 2 | | and 1 - +1 ≥ 1 + | | cos +1 ≥ 2 | |
for some constant 2 > 0 that only depends on , and min . It follows that

| rem | ≤ 1 4 2 • -( 2 +2+ ) ¨V ×V , (| | + | |) 2 + -2 ( | |+ | |) d| | d| | .
The integral on the right hand side is bounded by the constant 4

´∞ 0 d 1 ´∞ 0 d 2 • -2 ( 1 + 2 ) • ( 1 + 2 ) 2 + < ∞. Hence rem = -( 2 +2+
) . To estimate the term hom , we make the same change of variables as for rem . Since hom is homogeneous of order 2 , we have

hom = 1 2 2 ¨V ×V , -2 hom ( , ) (1 --1 ) +1 (1 --1 ) +1 d d 2 1 V ϵ (1 + ϵ ) • ∂D 1 + ϵ -i0 0 V ϵ,θ 0 V ϵ -pϵ + i0 -pϵ -i0 θ O (pϵ ) 1 + ϵ + i0 (a) (b) (c) (d) 1 V ϵ,θ (1 + ϵ ) • ∂D 1 + ϵ θ (a)
Figure -The paths of integration , , and V , V , .

Using again the fact that | | ≤ and | | cos ≤ for ( , ) ∈ V × V , , we can expand in the denominator in the integral as 1

--1 -( +1) 1 --1 -( +1) = exp + • 1 + max(| -1 2 |, | -1 2 | .
More precisely, the big-O means that there exists a constant 3 depending only on , and min such that for all ( ,

) ∈ V ×V , 1 - -( +1) 1 - -( +1) -+ ≤ 3 (| | + | |) 2 • + .
Moreover, there exists 4 > 0 such that

| + | ≤ -4 ( | |+ | |) for all ( , ) ∈ V × V , . It follows that hom - 1 2 2 ¨V ×V , -2 hom ( , ) • + • d d 2 ≤ 1 4 2 ¨V ×V , -2 | hom ( , )| • 3 (| | + | |) 2 -4 ( | |+ | |) • d| | d| | 2 ≤ 5 • -( 2 +3) ¨V ×V , (| | + | |) 2 +2 -4 ( | |+ | |) d| | d| | .
where for the last line we used the bound

| hom ( , )| ≤ cst • (| | + | |) 2
, which is a consequence of the fact that hom ( , ) is homogeneous of order 2 and continuous on × , . The integral on the last line is bounded by 4

´∞ 0 d 1 ´∞ 0 d 2 • -4 ( 1 + 2 ) • ( 1 + 2 ) 2 +2 < ∞. Thus we have hom = -( 2 +2) • 1 2 2 ¨V ×V , hom ( , ) + d d + -( 2 +3) .
Let V ∞ and V ∞, be obtained by extending the line segments in V and V , to rays joining the origin to the in nity. Thanks to the exponentially decaying factor + in the above integral, one can replace the domain

V × V , of the integral by V ∞ × V ∞,
while committing an error that is exponentially small in (recall that V and V , depend on ). ) , where

Therefore hom = ˜ ( / ) • -( 2 +2) + -( 2 +3
˜ ( ) := 1 2 2 ¨V∞ ×V ∞, hom ( , ) + d d .
With the previous estimates for reg and rem , we get

+ , = • ˜ ( / ) • -( 2 +2) + -( 2 +2+ ) .
where the big-O estimate is uniform for all , → ∞ such that / ∈ [ min , max ].

We nish the proof by computing ˜ ( ) or, in the notation of Theorem , ( ) = Γ(-0 )Γ(-1 ) • ˜ ( ). Notice that the value of ˜ ( ) does not depend on the angle appearing in the contour of integration V ∞, .

Low temperatures. When > , we have hom ( , ) = 3/2 3/2 and Proposition and allow us take = 0. Then the double integral de ning ˜ ( ) factorizes as

˜ ( ) = 1 2 ˆV∞ 3/2 d • 1 2 ˆV∞ 3/2 d .
After the change of variable = in the second factor, the formula simpli es to ˜ ( )

= 1 2 ´V∞ 3/2 d 2 -5/2 .
Since the contour V ∞ lives in the Riemann sphere with a branch cut along (-∞, 0), the function 3/2 should be understood as its principal branch with respect to this branch cut. Therefore

1 2 ˆV∞ 3/2 d = 1 2 ˆ∞ 0 (-+ 0) 3/2 -(--0) 3/2 -d = 1 2 ˆ∞ 0 -3/2 -3/2 -d = - Γ(5/2) .
Recall that in the low temperature regime, 0 = 1 = 3/2, and by Euler's re ection formula, Γ(5/2)Γ(-3/2) = .

It follows that

( ) = Γ(-3/2) 2 • ˜ ( ) = -5/2 .
High temperatures. When ∈ (1, ), we have hom ( ,

) = 1/2 1/2 1/2 + 1/2 and thus ˜ ( ) = 1 2 2 ˆV∞, ˆV∞ 1/2 1/2 + 1/2 d 1/2 d .
The inner integral can be expanded in a similar way as in the low temperature case ˆV∞

1/2 1/2 + 1/2 d = ˆ∞ 0 (-+ 0) 1/2 (-+ 0) 1/2 + 1/2 - (--0) 1/2 (--0) 1/2 + 1/2 -d = ˆ∞ 0 1/2 1/2 + 1/2 - -1/2 -1/2 + 1/2 -d = ˆ∞ 0 2 1/2 1/2 + -d .
Plugging the right hand side into the expression of ˜ ( ) and changing the order of the integrals on and on yield

˜ ( ) = 1 ˆ∞ 0 1 2 ˆV∞, • + d 1/2 -d .
The function ↦ → • + is meromorphic on C and has a unique (simple) pole at = -, with a residue of -• -. By closing the contour V ∞, far from the origin in the direction of the negative real axis, we see that the integral on is given by -1 times the residue. Therefore

˜ ( ) = 1 ˆ∞ 0 3/2 -(1+ ) d = Γ(5/2) (1 + ) -5/2 .
In the high temperature regime, we have 0 = 3/2 and 1 = -1.

Thus ( ) = Γ(-3/2)Γ(1) • ˜ ( ) = (1 + ) -5/2 .
Critical temperature. When = , we have hom ( , ) = - 1/3 + 1/3 and one can take = 0. In the low and high temperature regimes, we have used the relation ´V∞ ( )d = ´∞ 0 ( (-+ 0) -(--0)) d to expand integrals on V ∞ . By applying this relation to the integral on and the integral on simultaneously, we get

˜ ( ) = 1 2 2 ¨V∞ ×V ∞ - 1/3 + 1/3 + d d = 1 2 2 ¨(0,∞) 2 ( 1 , 2 ) ∈ {-1,+1} 2 1 2 (-1 + 1 • 0) 1/3 + (-2 + 2 • 0) 1/3 • (-1 2 ) • -( 1 + 2 ) d 1 d 2 .
The principal branch of the function 1/3 prescribes that (-± 0) 1/3 = 1/3 ± 3 . One can check by direct computation that

( 1 , 2 ) ∈ {-1,+1} 2 1 2 (-1 + 1 • 0) 1/3 + (-2 + 2 • 0) 1/3 = -3 1/3 1 1/3 2 1 + 2 . Therefore ˜ ( ) = 1 2 2 • 3 ¨(0,∞) 2 4/3 1 4/3 2 -( 1 + 2 ) 1 + 2 d 1 d 2 .
One can "factorize" this double integral using the relation 1

1 + 2 = ´∞ 0 -1 -2 d : ˜ ( ) = - 3 4 2 ˆ∞ 0 ˆ∞ 0 4/3 1 -(1+ ) 1 d 1 ˆ∞ 0 4/3 2 -( + ) 2 d 2 d = - 3 4 2 ˆ∞ 0 Γ(7/3) • (1 + ) -7/3 Γ(7/3) • ( + ) -7/3 d = - √ 3 2 Γ(7/3) 2 ˆ∞ 0
(1 + ) -7/3 ( + ) -7/3 d .

When = , we have 0 = 4/3 and 1 = 1/3. And by Euler's re ection formula, Γ(7/3)Γ(-4/3) = sin(7 /3) = 2 √ 3 . It follows that

( ) = Γ(-4/3)Γ(-1/3) • ˜ ( ) = 4 3 ˆ∞ 0 (1 + ) -7/3 ( + ) -7/3 d .

Peeling processes and perimeter processes

We recall rst the essentials of the peeling process for Ising-triangulations with spins on faces, introduced in [ ]. The peeling process is the central object both in the construction of the local limits and in the proofs of the local convergences. It can be viewed as a deterministic exploration of a xed map, driven by a peeling algorithm A. The basic de nition of the process is identical to that of [ ], with the exception that in this work, the peeling algorithm A is de ned in a slightly di erent way. In particular, the algorithm chooses an edge on the explored boundary instead of a vertex, and after revealing the internal face incident to that edge, decides where to continue the peeling. Here, the peeling process can be seen as a decorated map version of the ( lled-in) simple peeling of undecorated maps [ ], where the peeling algorithm rst chooses a boundary edge, reveals a face adjacent to it, and nally decides the new unexplored part of the map (in the case when the unexplored part is disconnected by the revealed face). While the algorithm used in [ ] still works in the low temperature regime, we will need di erent algorithms in the high temperature regime, as explained in Section . . We will also note that, unlike in [ ], the di erent peeling algorithms result di erent laws of the peeling process.

Throughout this work we assume the following: if an Ising-triangulation has a bicolored boundary, the algorithm A chooses an edge at the junction of the + andboundary segments on the boundary of the explored map. This edge may either have spin + or -. It is easy to see that deletion of the chosen edge and exposure of the adjacent face preserves the Dobrushin boundary condition of the map, while another type of a peeling algorithm may complicate the boundary condition. Thus, we call such an algorithm A Dobrushin-stable. We make the following convention: if the algorithm always chooses aedge to peel, we denote it by A -; otherwise if it always chooses a + edge, we denote it by A + ; otherwise, the algorithm is "mixed", choosing either type of the edges, and denoted by A .

The choice of the peeling algorithm in each of the temperature regime stems from the di erent expected interface geometries in the respective regimes. At = , we already saw in [ ] that the peeling algorithm A - is particularly well-suited, due to the fact that we take the limit → ∞ rst, after which there is an in niteboundary. For > , we can still make the same choice. However, for ∈ (1, ), we will notice that whether we choose the peeling to explore the left-most or the right-most interface from the root , the interface will stay close to the boundary of the half-plane. Thus, in order to explore the local limit by roughly distance layers, we need to combine two di erent explorations. This leads us to choose a mixed algorithm A . In the rst limit → ∞, however, the simplest choice which works is A + .

When we take the local limits → ∞ and → ∞ one-by-one, we always peel from a boundary with more edges. This is to ensure the peeling process is compatible with the = ∞ case. In the limit ( , ) → ∞, it is more natural to peel from the boundary which contains the vertex † opposite to the root and at the junction of the + andboundaries, which can be seen as a point in the in nity. For this purpose, we introduce the target † for the peeling. See the following subsection for a more precise de nition. A summary of the peeling

Local convergence ∈ (1, ) ∈ [ , ∞) P , ( ) ----→ →∞ P A + A - P ( ) ----→ →∞ P ∞ A A - P , ( ) -----→ , →∞ P ∞ A † A † - Table -A
summary of the choices of the peeling algorithm in each phase for proving the local convergences. The peeling algorithms A + and A -are de ned in Section . , while A is de ned in Section . . The notation A † refers to the variant of the peeling algorithm A which targets the vertex † . See the end of Section . for de nition.

≈ L + k R + p+k C + C + L k L + k L + ∞-k
R + p+k P p and P ∞ P p and P ∞ P ∞ at low temperatures

P p L + q-k = ≈ R + ∞+k ≈ (k + k = q)
Figure -Illustration of the peeling events. Only peeling events revealing a + face are included. Top: peeling events in a nite triangulation with Dobrushin boundary condition. The ≈ sign indicates di erent peeling events which only di er by the choice of the unexplored component. Bottom: peeling events in a typical in nite triangulation sampled from the laws P or P ∞ . Each arrow indicates that the lower picture can be obtained as a local limit of the upper picture either when → ∞ or when both , → ∞.

algorithms and the existence of the target is presented in Table .  In the following subsection, we de ne the versions of the peeling process used in this work in the nite setting. After that, we generalize those for in nite Ising triangulations of the half-plane, and study the properties of the associated perimeter processes.

. Peeling of nite triangulations

Peeling along the left-most interface: peeling algorithm A -. Assume that an Ising-triangulation ( , ) has at least one boundary edge with spin -. In this case, the peeling algorithm A -chooses the edge with spinimmediately on the left to the origin. We remove and reveal the internal face adjacent to it. If does not exist, then is the edge map and ( , ) has a weight or . If exists, let * ∈ {+, -} be the spin on and be the vertex at the corner of not adjacent to . Then the possible positions of are:

Event C * : is not on the boundary of ; Event R * : is at a distance to the right of on the boundary of ; (0 ≤ ≤ ); Event L * : is at a distance to the left of on the boundary of . (0 ≤ < ).

If , < ∞, we also make the identi cation R * ∓ = L * ± , which is useful in the sequel. We de ne S := {C + , C -} ∪ {L + , L -, R + , R -: ≥ 0} as the set of peeling events. See Figure for graphical illustration of the peeling events.

The peeling process along the left-most interface I is constructed by iterating the face-revealing operation described above, yielding an increasing sequence ( ) ≥0 of explored maps. In order to iterate the peeling, we apply a rule that chooses one of the two unexplored regions, when the peeling step of type R * or L * separates the unexplored map into two pieces. Here, we assume that the boundary contains no target vertex which determines the unexplored part (this case is treated separately later). In the case of peeling along the left-most interface, the algorithm A -chooses the unexplored region with greater number ofboundary edges (and in case of a tie, the region on the right is chosen). This in particular guarantees that when = ∞ and < ∞, we will choose the unbounded region as the next unexplored map. See Figure for illustration.

We can use the sequence of explored maps ( ) ≥0 as the de nition of the peeling process as follows. At each time , the explored map consists of a subset of faces of ( , ) containing at least the external face and separated from its complementary set by a simple closed path. We view as a bicolored triangulation of a polygon with a special uncolored, not necessarily triangular, internal face called the hole. It inherits its root and its boundary condition from ( , ). The complement of is called the unexplored map at time and denoted by . It is a bicolored triangulation of a polygon. Notice that may be the edge map, in which case is simply ( , ) in which an edge is replaced by an uncolored digon. This may, however, only happen at the last step of the peeling process.

We apply this rule recursively starting from 0 = ( , ). At each step, the construction depends on the boundary condition of :

. If has a bichromatic Dobrushin boundary, let be the boundary junction vertex of with aon its left and a + on its right ( 0 = ). Then +1 is obtained by revealing the internal face of adjacent to the boundary edge on the left of and, if necessary, the algorithm chooses one of the two unexplored regions according to the rule described above.

. If has a monochromatic boundary condition of spin -, then the peeling algorithm A -chooses the boundary edge with the vertex as an endpoint according to some deterministic function of the explored map , which we specify later in Sections . and . . We then construct +1 from and in the same way as in the previous case.

. If has a monochromatic boundary condition of spin + or has no internal face, then we set +1 = ( , )

and terminate the peeling process at time + 1.

We denote the law of this peeling process by P , ≡ P , , where on the right we have dropped the dependence of in order to ease the notation and continue to do so in the sequel (with the exception of Section . , where the index will be included for clarity). Let ( , ) be the boundary condition of , and ( , ) = ( -0 , -0 ). Also, let S ∈ S denote the peeling event that occurred when constructing from -1 . Then the peeling process following the left-most interface can also be de ned as the random process (S ) ≥0 on S, with the law P , . We view the above quantities as random variables de ned on the sample space Ω = BT = , BT , . In the sequel, one should understand that any of the sequences ( ) ≥0 , ( ) ≥0 and (S ) ≥0 can be viewed as the peeling process, since together with the boundary condition, they contain the same essential information. Table collects the distribution of the rst peeling step S 1 and the associated perimeter change in the peeling process driven by A -.

s P , +1 (S 1 = s) ( 1 , 1 ) s P , +1 (S 1 = s) ( 1 , 1 ) C + +2, , +1 
(2, -1)

C - , +2
, +1 (0, 1)

L + +1, -1, , +1 (1, --1) L - , -+1 0, +1 , +1 (0, -) (0 ≤ ≤ 2 ) R + +1,0 -+1, , +1 (-+ 1, -1) R - ,1 -, +1 , +1 (-, 0) (0 ≤ ≤ ) R + + +1, 1, - , +1 (-+ 1, --1) R - + , +1 0, -+1 , +1
(-, -) (0 < < 2 )

Table -Law of the rst peeling event S 1 under P , +1 and the corresponding ( 1 , 1 ), where the peeling is without target. We use the shorthand notations = ( ) and , = , ( , ). Peeling along the right-most interface: peeling algorithm A + . The peeling process along the rightmost interface is similar to the previous one, except that the algorithm A + chooses the + edge adjacent to if possible. Again, in case there are more than one holes, the algorithm lls in the one with lessedges by an independent Boltzmann Ising-triangulation, and if the hole has a monochromaticboundary, the peeling continues on that according to some deterministic function. A small subtlety here is that the distribution of this peeling process di ers from the previous one, such that the step distribution involves a spin-ip due to the deleted boundary edge of di erent spin. In particular, we also need to take into account that the peeling algorithm chooses aedge if the unexplored part has a monochromatic boundary. We denote the distribution of this peeling by P , ≡ P , . For the explicit probabilities of the rst peeling step, see Table .   Peeling with the target † . Let A be any Dobrushin-stable peeling algorithm (in the sense of the previous paragraphs). Considering the local limits when , → ∞ simultaneously, it is convenient to de ne a peeling process with a target, where the target is the vertex † at the junction of theand + boundaries opposite to . The de nition of this peeling process is as in the previous paragraphs, except when the peeling step separates the unexplored map into two pieces: in this case, the unexplored part corresponds to the one containing † , and the other one is lled. If † is contained in both of the separated regions, the one with moreedges is chosen for the unexplored part. We denote by A † this targeted variant of the peeling algorithm A.

s P +1, (S 1 = s) ( 1 , 1 ) s P +1, (S 1 = s) ( 1 , 1 ) C + +2, +1, (1, 0) C - , +2 +1, (-1, 2) L + +1, -1, +1, (0, -) L - , -+1 0, +1 +1, (-1, -+ 1) (0 ≤ ≤ 2 ) R + +1,0 -+1, +1, (-, 0) R - ,1 -, +1 +1, (--1, 1) (0 ≤ ≤ ) R + + +1, 1, - +1, (-, -) R - + , +1 0, -+1 +1, (--1, -+ 1) (0 < < 2 ) s P0, +1 (S 1 = s) s P0, +1 (S 1 = s) C + 2, 0, +1 C - 0, +2 0, +1 L + 1, -1, 0, +1 L - 0, -+1 0, +1 0, +1 R + 1, 1, - 0, +1 R - 0, +1 0, -+1 0, +1

. Peeling of in nite triangulations

Obtaining the limits of the peeling process for a general temperature is just a straightforward generalization of the analysis in our previous work [ ]. Indeed, the asymptotics of Theorem give the limit according to the recipe given in [ ]. The rst limit → ∞ yields exactly the same form for the peeling process, where the step probabilities only depend on . Following the notation of [ ], let P (S 1 = s) := lim →∞ P , (S 1 = s) and P ∞ (S 1 = s) := lim →∞ P (S 1 = s). We again make the shorthand conventions P ≡ P and P ∞ ≡ P ∞ which we continue to use in the sequel except in Section . . The quantities after the rst limit → ∞ are collected in Table .

s P (S 1 = s) ( 1 , 1 ) s P (S 1 = s) ( 1 , 1 ) C + +2 (2, -1) C - (0, 1) L + +1 1, +1 (1, --1) L - 0, +1 (0, -) ( ≥ 0) R + +1,0 -+1 (-+ 1, -1) R - ,1 - (-, 0) (0 ≤ ≤ 2 ) R + - -+1,0 +1 (-+ + 1, -1) R - - -,1 (-+ , 0) (0 ≤ < 2 ) R + + +1, 1 +1 (-+ 1, --1) R - + , +1 0 (-, -) ( > 0)
Table -Law of the rst peeling event S 1 under P and the corresponding ( 1 , 1 ), where the peeling is without target. We use the shorthand notations = ( ), = ( ), , = , ( , ) and = ( ). Note the cuto /2 in the nite boundary segment, which is used for the convergence → ∞ in the > regime (see Table ).

Taking the second limit → ∞ yields a similar peeling process for all 1 < ≤ , but for > the asymptotics of Theorem yield additional non-trivial peeling events. Indeed, since the perimeter exponents 0 and 1 of , and coincide in that case, the probabilities P (S 1 = R + ± ) and P (S 1 = R - ± ) have non-trivial limits when → ∞. For that reason, when = ∞ or = ∞, we identify † with ∞ and introduce the following additional peeling step events: Event R * ∞-: is at a distance to the right of ∞ on the boundary of , viewed from the origin (0 ≤ < ∞); Event L * ∞-: is at a distance to the left of ∞ on the boundary of , viewed from the origin (0 ≤ < ∞).

Let S = S ∪ {R * ∞-, L * ∞-: * ∈ {+, -}, ≥ 0}.
Observe that the set S in [ ] corresponds to the set S here. We make the identi cation R * ∞∓ = L * ∞± , as well as the convention P , (S 1 = R * ∞± ) = P (S 1 = R * ∞± ) = 0. Thus, the peeling process can always be de ned on S.

We de ne P ∞ (S 1 = R + ∞± ) := lim →∞ P (S 1 = R + ± ) and P ∞ (S 1 = R - ∞± ) := lim →∞ P (S 1 = R - ± ). The events R + ∞± and R - ∞± can be viewed as jumps of the peeling process to the vicinity of ∞. This property of in nite jumps results a positive probability of bottlenecks in the local limit when > . See Section . for a more precise analysis of the local limit structure in the low temperature regime. The peeling step probabilities for , = ∞ are collected in Table . 

P ∞ (S 1 = s) ( 1 , 1 ) s P ∞ (S 1 = s) ( 1 , 1 ) C + (2, -1) C - (0, 1) L + 1, (1, --1) L - 0, +1 (0, -) ( ≥ 0) R + +1,0 (-+ 1, -1) R - ,1 (-, 0) ( ≥ 0) R + ∞- 0 +1 1 > (-∞, -1) R - ∞- 1 1 > (-∞, 0) ( ≥ 0) R + ∞+ 1 1 > (-∞, --1) R - ∞+ 0 +1 1 > (-∞, -) ( > 0)
Table -Law of the rst peeling event S 1 under P ∞ and the corresponding ( 1 , 1 ), where the peeling is without target. We have the same shorthand notation as in the previous tables as well as = ( ). The proof that P de nes a probability distribution on S goes similarly as in [ , Lemma ], as well as that P ∞ is a probability distribution on S for 1 < < . For > , the total probability from Table sums to

s P +1 (S 1 = s) ( 1 , 1 ) s P +1 (S 1 = s) ( 1 , 1 ) C + +2 +1 (1, 0) C - +1 1 2 (-1, 2) L + 1, (0, -) L - 0, +1 +1 -1 (-1, -+ 1) ( ≥ 0) R + +1,0 -+1 +1 (-, 0) R - ,1 - +1 1 (--1, 1) (0 ≤ ≤ ) R + + +1, 1 +1 (-, -) R - + , +1 0 +1 -1 (--1, -+ 1) ( > 0) s P∞ (S 1 = s) ( 1 , 1 ) s P∞ (S 1 = s) ( 1 , 1 ) C + (1, 0) C - (-1, 2) L + 1, (0, -) L - 0, +1 (-1, -+ 1) R + +1,0 (-, 0) R - ,1 (--1, 1)
( + 1) 0 ( ) + 1 ( ) + 0 + 1 ( ( ) -0 ) ,
which is shown to be equal to one either by a coe cient extraction argument similar to the one of [ , Lemma ], or by a computer algebra calculation. It follows that P and P ∞ , respectively, can be extended to the distribution of the peeling process (S ) ≥0 , and we have the convergence P , ----→ →∞ P ----→ →∞ P ∞ in distribution, where P and P ∞ satisfy the spatial Markov property (see [ , Proposition , Corollary ]). By symmetric arguments, we recall the same properties for the laws P and P∞ , which are obtained as the distributional limits of P , . The explicit laws of the rst peeling step are collected in Table . The expectations corresponding to P and P are called E and Ê, respectively.

By the diagonal asymptotics part of Theorem , it is also easy to see that convergences P , . Order parameters and connections to pure gravity

Using the information in Table , it is not hard to express the order parameter O( ) de ned in Proposition .

We obtain the following formula: The proof of Proposition is a computation by a computer algebra, presented in [ ]. Note that O is discontinuous at = , and that O( ) = E ∞ ( 1 + 1 ) for 1 < ≤ . Moreover, the above drift condition in this regime shows that the peeling process started from theedge next to the origin drifts to the left, swallowing theboundary piece by piece. By symmetry, we also obtain Ê ∞ ( 1 ) = E ∞ ( 1 ) and Ê ∞ ( 1 ) = E ∞ ( 1 ), which in turn yield that the peeling process following the right-most interface drifts to the right. In Section . , we will use these properties to modify the peeling algorithm so that the peeling process will explore a neighborhood of the origin in a metric sense, which will be enough to construct the local limit in the high temperature regime.

O( ) := E ∞ (( 1 + 1 )1 | 1 |∨ | 1 |<∞ ) = ( + 1) ( ) 0 ( ( )) ( ) -0 ( ( )) -( ) 1 ( ( )) .
Remark . There is another, and perhaps more natural, order parameter Õ

( ) := P ∞ (| 1 | ∨ | 1 | = ∞) =          0 if 1 < ≤ ( + 1) ( ) 0 
( ) ( ) + 1 ( ) ( ) ( ( , ) -0 ( )) if > .
It is easy to see that Õ is continuous at = . This order parameter is the probability of the occurrence of a nite bottleneck in a single peeling step in the (to-be-constructed) local limit P ∞ . It can also be shown to be increasing and have the limit the magnetization for the Ising model on a regular lattice, O is discontinuous at the critical temperature. Moreover, it does not tell us about the global geometry of the spin clusters, rather it serves as a "measure" of the interface behaviour in the local limit. An interesting curiosity is that we can show the free energy density per boundary edge has a second order discontinuity, even though it is known that the free energy density per face has a third order discontinuity, telling that the phase transition should be of third order. More precisely, by the work of Boulatov and Kazakov [ ] or an explicit computation [ ], we have

-lim →∞ 1 log( [ ] , ( , )) = ( )
where is the number of interior faces and has a third order discontinuity at = . However, we nd

-lim →∞ 1 log( , ( )) = -lim , →∞ 1 log( , ( )) = log( ( )),
which can be shown to have a second order discontinuity at = .

Pure gravity-like behavior and some literature remarks. It has been conjectured by physicists that the Ising model outside the critical temperature falls within the pure gravity universal class (see [ ]). In particular, in the seminal work of Kazakov [ ], the fact is justi ed by computing the zero-temperature and the in nite-temperature limits of the free energy, which both coincide with the ones derived from the one-matrix model. The analysis of our peeling process, and the geometry in the further sections, will give a di erent perspective to this phenomenon.

First, we note that lim

1 E ∞ ( 1 ) = -lim 1 E ∞ ( 1 ) = -1 2 .
From [ , Section . ], we check that this coincides with the drift of the perimeter process of an exploration which follows the right-most interface of a nite percolation cluster on the UIHPT decorated with a face percolation con guration with parameter = 1/2. This is natural due to the symmetry of the + andspins. We stress that, since percolation on the triangular lattice is not self-dual, this falls in the subcritical regime of percolation. Observe also that the geometry of large Boltzmann Ising-triangulations in the high temperature regime essentially should not depend on the exact value of E ∞ ( 1 ) = -E ∞ ( 1 ), as long as it is strictly positive and the perimeter exponents 0 + 1 and 2 + 2 of the asymptotics of Theorem are equal to 5/2. Therefore, the geometry of the Ising-decorated random triangulation of the half-plane in the high temperature regime is similar to the one of the UIHPT decorated with subcritical face percolation. To our knowledge, this phenomenon has never been explicitly written, though intuitively well understood.

In the low temperature regime, we have lim →∞ O( ) = 1 2 √ 3 . This, in turn, coincides with the expectation of the number of edges swallowed (both to the right or to the left) after a peeling step of the non-decorated UIHPT of type I. At the level of the peeling process, we nd that lim

→∞ P ∞ (S 1 = C + ) = lim →∞ ∞ =0 P ∞ (S 1 = L + ) = lim →∞ ∞ =0 P ∞ (S 1 = R + ) = lim →∞ ∞ =0 P ∞ (S 1 = R + ∞-) = lim →∞ ∞ =1 P ∞ (S 1 = L + ∞-) = lim →∞ ∞ =1 P ∞ (S 1 = R - ∞-) = 0 and lim →∞ P ∞ (S 1 = C -) = 1 √ 3 lim →∞ ∞ =0 P ∞ (S 1 = L -) = 1 2 - 1 2 √ 3 lim →∞ ∞ =0 P ∞ (S 1 = R -) = 1 2 - √ 3 4 lim →∞ ∞ =0 P ∞ (S 1 = L - ∞-) = √ 3 12
.

Since these quantities sum to one, we conclude that either the bottlenecks survive in the zero temperature limit, or the limit does not de ne a probability distribution. The former follows if we can change the limit Throughout this subsection, x ∈ (1, ). We start by considering rst the convergence P , → P . For that purpose, we choose the peeling algorithm A + de ned in Section . . The reason for this choice is explained by Remark and Lemma below. Again, the only thing to show is that P ( 0 < ∞) = 1 for every nite ≥ 0. However, due to the fact that P ( = 1) ∼ • -5/2 , we need a di erent strategy as in [ ] to prove that result. At this point, recall the drift of the perimeter processes: E ∞ ( 1 ) = -E ∞ ( 1 ) > 0 from Proposition ??. This drift is used to estimate the drift of the perimeter process for a large < ∞. Proof. For > > 1, we make the decomposition

E ( 1 ) = E 1 1 { 1 ≥-} + E 1 1 { 1 ≤-+ } + E 1 1 { 1 ∈ (-+ ,-) } .
By the convergence of the peeling process,

E 1 1 { 1 ≥-} ----→ →∞ E ∞ 1 1 { 1 ≥-} -----→ →∞ E ∞ ( 1 ).
For the second term, P ( 1 ≤ -+ ) = P ( 1 ≤ ) ∼ • -5/2 as → ∞ for some constant > 0, which shows that

E 1 1 { 1 ≤-+ } = -P ( 1 ≤ -+ ) + =0 P ( 1 = -) ----→ →∞ 0.
Finally, the third term can be explicitly written using the data of Table as ∼ →∞ cst • -5/2 and a similar one for ,1 -, the sum on the right hand side can be approximated by a remainder of a convergent series, and therefore taking the limits , → ∞ yields the claim.

The case lim →∞ E ( 1 ) = E ∞ ( 1 ) is similar, except easier, since it only requires one cuto at 1 = -. Indeed, the same asymptotics hold for 1 . The cases lim →∞ Ê ( 1 ) = Ê∞ ( 1 ) and lim →∞ Ê ( 1 ) = Ê∞ ( 1 ) follow by symmetry. This property is the main implication of Lemma , which we keep on using in this section.

Remark .

In [ ], we used the same decomposition to show that E ( 1 ) ----→ →∞ -1 3 E ∞ ( 1 ) < 0 at = . This blow-up of the probability mass was due to the fact that P ( 1 ≤ -+ ) ∼

• -1 at = . Currently, we do not have an interpretation of this symmetry breaking.

Under mild conditions, a Markov chain on the positive integers with an asymptotically negative drift is expected to be recurrent. The next lemma veri es this in our case.

Lemma . If ∈ (1, ), then 0 is nite P -almost surely.

Proof. Since ( ) ≥0 is an irreducible Markov chain on the positive integers, it is enough to show that P ( < ∞) = 1 for some > 0. Namely, this means that the chain will return to the nite set {0, . . . } in nitely many times, and thus there exists a recurrent state.

Observe that by Lemma , there exists an index * > 0 such that Ê ( 1 ) ≤ -for some > 0 if > * . On the other hand, Ê ( 1 ) ≤ max 0≤ ≤ * Ê (| 1 |) < ∞ for ≤ * . Then, it follows that the set {0, . . . , * } is actually positive recurrent; see [ , Theorem ] for a more general statement via Lyapunov functions, in which the Lyapunov function is chosen to be the identical mapping. Now, the proof of the local convergence P , ( ) ----→ →∞ P goes along the same lines as in the case ≥ . Let us proceed to the proof of the convergence P ( ) ----→ →∞ P ∞ . For this, we cannot just choose the peeling algorithm A + (or A -, respectively) since the peeling exploration under that algorithm drifts to the right (resp. to the left) in the limit by Lemma . These drifts, however, allow us to construct a mixed peeling algorithm A = A as follows.

Peeling algorithm A . Recall that for ∈ (1, ), we have the drift conditions E ∞ ( 1 ) > 0 and E ∞ ( 1 ) < 0 (together with the symmetric conditions Ê∞ ( 1 ) < 0 and Ê∞ ( 1 ) > 0). These conditions allows us to construct the following sequence of stopping times:

Set 0 = 0 = 0 and 0 = 0.

• Start peeling with A -until the time 1 := inf { > 0 : < -1}, which is almost surely nite under P ∞ due to the drift condition.

• Proceed peeling with A + until the time 1 := inf { > 1 :

< -1 -1 + min 0≤ ≤ 1 }, which is a.s. nite under P∞ , conditional on 1 .

Repeat inductively for ≥ 1:

• At time -1 , run peeling with A -until := inf { > -1 :

< --1 -1 + min -1 ≤ ≤ -1 }.

• At time , run peeling with A + until := inf { > :

< - -1 + min -1 ≤ ≤ }.
Obviously, the above constructed A is a local and a Dobrushin-stable peeling algorithm. We denote the law of this peeling process by P ( ∈ N ∪ ∞). Note that the above stopping times may be in nite if < ∞. Let ˜ := inf { > :

< --1 + min -1 ≤ ≤ }.

The stopping time ˜ may be in nite for < ∞, but the drift condition assures that P∞ ( ˜ < ∞) = 1. It follows that under P∞ , the peeling process with algorithm A explores the half-plane by distance layers, in the sense that the nite stopping time ˜ is an upper bound for the covering time of the ball of radius . Hence, choosing A = A in the general construction of the local limit and = in Proposition will give the construction of P ∞ and yield the local convergence P ( ) ----→ →∞ P ∞ . To be a bit more precise, we still need to verify that P → P∞ weakly. This is shown in the following lemma.

Lemma . Let ∈ (1, ). Then P → P∞ as → ∞.

Proof. From the construction of P and by the spatial Markov property, for all ≥ 1 and all s 1 , • • • , s ∈ S, as well as for all ∈ [1, ] and 1 P ∞ while 0 < ≤ ≤ for 1 < < . It is not hard to see that the counterparts of the above lemmas also hold, mutatis mutandis, in the diagonal regime. The essential matter is that the peeling processes under P , converge towards the peeling processes under P ∞ , due to the diagonal asymptotics. Again, we take into account † as a target. On the other hand, Δ -1 ≤ -1 also implies

≤ 1 ≤ 1 ≤ • • • ≤ ≤ ≤ ,
-1 -1 -≤ ( -) + (1 -) -1 + (1 + ) -1 + -1 --1 ≤ (1 + ) -1 --1 and -1 -1 -≥ ( - ) + (1 -) -1 -(1 + ) -1 + -1 + -1 ≥ - (1 + ) -1 + -1 .
We note that -1 ≤ (Λ ), which is of smaller order than . Let min and max be positive constants such that min < ≤ 1 ≤ < max . Then for large enough, P , ( Δ ≤ Δ , Δ < ) .

Let 0 = 0 ( , ) be the largest such that ≤ Λ( ∧ ), where Λ ≥ 1 is some cut-o value that will be sent to in nity after , and . Explicitly, 0 = log 2 Λ 2 ( ∧ ) + 1 , and Δ 0 = 0 2 + 1 = ( ). Then, for any xed , and in the limit , → ∞, we have Δ ≤ Δ 0 ≤ 1+ ( ∧ ) and --1 ≥ -(Λ( ∧ )) > ˜ as well as --1 ≥ -(Λ( ∧ )) > ˜ for all ≤ 0 . Therefore we can apply Lemma to bound the above supremum, and obtain for large enough , and 0 that P , ( , ≤ 0 ) 0 =1 1 (log( /3) + log(Δ )) 1+ /2 + Δ -1/3 = 0 =1 1 (log( /3) + log 2) 1+ /2 + 0 -1/3 1 (log ) /2 + Λ -1/3 . On the other hand, 0 < , < ∞ implies > 0 . Therefore P , ( 0 < , < ∞) ≤ P , ( 0 > 0 , 0 < , < ∞)

= E , P 0 -1 , 0 -1 ( 0 ≠ 1)1 ( 0 > 0 -1) 1 ( 0 < , <∞) . Now 0 > 0 -1 implies 0 -1 ≥ 1 and 0 -1 ≥ 1, and together with 0 < , also Δ 0 -1 ≤ 0 . This yields the estimate

- (1 + ) 0 + 0 ≤ 0 -1 0 -1 ≤ + (1 + ) 0 -0 .
Therefore, for large enough, we have 0 < min < -

(1+ ) 0 + 0 < 1 < + (1+ ) 0 -0 < max < ∞.
On the other hand, for , > 0 such that / ∈ [ min , max ], we have P , ( 0 = 1) ∼ - ( / ) ( ) 4/3 ( ) -7/3 . Thus, there exist a constant = ( min , max ) > 0 such that P , ( 0 ≠ 1) ≤ 1 -.

We also have the trivial estimate ≤ + 2 . In the end, we conclude

E , P 0 -1 , 0 -1 ( 0 ≠ 1)1 ( 0 > 0 -1) 1 ( 0 < , <∞) ≤ 0 -1 =0 1 -+ 2 ≤ exp - 0 -1 =0 + 2 ≤ exp - ˆ 0 / 0 1 + 2 = 1 + 2 0 -2 ≤ 2 -2 0 -2 . Since 0 ≥ 2 2 0 -1 -1 ≥ Λ 2 ( ∧ ) -1, it follows that 0 -2 Λ -2 .
We conclude that for every xed Λ > 0, and uniformly for > 0 and ≥ 1, lim sup , →∞ P , ( < ) ≤ lim sup , →∞ P , ( , < ∞) (log ) -/2 + Λ -1/3 + Λ -2 .

Taking the limit , → ∞ and then Λ → ∞ nishes the proof.

  Figure -(a) A triangulation of the -gon with internal faces. The boundary will no longer be simple if one attaches to the map inside the bubble to its left. (b) an Ising-triangulation of the

  and the convergence condition implies that ( , , ) is absolutely convergent for all | | ≤ ( ) and | | ≤ ( ).

Figure

  Figure -(a) Boundaries of the unit disk D, the Δ-domain , and the slit disk . For the sake of visibility, , and are drawn for two di erent values of . (b) Boundaries of the domains H 0 ( ), H , ( ) and H ( ) de ned by the parametrization ˇ at a non-critical temperature ≠ . By de nition, H 0 ( ) (resp. H , ( ) and H ( )) is the connected component of the preimage ˇ -1 (D) (resp. ˇ -1 ( , ) and ˇ -1 ( )) containing the origin. (c) Boundaries of the domains H 0 ( ) and H ( ) de ned by ˇ at the critical temperature = . Notice that at the point ˇ ( ), the curve H ( ) in (b) has a tangent, while the curve H ( ) in (c) has two half-tangents at an angle 2 /3.

(

  ii) The derivative d d log | ˇ ( ˇ * ( ), )| vanishes at * . Indeed, by the implicit function theorem, (i) implies that d d ˇ * ( * ) = -( * , * )

  is on the boundary of the domain H 0 ( ), at least one side of the two-sided cone must belong to H 0 ( ). Now assume that d d | ˇ ( ˇ * ( * ), * )| ≠ 0, then we have | ˇ ( ˇ * ( ), )| < 1 either for > * or for < * in a neighborhood of * . But, as shown in Figure (c), in this case the preimage ˇ -1 (D) has only one connected component locally near ˇ * ( ). This connected component must belong to H 0 ( ) because of the continuity of ↦ → ˇ ( , ). It follows that = ˇ * ( ) (which is ℎ = 0 in the variable ℎ) belongs to H 0 ( ). This contradicts the fact that the domain H 0 ( ) contains no critical point of ˇ . Thus we must have d d | ˇ ( ˇ * ( ), )| = 0, or equivalently d d log | ˇ ( ˇ * ( ), )| = 0, when = * . This justi es the claim (ii) and completes the proof of the lemma.

Figure -

 - Figure -Local behavior of the set ˇ -1 (D) in the coordinate ℎ. The region corresponding to H 0 ( ) is colored in yellow, and the region corresponding to ˇ -1 (D) \ H 0 ( ) is colored in blue (the upper region in the graphs (a) and (b)).

Figure -

 - Figure -Illustration of the interfaces explored by the di erent versions of the peeling process. Red: left-most interface (explored by A -). Blue: right-most interface (explored by A + ). Shades of green: interface explored by A .

  s

  , →∞ P∞ hold for every appropriate . More precisely, since the coe cient function ↦ → ( ) is continuous on every interval bounded away from zero for every xed ∈ (1, ∞), we conclude that lim , →∞ --= 1 for any xed , ∈ Z when / ∈ [ min , max ], and the convergence of the one-step peeling transition probabilities follows. The rest is a repetition of the proof of the convergence P

  Above, the cases | 1 | = ∞ and | 1 | = ∞ may appear if > , and the latter only if we consider the peeling with target † . We have discussed in the introduction that O is an order parameter for the phase transition around = Its properties are collected in Proposition . See also Figure for the graph of O.

  Figure -The graph of the order parameter O.

  Lemma . Let ∈ (1, ). Then,lim →∞ E ( 1 ) = E ∞ ( 1 )andlim →∞ E ( 1 ) = E ∞ ( 1 ). Likewise, lim →∞ Ê ( 1 ) = Ê∞ ( 1 )and lim →∞ Ê ( 1 ) = Ê∞ ( 1 ).

E 1 1

 1 { 1 ∈ (-+ ,-) } = -

P

  we haveP (S 1 = s 1 , • • • , S = s , 1 = 1 , 1 = 1 , . . . , = , = ) = P (S 1 = s 1 , . . . , S 1 = s 1 , 1 = 1 ) P + 1 (S 1 = s 1 +1 , . . . , S 1 -1 = s 1 , 1 = 1 ) , . . . , S --1 = s , = ) P + (S 1 = s +1 , . . . , S -= s , = ) • P + (S 1 = s +1 , . . . , S -= s ),where the peeling events (s ) 1≤ ≤ completely determine the perimeter variations ( ) 1≤ ≤ . By the convergences P → P ∞ and P → P∞ , and by another application of the spatial Markov property, the right hand side tends to the limit P∞ (S 1 = s 1 , • • • , S = s , 1 = 1 , 1 = 1 , . . . , = , = ). The claim follows. ∞ for 1 < < . We writeP ( [ , ] = ) = P ( [ • ˜ ] = , ˜ < ) + P ( [ , ] = , ˜ ≥ ),where the last term satis esP ( [ , ] = , ˜ ≥ ) ≤ P ( ˜ ≥ ) ----→ →∞ P∞ ( ˜ ≥ ) -----→ →∞ 0by Lemma and the drift condition. Thus, letting rst → ∞ and then → ∞ yields the claim.Proof of the convergence P ,

,

  = inf { ≥ 1 : ∃ ∈ ( -1 , ] s.t. Δ > and < } . Then we have { < } ⊆ { , < ∞}, and an union bound would allow us to restrict our consideration to the set on the right hand side of the inclusion. Observe that, for any ≥ 1, the conditions Δ -1 ≤ -1 and Δ+ -1 > imply Δ := | + -1 --1 -| ∨ | + -1 --1 -| > Δ . Therefore by Markov property of L , ( , ) ≥0 , P , ( , = ) ≤ E , P -1 , -1 ∃ ∈ (0, Δ ] s.t. Δ > Δ and < 1 {Δ -1 ≤ -1 } .

  min , max ]. In this case, we obtainE , P -1 , -1 ∃ ∈ (0, Δ ] s.t. Δ > Δ and < 1 {Δ -1 ≤ -1 } ≤ sup ≥ --1 , ≥ --1 , ∈ [ min , max ]

Table -

 - Law of the rst peeling event S 1 under P +1, and the corresponding ( 1 , 1 ), where the peeling is without target. Due to the possibility that there is no + edge on the boundary, we also present the step probabilities under the law P0, +1 . The notational conventions coincide with Table .

Table -

 - Laws of S 1 under P +1 ( ≥ 0) and P∞ , respectively, obtained by taking two successive limits in Table.The peeling is without target. Since we only need this distribution in the high temperature regime ∈ (1, ), the bottleneck events are omitted.

, , ∞ correspond to = 1, , ∞ in the sense that ˇ ( 1 ) = 1, ˇ ( ) = and ˇ ( ∞ ) = ∞. The expressions of ˇ ( ), ˇ ( ) and of 1 , , ∞ are given in Section . . By making the substitution = ˇ ( ) and = ˇ ( ) in ( ), we obtain a piecewise rational parametrization of ( ) and ( , , ) of the form
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and the summation above, and that indeed can be done by the following simple argument: We notice that P ∞ (S 1 = L -) ∼ ( ) 5/2 as → ∞, where

) .

An explicit computation shows that lim →∞ ( ) ∈ (0, ∞), so ( ) is bounded. Moreover, we can show that P ∞ (S 1 = L - ∞-) has exactly the same asymptotics as → ∞. By this asymptotic formula, one can then nd a summable majorant for the above series for large enough , and therefore the exchange of the limit and the sum follows from the dominated convergence theorem.

Hence, we nd a zero temperature limit of the peeling process which shares the behaviour of the peeling process in the low temperature regime. In that case, the peeling process constructs an in nite triangulation, which consists of two in nite triangulations with the geometry of the UIHPT that are glued together by just one vertex, which can be viewed as a pinch point in the vicinity of both the origin and the in nity. The construction of this local limit is the same as in the upcoming Section . .

The existence of the nite bottlenecks for > is well predicted in the physics literature. More precisely: When = ∞, the spins are totally aligned. Therefore, for > , it is predicted that the energy of a spin con guration is proportional to the length of the boundary separating di erent spin clusters, and hence the minimal energy con gurations should be those with minimal spin interface lengths. In our setting, we consider an annealed model where we sample the triangular lattice together with the spin con guration. Hence, a bottleneck in the surface is formed. This is explained eg. in [ ] and [ ]. To our knowledge, this is the rst time when the existence of the bottlenecks on Ising-decorated random triangulations is shown rigorously.

Local limits and geometry at ≠

In this section, we extend our analysis of the local limit at = , considered in [ ], to the o -critical regimes 1 < < and > . In [ , Section ], the idea was to provide a constructive proof of the local convergence in the following sense: The local limits were constructed by iterating the peeling process, and after noticing that the peeling explores any ball around the root with respect to the graph distance in a nite time, the local convergence followed from the convergence of the peeling process. In this work, we notice that similar proof strategy for the local convergence extends to every > 1, under certain amendments. For this reason, we reformulate the strategy used in [ ] for proving P , ----→ →∞ P as an algorithm with fairly general assumptions on the convergence of a peeling process. This strategy applies almost readily to all of the local limits at ∈ ( , ∞) with the same choice of a peeling algorithm as for = by the fact that the interface hits a neighborhood of the in nity in a nite time. On the contrary, if ∈ (1, ), the peeling process under the aforementioned peeling algorithm will stay close to the boundary of the half-plane in nitely. Therefore, we need more re ned arguments in the high temperature phase starting from Proposition . In particular, we construct a mixed peeling algorithm, under which the peeling process explores a neighborhood of the origin layer by layer in the local limit P ∞ . The choices of the peeling algorithm are summarised in Table in the preceding section.

. Preliminaries: local distance and convergence

For a map and ≥ 0, we denote by [ ] the ball of radius in , de ned as the subgraph of consisting of all the internal faces which are adjacent to at least one vertex within the graph distance -1 from the origin. By convention, the ball of radius 0 is just the root vertex. The ball [ ] inherits the planar embedding and the root corner of . Thus [ ] is also a map. By extension, if is a coloring of some faces and some edges of , we de ne the ball of radius in ( , ), denoted [ , ] , as the map [ ] together with the restriction of to the faces and the edges in [ ] . In particular, we have [[ , ] ] = [ , ] for all ≤ . Also, if an edge is in the ball of radius in a bicolored triangulation of a polygon ( , ), then one can tell whether is a boundary edge by looking at [ , ] , since only boundary edges are colored.

The local distance for colored maps is de ned in a similar way as for uncolored maps: for colored maps ( , ) and ( , ), let loc (( , ), ( ,

The set CM of all ( nite) colored maps is a metric space under loc . Let CM be its Cauchy completion. As was the case with the uncolored maps (see e.g. [ ]), the space (CM, loc ) is Polish (i.e. complete and separable).

The elements of CM \ CM are called in nite colored maps. By the construction of the Cauchy completion, each element of CM can be identi ed as an increasing sequence of balls ( ) ≥0 such that [ ] = for all ≤ . Thus de ning an in nite colored map amounts to de ning such a sequence. Moreover, if (P ( ) ) ≥0 and P (∞) are probability measures on CM, then P ( ) converges weakly to P (∞) for loc if and only if

) for all ≥ 0 and all balls of radius .

When restricted to the bicolored triangulations of the polygon BT, the above de nitions construct the corresponding set BT \ BT of in nite maps. Recall that BT (1) ∞ is the set of in nite bicolored triangulation of the half plane, that is, elements of BT \ BT which are one-ended and have an external face of in nite degree. Recall also the set BT (2) ∞ , consisting of two-ended bicolored triangulations with an in nite boundary.

.

A general algorithm for constructing local limits

In this subsection, we provide an algorithm for constructing local limits and proving the local convergence for a generic setup of Boltzmann Ising-triangulations of the disk. The algorithm is already used in our previous work [ ] in the proof of the local convergence P . ----→ →∞ P .

Assumptions. Suppose we are given a family of probability measures {P : = 1, 2, . . .} supported on BT, where the index is either the full perimeter or the length of a nite boundary segment of a bicolored, possibly in nite, Boltzmann Ising-triangulation with Dobrushin boundary conditions. For example in the latter case, we may have = if P = P , and we consider the convergence → ∞. The point is that {P : = 1, 2, . . .} is assumed to be a one-parameter family. Recall that the peeling process of a xed triangulation can be viewed as a deterministic sequence ( , ) ≥0 of explored and unexplored maps, respectively, driven by a peeling algorithm A. By convention, L ( ) ( ) ≥0 denotes the law of the sequence of the explored maps under P . Let ( * ˜ , ˜ , ) ˜ , ˜ , ≥0 be a family of independent random variables which are also independent of (S ) ≥0 , such that * ˜ , ˜ , is a Boltzmann Ising-triangulation of the ( ˜ , ˜ )-gon, where possibly ˜ = ∞ or ˜ = ∞. Consider Z with its nearest-neighbor graph structure and canonical embedding in C, viewed as an in nite planar map rooted at the corner at 0 in the lower half plane. Then, the upper half plane is the unexplored map L ( ) 0 , and L ( ) 0 is de ned as the deterministic map Z in which the following holds, depending whether the boundary of length is monochromatic or not: the monochromatic boundary of length is contained in [0, ] (if it has spin +) or in [-, 0] (if it has spin -), or the bichromatic boundary of length = 1 + 2 is contained in [-1 , 2 ]. Assume that under P , one can recover the distribution of as a deterministic function of -1 , S and ( * ˜ , ˜ , ) ˜ , ˜ ≥0 . We de ne L ( ) ( ) ≥0 by iterating that deterministic function on L ( ) 0 , L ( ) (S ) ≥0 and ( * ˜ , ˜ , ) ˜ , ˜ , ≥0 . Let F be the -algebra generated by . Then the above construction de nes a probability measure on F ∞ = (∪ F ), which we denote by P ( ) . Moreover, assume P ( ) ----→ →∞ P (∞) in distribution with respect to the discrete topology. That is, there exists a distribution P (∞) such that for any element in the (countable) state space of the sequences (S ) ≥0 and ( * ˜ , ˜ , ) ˜ , ˜ , ≥0 up to time 0 < ∞, we have P ( ) ( ) ----→ →∞ P (∞) ( ). For the peeling algorithm A, we make two assumptions. First, we assume that the algorithm is Dobrushinstable, in the sense that A always chooses a boundary edge at the junction of theand + boundary segments.

This choice guarantees that the boundary condition always remains Dobrushin or monochromatic. Second, we assume that A is local, by which we mean the following: If the boundary is bichromatic, A chooses the boundary edge according to the previous rule such that it is connected to the root via an explored region by the peeling excluding the boundary. On the other hand, if the boundary is monochromatic, A chooses an edge whose endpoints have a minimal graph distance to the origin, according to some deterministic rule if there are several such choices.

Convergence of the peeling process. Since ( * ˜ , ˜ , ) ˜ , ˜ , ≥0 has a xed distribution and is independent of (S ) ≥0 , it follows that L ( ) (S ) ≥0 and ( * ˜ , ˜ , ) ˜ , ˜ , ≥0 converge jointly in distribution when → ∞ with respect to the discrete topology. However, because L ( ) 0 takes a di erent value for each , the initial condition L ( ) 0 cannot converge in the above sense. This is not a problem, since for any positive integer , the restriction of L ( ) 0 to a nite interval [-, ] stabilizes at the value that is equal to the restriction of L (∞) 0 on [-, ]. Therefore, let us consider the truncated map • , obtained by removing from all the boundary edges adjacent to the hole. Then the number of the remaining boundary edges is nite and only depends on (S ) ≤ . It follows that for each xed,

• is a deterministic function of (S ) ≤ , ( * ˜ , ˜ , ) ˜ , ˜ ≥0; ≤ and 0 restricted to some nite interval [-, ] where is determined by (S 1 , . . . , S ). As the arguments of this function converge jointly in distribution with respect to the discrete topology (under which every function is continuous), the continuous mapping theorem implies that

for every bicolored map and for every integer ≥ 0. We can extend this convergence for nite stopping times according to the following proposition, which is proven for [ , Lemma ], mutatis mutandis.

Proposition

(Convergence of the peeling process). Let F • be the -algebra generated by • . If is an (F • ) ≥0 -stopping time that is nite P (∞) -almost surely, then for every bicolored map ,

Construction of P ∞ . Recall that the explored map contains an uncolored face with a simple boundary called its hole. The unexplored map lls in the hole to give ( , ). We denote by , called the frontier at time , the path of edges around the hole in . For all ≥ 0, let = inf ≥ 0 : ( , ) ≥ , where ( , ) is the minimal graph distance in between and vertices on . It is clear that this minimum is always attained on the truncated map • , therefore ( ,

Expressed in words, is the rst time such that all vertices around the hole of are at a distance at least from . Since ( , ) is obtained from by lling in the hole, it follows that

for all ≥ 0. In particular, the peeling process ( ) ≥0 eventually explores the entire triangulation ( , ) if and only if < ∞ for all ≥ 0. A su cient condition for this is provided by the following lemma.

Lemma . If the frontier becomes monochromatic in a nite number of peeling steps P (∞) -almost surely, then is almost surely nite for all ≥ 0.

Proof. We have 0 = 0. Assume that < ∞ almost surely for some ≥ 0. Then the set of vertices at a graph distance from the origin in is P (∞) -almost surely nite. Since by assumption the frontier becomes monochromatic in a nite time P (∞) -almost surely, the spatial Markov property yields that is monochromatic in nitely often.

On the event { +1 = ∞} and at the times > such that is monochromatic, the peeling algorithm A chooses to peel an edge with an endpoint in by the locality assumption of A. Since is nite, there exists a ∈ at which such peeling steps occur in nitely many times. But each time the vertex is swallowed with a non-zero probability, as a consequence the transition probabilities of the one-step peeling. Therefore can remain forever on the frontier only with zero probability. This implies that P (∞) ( +1 < ∞) = 1. By induction, is nite P (∞) -almost surely for all ≥ 0.

We de ne the in nite Boltzmann Ising-triangulation of law P ∞ by the laws of its nite balls L (∞) [ , ] := lim →∞ L (∞) [ ] . The external face of L (∞) ( , ) obviously has in nite degree. Moreover, every nite subgraph of L (∞) ( , ) is covered by almost surely for some < ∞. If the peeling process only lls nite holes by the family ( * ˜ , ˜ , ) ˜ , ˜ , ≥0 , it follows that the complement of a nite subgraph only has one in nite component. That is, P ∞ is one-ended, which together with the in nite boundary tells that the local limit is an in nite bicolored triangulation of the half-plane. If the limiting map, however, includes in nite holes to ll in with the peeling, the map has several in nite connected components with positive probability. In the following section, we see a concrete example of that case.

.

The local limit at low temperatures ( > )

Throughout this subsection, x ∈ ( , ∞). For simplicity, let us rst consider the case where → ∞ and → ∞ separately. In Section . , the order parameter O told us that for > , the peeling process has a tendency to drift to in nity. Moreover, from Table we already read that 1 = -∞ with a positive probability. Thus, we have E ∞ ( 1 ) = -∞. These properties intuitively mean that the left-most interface drifts to in nity much faster than in the critical temperature, in fact even in a nite time almost surely. Thus, the construction of the local limit and the proof of the local convergence follows by choosing A = A -and after we verify the assumptions of the algorithm in the previous section. The geometric view is similar to that in the critical temperature [ ], with the exception that in this case the interface in a realization of the local limit is contained in a ribbon which is nite. Therefore, the local limit is not one-ended, unlike in = , and contains a bottleneck between the origin and in nity.

In order to be more precise, let us consider the P -stopping time

where ≥ 0 is a cuto . In particular, 0 is the rst time that the boundary of the unexplored map becomes monochromatic. Observe that for > 2 , we can write = inf ≥ 0 : S ∈ R + + +1 , R - + : ≥ -. This extends to = ∞ in a natural way, and thus is also a well-de ned stopping time under P ∞ . Following the notation of [ ], denote by L , (resp. L and L ∞ ) a random variable which has the same law as the random variable under P , (resp. under P and P ∞ ). We start by giving an upper bound for the tail distribution of 0 , which implies in particular that the process L ( ) ≥0 hits zero almost surely in nite time. In other words, the peeling process swallows the + boundary almost surely, exactly as for = . What makes the low-temperature regime di erent is that this property actually holds also for P ∞ , since by the in nite jumps of the peeling process we may have < ∞. Moreover, we can easily nd the explicit distribution of under P ∞ .

. There exists > 0 such that P ( 0 > ) ≤ -for all ≥ 1. In particular, 0 is nite P -almost surely.

. Under P ∞ , the stopping time has geometric distribution with parameter

for = 1, 2, . . . . In particular, is nite P ∞ -almost surely for all ≥ 0.

Proof. Since > , we have

, which yields P ( 0 = 1) ≥ P (S 1 = R -) ≥ for all ≥ 1, for some constant ∈ (0, 1). It follows by the Markov property and induction that for all ≥ 0,

from which the rst claim follows.

For the second claim, the data of Table for > shows that

.

By the spatial Markov property and induction,

for all ≥ 0, which shows that has geometric distribution with parameter .

Remark . Observe that by the above proof, lim →∞ = Õ( ), which was introduced as an order parameter in Remark .

The above lemma entails that can directly, without further conditioning, be regarded as a time of a large jump of the perimeter process. In other words, unlike in [ ], a suitably chosen peeling process will explore any nite neighborhood of the origin in a nite time, and thus no gluing argument of locally converging maps is needed. In particular, the general algorithm of Section . applies. If one wanted to study the local limit via gluing, one could note that conditional on < , the process has a positive drift, a behaviour re ected by the order parameter O.

It is easy to see that the above lemma also holds if we de ne more generally := inf { ≥ 0 : min{ , } ≤ } and consider the convergence of the peeling process with the target † under the limit , → ∞ while / ∈ [ , ]. We omit the details of this here. The stopping time is extensively studied in Section . for = , and the computation techniques for > are similar. The biggest di erence compared to the = ∞ case is the fact that in the , < ∞ case, the triangle revealed at the peeling step realizing must hit the boundary at a distance less than + 1 from † . The perimeter variations ( 1 , 1 ) will also have a di erent law, and in particular both 1 and 1 may have in nite jumps (though not simultaneously).

Recall that in our context of the peeling along the left-most interface, the peeling algorithm A -is used to choose an edge adjacent to on the boundary of the unexplored map according to some deterministic function when its boundary is monochromatic of spin -(see Section . ). Under P , we can ensure < ∞ almost surely for all ≥ 0 with the following choice of the peeling algorithm A = A -: Let be the vertex on the frontier realizing the minimal distance ( , ) from the origin. Then A -chooses the edge on the left of . This algorithm is obviously local. Since 0 < ∞ almost surely by Lemma , Lemma gives < ∞ almost surely in P . Moreover, everything in this paragraph clearly also holds after replacing P by P ∞ .

Proof of the convergence P

is almost surely nite under P and P ∞ , and

Thus, the assumptions of the general algorithm for local convergence hold with the choice P = P , with = in the rst limit, and after P is de ned, also with P = P with = in the second limit. In the rst limit, the family ( * ˜ , ˜ , ) ˜ , ˜ , ≥0 consists of independent nite Boltzmann Ising-triangulations, which ll in the nite holes formed in the peeling process (exactly as in = , see [ ]). Assuming P is de ned for all ≥ 0, then the family ( * ˜ , ˜ , ) ˜ , ˜ , ≥0 also contains the elements * ∞, ˜ , with law P ˜ , which ll in the hole with in nite + boundary after a bottleneck is formed. Putting things together in this order, it follows from Proposition

) for all ≥ 0 and every ball . This implies the local convergence

Proof of the convergence P , ( ) -----→

, →∞ P ∞ while 0 < ≤ ≤ for > . The assumptions of the general algorithm for local convergence hold with the choice P = P , with = + , where → ∞ such that ∈ [ , ]. Since the peeling process with the target † has the same limit in distribution as the untargeted one, the local limit is indeed P ∞ .

The above constructed local limit P is one-ended, since the peeling process only lls in nite holes. By Lemma , the untargeted peeling process of the local limit P ∞ swallows the in nite + boundary P ∞ -almost surely in a nite time, resulting a nite bottleneck, after which the peeling process continues to peel the in nite triangulation with in niteboundary and nite + boundary. Since the latter one is one-ended, it follows that the local limit P ∞ consists of two independent triangulations of laws P ˜ and P ˜ , for some ˜ ≥ 0 and ˜ ≥ 0, the second one modulo a spin ip, glued together along a nite bottleneck. That is, the local limit P ∞ is two-ended.

.

The local limit at high temperatures (1 < < )

The local limit at = in the diagonal regime

Throughout this section, we assume that = and ∈ [ , ] for some 0 < ≤ 1 ≤ < ∞ as , → ∞, and study the local limit of P , in this setting. We stress that this diagonal regime is slightly less general than in Theorem , since we require that it always contains the main diagonal = . The reason is purely technical and becomes evident in the proof of Lemma in Appendix A, where we need to control a ratio of random perimeters. We nd, unsurprisingly, the same local limit P ∞ = P ∞ as discovered in [ ]. Moreover, we nd the scaling limit of the random time at which the peeling process jumps to a neighborhood of † . The starting point of our analysis is the diagonal asymptotics (Theorem )

It is then easy to see that the peeling step probabilities converge to the same limits as in [ ] in the respective diagonal regime. However, it is natural to make the following modi cation for the peeling process.

We choose the peeling process with the target † , driven by the peeling algorithm A † -and described in Section . : If the peeling step s splits the triangulation into two pieces, we choose the unexplored part to be the one containing † . If † is included in both, we choose the one in the right. This gives rise to a di erent perimeter variation process ( , ), whose law is described in Table .

Accordingly, we de ne for ≥ 0

In other words, is just the rst time at which either the + or theboundary length of the unexplored map is at most . Using the peeling steps, we also see that

The analysis of the hitting time yield the main new results of this section. The rst one is a technical lemma which generalizes the so-called one-jump lemma of [ ] to the diagonal setting. Its proof follows the recipe given in [ , Appendix C], although due to taking the limit along a diagonal, additional technicalities arise. The second result is Theorem , whose proof mimics the proof of [ , Proposition ]. A key novelty of the two aforementioned proofs in our current work is controlling the ratio / of the perimeter during the course of the peeling exploration described above. Finally, we detail the proof of the local convergence in the diagonal regime, which follows the idea presented in [ , Sections . -. ], with important modi cations resulting from the fact that there is no presence of an in nite boundary before taking the limit. However, it turns out that applying the one-jump lemma works almost exactly like applying the corresponding lemma in [ ].

. The one-jump phenomenon of the perimeter process Next, we investigate an analog of the large jump phenomenon discovered in [ ]. For that, x > 0 and let

(2, -1)

, +1

(0, 1)

Table -Law of the rst peeling event S 1 under P , +1 and the corresponding ( 1 , 1 ) under the peeling process of the left-most interface with the target † . In the table, ∈ (0, 1) is an arbitrary cuto , which roughly measures whether the perimeter process has only small jumps or not. Observe that the last two rows of the table are redundant with the second and the third row, respectively, in order to emphasize the cuto for taking the limit. Taking the limit ( , ) → ∞ gives the data of Table .

De ne the stopping time

where > 0.

Lemma (One jump to zero). For all > 0 and 0

The proof of Lemma is a modi cation of the proof of the analogous Lemma in [ ]. The necessary changes are left to Appendix A. Next, we prove the main scaling limit result of this article.

Proof of Theorem . First, assuming that a scaling limit of -1 exists for every ≥ 0, it actually does not depend on . Namely, since 0 ≥ , the strong Markov property gives

Let > 0 be some large constant, and x ≤ . We write

By [ , Proposition ] (actually, by its analog for the peeling with target), P , ----→ →∞ P . Therefore, the rst term can be bounded from above by P ( 0 > ) + for any > 0, provided is large enough. In that case, we obtain

P , ( 0 > ) + ( + 1) .

It is easy to see that the right hand side converges to zero as → ∞ and → 0. The second term in Equation ( ) is treated similarly, and nally we deduce P , ( 0 -> ) -----→ , →∞ 0.

Let us then proceed to the existence of the scaling limit. First, x > 0, ∈ N and ∈ (0, ). Take and large enough such that P , -almost surely, ≤ . Denote E := { < } and N := { > }. Clearly (N ) ≥0 is a decreasing sequence, and one can check that

1), where the limit is taken such that / → . In other words, = + ( ), and from the asymptotics of Theorem ,

as , → ∞, / → . On the event N , we have 0 + -( ) ≤ ≤ 0 + + ( ) and 0 + -( ) ≤ ≤ 0 + + ( ). This, in particular, gives

( ) Denote := / . Then combining the previous equation with ( ), we also obtain that for 0 = and 0 = large enough,

By Markov property, P , (N \ { = + 1}) = P , (N ) -E , 1 N P , ( = 1) . Therefore

Combining these estimates with the two inclusions in ( ), we obtain the upper bounds

and the lower bounds

Then, by iterating the two bounds, we get

for any ≥ 1. Since N ⊂ { > } ⊂ N ∪ E up to a P , -negligible set, the above estimates imply that

From the Taylor series of the logarithm we see that --2 ≤ log(1 -) ≤ -for all ≥ 0. Therefore, for any positive sequence ( ) ≥0 , we have exp -

First, by ( ), we see that = + +

(1 + (1)) where (1) is uniform over all ∈ [0, ] as → ∞. Namely,

where the right hand side tends to zero uniformly on ∈ [0, ] as → ∞. On the other hand, we also have

Above, we also used the fact that ( ) is continuous in , which follows directly from its de nition and is also seen below via an explicit expression. We also have

for all > 0. Combining this with the last three displays, we conclude that

Now take the limit , → ∞. First, using the data of Table , we observe that the sequence ( ( )) ≥0 is increasing with a nite limit:

Furthermore, we notice that (1+ ) 0 + 1 ( ( )-0 ) = -, a computation already done in the proof of [ , Proposition ]. This gives ∞ ( ) = 4 3 ( ) 7/3 . Moreover, in the limit , → ∞, the error term lim sup P , (E) tends to zero due to Lemma . The middle terms lim inf , →∞ P , ( > ) and lim sup , →∞ P , ( > ) do not depend on due to the convergence P , ( 0 -> ) -----→

, →∞ 0 seen at the beginning of the proof.

Thus by sending → ∞ and → 0, the monotone convergence theorem nally yields lim

We note rst that

Finally, integrating this equation on each of the sides gives the claim.

In order to prove the diagonal local convergence in its full generality as Theorem suggests, we also show the following generalized bounds:

Proposition . For all ∈ N, the scaling limit of the jump time has the following bounds:

where ∞ is de ned as in ( ) and the limit is taken such that / ∈ [ , ].

Proof. We modify the above proof as follows: First, ( ) translates to

conditional on N . Then, the identity / := = + +

(1 + ( 1)) is to be replaced by the bounds

Finally, we notice that ↦ → ( ) is a continuous function for every ≥ 0 on any compact strictly positive interval, having the limit ∞ ( ) as → ∞ with the same property. Therefore, we can replace

in ( ) by its minimum or maximum over the interval [ , ], respectively, and nally take the limit → ∞.

The limit law

P( > ) :=

ˆ∞

(1 + ) -7/3 ( + ) -7/3 ( ) can be interpreted as the law of the quantum length of an interface resulted from the conformal welding of two quantum disks in the Liouville Quantum Gravity of parameter = √ 3, introduced in the context of the mating of the trees theory in [ ] and studied in [ ]. More precisely, this measure results from a welding of two independent quantum disks of parameter = √ 3 and weight 2 along a boundary segment of length . See [ , , ] for precise de nitions of such quantum disks. In particular, a quantum disk conditioned to have a xed boundary length is well-de ned. As de ned in [ ], an ( , )-length quantum disk ( , , ) is a quantum disk decorated with two marked boundary points , , which is sampled in the following way: First, a quantum disk of a xed boundary length + is sampled. Then, conditional on , the boundary point is sampled from the quantum boundary length measure. Finally, de ne to be the boundary point of such that the counterclockwise boundary arc from to has length . By giving the quantum disk an additional weight parameter and setting its value to 2, the points and can in fact be sampled independently from the LQG boundary length measure, as explained in [ ].

For two independent √ 3-quantum disks, there is a natural perimeter measure on (0, ∞) 2 , given by

This measure is the Lévy measure of a pair of independent spectrally positive 4/3-stable Lévy processes, which has a direct connection to the jumps of the boundary length processes of SLE(16/3). On the other hand, it is known that the typical disks swallowed by the SLE(16/3) are √ 3-quantum disks; see [ ]. This perimeter measure allows us to randomize the boundary arc lengths of the quantum disks as follows.

Due to the convergence / → ∈ (0, ∞) (and / → 1) in our discrete picture, we consider the measure ( ) conditional on the set {( , ) : = 1 + , = + , > 0}, such that the two independent quantum disks have perimeters ( , ) and ( , 1), respectively. This gives rise to the law of the segment as

where N is a normalizing constant in order to yield a probability distribution. Gluing the two quantum disks along the boundary segment of length such that the marked boundary points of the two disks coincide to the points and † , respectively, nally yields ( ) as the law of the interface length.

The same law of has been recently derived in [ , Remark . ] as a special case of the general conformal welding of quantum disks. Since the parameters there also match with the expected ones for the universality class of the critical Ising model, this gives some hints that the Ising interfaces should indeed converge towards an SLE(3)-curve on a LQG surface, as predicted in the literature. This convergence remains as an important open problem.

. The local convergence in the diagonal regime

We recall rst the de nition of the local limit P ∞ = P ∞ (see [ , Section . ]). The probability measure P ∞ is de ned as the law of a random triangulation of the half-plane which is obtained as a gluing of three in nite, mutually independent, one-ended triangulations L ∞ ∞ , L ∞ R ∞ and L ∞ * ∞ along their boundaries, which satisfy the following properties: L ∞ ∞ has the law P 0 , L ∞ * ∞ has the law P 0 under the inversion of the spins, and L ∞ R ∞ is de ned as the law of the increasing sequence (lim →∞ L ∞ [ • ] ) ≥0 under P ∞ . We call R ∞ the ribbon. See [ ] for a more detailed study and Figure for an illustration. The fact that the ball [ • ] stabilizes in a nite time, and thus the limit → ∞ is well-de ned, follows from the positive drift of the perimeter processes. Observe that the boundary of L ∞ R ∞ consists of three arcs: a nite one consisting of edges of • 0 only, and two in nite arcs of spinsand +, respectively. The gluing is performed along the in nite boundary arcs such that the spins match with the boundary spins of ∞ and * ∞ , respectively. Then, x ≥ 0, and de ne R as the union of the explored map • -1 and the triangle explored at . Now the triple ( , R , * ) partitions a triangulation under P , , such that and * correspond to the two parts separated by the triangle at . We will reroot the unexplored maps and * at the vertices and * , which are the unique vertices shared by and R , and * and R , respectively. Now the boundary condition of is denoted by (P, (Q 1 , Q 2 )). This notation is in line with [ , Theorem ]. Similarly, the boundary condition of * is ((P * 1 , P * 2 ), Q * ). Observe that the condition S ∈ {R + -1 +K , R - -1 +K } uniquely de nes an integer K , which represents the position relative to † of the vertex where the triangle revealed at time touches the boundary. Here, we make the convention that

for ≥ 0. In particular, |K | ≤ . See also [ , Figure ] for a similar setting when = ∞.

Lemma (Joint convergence before gluing). Fix , , > 0, and let J ≡ J , := { = ≥ }. Then for any ≥ 0, lim sup

where E is any set of triples of balls.

Proof. The proof applies the idea of the proof of [ , Lemma ]. Assuming that known, the only thing one needs to take care of is the fact that the random numbers P * 1 , P * 2 , Q 1 and Q 2 tend to ∞ uniformly, and that P and Q * stay bounded, conditional on J. Observe also that the random number K is automatically bounded in this setting, so we do not need any condition for K on the event J.

Similarly as in [ ], we have the lower bounds P * 1 ≥ ( -1) -( -1) =: P * 1 and P * 2 ≥ + min ≥0 ( -( )) -1 -=: P * 2 as well as the upper bound Q * ≤ + 1 for the boundary condition of * . For completeness and convenience, let us show similar bounds for the boundary condition of . Let + and -be the distances from to * and along the boundary, respectively. First, expressing the total perimeter of , the number of edges between and † clockwise and the number of + edges on the boundary of , respectively, we nd the equations

, and otherwise = 0, as well as -is the number ofedges on R ∩ • 0 . The solution of this system of equations is

Proof of the convergence P , → P ∞ . The triangulation L , ( , ) (respectively, L ∞ ( , )) can be represented as the gluing the triple

) along their boundaries. This is done pairwise between the three components, taking into account that the location of the root vertex changes during this procedure. Given a triangulation with a simple boundary, and an integer , let us denote by -→ (resp. ← -) the map obtained by translating the root vertex of by a distance to the right (resp. to the left) along the boundary. Denote by and the root vertices of two triangulations and , respectively, and let be the number of edges in and which are admissible for the gluing. More precisely, we assume that is a random variable taking positive integer or in nite values, such that

Finally, let ⊕ be the triangulation obtained by gluing the boundary edges of on the right of to the boundary edges of on the left of . The dependence on is omitted from this notation because the local limit of ⊕ is not a ected by the precise value of , provided that ( ) holds.

Now under P , , we have

where we recall that + and -are the distances from to * and along the boundary, respectively. Similarly, L ∞ ( , ) can be expressed in terms of ∞ , R ∞ , * ∞ and ± using gluing and root translation. On the event J, the perimeter processes ( ) ≥0 and ( ) ≥0 stay above -( ) up to the time . Thus their minima over [0, ) are reached before the deterministic time min = sup { ≥ 0 :

-( ) ≤ 0}, and + and -are measurable functions of the explored map • min . It follows that L , ± converges in distribution to L ∞ ± on the event J. Using the relation ( ) together with [ , Lemmas -], we deduce from Lemma that for any , , > 0, and for any ≥ 0 and any set E of balls, we have lim sup

The left hand side does not depend on the parameters , and . Therefore to conclude that P , converges locally to P ∞ , it su ces to prove that lim sup , →∞ P , (J ) + P ∞ ( < ∞) converges to zero when , → ∞ and → 0. The latter term converges to zero, since if → ∞, we have → ∞ almost surely under P ∞ . For the rst term, a union bound gives P , (J ) ≤ P , ( < ) + P , ( < ) , where the rst term on the right can be bounded using Lemma : lim , →∞ lim sup

For the last term, we use the lower bound of Proposition :

A A one-jump lemma for the process L , ( , ) ≥0 at =

The proof is mostly a modi cation of a similar proof [ , Appendix C]. Here, we need to take care that both and stay close to their asymptotic mean for < with high probability, as , → ∞ with / ∈ [ , ], where 0 < ≤ 1 ≤ < ∞. We follow the exposition and the notation of [ ].

For starters, we write

Then, for ≤ -2 and ≤ -1, the basic relation for the comparison of the laws of the perimeter processes reads

as easily veri ed using the data of Table . Observe that this condition is reminiscent of the Doob ℎ-transform of a random walk, ceased to satisfy it since the condition ( ) breaks down for > -2 or > -1. We also introduce the following notation: If and are two positive functions de ned on some set Λ, we say that • ( ) ( ) for ∈ Λ, if there exists > 0 such that ( ) ≤ ( ) for all ∈ Λ;

• ( ) ( ) for ∈ Λ, if ( ) ( ) and ( ) ( ).

We x a cuto ∈ (0, 1) and let := 2 1-so that ≤ -2 and ≤ -1 for all , ≥ . The following lemma gives estimates for the jump probabilities of the perimeter processes in a single peeling step:

Lemma . Assume throughout the lemma that / lies in a xed compact interval ⊂ R + such that 0 ∉ . Then the perimeter increments during the rst peeling step satisfy the following probability estimates: (i)

-7/3 for ≥ 1.

(ii) P , ({-1 = } ∩ {-1 ≤ -1}) -7/3 and P , (-1 = -) -1 -4/3 for all , ≥ and 1 ≤ ≤ .

(iii) P , ({-1 = } ∩ {-1 ≤ -2})

-7/3 and P , (-1 = -) -1 -4/3 for , ≥ and 1 ≤ ≤ .

(iv)

such that -2 ≤ ≤ and -2 ≤ ≤ .

(v) For , ≥ , ∈ [1, ( ∧ )] and ≥ 1,

In the following, let A = {(-1 ) ∨ (-1 ) ≤ } and be either -1 or -1 .

(vi

(ii) First, since P , ({-1 = 1} ∩ {-1 ≤ -1}) has a nite limit as , → ∞ while / ∈ , we have P , ({-1 = 1} ∩ {-1 ≤ -1}) 1. Then for 2 ≤ ≤ , we write

Since ≤ , the asymptotics of Equation ( ) yield -, , 1 and -, -1 , 1. The rst estimate follows then by (i). For the second estimate, we note that

where ( , ) is a bounded constant depending on , and bounded away from zero. Since -4/3 as well as ( -+ 2) -7/3 -7/3 ( -) -7/3 , the desired result follows.

Since ≤ , the asymptotics of Equation ( ) yield , - , 1 and +1, - , 1. The rst estimate follows.

Secondly, for = 2, . . . , ,

where ˜ ( , ) is bounded and bounded away from zero. The result follows since ( -+ 1) -7/3 -7/3

( --1) -7/3 and .

(iv) From the asymptotic expansion , + =

• ( / ) Γ (-4/3)Γ (-1/3) -11/3 1 + ( -1/3 ) , we see that there exist constants = ( ) and 0 = 0 ( ) such that for all , ≥ 0 , -2 ≤ ≤ and -2 ≤ ≤ ,

After writing down the Taylor expansions of each of the sides of the inequality, the rest of the proof of the rst estimate goes similarly as the proof of a corresponding claim in [ ]. The second estimate follows after swapping the roles of and , and and , respectively, and noting that

where we used the results (ii)-(iii).

(vi) This goes similarly as the proof of a corresponding claim in [ ], after one notices that the conditions ≤ and ℎ ≥ 1 imply {ℎ -≤ -1 ≤ } ⊆ {1 ≤ -1 ≤ }.

(vii) For ≤ -2 and ≤ -2, Equation ( ) gives the estimate

where we used the estimates (i) and (iv). Lemma . Fix some > 0 and let = (log ) 1+ 3/4 . Then for any 0 < min ≤ 1 ≤ max < ∞, ∈ (0, min ), , ≥ ˜ := /(1 -) such that ∈ [ min , max ] as well as ≥ 1 and , ≥ 2 such that ∈ [1, 1+ ( ∧ )], we have

Proof. For ≥ 1, let Δ = --1 and Δ = --1 , and

Following the corresponding proof in [ ], we bound the probability of the event { ≤ , < } both in the cases { ≤ } (large jump estimate) and { < } (small jump estimate).

Large jump estimate: union bound. We have P , ( ≤ , < and ≤ ) ≤ =1 P , ( ≤ and = < ) .

If ≤ , in particular -1 ≥ -and -1 ≥ -. Let

Then for < , we have the estimates

and

since by assumption, min ≤ ≤ max and 1 ≤ ≤ 1+ . In particular, this holds for = -1, and we conclude that ( -1 , -1 ) ∈ D.

On the other hand, = < immediately implies > , > and (-Δ ) ∨ (-Δ ) ≥ . Thus, the Markov property of ( , ) ≥0 gives the upper bounds

The assumptions , ≥ ˜ = 1-and 1 ≤ ≤ 1+ ( ∧ ) ensure that, for ≥ -and ≥ -, the condition ∧ ≥ with 1 ≤ ≤ ( ∧ ) is satis ed. Hence, by Lemma (v), P , ( ≤ , < , and ≤ ) -4/3 + -1 -1/3 = Let (Δ * , Δ * ) ≥1 be a sequence of i.i.d. random variables independent of ( , ) ≥0 and with the same distribution as L * , * ( 1 , 1 ). De ne

On the event { = }, the future ( , ) > of the process is an i.i.d. sequence independent of the past such that E , [ ( + , + ) •e 1 { ∨ ≤ } ] = ,e * , * ( ). Therefore we can continue the bound ( ) with ,e * , * ( ) , where we have the last inequality due to the fact that ( , ) ∈ D on the event { < }. By expanding the expectation in ( ) with successive conditioning, we see that it is bounded by ,e * , * ( ) . Then, combining ( ) and ( ) yields P , ( = e ≤ , e < ) ≤ -( ,e * , * ( ) ∨ 1) . By Lemma (viii), there exists a constant such that ,e , ( ) ≤ exp( -4/3 ) for all , ≥ , ∈

[1, ( ∧ )], ∈ [2 -1 , 1] and unit vector e ∈ Z 2 . Note that we already have seen in the derivation of the large jump estimate that the conditions ≥ -and ≥ -imply ∧ ≥ and 1 ≤ ≤ ( ∧ ). Therefore, we also have ,e * , * ( ) ≤ exp( -4/3 ) by the de nition of ,e * , * ( ). Hence, P , ( = e ≤ , e < ) ≤ exp(-+ • -4/3

) .

Plugging this into ( ) and taking = log log with = 1 + /2 yields P , ( ≤ , < and > ) ≤ 4 exp(-log log + -4/3 (log ) ).

Thanks to the relation between and given in the assumptions, we have -4/3 (log )

-4/3 (log +log ) (log ) 1+ , which is bounded by a constant for , ≥ 2. It follows that P , ( ≤ , < and > ) exp(-log log ) (log + log ) -.

By adding the large jump estimate ( ) to the above small jump estimate, we conclude that P , ( ≤ , <

) (log + log ) -+ -1 -1/3 , where we again use the boundedness of -4/3 (log +log ) In other words, ≤ ( -1 ). Consider the sequence of horizontal segments = {( , ) : ∈ ( -1 , ]}. Due to the previous inequality, all of these segments are below the curve Δ = ( ). Let , be the index where Δ goes above for the rst time up to , that is, Funding. Both authors have been primarily supported by the Academy of Finland via the Centre of Excellence in Analysis and Dynamics Research (project No.
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