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Ising model on random triangulations of the disk: phase transition

Linxiao Chen∗, Joonas Turunen†

Abstract

In (Commun. Math. Phys. 374(3):1577–1643, 2020), we have studied the Boltzmann random triangulation
of the disk coupled to an Ising model on its faces with Dobrushin boundary condition at its critical
temperature. In this paper, we investigate the phase transition of this model by extending our previous
results to arbitrary temperature: We compute the partition function of the model at all temperatures, and
derive several critical exponents associated with the in�nite perimeter limit. We show that the model
has a local limit at any temperature, whose properties depend drastically on the temperature. At high
temperatures, the local limit is reminiscent of the uniform in�nite half-planar triangulation (UIHPT)
decorated with a subcritical percolation. At low temperatures, the local limit develops a bottleneck of �nite
width due to the energy cost of the main Ising interface between the two spin clusters imposed by the
Dobrushin boundary condition. This change can be summarized by a novel order parameter with a nice
geometric meaning. In addition to the phase transition, we also generalize our construction of the local
limit from the two-step asymptotic regime used in (Commun. Math. Phys. 374(3):1577–1643, 2020) to a more
natural diagonal asymptotic regime. We obtain in this regime a scaling limit related to the length of the
main Ising interface, which coincides with predictions from the continuum theory of quantum surfaces
(a.k.a. Liouville quantum gravity).

1 Introduction

The two-dimensional Ising model is one of the simplest statistical physics models to exhibit a phase transition.
We refer to [33] for a comprehensive introduction. The systematic study of the Ising model on random two-
dimentional lattices dates back to the pioneer works of Boulatov and Kazakov [30, 15], where they discovered
a third order phase transition in the free energy density of the model, and computed the associated critical
exponents. In their work, the partition function of the model was computed in the thermodynamic limit using
matrix integral methods applied to the so-called two-matrix model, see [32] for a mathematical introduction.
Since then, this approach has been pursued and further generalized to treat other statistical physics models on
random lattices, see e.g. [26, 25].

In this paper, we will follow a more combinatorial approach to the model originated from a series of
works by Tutte (see [38] and the references therein) on the enumeration of various classes of embedded planar
graphs known as planar maps, which is essentially another name for the random lattices studied in physics.
The approach of Tutte utilizes a type of recursive decomposition satis�ed by these classes of planar maps to
derive a functional equation that characterizes their generating function. This method was later generalized by
Bernardi and Bousquet-Mélou [13, 14] to treat bicolored planar maps with a weighting that is equivalent to the
Ising model. Before that, Bousquet-Mélou and Schae�er already had studied the Ising model on planar maps
using some general bijection between bipartite maps and blossoming trees [16]. Another work of Bouttier, Di
Francesco and Guitter also studied Ising model on quadrangulations using bijections between Eulerian maps
and mobiles [17].

From a probabilistic point of view, the aforementioned recursive decomposition can be seen as the operation
of removing one edge from an (Ising-decorated) random planar map with a boundary, and observing the
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resulting changes to the boundary condition. By iterating this operation, one obtains a random process, called
the peeling process, that explores the random map one face at a time. Ideas of such exploration processes
have their roots in the physics literature [39], and was revisited and popularized by Angel in [8]. The peeling
process proves to be a valuable tool for understanding the geometry of random planar maps without Ising
model, see [22] for a review of recent developments.

In our previous article [21], we extended some enumeration results of Bernardi and Bousquet-Mélou [13] to
study the Ising-decorated random triangulations with Dobrushin boundary condition at its critical temperature.
We used the peeling process to construct the local limit of the model, and to obtain several scaling limit
results concerning the lengths of some Ising interfaces. In this paper, we extend similar results to the model at
any temperature, and show how the large scale geometry of Ising-decorated random triangulations changes
qualitatively at the critical temperature. In particular, our results con�rm the physical intuition that, at large
scale, Ising-decorated random maps at non-critical temperatures behave like non-decorated random maps.

A similar model of Ising-decorated triangulations (more precisely, a model dual to ours) has been studied
in a recent work of Albenque, Ménard and Schae�er [3]. They followed an approach reminiscent of Angel and
Schramm in [11] to show that the model has a local limit at any temperature, and obtained several properties of
the limit such as one-endedness and recurrence for a range of temperatures. However, they studied the model
without boundary, and hence did not encounter the geometric consequences of the phase transition in terms
of the in�nite Ising interface. In the recent preprint [2], the �rst two of the aforementioned authors proved
several exact results on the perimeter and volume of the spin clusters, demonstrating the phase transition
through several critical exponents and geometric behaviors of the cluster in di�erent phases. The model with
spins on the vertices can also be studied with a boundary, and the methods introduced in [21] and this article
were recently applied to that model in [37] by the second author of this work.

We start by recalling some essential de�nitions from [21].

Planar maps. Recall that a (�nite) planar map is a proper embedding of a �nite connected graph into the
sphere S2, viewed up to orientation-preserving homeomorphisms of S2. Loops and multiple edges are allowed
in the graph. A rooted map is a map equipped with a distinguished corner, called the root corner.

All maps in this paper are assumed to be planar and rooted.

In a (rooted planar) map m, the vertex incident to the root corner is called the root vertex and denoted by d .
The face incident to the root corner is called the external face, and all other faces are internal faces. We denote
by � (m) the set of internal faces of m.

A map is a triangulation of the ℓ-gon (ℓ ≥ 1) if its internal faces all have degree three, and the boundary of
its external face is a simple closed path (i.e. it visits each vertex at most once) of length ℓ . The number ℓ is
called the perimeter of the triangulation. Figure 1(a) gives an example of a triangulation of the 7-gon.

Ising-triangulations with Dobrushin boundary conditions. We consider the Ising model with spins on
the internal faces of a triangulation of a polygon. A triangulation together with an Ising spin con�guration
on it is written as a pair (t, f), where f ∈ {+, -}� (t) . Observe that f can also be viewed as a coloring, and by
combinatorial convention, we sometimes refer to it as such. An edge 4 of t is said to be monochromatic if the
spins on both sides of 4 are the same. When 4 is a boundary edge, this de�nition requires a boundary condition
which speci�es a spin outside each boundary edge. By an abuse of notation, we consider the information about
the boundary condition to be contained in the coloring f , and denote by<(t, f) the number of monochromatic
edges in (t, f).

In this work we consider the Dobrushin boundary conditions under which the spins outside the boundary
edges are given by a sequence of the form +?-@ (? +’s followed by @ -’s, where ?, @ ≥ 0 are integers and
? + @ ≥ 1 is the perimeter of the triangulation) in the clockwise order from the root edge. We call a pair
(t, f) with this boundary condition an Ising-triangulation of the (?, @)-gon, or a bicolored triangulation of the

2



(a) (b)

(t,σ ) ∈ BT3,4

|F (t) | = 19ρ ρ +

+

+

--

-

-

m(t,σ ) = 18
root corner

color code:
= spin +
= spin -

Figure 1 – (a) A triangulation t of the 7-gon with 19 internal faces. The boundary will no longer
be simple if one attaches to t the map inside the bubble to its left. (b) an Ising-triangulation of the
(3, 4)-gon with 18 monochromatic edges (dashed lines).

(?, @)-gon. Figure 1(b) gives an example in the case ? = 3 and @ = 4. We denote by BT?,@ the set of all
Ising-triangulations of the (?, @)-gon. For a > 0, let

I?,@ (C, a) =
∑

(t,f) ∈BT?,@

a< (t,f)C |� (t) |

When I?,@ (C, a) < ∞, we can de�ne a probability distribution PC,a?,@ on BT?,@ by

PC,a?,@ (t, f) =
C |� (t) |a< (t,f)

I?,@ (C, a)

for all (t, f) ∈ BT?,@ . A random variable of law PC,a?,@ will be called a Boltzmann Ising-triangulation of the
(?, @)-gon. We collect the partition functions (I?,@ (C, a))?,@≥0 into the following generating series:

/@ (D, C, a) =
∞∑
?=0

I?,@ (C, a) D? and / (D, E, C, a) =
∑
?,@≥0

I?,@ (C, a) D?E@ =

∞∑
@=0

/@ (D, C, a)E@ ,

where by convention I0,0 = 1.

Partition functions and the phase diagram. The condition I?,@ (C, a) < ∞ does not depend on (?, @): For
any pairs (?, @), (? ′, @′) ≠ (0, 0), one can construct an annulus of triangles which, when glued around any
bicolored triangulation of the (?, @)-gon, gives a bicolored triangulation of the (? ′, @′)-gon. Thus I?,@ (C, a) ≤
� · I?′,@′ (C, a), where � is the weight of the annulus. It has been shown in [13, Section 12.2] that for all a > 1,
the series C ↦→ I1,0(C, a) converges at its radius of convergence C2 (a). Then the above argument implies that
C2 (a) is the radius of convergence of C ↦→ I?,@ (C, a) and we have I?,@ (C2 (a), a) < ∞, for all (?, @) ≠ (0, 0) and
a > 1. In this paper we always restrict ourselves to the case a > 1. (This is called the ferromagnetic case since
in this case the weight a< (t,f) favors neighboring spins to have the same sign.)

We shall call C2 (a) the critical line of the Boltzmann Ising-triangulation. It separates the inadmissible region
C > C2 (a), where the probabilistic model is not well-de�ned, from the subcritical region C < C2 (a), where the
probability for a Boltzmann Ising-triangulation to have size = decays exponentially with =. (Here the size of an
Ising-triangulation is de�ned as its number of internal faces.) It has also been shown in [13] that the function
C2 (a) is analytic everywhere on (1,∞) except at a2 = 1 + 2

√
7. This further divides the critical line into three

phases: the high temperature phase 1 < a < a2 , the critical temperature a = a2 , and the low temperature phase
a > a2 .

In our previous paper [21], we studied the model at the critical point (a, C) = (a2 , C2 (a2)). Results in [21]
include an explicit parametrization of / (D, E, C2 (a2), a2), the asymptotics of I?,@ (C2 (a2), a2) when @ →∞ and
then ? →∞, a scaling limit result closely related to the main interface length, and the local limit of the whole
triangulation in that asymptotic regime. In this paper, we will extend this study to the critical line C = C2 (a)
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Figure 2 – Phase diagram of the Boltzmann Ising-triangulation for a > 1. The critical line C2 (a) is
divided by a2 = 1 + 2

√
7 into the high temperature, low temperature and critical temperature phases.

Although hardly visible in the graph, the third derivative of C2 (a) has a discontinuity at a = a2 .

in order to shed more light on the nature of the phase transition at a = a2 . For this reason we will write
throughout this paper

I?,@ (a) = I?,@ (C2 (a), a) , /@ (D, a) = /@ (D, C2 (a), a) and / (D, E, a) = / (D, E, C2 (a), a) .

In [21], we have characterized / (D, E, C, a) as the solution of a functional equation, and solved it in the case
of (a, C) = (a2 , C2 (a)). In this paper we solve the equation for general (a, C) and give the solution in terms of a
multivariate rational parametrization:

Theorem 1 (Rational parametrization of / (D, E, C, a)). For a > 1, / (D, E, C, a) satis�es the parametric equation

C2 = )̂ ((, a), C · D = *̂ (�, (, a), C · E = *̂ ( , (, a) and / (D, E, C, a) = /̂ (�, , (, a) , (1)

where )̂ , *̂ and /̂ are rational functions whose explicit expressions are given in Lemma 9 and in [1].

To specialize the above rational parametrization of / (D, E, C, a) to the critical line C = C2 (a), one needs to
replace the parameter ( by its value (2 (a) that parametrizes C = C2 (a). It turns out that the function (2 (a) itself
has rational parametrizations on (1, a2) and (a2 ,∞), respectively. More precisely, (2 (a) satis�es a parametric
equation of the form

a = ǎ (') and (2 (a) = (̌ (') ,
where ǎ (') and (̌ (') are piecewise rational functions on the intervals ('1, '2] and ['2 ,∞), where the values
'1, '2 , '∞ correspond to a = 1, a2 ,∞ in the sense that ǎ ('1) = 1, ǎ ('2) = a2 and ǎ ('∞) = ∞. The expressions
of ǎ ('), (̌ (') and of '1, '2 , '∞ are given in Section 2.3. By making the substitution a = ǎ (') and ( = (̌ (') in
(1), we obtain a piecewise rational parametrization of C2 (a) and / (D, E, a) of the form

C2 (a)2 = )̌ ('), C2 (a) · D = *̌ (�, '), C2 (a) · E = *̌ ( , '), and / (D, E, a) = /̌ (�, , ') .

See Section 2.3 for more details.
In [21], we computed the asymptotics of I?,@ (C, a) when (a, C) = (a2 , C2 (a2)) in the limit where ? →∞ after

@ →∞. The following theorem extends this result to the whole critical line C = C2 (a), and also to the limit where
?, @ →∞ at comparable speeds. These results are obtained by a close examination of the singular expansion
of the multivariate generating function / (D, E, C2 (a), a) (in particular, by proving that (D, E) ↦→ / (D, E, C2 (a), a)
is analytic in a product of two Δ-domains), see Sections 3–5. Similar methods have been applied to more
complicated generating functions and made partly systematic in two recent works [19, 20] of the �rst author.

Theorem 2 (Asymptotics of I?,@ (a)). For any �xed a > 1 and 0 < _min < _max < ∞, we have

D2 (a)@ · I?,@ (a) =
0? (a)
Γ(−U0)

· @−(U0+1) +$
(
@−(U0+1+X)

)
as @ →∞ for each �xed ? ≥ 0.

D2 (a)? · 0? (a) =
1 (a)

Γ(−U1)
· ?−(U1+1) +$

(
?−(U1+1+X)

)
as ? →∞.

D2 (a)?+@ · I?,@ (a) =
1 (a) · 2 (@/?)
Γ(−U0)Γ(−U1)

· ?−(U2+2) +$
(
?−(U2+2+X)

)
as ?, @ →∞ while @/? ∈ [_min, _max] .
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where the exponents U8 , X and the scaling function 2 (_) only depend on the phase of the model, and are given by

U0 U1 U2 X

a > a2 3/2 3/2 3 1/2
a = a2 4/3 1/3 5/3 1/3

a ∈ (1, a2) 3/2 −1 1/2 1/2

2 (_) =


_−5/2 when a > a2

4
3
´ ∞

0 (1 + A )−7/3(_ + A )−7/3dA when a = a2

(1 + _)−5/2 when a ∈ (1, a2) .

On the other hand, D2 (a), 0? (a) (for ? ≥ 0) and 1 (a) are analytic functions of a on (1, a2) and (a2 ,∞), respectively.
And D2 (a) is continuous at a = a2 . An explicit parametrization of D2 (a) is given in Section 2.4. Parametrizations
of 1 (a) and of the generating function �(D, a) :=

∑
? 0? (a)D? are explained in Section 4 and given in [1].

Remark 3. The exponents U8 and the scaling function 2 (_) satisfy a number of consistency relations.
First, one can exchange the roles of ? and @ in the last asymptotics of Theorem 2. Since we have I?,@ = I@,?

for all ?, @, this implies that 2 (_)_U2+2 = 2 (_−1) or, in a more symmetric form, 2 (_)_ (U2+2)/2 = 2 (_−1)_−(U2+2)/2.
By replacing the factor 0? (a) in the �rst asymptotics of Theorem 2 with the dominant term in the second

asymptotics, we obtain heuristically that

D2 (a)?+@ · I?,@ (a) ∼
1 (a) · (@/?)−(U0+1)

Γ(−U0)Γ(−U1)
· ?−(U0+U1+2) when ?, @ →∞ and @ � ? .

This suggests that U0 + U1 = U2 and 2 (_) ∼ _−(U0+1) when _ → ∞. One can verify that both relations are
indeed satis�ed by U8 and 2 (_) in all three phases. Notice that thanks to the equation 2 (_)_U2+2 = 2 (_−1), the
asymptotics 2 (_) ∼

_→∞
_−(U0+1) is equivalent to 2 (_) ∼

_→0
_−(U1+1) .

In�nite Ising-triangulations and local limits. In�nite bicolored triangulations are de�ned as the local
limits of �nite bicolored triangulations. Formally, the local distance between two bicolored triangulations (t, f)
and (t′, f ′) is de�ned by

3loc((t, f), (t′, f ′)) = 2−' where ' = sup {A ≥ 0 : [t, f]A = [t′, f ′]A }

and [t, f]A denotes the ball of radius A around the origin in (t, f) which takes into account the colors of the
faces. The set BT of (�nite) bicolored triangulations of a polygon is a metric space under 3loc. We denote
its Cauchy completion by BT and de�ne the set of in�nite bicolored triangulations as BT \ BT. We recall
from graph theory that an in�nite graph is :-ended if the complement of any �nite subgraph has at most
: in�nite connected components [12, 14.2], and the same notion naturally extends to maps by considering
their underlying graphs. We denote by BT

(1)
∞ the set of one-ended (in�nite) bicolored triangulations with an

external face of in�nite degree. The elements of BT
(1)
∞ are called bicolored triangulations of the half plane, since

they have a proper embedding without accumulation points in the upper half plane such that the boundary
coincides with the real axis. Moreover, let BT

(2)
∞ be the set of two-ended bicolored triangulations with an

external face of in�nite degree.

Theorem 4 (Local limits of Ising-triangulations).
For every a > 1, there exist probability distributions Pa? and P

a
∞, such that

Pa?,@ −−−−→@→∞ Pa? −−−−→?→∞
Pa∞ (2)

locally in distribution. Moreover, Pa? is supported on BT
(1)
∞ for all a > 1, whereas Pa∞ is supported on BT

(1)
∞ when

1 < a ≤ a2 and on BT
(2)
∞ when a > a2 . In addition, for any 0 < _′ ≤ 1 ≤ _ < ∞, when @

?
∈ [_′, _], we have

Pa?,@ −−−−−→?,@→∞
Pa∞ (3)

locally in distribution.

This theorem generalizes our previous result [21, Theorem 4], which contained only the convergence (2)
at a = a2 . It also partially con�rms a conjecture in [21], which states that Pa2?,@ → Pa2∞ locally in distribution
whenever ?, @ →∞.
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Peeling process and perimeter processes. Recall that we consider bicolored triangulations (t, f) with a
Dobrushin boundary condition. We denote by d the root vertex of (t, f), and by d† the other boundary vertex
where the boundary condition changes sign.

An interface in (t, f) is a path on t formed by non-monochromatic edges. Due to the Dobrushin boundary
condition, the vertices d and d† are always connected by an interface. However, because the spins are on the
faces of the triangulation, this interface is in general not unique. Similarly to [21], we will consider peeling
processes that explore one such interface at a time. More precisely, when a ≥ a2 , we will consider the peeling
process that explores the left-most interface I from d to d†. (This is the same choice as in [21]). When
1 < a < a2 , we will apply explorations along other interfaces, see Section 7.4 for details. In all of the cases, the
exploration reveals one triangle adjacent to the interface at each step, and swallows a �nite number of other
triangles if the revealed triangle separates the unexplored part into two pieces.

Formally, we de�ne the peeling process as an increasing sequence of explored maps (e=)=≥0. The precise
de�nition of e= will be left to Section 6.1. The peeling process is also encoded by a sequence of peeling events
(S=)=≥1 taking values in a countable set of symbols, where S= indicates the position of the triangle revealed at
time = relative to the explored map e=−1. Again, the detailed de�nition is left to Section 6.1. The law of the
sequence (S=)=≥1 can be written down fairly easily and one can perform explicit computations with it. We
denote by Pa?,@ the law of the sequence (S=)=≥1 under Pa?,@ .

Let (%=, &=) be the boundary condition of the unexplored map at time = and (-=, .=) its variation, that is,
-= = %= −%0 and .= = &= −&0. This de�nition makes sense when the initial condition (%0, &0) = (?, @) is �nite.
When (?, @) is not �nite, we need to de�ne (-=, .=) di�erently: we will show that (-=, .=) is a deterministic
function of the peeling events (S: )1≤:≤= , whose law has a well-de�ned limit when ?, @ →∞. This allows us to
de�ne the law of the process (-=, .=)=≥0 under Pa∞ := lim?,@→∞ Pa?,@ . We will see that (-=, .=)=≥0 is a random
walk on Z2 under Pa∞. It was proven in [21] for the corresponding expectations of the increments that

Ea∞(-1) = Ea∞(.1) = ` := 1
4
√

7
> 0 when a = a2 , (4)

which implies that almost surely, the interface hits the boundary of the half-plane a �nite number of times,
and then escapes towards in�nity. When viewed as a function of the temperature a , the drift of the random
walk (-=, .=)=≥0 actually de�nes an order parameter:

Proposition 5 (Order parameter). Let O(a) := Ea∞((-1 + .1)1 |-1 |∨ |.1 |<∞). Then

O(a) =
{

0, if 1 < a < a2

5 (a) if a ≥ a2 ,

where 5 : [a2 ,∞) → R is a continuous, strictly increasing function such that 5 (a2) = 2` > 0 and lima↗∞ 5 (a) <
∞ exists. Moreover, for 1 < a < a2 , we have the drift condition Ea∞(-1) = −Ea∞(.1) > 0.

Notice that there is an asymmetry between the two components of the drift of the random walk (-=, .=)=≥0
under Ea∞. This is a consequence of the following asymmetry in the de�nition of the perimeter process: In
Section 6.1, we de�ne a peeling process that explores the left-most interface I from the vertex d . The perimeter
process (%=, &=)=≥0 and its variation (-=, .=)=≥0 are de�ned relative to this peeling process. Therefore it is not
surprising that the two components of (-=, .=)=≥0 have di�erent drifts under Ea∞.

The function O de�nes an order parameter for two reasons: First, its behavior �ts formally the de�nition
of an order parameter in physics, namely: the value of O(a) is zero on one side of the critical temperature, and
positive on the other side. (A classical example of such an order parameter is the magnetization of the Ising
model on regular lattices.) More importantly, the positivity of O(a) really distinguishes the ordered phase
a ≥ a2 from the disordered phase a < a2 via the behavior of the interface I in the local limit. We will explain
this in the next paragraph.
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Interface geometry. Recall that for a �nite bicolored triangulation (t, f) with Dobrushin boundary con-
dition, I is de�ned as the left-most interface from d to d† imposed by the boundary condition. In the limit
?, @ →∞, the interface I becomes a (possibly in�nite) path on the in�nite triangulation of distribution Pa∞.
Many geometric properties of I — especially its visits to the boundary of the triangulation — are encoded by
the random walk (-=, .=)=≥0 of law Ea∞. The next proposition summarizes some almost sure properties of the
interface I which follow from Proposition 5. The geometric pictures behind these properties are discussed
after the proposition.

Proposition 6 (Geometry of the interface I). In the local limit Pa∞, the left-most interface I has the following
properties almost surely

• When a ∈ (1, a2) : I is in�nite and touches the boundary of the triangulation in�nitely many times.

• When a = a2 : I is in�nite, but touches the boundary of the triangulation only �nitely many times.

• When a ∈ (a2 ,∞) : I is �nite.

When a ∈ (1, a2), due to the fact that Ea∞(-1) = −Ea∞(.1) > 0, the peeling process starting from the -
edge on the left of d drifts to the left. This exploration also follows the left-most interface starting from d ,
which stays near the in�nite - boundary segment hitting it almost surely in�nitely many times. Similarly, the
right-most interface starting from d and explored via a peeling exploration starting from the edge on the right
of d drifts to the right following the + boundary. Since Ea∞(-1) + Ea∞(.1) = 0, these two interfaces have the
same geometry up to re�ection. Using this property, we will construct a peeling algorithm under which the
peeling process explores the half-plane in layers, with a starting point alternating between - and + edges. The
new peeling exploration obtained in this way reveals that the local limit constructed via this peeling process
has a percolation-like interface geometry. On the contrary, if a ∈ [a2 ,∞), the peeling process explores an
interface which drifts towards the in�nity d† after hitting the boundary only �nitely many times. The fact that
this drift is increasing in a means that the lower the temperature is, the less the interface hits the boundary
and the faster the interface tends to the in�nity. In fact, it is also shown that if a ∈ (a2 ,∞), the peeling process
approaches a neighborhood of d† in a �nite time almost surely.

One should compare the statement of Proposition 6 to the geometry of the percolation interface on the
UIHPT (see [8, 9, 10]). In that case, the interface hits the boundary in�nitely many times almost surely. As
Proposition 6 suggests, in the high temperature phase (1 < a < a2 ), the Ising model in the local limit looks
like a subcritical face percolation, whereas in the low temperature phase (a > a2 ), the local limit contains
almost surely a bottleneck separating the + and - regions. In the latter case, the local limit is not almost surely
one-ended, contrary to the usual case of local limits of random planar maps. This property re�ects that our
model in the low temperature phase is really a quantum gravity version of the Ising model on 2D regular
lattices in the ferromagnetic low temperature phase: the energy minimizing property forces the bottleneck due
to the coupling of matter with gravity. Both the high and the low temperature cases are predicted in physics
literature, though not extensively studied (see [30, 4]). More about the geometric interpretations is found in
Section 6.3.

Now we consider again the law of a �nite Boltzmann Ising triangulation Pa?,@ and study how the interface
length scales together with the perimeter of the disk as ?, @ → ∞ simultaneously. Let )< := inf{= ≥ 0 :
min{%=, &=} ≤ <}, which can be seen as the �rst jump time of the interface to a neighborhood of the in�nity.
By its de�nition, )< is also the �rst hitting time of the stochastic process (min{%=, &=})=≥0 to [0,<], which is
a stopping time with respect to the �ltration generated by (%=, &=)=≥0 or (-=, .=)=≥0. In the most interesting
regime a = a2 , we �nd an explicit scaling limit of )< under diagonal rescaling of ?, @:

Theorem 7 (Scaling limit of )<). Let a = a2 and consider the limit where ?, @ → ∞ and @/? → _ for some
_ ∈ (0,∞). For all< ∈ N and all C ≥ 0, the jump time )< has the following scaling limit:

Pa2?,@ ()</? > C) −−−−−→
?,@→∞

1
� (_)

ˆ ∞
`C

(1 + B)−7/3(_ + B)−7/33B (5)

7



where � (_) =
´ ∞

0 (1 + B)−7/3(_ + B)−7/3dB . In particular, when _ = 1, we have

Pa2?,@ ()</? > C) −−−−−→
?,@→∞

(1 + `C)−11/3.

An analogous result without the diagonal rescaling (via an intermediate local limit) was obtained in [21,
Proposition 11]. As explained in [21, Section 6], )< is, in some sense, an approximation of the interface length
of a �nite Boltzmann Ising-triangulation, though some technical di�culties remain to show that its scaling
limit gives the scaling limit of the interface length. Hence, we state a conjecture:

Conjecture 8 (Scaling limit of the interface length). Let [ be the length of the left-most interface in (t, f).
Then

P?,@ ([/? > C) −−−−−→
?,@→∞

1
� (_)

ˆ ∞
`C/�
(1 + B)−7/3(_ + B)−7/33B while @

?
→ _,

where � is the expected number of interface edges swallowed in a single peeling step.

The idea behind the above conjecture is explained in [21, Section 6] in a similar setting. The main obstacle
of the proof for the conjecture is that we lack information of � with our current approach. One could �nd an
asymptotic estimate for the volume of a �nite Boltzmann Ising-triangulation, which gives an upper bound for
the length of a piece of interface swallowed by a peeling step, but it turns out not to be su�cient. However,
an analog of the conjecture could be proven for the model with spins on vertices, or with spins on faces
and a general boundary. The former is conducted in the preprint [37]. The conjecture is also supported by
a prediction derived from the Liouville Quantum Gravity, seen as a continuum model of quantum surfaces
studied eg. in [23], which also inspired us to �nd the correct constant in the scaling limit of Theorem 7. More
discussion about this is given in Section 8.1.

To understand the phase transition at the critical point in greater detail, one should also consider the
so-called near-critical regime. In our context, this means that we let a → a2 simultaneously with the perimeters
tending to in�nity. Intuitively, one expects that if a → a2 fast enough compared to the growth of the perimeters,
observables of the model will have the same limit as when a = a2 . On the contrary, if the convergence a → a2

is slow, the observables should have limits similar to those obtained at o�-critical temperatures. An interesting
question is to determine whether there is a critical window between the critical and the o�-critical regimes,
where the limits exhibits a qualitatively di�erent behavior. These problems are considered in a work in
progress.

Outline. The paper is composed of two parts, which can be read independently of each other.
The �rst part, which spans Sections 2–5, deals with the enumeration of Ising-decorated triangulations. We

start by deriving explicit rational parametrizations of the generating function / (D, E, C, a) and its specialization
/ (D, E, a) ≡ / (D, E, C2 (a), a) on the critical line (Section 2). Using these rational parametrizations, we show
that for each a > 1, the bivariate generating function / (D, E, a) has a unique dominant singularity and an
analytic continuation on the product of two Δ-domains (Section 3). We then compute the asymptotic expansion
of / (D, E, a) at its unique dominant singularity (Section 4). Finally, we prove the coe�cient asymptotics in
Theorem 2 using a generalization of the classical transfer theorem based on double Cauchy integrals (Section 5).

The second part, which comprises Sections 6–8 and Appendix A, tackles the probabilistic analysis of the
Ising-triangulations at any �xed temperature a ∈ (1,∞). It uses the combinatorial results of the �rst part as an
input, and leads to the proofs of Theorems 4 and 7. First, we introduce the di�erent versions of the peeling
process adapted to the three phases (high/low/critical temperature) and the two limit regimes examined in
Theorem 4. Then, we study the associated perimeter processes, whose drifts in the limit ?, @ → ∞ de�ne
the order parameter introduced in Proposition 5 (Section 6). After that, we provide a general framework
for constructing local limits, which we then use to prove the local convergence of Theorem 4 when a ≠ a2

(Section 7). Finally, we prove Theorem 7 and complete the proof of Theorem 4 by extending the above
convergence result to the regime where a = a2 and ?, @ →∞ simultaneously (Section 8). A central tool in the
proofs in this last section is an adaptation of the one-jump lemma for the perimeter process in the diagonal
regime, whose proof we present separately in Appendix A as an adaptation of [21, Appendix B].
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2 Rational parametrizations of the generating functions.

The functional equations satis�ed by the generating functions /0(D, C, a) and / (D, E, C, a) were derived in our
previous work [21]. The result were written in the form of

E0
(
/0(D), D, C, a, I1,0, I3,0

)
= 0 and / (D, E, C, a) = E

(
/0(D), /0(E), D, E, C, a, I1,0, I3,0

)
(6)

where E0 and E are explicit rational functions with coe�cients in Q. Let us brie�y summarize their derivation:

1. We start by expressing the fact that the probabilities of all peeling steps sum to one. This gives two
equations (called loop equations or Tutte’s equations) with two catalytic variables for / (D, E, C, a). These
equations are linear in / (D, E, C, a).

2. By extracting the coe�cients of [E0] and of [E1] from these two equations, we obtain four algebraic
equations relating the variable D to the series /? (D, C, a) for ? = 0, 1, 2, 3, whose coe�cients are polyno-
mials in C , a and I1,0(C, a), I3,0(C, a). These equations are linear in the three variable /1, /2 and /3. After
eliminating these variables, we obtain the �rst equation of (6). This procedure is essentially equivalent
to the method used in [24, Chapter 8] to solve Ising model on more general maps.

3. Using the four algebraic equations found in Step 2, one can also express /1(D, C, a) as a rational function
of /0(D, C, a), D, C , a and I1,0(C, a), I3,0(C, a). Then, plug this relation into one of the two loop equations,
and we obtain the second equation of (6).

In this section, we �rst solve the equation for /0(D, C, a) with the help of known rational parametrizations of
I1,0(C, a) and I3,0(C, a). Then, the solution is propagated to / (D, E, C, a) using its rational expression in /0(D, C, a)
and its coe�cients. Finally, we specialize the parametrization of / (D, E, C, a) to the critical line C = C2 (a) by
replacing two parameters ((, a) with a single parameter '.

2.1 Rational parametrization of /0(D, C, a)

Lemma 9. /0(D, C, a) has the following rational parametrization:

C2 = )̂ ((, a) := (( − a) (( + a − 2) (4(3 − (2 − 2( + a2 − 2a)
32(1 − a2)3(2 (7)

CD = *̂ (�, (, a) := � · 2(4(3 − (2 − 2( + a2 − 2a) − 4(( + 1)(2� + 4(2� 2 − (� 3

16(1 − a2)2( (8)

/0(D, C, a) = /̂0(�, (, a) := *̂ (�, (, a)
)̂ ((, a)

· (( − a) (( + a − 2) + 2(( − a)(� − 2(2� 2 + (� 3

4(1 − a2)(� . (9)

Proof. The following rational parametrizations of I1,0(C, a) and I3,0(C, a) were obtained in [21] by translating a
related result from [13]: C2 = )̂ ((, a) and

C3 · I1,0(C, a) = Î1,0((, a) := (a − ()
2(( + a − 2)

64(a2 − 1)4(2 (3(3 − a(2 − a( + a2 − 2a) , (10)

C9 · I3,0(C, a) = Î3,0((, a) := (a − ()
5(( + a − 2)5

222(a2 − 1)12(8 ·
(
160(10 − 128(9 − 16(2a2 − 4a + 3)(8 (11)

+ 32(2a2 − 4a + 3)(7 − 7(16a2 − 32a + 27)(6 − 2(32a2 − 64a + 57)(5

+ (32a4 − 128a3 + 183a2 − 110a + 20)(4 − 4(7a2 − 14a − 2)(3

+ a (a − 2) (9a2 − 18a − 20)(2 + 14a2(a − 2)2( − 3a3(a − 2)3
)
.

Substituting D by* /C , and then C , I1,0, I3,0 by their respective parametrizations in the �rst equation of (6), we
obtain an algebraic equation of the form Ê0(/0,* , (, a) = 0. It is straightforward to check that (8)–(9) cancel
the equation, that is, Ê0(/̂0(�, (, a), *̂ (�, (, a), (, a) = 0 for all � , ( and a . See [1] for the explicit computation.
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On the other hand, we know that (6) uniquely determines the formal power series/0(D), see [21, Section 3.1].
When � → 0, Equations (8)–(9) clearly parametrize an analytic function /0(D) near D = 0. Therefore they are
indeed a rational parametrization of /0(D, C, a). �

Remark 10. The proof of Lemma 9 followed a guess-and-check approach. To actually derive the parametriza-
tion (8)–(9), we �rst check that the plane curve de�ned by Ê0(/0,* , (, a) = 0 has zero genus using the
command algcurves[genus] of Maple, so it does have a rational parametrization with coe�cients in
Q((, a). Theoretically, one should be able to produce one such parametrization using the Maple command
algcurves[parametrization]. However, the execution takes too much time, presumably due to the presence
of two indeterminates ((, a) in the coe�cient ring. Instead, we followed the steps below to �nd (8)–(9):

1. Choose a �nite set of values N ⊂ Q ∩ (1,∞) for a . In practice we used the integers N = {2, 3, . . . , 10}.

2. For each a∗ ∈ N, apply algcurves[parametrization] to the algebraic curve Ê0(/0,* , (, a∗) = 0. Let
*̄a∗ (�, () and /̄0,a∗ (�, () denote the rational functions over the ring Q(() returned by the command.
If *̄a∗ (�, () = *̂ (�, (, a∗) and /̄0,a∗ (�, () = /̂0(�, (, a∗) for all a∗ ∈ N, where *̂ and /̂0 are two trivariate
rational functions, then we can apply interpolation techniques to recover the expressions of *̂ and /̂0
for general values of a . However, since the rational parametrization of a (genus zero) algebraic equation
is not unique, the functions ( *̄a∗, /̄0,a∗ )a∗∈N are in general not the specializations of the same functions
(*̂ , /̂0) at di�erent values of a∗. In order to recover the specializations *̂ (�, (, a∗) and /̂0(�, (, a∗) from
them, we need to “preprocess” the pairs (*̄a∗, /̄0,a∗) as in the two following steps.

3. Maple guarantees that (*̄a∗, /̄0,a∗) is a proper rational parametrization of the curve Ê0(/0,* , (, a∗) = 0.
We know that all proper rational parametrizations of the same curve are related to each other by Möbius
transformations [36, Lemma 4.17]. Therefore, there exists a family of Möbius transformations m(,a∗
indexed by the formal variable ( and the numerical values a∗ ∈ N, such that

*̄a∗
(
m(,a∗ (� ), (

)
= *̂ (�, (, a∗) and /̄0,a∗

(
m(,a∗ (� ), (

)
= /̂0(�, (, a∗) (12)

for some trivariate rational functions *̂ and /̂0. To �nd such a family of Möbius transformations, we
make the following observations (see [1] for explicit veri�cation):

(i) For all a∗ ∈ N, there exists a rational function �̄a∗ (() ∈ Q(() such that � = �̄a∗ (() is the unique
pole of both � ↦→ *̄a∗ (�, () and � ↦→ /̄0,a∗ (�, ().

(ii) The algebraic curve Ê0(/0,* , (, a) = 0 has a unique analytic branch at the point (* ,/0) = (0, 1).
And for all a∗ ∈ N, we have *̄ (�, (, a∗) → 0 and /̄0(�, (, a∗) → 1 as � →∞.

These two observations suggest that we choose Möbius transformations which map∞ to �̄a∗ ((), and
map 0 to∞. (See below for the consequences of this choice.) Such Möbius transformations are of the
form

<(,a∗ (� ) = �̄a∗ (() − Λa∗ (()/�

where Λa∗ (() ≠ 0 is an arbitrary scaling factor to be chosen later.

4. Plugging the above Möbius transformation into (12) gives our candidates for *̂ (�, (, a∗) and /̂0(�, (, a∗).
Our choice of <(,a∗ ensures that these two functions are polynomial in � (i.e. their only pole is at
∞) and that (*̂ (0, (, a∗), /̂0(0, (, a∗)) = (0, 1). We compute in [1] the explicit expressions of *̂ (�, (, a∗)
and /̂0(�, (, a∗) and check that they are polynomials of degrees 4 and 6 respectively in the variable
�/Λ ≡ �/Λa∗ (().
Now we ask Maple to display *̂ (�, (, a∗) as a polynomial in �/Λ, and look for common factors among
its coe�cients (which are elements of Q(()). With some trial-and-error, we �nd that the choice

Λa∗ (() = −8( · [(�/Λ)
4]*̂ (�, (, a∗)

[(�/Λ)3]*̂ (�, (, a∗)
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cancels all those common factors. This choice is also equivalent to the condition that [�
3 ]*̂ (�,(,a∗)

[� 4 ]*̂ (�,(,a∗)
= −8( .

The prefactor 8 is not chosen for simpli�cation reasons. Rather, it is chosen so that (*̂ , /̂0), the rational
parametrization that we get after interpolation in a , will specialize to the rational parametrization given
in our previous article [21] when (a, C) = (a2 , C2).

5. The above choice ofΛa∗ (() gives us the expressions of *̂ (�, (, a∗) and /̂0(�, (, a∗) for alla∗ ∈ N. Then, we
apply the Maple routine CurveFitting[RationalInterpolation] to �nd a pair (*̂ , /̂0) ∈ Q(�, (, a)2
that interpolates between these values of a∗. This gives the expressions (8)–(9).

One can run the above procedure with a larger set N, and check that the result does not change.

2.2 Rational parametrization of / (D, E, C, a).

We plug the parametrizations (7)–(11) into the second equation of (6) to obtain a rational parametrization of
/ (D, E, C, a) of the form

C2 = )̂ ((, a) CD = *̂ (�, (, a) CE = *̂ ( , (, a) and / (D, E, C, a) = /̂ (�, , (, a) ,

where the rational functions )̂ and *̂ are de�ned in Lemma 9, and the expression of /̂ is given in [1].

2.3 Specialization of / (D, E, C, a) to the critical line C = C2 (a).

Rational parametrization of the critical line. Recall that C2 (a) is de�ned as the radius of convergence
of the series I1,0( · , a). The series have nonnegative coe�cients, and have a real rational parametrization of
the form C2 = )̂ ((, a) and C3 · I1,0 = Î1,0((, a) given by (7) and (10). As explained in [21, Appendix B], the value
( = (2 (a) that parametrizes the point C = C2 (a) is either a zero of m()̂ ( · , a) or a pole of Î1,0( · , a). More precise
calculation (see [1]) using the method of [21, Appendix B] shows that (2 (a) is the largest zero of m()̂ ( · , a)
below ( = a (which parametrizes C = 0). The equation m()̂ ((, a) = 0 factorizes, and (2 (a) satis�es

2(3 − 3(2 − a2 + 2a = 0 if a ∈ (1, a2] , (13)
3(2 − a2 + 2a = 0 if a ∈ [a2 ,∞) , (14)

where a2 = 1 + 2
√

7. It is not hard to check that (2 (a) has the following piecewise rational parametrization:

a = ǎ (') =
{

1
2 (2 − 3' + '3)

27
13+2'−2'2

and (2 (a) = (̌ (') =
{

1
2 ('

2 − 1) for ' ∈ ('1, '2]
3(2'−1)

13+2'−2'2 for ' ∈ ['2 , '∞)
(15)

where '1 =
√

3, '2 =
√

7, '∞ =
1+3
√

3
2 correspond respectively to the coupling constants a = 1, a = a2 and

a = ∞. Plugging (15) into )̂ ((, a) gives the following piecewise rational parametrization of C2 (a):

C2 (a)2 = )̌ (') :=


3'2 − 1

2'3(4 − 3' + '3)3 for ' ∈ ('1, '2]

(1 + ')2(13 + 2' − 2'2)3(19 − 10' − 2'2)
128(' − 5) (4 + ')3(7 − ' + '2)3 for ' ∈ ['2 , '∞)

Rational parametrization of / (D, E, C, a) on the critical line. De�ne *̌ (�, ') = *̂ (�, (̂ ('), â (')) and
/̌ (�, , ') = /̂ (�, , (̂ ('), â (')). Then / (D, E, a) ≡ / (D, E, C2 (a), a) has the piecewise rational parametrization:

C2 (a) · D = *̌ (�, ') C2 (a) · E = *̌ ( , ') and / (D, E, a) = /̌ (�, , ') ,
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where

*̌ (�, ') :=



(3 − 10'2 + 3'4) + (1 − '4)� − 2(1 − '2)� 2 − � 3

'2 (3 − '2)2 (4 − 3' + '3)2
� for ' ∈ ('1, '2]

− (13 + 2' − 2'2)2�
256(5 − ')2(4 + ')2(7 − ' + '2)2

(
8(1 + ') (5 − ')

(
19 − 10' − 2'2 − 3(1 − 2')�

)
+12(1 − 2')

(
13 + 2' − 2'2) � 2 +

(
13 + 2' − 2'2)2

� 3
)

for ' ∈ ['2 , '∞)

(16)

whereas /̌ (�, , '), too long to be written down here, is given in [1]. Since we look for the asymptotics of
I?,@ (a) when ?, @ →∞ with �xed values of a , we will be interested in the singularity behavior of *̌ (�, ') and
/̌ (�, , ') at �xed values of '. For this reason we introduce the shorthand notations

*̌' (� ) := *̌ (�, ') and /̌' (�, ) := /̌ (�, , ') .

2.4 Domain of convergence of / (D, E, a) and its parametrization.

De�nition and parametrization of D2 (a). For all ' ∈ ('1, '∞), let �̌2 (') be the smallest positive zero of
the derivative *̌ ′

'
. Using the expression (16), it is not hard to �nd that

�̌2 (') :=


'2 − 3

2 for ' ∈ ('1, '2]

5 + 4' − '2 −
√

3(5 − ') (1 + ') ('2 − 7)
13 + 2' − 2'2 for ' ∈ ['2 , '∞)

(17)

For a > 1, letD2 (a) be the function parametrized by a = ǎ (') and C2 (a) ·D2 (a) = *̌' (�̌2 (')), where ' ∈ ('1, '∞).

Lemma 11. For all a > 1, the double power series (D, E) ↦→ / (D, E, a) is absolutely convergent if and only if
|D | ≤ D2 (a) and |E | ≤ D2 (a).

Proof. First, we notice that the proof can be reduced to the problem of estimating the radii of convergence
of two univariate power series: it su�ces to show that the series D ↦→ / (D, 0, a) ≡ / (0, D, a) is divergent
when |D | > D2 (a), and the series D ↦→ / (D,D, a) is convergent at D = D2 (a). Indeed, since the double power
series / (D, E, a) has nonnegative coe�cients, the divergence condition implies that / (D, E, a) is divergent when
|D | > D2 (a) or |E | > D2 (a), and the convergence condition implies that / (D, E, a) is absolutely convergent for
all |D | ≤ D2 (a) and |E | ≤ D2 (a).

The univariate series D ↦→ / (D, 0, a) has nonnegative coe�cients and the following rational parametriza-
tion:

C2 (a) · D = *̌' (� ) and / (D, 0, a) = /̌' (�, 0) .

It is not hard to check that this rational parametrizations are real and proper (see [21, Appendix B] for the
de�nitions and characterizations of these properties), and the parametrization C2 (a) · D = *̌' (� ) maps a small
interval around � = 0 increasingly to an interval around D = 0. Hence the parametrization of the radius of
convergence of D ↦→ / (D, 0, a) can be determined in the framework of [21, Proposition 21]. More precisely,
the radius of convergence D∗2 (a) should satisfy C2 (a)D∗2 (a) = *̌' (�̌ ∗2 (')), where �̌ ∗2 (') is the smallest positive
number that is either a zero of *̌ ′

'
, or a pole of � ↦→ /̌' (�, 0). Comparing this to the de�nition of �̌2 ('),

we see that �̌ ∗2 (') ≤ �̌2 ('), and hence D∗2 (a) ≤ D2 (a).1 This shows that D ↦→ / (D, 0, a) is divergent when
|D | > D2 (a).

We apply the same argument to the series D ↦→ / (D,D, a), which has the rational parametrization

C2 (a) · D = *̌' (� ) and / (D,D, a) = /̌' (�,� ) .
1Using its explicit expression, one can check that� ↦→ /̌' (�, 0) has no pole on [0, �̌2 (')]. Hence �̌∗2 (') = �̌2 (') andD∗2 (a) = D2 (a).

But this is not necessary for the proof.
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Again, the rational parametrization is real and proper. Using its explicit expression, one can check that the
rational function � ↦→ /̌' (�,� ) has no pole on [0, �̌2 (')]. With the same argument as for D ↦→ / (D, 0, a), we
conclude that D2 (a) is the radius of convergence of D ↦→ / (D,D, a) and the series is convergent at D = D2 (a)
(because/ (D2 (a), D2 (a), a) = /̌' (�̌2 ('), �̌2 (')) is �nite). This concludes the proof of the lemma. The necessary
explicit computations in the above proof can be found in [1]. �

Notations: In the following, we will use the renormalized variables (G,~) =
(

D
D2 (a) ,

E
D2 (a)

)
. A parametrization

of the function (G,~) ↦→ / (D2G,D2~, a) is given by G = Ǧ (�, '), ~ = Ǧ ( , ') and /̃ (G,~, a) = /̌ (�, , '), where
Ǧ (�, ') ≡ Ǧ' (� ) := *̌' (� )/ *̌' (�̌2 (')) is still a rational function in � . In the low temperature regime Ǧ (�, ')
is no longer rational in ' due to the square root in (17). However it remains continuous on ('1, '∞) and smooth
away from '2 . These regularity properties will be more than su�cient for our purposes.

De�nition of holomorphicity and conformal bijections: We say that a function is holomorphic in a
(not necessarily open) domain if it is holomorphic in the interior of the domain and continuous in the whole
domain. This de�nition is also valid for functions of several complex variables, in which case holomorphic
means that the function has a multivariate Taylor expansion that is locally convergent. A conformal bijection is
a bijection which is holomorphic and whose inverse is also holomorphic.

De�nition of H0('): By [21, Proposition 21], for each ' ∈ ('1, '∞), the mapping Ǧ' induces a conformal
bijection from a compact neighborhood of � = 0 to the closed unit disk D. We denote by H0(') this
neighborhood and by H0(') its interior. It is not hard to see that H0(') is the connected component of
the preimage Ǧ−1

'
(D) which contains the origin. This characterization of H0(') will be used in the proof of

Lemma 14. Notice that it implies in particular that H0(') is symmetric with respect to the real axis.

3 Dominant singularity structure of / (D, E, a)

In this section, we prove that the bivariate generating function (G,~) ↦→ / (D2 (a)G,D2 (a)~, a) has a unique
dominant singularity at (G,~) = (1, 1), and is “Δ-analytic” in a sense similar to the one de�ned in [27] for
univariate generating functions. Before starting, let us brie�y describe the state of the art for the singularity
analysis of algebraic generating functions of one or two variables.

For a generating function � (I) = ∑
=≥0 �=I

= of one complex variable, a dominant singularity of � is by
de�nition a singularity with minimal modulus. Moreover, this minimal modulus is equal to the radius of
convergence d of the Taylor series

∑
= �=I

= , so the dominant singularities of � are simply those on the circle
{I ∈ C : |I | = d}. When � is algebraic, it behaves locally near a singularity I∗ like (I−I∗)A with some A ∈ Q. In
particular, one can �nd a disk centered at I∗ such that (a branch of) � is analytic in the disk with one ray from
I∗ to∞ removed. Since algebraic functions have only �nitely many singularities, it follows that any univariate
algebraic function � (I) with �nite radius of convergence has an analytic continuation in a domain of the form⋂
8 (I8 · �n ), where I8 are the dominant singularities of � , and �n is the disk of radius 1 + n > 1 centered at 0,

with the segment [1, 1 + n] removed. This ensures that the classical transfer theorem (see [27, Chapter VI.3])
always applies to algebraic functions, and gives coe�cient asymptotics of the form �= ∼

∑
8 28 · I−=8 · =−A8 with

28 ∈ C and A8 ∈ Q. In particular, when the dominant singularity is unique, the asymptotics has the simple form
of �= ∼ 2 · I−=∗ · =A .

When � (G,~) = ∑
<,= �<,=G

<~= is an algebraic function of two complex variables, the situation is much
more complicated. First, the singularities of � (G,~) are in general no longer isolated points. Also, the de�nition
of dominant singularities has to be generalized: instead of minimizing |I | in the univariate case, one needs
to minimize the product |G |_ |~ |, where _ = lim <

=
is de�ned by the regime of<,= → ∞ in which one looks

for the asymptotic of �<,= . The general picture for the singularity analysis of bivariate algebraic functions is
still far from being fully understood. The only systematic study we found in the literature concerns the case
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where � (G,~) is rational or meromorphic. See [35] for references. (A non-rational case has also been studied in
[29]. But it concerns functions of a special form, and does not cover the case we are interested in here.) When
� (G,~) is rational (or of the form studied in [29]), the locus of singularities of � is an algebraic sub-variety of
C2. In that case, sophisticated tools from algebraic geometry can be used to locate the dominant singularities,
and to study � (G,~) locally near the dominant singularities.

For the Ising-triangulations, the singularity locus of the generating function (G,~) ↦→ / (D2G,D2~, a) is
much harder to describe, since it involves describing branch cuts of the function in C2. Luckily, the structure
of dominant singularities is very simple: regardless of the relative speed at which ?, @ → ∞, the dominant
singularity is always unique and at (G,~) = (1, 1). Moreover, the function has an analytic continuation “beyond
the dominant singularity” in both the G and ~ coordinates, in the product of two Δ-domains. Proposition 12
gives the precise formulation of the above claim.

Notations. We denote by D the open unit disk in C and by arg(I) ∈ (−c, c] the argument of I ∈ C. For
n > 0 and 0 ≤ \ < c/2, de�ne the Δ-domain

�n,\ = { I ∈ (1 + n) · D | I ≠ 1 and |arg(I − 1) | > \ } .

When \ = 0, the above de�nition gives �n,0 = (1 + n) · D \ [1, 1 + n), which is a disk with a small cut along the
real axis. We call this a slit disk, and use the abbreviated notation �n ≡ �n,0.

We denote by m�n,\ and �n,\ be the boundary and the closure of �n,\ . When \ ∈ (0, c/2), these are taken
with respect to the usual topology of C. When \ = 0 however, we view �n as a domain in the universal
covering space of C \ {1}, and de�ne m�n and �n with respect to that topology. In this way the closed curve
m�n will be a nice limit of m�n,\ when \ → 0+, as illustrated in Figure 3(a).

Proposition 12. For all a > 1 and \ ∈ (0, c2 ), there exists n > 0 such that (an analytic continuation of) the
function (G,~) ↦→ / (D2 (a)G,D2 (a)~, a) is holomorphic in �n × �n,\ . Moreover, when a ≥ a2 , we can take \ = 0,
i.e., �nd n > 0 such that the function is holomorphic in �n × �n .

Remark 13. As mentioned at the end of the previous section, by “holomorphic in �n × �n”, we mean that a
function has complex partial derivatives in the interior �n ×�n of �n ×�n , and is continuous in �n ×�n . This
will be later used to express the coe�cients I?,@ (a) as double Cauchy integrals on the contour m�n × m�n , so
that their asymptotics when ?, @ →∞ can be estimated easily. For this purpose, it is not absolutely necessary
to prove the continuity of (G,~) ↦→ / (D2 (a)G,D2 (a)~, a) on the boundary of �n × �n (in particular, at the
point (1, 1)). But not knowing this continuity would require one to approximate the contour m�n × m�n by a
sequence of contours that lie inside �n × �n , which complicates a bit the estimation of the double Cauchy
integral.

The rest of this section is devoted to the proof of Proposition 12. To this end, we will construct the
desired analytic continuation of (G,~) ↦→ / (D2 (a)G,D2 (a)~, a) based on the heuristic formula / (D2G,D2~) =
/̌ (Ǧ−1(G), Ǧ−1(~)). The proof comes in two steps: First, we show that for each �xed ', the rational function
Ǧ' de�nes a conformal bijection from a set Hn (') to �n for some n > 0. Then, we try to show that for all n
small enough, the rational function /̌' (�, ) has no pole, hence is holomorphic, in Hn (') ×Hn ('). It turns
out that this is true only when a ≥ a2 . When a ∈ (1, a2), one needs to reduce the domain Hn (') ×Hn (') a
bit, which corresponds to replacing one factor in the product �n × �n by a Δ-domain �n,\ with some opening
angle \ > 0.

3.1 The conformal bijection Ǧ' : Hn (') → �n

Lemma 14 (Uniqueness and multiplicity of the critical point of Ǧ'). For all ' ∈ ('1, '∞), �̌2 (') is the unique
zero of the rational function Ǧ ′

'
inH0('). It is a simple zero if ' ≠ '2 , and a double zero if ' = '2 .
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(a) (b) (c)

θ

∂∆ϵ

∂∆ϵ,θ

∂D

x = 0 H = 0 H = 0
Ȟc (R) Ȟc (Rc )

∂Hϵ (R)

∂Hϵ,θ (R)

∂H0 (R)
∂H0 (Rc )

∂Hϵ (Rc )

Figure 3 – (a) Boundaries of the unit disk D, the Δ-domain �n,\ and the slit disk �n . For the sake of
visibility, �n,\ and �n are drawn for two di�erent values of n .
(b) Boundaries of the domains H0 ('), Hn,\ (') and Hn (') de�ned by the parametrization Ǧ' at a
non-critical temperature ' ≠ '2 . By de�nition, H0 (') (resp. Hn,\ (') and Hn (')) is the connected
component of the preimage Ǧ−1

'
(D) (resp. Ǧ−1

'
(�n,\ ) and Ǧ−1

'
(�n )) containing the origin.

(c) Boundaries of the domains H0 (') and Hn (') de�ned by Ǧ' at the critical temperature ' = '2 .
Notice that at the point �̌2 ('), the curve mHn (') in (b) has a tangent, while the curve mHn ('2 ) in (c)
has two half-tangents at an angle 2c/3.

Proof. By de�nition, �̌2 (') is a zero of Ǧ ′
'

. One can easily check that it is a simple zero if ' ∈ ('1, '∞) \ {'2 },
and a double zero if ' = '2 . It remains to show its uniqueness in H0(').

By the de�nition of H0('), the restriction of Ǧ' to this set is a conformal bijection. Therefore the derivative
Ǧ ′
'

has no zero in H0('). On the other hand, Ǧ ′
'

is a polynomial of degree three for all ' ∈ ('1, '∞), so it has
three zeros (counted with multiplicity), one of which is �̌2 ('). In the following we show that the two other
zeros are not in the set mH0(') \ {�̌2 (')}, and this will complete the proof.

When ' ∈ ['2 , '∞), we check by explicit computation (see [1]) that all three zeros of Ǧ ′
'

are on the positive
real line. Since H0(') is a topological disk containing � = 0 and is symmetric with respect to the real axis, its
boundary intersects the positive real line only once (at �̌2 (')). Hence Ǧ ′

'
has no zero on mH0(') \ {�̌2 (')}.

When ' ∈ ('1, '2), the zeros of Ǧ ′
'

are not always real. In this case we resort to a proof by contradiction:
Let j (�, ') = m� Ǧ (�,')

�−�̌2 (')
. Assume that for some '∗ ∈ ('1, '2), the quadratic polynomial � ↦→ j (�, '∗) has a

zero �∗ in mH0('∗) \ {�̌2 ('∗)}. We will show that the pair (�∗, '∗) satis�es the following system of algebraic
equations

j (�, ') = 0 , Ǧ (�, ') = B + 8
B − 8 and m'Ǧ −

m'j

m� j
· m� Ǧ = 8A · Ǧ (18)

where A, B ∈ R are two auxiliary variables. Notice that this system contains 3 complex equations, but only 5 real
variables (ℜe�,ℑm�, ', B and A ). So we expect it to have no solution. We can check that this is indeed the case:
First, we eliminate � to obtain two complex polynomial equations relating ', A and B . Since these variables are
all real, the real part and the imaginary part of each equation must both vanish. We check that the resulting
system of four polynomial equations has no real solution using a general algorithm [31] implemented in Maple
as RootFinding[HasRealRoot], see [1]. By contradiction, this proves that �̌2 (') is the unique zero of Ǧ ′

'
in

mH0(') for all ' ∈ ('1, '2), and completes the proof of the lemma modulo a justi�cation of the system (18).
The �rst equation of (18) is true by the de�nition of (�∗, '∗). The second equation expresses the fact that

Ǧ (�∗, '∗) ∈ mD \ {1}, which is the image of our assumption �∗ ∈ mH0('∗) \ {�̌2 ('∗)} under the mapping Ǧ'∗ .
Indeed, since B ↦→ B+8

B−8 is a bijection from R to mD \ {1}, we have Ǧ (�, ') ∈ mD \ {1} if and only if Ǧ (�, ') = B+8
B−8

for some B ∈ R. The last equation of (18) is a consequence of the following two facts:

(i) m� j (�∗, '∗) ≠ 0. Hence the equation j (�, ') = 0 de�nes a smooth implicit function � = �̌∗(') in a
neighborhood of (�, ') = (�∗, '∗).
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(ii) The derivative d
d' log |Ǧ (�̌∗('), ') | vanishes at '∗.

Indeed, by the implicit function theorem, (i) implies that d
d' �̌∗('∗) = −

m' j (�∗,'∗)
m� j (�∗,'∗) . On the other hand, we have

d
d' log

��Ǧ (�̌∗('), ')�� = d
d' ℜe

(
log Ǧ (�̌∗('), ')

)
= ℜe

( d
d' Ǧ (�̌∗('), ')
Ǧ (�̌∗('), ')

)
.

Expanding d
d' Ǧ (�̌∗('), ') using the chain rule, we see that the expression on the right hand side vanishes at

' = '∗ if and only if the last equation of (18) holds for some A ∈ R and when (�, ') = (�∗, '∗)
One can verify (i) by an explicit computation: If m� j (�∗, '∗) = 0, then we can solve the pair of equations

j (�∗, '∗) = 0 and m� j (�∗, '∗) = 0 (the �rst equation is quadratic in � , while the second one is linear), which
has a unique solution that satis�es '∗ ∈ ('1, '2). But this solution gives a numerical value |Ǧ (�∗, '∗) | ≠ 1 (see
[1]), which contradicts the fact that Ǧ (�∗, '∗) ∈ mD. Thus we have m� j (�∗, '∗) ≠ 0.

The justi�cation of (ii) is a bit more technical. It is a consequence of the following observation: By
de�nition, �̌∗(') is a critical point of Ǧ' for all ', thus it can never enter the open set H0('). However, the
point �∗ ≡ �̌∗('∗) is on the boundary of H0('∗). Intuitively, this implies that the movement of the point
�̌∗(') must be in some sense stationary with respect to the domain H0(') when ' = '∗. To prove (ii), we will
show that this stationarity constraint translates to the stationarity of the function ' ↦→ |Ǧ (�̌∗('), ') | at ' = '∗.
For this, we will change our reference frame to the point �̌∗('). In other words, we will make a change of
variable � = �̌ (ℎ, ') such that �̌ (0, ') = �̌∗('), and study the evolution of the domain H0(') in the variable
ℎ when ' varies around '∗.

To construct a change of variable that simpli�es the expression of H0('), let us consider the function
5 (I, ') = Ǧ (�̌∗ (')+I,')

Ǧ (�̌∗ ('),')
− 1. Since 5 (0, ') ≡ 0 and mI 5 (0, ') = m� Ǧ (�̌∗ ('),')

Ǧ (�̌∗ ('),')
≡ 0, the function U (I, ') = I−2 5 (I, ')

is analytic in a neighborhood of (0, '∗). Moreover, according to (i) we have m2
I 5 (0, '∗) =

m2
�
Ǧ (�̌∗ ('∗),'∗)
Ǧ (�̌∗ ('∗),'∗)

≠ 0,
hence U (0, '∗) ≠ 0. By the inverse function theorem, the mapping (I, ') ↦→ (

√
U (I, ')I, ') has a local inverse

(ℎ, ') ↦→ (Ǐ (ℎ, '), ') that is jointly analytic in (ℎ, ') in a neighborhood of (0, '∗). Let �̌ (ℎ, ') = �̌∗(') + Ǐ (ℎ, ').
One can check that the inverse function relation

√
U (Ǐ (ℎ, '), ') · Ǐ (ℎ, ') = ℎ implies

Ǧ (�̌ (ℎ, '), ') = Ǧ (�̌∗('), ') · (1 + ℎ2)

for all (ℎ, ') in a neighborhood of (0, '∗). In the variable ℎ, the preimage of the unit disk D by Ǧ' is simply the
set {ℎ : |1 + ℎ2 | < |Ǧ (�̌∗('), ') |−1}. More precisely, we have

Ǧ−1
' (D) =

{
�̌ (ℎ, ') : |1 + ℎ2 | < |Ǧ (�̌∗('), ') |−1} .

in a neighborhood of � = �̌∗(').
When ' = '∗, we have |Ǧ (�̌∗('∗), '∗) |−1 = 1. In this case, {ℎ : |1 + ℎ2 | < 1} ≡ {ℎ : |ℜe(ℎ) | < |ℑm(ℎ) |} is

a two-sided cone, as in Figure 4(b). Recall that H0(') is the connected component of Ǧ−1
'
(D) containing � = 0.

Since the point �∗ = �̌∗('∗) is on the boundary of the domain H0('), at least one side of the two-sided cone
must belong to H0('). Now assume that d

d' |Ǧ (�̌∗('∗), '∗) | ≠ 0, then we have |Ǧ (�̌∗('), ') | < 1 either for
' > '∗ or for ' < '∗ in a neighborhood of '∗. But, as shown in Figure 4(c), in this case the preimage Ǧ−1

'
(D)

has only one connected component locally near �̌∗('). This connected component must belong to H0(')
because of the continuity of ' ↦→ Ǧ (�, '). It follows that � = �̌∗(') (which is ℎ = 0 in the variable ℎ) belongs
to H0('). This contradicts the fact that the domain H0(') contains no critical point of Ǧ' . Thus we must have

d
d' |Ǧ (�̌∗('), ') | = 0, or equivalently d

d' log |Ǧ (�̌∗('), ') | = 0, when ' = '∗. This justi�es the claim (ii) and
completes the proof of the lemma. �

Remark 15. The second equation in (18) implies Ǧ' (� ) ∈ mD, but does not guarantee that � ∈ mH0('),
because the mapping Ǧ' is not injective on C. In fact, if one removes the last equation from (18), then the
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Figure 4 – Local behavior of the set Ǧ−1
'
(D) in the coordinate ℎ. The region corresponding to H0 (') is

colored in yellow, and the region corresponding to Ǧ−1
'
(D) \H0 (') is colored in blue (the upper region

in the graphs (a) and (b)).

system does have a solution (�, ', B) with ' ∈ ('1, '2) and B ∈ R. This solution corresponds to a critical point
of Ǧ' which is not on mH0('), but is nevertheless mapped to mD \ {1} by Ǧ' .

The purpose of the last equation of (18) is precisely to avoid this kind of undesired solutions. Without
the last equation, the algebraic system (18) contains two complex equations with four real unknowns (ℜe(� ),
ℑm(� ), ', B). So generically, we do expect it to have a �nite number of solutions. The last equation adds one
complex equation to the system while introducing only an extra real variable. With it, we expect generically
that (18) has no solution. In general, if the mapping Ǧ (� ) depends on< real parameters ('1, . . . , '<) instead of
', then provided that Ǧ (� ) has continuous derivatives with respect to each of the parameters, one can replace
the last equation of (18) by< complex equations with< extra real variables. Then we would have a system of
< + 2 complex equations with 3 +< +< = 2< + 3 real variables, which generically would have no solution.

Our justi�cation of last equation of (18) came in two steps. The �rst step (i) asserts that the critical point
�∗ has multiplicity one. It is checked by an explicit computation and depends on the speci�c function Ǧ' . On
the contraty, the second step (ii) derive the desired equation in (18) using a variational argument which is
mostly independent of speci�c features of Ǧ' . Currently, the argument in (ii) still depends on the fact that �∗
has multiplicity one. In the upcoming paper [19, Appendix A], the �rst author gives a generalization of this
variational argument which applies to critical points of any multiplicity. That general argument would allow
us to bypass the veri�cation of (i) in the above proof.

De�nition of Hn ('): For each ' ∈ ('1, '∞), the above lemma and Proposition 21(iii) of [21] imply that
there exists n > 0 for which Ǧ' de�nes a conformal bijection from a compact set Hn (') ⊃ H0(') to �n . For
\ ∈ (0, c/2), let Hn,\ (') be the preimage of the Δ-domain �n,\ ⊂ �n under this bijection. We denote by
mHn (') and Hn (') the boundary and the interior of Hn ('), and similarly for Hn,\ (').

Notice that the notation Hn (') �ts well with the previously de�ned H0('), since the latter is in bijection
with the closed unit disk D, which can be viewed as a special case of the domain �n with n = 0.

Geometric interpretation of Lemma 14. We know that analytic functions preserve angles at non-critical
points. More generally, if 5 is an analytic function such that � ∈ C is a critical point of multiplicity = (that is,
a zero of multiplicity = of 5 ′, with = ≥ 0), then 5 maps each angle \ incident to � to an angle (= + 1)\ . Since
H0(') is mapped bijectively by Ǧ' to the unit disk (whose boundary is smooth everywhere), the boundary
of H0(') forms an angle of c/(= + 1) at each � ∈ mH0(') which is a critical point of multiplicity = of Ǧ' .
Therefore, Lemma 14 tells us that the boundary of H0(') is smooth everywhere except at � = �̌2 ('), where it
has two half-tangents forming an angle of c/2 if ' ≠ '2 , or an angle of c/3 if ' = '2 . This is illustrated by the
red curves in Figure 3(b) and 3(c).

For the same reason, the boundary of Hn,\ (') has also two half-tangents at � = �̌2 ('). They form an
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angle of c − \ if ' ≠ '2 , and an angle of 2
3 (c − \ ) if ' = '2 . (In particular, when \ = 0 and ' ≠ '2 , the angle

is equal to c , i.e. the two half-tangents become a tangent.) This is illustrated by the blue and cyan curves
in Figure 3(b) and 3(c). From this we deduce the following corollary, which will be used to derive the local
expansion of the bivariate function /̌ (�, , ') at (�, ) = (�̌2 ('), �̌2 (')) at critical and high temperatures.

Corollary 16. For all ' ∈ ('1, '∞) and \ ∈ (0, c2 ), there exist a neighborhoodN of (�̌2 ('), �̌2 (')) and a constant
"\ < ∞ such that

max
(
|�̌2 (') − � |, |�̌2 (') −  |

)
≤ "\ ·

��(�̌2 (') − � ) + (�̌2 (') −  )�� (19)

for all (�, ) ∈ N ∩
(
Hn (') ×Hn,\ (')

)
.

When ' = '2 , one can take \ = 0 so that (19) holds for all (�, ) ∈ N ∩
(
Hn (') ×Hn (')

)
.

Proof. For ' ∈ ('1, '∞) \ {'2 }, the boundary of Hn,\ (') has two half-tangents at � = �̌2 ('), both at an angle
of c−\2 with the negative real axis. When \ = 0, the two half-tangents becomes a tangent that is orthogonal
to the real axis. For any \ ∈ (0, c2 ), we can choose \1 > c

2 and \2 > c−\
2 such that \1 + \2 < c . Then

there exists a neighborhood # of �̌2 (') such that arg(�̌2 (') − � ) ∈ (−\1, \1) for all � ∈ # ∩Hn ('), and
arg(�̌2 (') −  ) ∈ (−\2, \2) for all  ∈ # ∩Hn,\ ('). In polar coordinates, this means that �̌2 (') − � = A14

8q1

and �̌2 (') −  = A24
8q2 satisfy |q1 | ≤ \1 and |q2 | ≤ \2, so that |q1 − q2 | ≤ \1 + \2 < c . It follows that��(�̌2 (') − � ) + (�̌2 (') −  )��2 = ���A14

8q1 + A24
8q2

���2 = A 2
1 + A 2

2 + 2A1A2 cos(q1 − q2)

≥ A 2
1 + A 2

2 + 2A1A2 cos(\1 + \2)
=

(
A1 − A2 cos(\1 + \2)

)2 +
(
A2 sin(\1 + \2)

)2
.

This implies that A2 = |�̌2 (') −  | ≤ 1
sin(\1+\2) ·

��(�̌2 (') − � ) + (�̌2 (') −  )��, and by symmetry, the inequality

(19) with "\ = 1
sin(\1+\2) , for all (�, ) ∈ (# × # ) ∩

(
Hn (') ×Hn,\ (')

)
.

When ' = '2 , the boundary of Hn (') has two half-tangents at � = �̌2 (') at an angle of c
3 with the

negative real axis. In this case, we can take \1 = \2 =
5c
12 > c

3 so that \1 + \2 < c . Then, the same proof as in
the ' ≠ '2 case shows that there exists a neighborhood # of �̌2 (') such that (19) holds with "0 =

1
sin(5c/6) for

all (�, ) ∈ (# × # ) ∩
(
Hn (') ×Hn (')

)
. �

3.2 Holomorphicity of /̌ on Hn (') ×Hn (').

The previous subsection showed that for n > 0 small enough, �n × �n is mapped analytically by the inverse
function of (�, ) ↦→ (Ǧ' (� ), Ǧ' ( )) to the domain Hn (') × Hn ('). Ideally, we want to show that the
other part of the rational parametrization (�, ) ↦→ /̌' (�, ) does not have poles on Hn (') ×Hn ('). Then
the formula / (D2G,D2~) = /̌' ((Ǧ')−1(G), (Ǧ')−1(~)) would imply that (G,~) ↦→ / (D2G,D2~) has an analytic
continuation on �n × �n .

By continuity, any neighborhood of the compact set H0(') ×H0(') contains Hn (') ×Hn (') for all n small
enough. On the other hand, the poles of /̌' form a closed set. Hence to prove that the domain Hn (') ×Hn (')
does not contain any poles for n small enough, it su�ces to show that the compact set H0(') ×H0(') does
not contain any poles of /̌' . It turns out that this is almost the case:

Lemma 17. For all ' ∈ ('2 , '∞), the rational function /̌' has no pole inH0(') ×H0(').
For all ' ∈ ('1, '2], (�̌2 ('), �̌2 (')) is the only pole of /̌' inH0(') ×H0(').

Proof. By de�nition, a pole of /̌' is a zero of the polynomial �' in the denominator of /̌' (�, ) = #' (�, )
�' (�, ) ,

where #' and �' are coprime polynomials of (�, ). With an appropriate choice of the constant term
�' (0, 0), we can take # (�, , ') := #' (�, ) and � (�, , ') := �' (�, ) to be polynomial in all three
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variables (�, , '). We check by explicit computation (see [1]) that � (�̌2 ('), �̌2 ('), ') ≠ 0 for all ' ∈ ('2 , '∞),
and � (�̌2 ('), �̌2 ('), ') = 0 for all ' ∈ ('1, '2]. Then it remains to show that � does not vanish for any
(�, ) ∈ H0(') ×H0(') \ {(�̌2 ('), �̌2 ('))} and ' ∈ ('1, '∞). For this we use the following lemma, whose
proof will be given later:

Lemma 18. If the polynomial� vanishes at a point (�, , ') such that (�, ) ∈ H0(')×H0(') and' ∈ ('1, '∞),
then both # and m�# · m � − m # · m�� vanish at (�, , ').

This lemma tells us that the poles of /̌' in the physical range of the parameters (that is, for ' ∈ ('1, '∞)
and (�, ) ∈ H0(') ×H0(')) satisfy the system of three polynomial equations

� = # = m�# · m � − m # · m�� = 0 (20)

instead of just � = 0. However, it is not easy to verify whether (20) has a solution (�, , ') satisfying
(�, ) ∈ H0(')×H0(') \{(�̌2 ('), �̌2 ('))}, for two reasons: On the one hand, the solution set of (20) contains
at least one continuous component: (�, , ') = (�̌2 ('), �̌2 ('), ') is a solution of (20) for all ' ∈ ('1, '2]. On
the other hand, it is not easy to distinguish between points in H0(') from points in the preimage Ǧ−1

'
(D)

which are not in H0('). To mitigate these issues, we construct an auxiliary equation that eliminates some
solutions of the system which are known to be outside H0(') ×H0(') \ {(�̌2 ('), �̌2 ('))}.

Since Ǧ' is a conformal bijection from H0(') to the unit disk, we know that � = 0 is its unique (simple)
zero in H0('). Hence the polynomial � ↦→ *̌' (� )/� does not vanish on H0('). (Recall that Ǧ' is de�ned as
*̌' divided by a constant that only depends on '.) On the other hand, �̌2 (') is the unique zero of Ǧ ′

'
in H0(')

by Lemma 14. Thus if (�, ) ∈ H0(') ×H0(') is di�erent from (�̌2 ('), �̌2 (')), then either *̌ ′
'
(� ) ≠ 0 or

*̌ ′
'
( ) ≠ 0. Let NZ (�, , ') = *̌' (� )

�
· *̌' ( )

 
· *̌ ′

'
(� ). Then the above discussion shows that for ' ∈ ('1, '∞)

and (�, ) ∈ H0(') ×H0(') \ {(�̌2 ('), �̌2 ('))}, either NZ (�, , ') ≠ 0, or NZ ( ,�, ') ≠ 0.
It follows that if (�, ) is a pole of /̌' in H0(') × H0(') \ {(�̌2 ('), �̌2 ('))}, then either (�, , ') or

( ,�, ') is a solution to the system of equations

� = # = m�# · m � − m # · m�� = 0 and - · NZ = 1 (21)

where- ∈ C is an auxiliary variable used to express the condition NZ ≠ 0 as an algebraic equation. A Gröbner
basis computation (see [1]) shows that this system has no solution with real value of '. By contradiction, /̌'
has no pole in H0(') ×H0(') \ {(�̌2 ('), �̌2 ('))} for all ' ∈ ('1, '∞). This completes the proof. �

Proof of Lemma 18. In this proof we �x an ' ∈ ('1, '∞) and drop it from the notations. Since the double power
series (G,~) ↦→ / (D2G,D2~) is absolutely convergent for all G,~ in the unit disk D, and Ǧ is a homeomorphism
from H0 toD, the rational function /̌ (�, ) = / (D2 · Ǧ (� ), D2 · Ǧ ( )) is continuous on the compact set H0×H0.

Assume that � vanishes at some (�, ) ∈ H0 ×H0. The boundedness of /̌ on H0 ×H0 implies that #
also vanishes at (�, ). If m�� (�, ) = m � (�, ) = 0, then m�# · m � − m # · m�� obviously vanishes at
(�, ). Otherwise, consider the limit of /̌ (� + Yℎ,  + Y:) when Y → 0+, where ℎ, : ∈ C. By L’Hôpital’s rule,
for all (ℎ, :) such that ℎ · m�� (�, ) + : · m � (�, ) ≠ 0, we have

lim
Y→0+

/̌ (� + Yℎ,  + Y:) = ℎ · m�# (�, ) + : · m # (�, )
ℎ · m�� (�, ) + : · m � (�, )

. (22)

By the continuity of /̌ on H0 ×H0, the above limit is independent of (ℎ, :) as long as the pair satis�es that
(� + Yℎ,  + Y:) ∈ H0 ×H0 for all n > 0 small enough. From Figure 3 (or more rigorously the geometric
interpretation of Lemma 14), we see that for all � ∈ H0, there exists ℎ∗ ≠ 0 such that � + Yℎ∗ ∈ H0 for all
n > 0 small enough. Similarly, there exists :∗ ≠ 0 such that  + Y:∗ ∈ H0 for all n > 0 small enough. By taking
(ℎ, :) to be equal to (ℎ∗, 0), (0, :∗) and (ℎ∗, :∗) in (22), we obtain that

ℎ∗m�# (�, )
ℎ∗m�� (�, )

=
:∗m # (�, )
:∗m � (�, )

=
ℎ∗m�# (�, ) + :∗m # (�, )
ℎ∗m�� (�, ) + :∗m � (�, )

,
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provided that the denominators of the three fractions are nonzero. By assumption, m�� (�, ) and m � (�, )
do not both vanish. It follows that at least two of three fractions have nonzero denominators. From the equality
between these two fractions, we deduce that m�# · m � − m # · m�� = 0 at (�, ). �

Now we use the continuity argument mentioned at the beginning of this subsection to deduce the holomor-
phicity of /̌' on Hn ×Hn (or Hn ×Hn,\ , see below) from Lemma 17. The low temperature case is easy, since
/̌' does not have any pole in H0 ×H0 for all ' ∈ ('2 , '∞). When ' ∈ ('1, '2], one has to study the restriction
of /̌' on Hn ×Hn more carefully near its the pole (�̌2 ('), �̌2 (')). This is done with the help of Corollary 16.

Lemma 19. For all ' ∈ ['2 , '∞), there exists n > 0 such that /̌' is holomorphic inHn (') ×Hn (').
For ' ∈ ('1, '2) and \ ∈ (0, c/2), there exists n > 0 such that /̌' is holomorphic in Hn (') ×Hn,\ (').

Proof. As in the previous proof, we �x a value of ' ∈ ('1, '∞) and drop it from the notation.

Low temperatures. When ' ∈ ('2 , '∞), Lemma 17 tells us that /̌ has no pole in H0 ×H0. Since the set of
poles of /̌ is closed, and H0 ×H0 is compact, there exists a neighborhood of H0 ×H0 containing no pole of /̌ .
By continuity, this neighborhood contains Hn ×Hn for n > 0 small enough. It follows that there exists n > 0
such that /̌ is holomorphic in Hn ×Hn .

Critical temperature. When ' = '2 , Lemma 17 tells us that (�̌2 , �̌2) is the only pole of /̌ in H0 ×H0.
First, let us show that /̌ , when restricted to Hn ×Hn , is continuous at (�̌2 , �̌2). Notice that this statement

does not depend on n , since two domains Hn ×Hn with di�erent values of n > 0 are identical when restricted
to a small enough neighborhood of (�̌2 , �̌2). We have seen in the proof of Lemma 17 that the numerator #
and the denominator � of /̌ both vanish at (�̌2 , �̌2). Therefore their Taylor expansions give:

/̌ (�̌2 − ℎ, �̌2 − :) =
m�# (�̌2 , �̌2) · (ℎ + :) +$

(
max( |ℎ |, |: |)2

)
m�� (�̌2 , �̌2) · (ℎ + :) +$ (max( |ℎ |, |: |)2)

as (ℎ, :) → (0, 0) . (23)

We check explicitly that m�� (�̌2 , �̌2) ≠ 0, see [1]. On the other hand, thanks to Corollary 16 (the critical case),
we have max( |ℎ |, |: |) = $ ( |ℎ + : |) when (ℎ, :) → (0, 0) in such a way that (�̌2 −ℎ, �̌2 − :) ∈ Hn ×Hn . Then
it follows from (23) that /̌ (�, ) → m�# (�̌2 , �̌2)/m�� (�̌2 , �̌2) when (�, ) → (�̌2 , �̌2) in Hn ×Hn . That is,
/̌ restricted to Hn ×Hn is continuous at (�̌2 , �̌2).

Next, let us show that for some �xed n0 > 0, every point (�, ) ∈ H0 ×H0 has a neighborhood V(�, )
such that /̌ is holomorphic in V(�, ) ∩ (Hn0 × Hn0). (Recall that this means /̌ is holomorphic in the
interior, and continuous in the whole domain). For (�, ) = (�̌2 , �̌2), the expansion of the denominator
in (23) shows that there exists n0 > 0 and a neighborhood V(�̌2 , �̌2) such that (�̌2 , �̌2) is the only pole
of /̌ in V(�̌2 , �̌2) ∩ (Hn0 × Hn0). Moreover, the previous paragraph has showed that /̌ is continuous at
(�̌2 , �̌2) when restricted to Hn × Hn . It follows that /̌ is holomorphic in V(�̌2 , �̌2) ∩ (Hn0 × Hn0). For
(�, ) ∈ H0 × H0 \ {(�̌2 , �̌2)}, since (�, ) does not belong to the (closed) set of poles of /̌ , it has a
neighborhood V(�, ) on which /̌ is holomorphic.

By taking the union of all the neighborhoods V(�, ) constructed in the previous paragraph, we see
that there is a neighborhood V of the compact set H0 ×H0 such that /̌ is holomorphic in V ∩ (H0 ×H0).
By continuity, V contains Hn ×Hn for some n > 0 small enough. Hence there exists n > 0 such that /̌ is
holomorphic in Hn ×Hn .

High temperatures. When ' ∈ ('1, '2), Lemma 17 tells us that (�̌2 , �̌2) is also a pole of /̌ . The rest of the
proof goes exactly as in the critical case, except that the domain Hn ×Hn has to be replaced by Hn ×Hn,\ for
an arbitrary \ ∈ (0, c/2) due to the di�erence between the critical and non-critical cases in Corollary 16. �

Remark 20. In fact, the above proof shows the holomorphicity of /̌' in a larger domain than the one stated
in Lemma 19. In particular, one can check that the following statement is true: for each compact subsetK of
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Hn , there exists a neighborhood V ofH0 such that /̌ is holomorphic inK × V. This remark will be used to show
that G ↦→ �(D2G) is analytic on �n in Corollary 26.

Proof of Proposition 12. The proposition follows from Lemma 19 and the de�nition of Hn ('):
At critical or low temperatures, the inverse mapping of (�, ) ↦→ (Ǧ' (� ), Ǧ' ( )) is holomorphic from

�n × �n to Hn (') ×Hn ('). For n > 0 small enough, (�, ) ↦→ /̌' (�, ) is holomorphic in Hn (') ×Hn (').
Hence their composition de�nes an analytic continuation of (G,~) ↦→ /̃ (G,~, a) on �n × �n .

At high temperatures, it su�ces to replace �n×�n by �n×�n,\ , andHn (')×Hn (') byHn (')×Hn,\ ('). �

4 Asymptotic expansions of / (D, E, a) at its dominant singularity

In this section, we establish the asymptotic expansions (Proposition 24) of the generating function / (D2G,D2~)
at its dominant singularity (G,~) = (1, 1). For this we de�ne the function Z (h, k, a) by the change of variable

/ (D2 (a)G,D2 (a)~, a) = Z (h, k, a) with h = (1 − G)X and k = (1 − ~)X

Recall that X = 1/2 when a ≠ a2 (non-critical case), and X = 1/3 when a = a2 (critical case).
The proof relies on Lemma 14 (location and multiplicity of the zeros of Ǧ ′

'
) and Lemma 17 (location and

multiplicity of the poles of /̌') of the previous section, as well as the following property of the rational function
/̌' : for all � ≠ 0,

m /̌' (�, �̌2 (')) = 0 for all ' ∈ ('1, '∞), and m2
 /̌'2 (�, �̌2 ('2)) = 0 . (24)

These identities can be easily checked using Maple (see [1]).
The purpose of the following lemma is to translate the above constraints (Lemma 14, Lemma 17 and

(24)) on the rational functions Ǧ' and /̌' in terms of the structure of the local expansion of Z (h, k, a) near
(h, k) = (0, 0). These constraints imply that some “leading coe�cients” in the local expansion must vanish,
and we check that no other leading coe�cients vanish. In other words, if (Ǧ', /̌') was a pair of generic
rational functions satisfying the above constraints, then the local expansions of / (h, k, a) will have exactly the
same structure and leading nonzero coe�cients as those speci�ed in Lemma 21. After establishing Lemma 21
(and Lemma 22 which is used in its proof), we will plug the change of variables (h, k) = ((1 − G)X , (1 − ~)X )
into Z (h, k, a) to derive the asymptotic expansion of / (D, E, a) near (D, E) = (D2 (a), D2 (a)) in Proposition 24.
Apart from expressing the results in di�erent sets of variables, another key di�erence between Lemma 21 and
Proposition 24 is that the former gives an exact decomposition in terms of converging series, while the latter
gives asymptotic expansions useful for the study of coe�cient asymptotics.

From now on we hide the parameter a and the corresponding parameter ' from the notations.

Lemma 21. For a > a2 , Z (h, k) is analytic at (0, 0). Its Taylor expansion Z (h, k) = ∑
<,=≥0 Z<,=h

<k= satis�es
Z1,= = Z=,1 = 0 for all = ≥ 0 and Z3,3 > 0.

For a ∈ (1, a2], we have a decomposition of the form Z (h, k) = & (h, k) + � (hk)
D (h,k) , where & (h, k), � (A ) and

D (h, k) are analytic at the origin. The denominator satis�esD (0, 0) = 0 and mhD (0, 0) = mkD (0, 0) = 1, whereas

& (h, k) =
∑
<,=≥0

&<,=h
<k= and � (A ) =

∑
;≥1

�;A
;

satisfy: If a ∈ (1, a2), then �1 > 0.
If a = a2 , then &1,= = &=,1 = &2,= = &=,2 = 0 for all = ≥ 0, �1 = �2 = 0 and �3 > 0.
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The three nonzero coe�cients in the above statements can be computed by:

Z3,3 =
1
Ǧ3

2

(
/̌3,3 − 2 Ǧ3

Ǧ2
/̌2,3 +

(
Ǧ3
Ǧ2

)2
/̌2,2

)
when a > a2 , (25)

�1 =
1
Ǧ

1/2
2

lim
�→�̌2

m� /̌ (�, �̌2) when a ∈ (1, a2), (26)

�3 =
1
Ǧ

5/3
3

· 4
13 lim

�→�̌2

m� m /̌ (�,� )
(�̌2 − � )3

when a = a2 , (27)

where the numbers Ǧ= and /̌<,= are the coe�cients in the Taylor expansions 1 − Ǧ (�̌2 − ℎ) =
∑
=≥2 Ǧ=ℎ

= and
/̌ (�̌2 − ℎ, �̌2 − :) =

∑
<,=

/̌<,=ℎ
<:= .

(The coe�cients Ǧ= are not to be confused with the functions Ǧ' = Ǧ ( · , ') de�ned earlier. There should be no
confusion because by the convention above this lemma, the parameter ' no longer appears in our notations.)

Proof. Recall that / has the parametrization G = Ǧ (� ), ~ = Ǧ ( ) and / (D2G,D2~) = /̌ (�, ). The function
ℎ ↦→ h = (1 − Ǧ (�̌2 − ℎ))X is analytic and has positive derivative at ℎ = 0. (The exponent X has been chosen
for this to be true.) Letk be its inverse function. Then the de�nition of Z implies that

Z (h, k) = /̌
(
�̌2 −k (h), �̌2 −k (k)

)
. (28)

The proof will be based on the above formula and uses the following ingredients: The form of the local
expansions of Z will follow from whether (�̌2 , �̌2) is a pole of /̌ (�, ) or not. The vanishing coe�cients will
be a consequence of the vanishing of m /̌ (�, �̌2) and of m2

 
/̌ (�, �̌2) given in (24). Finally, the non-vanishing

of the coe�cients Z3,3, �1 and �3 will be checked by explicit computation.

Low temperatures (a > a2 ). By Lemma 17, (�̌2 , �̌2) is not a pole of /̌ (�, ) when a > a2 . Thus (28) implies
that Z is analytic at (0, 0). By the de�nition of Ǧ2 and Ǧ3, we have

(
1− Ǧ (�̌2 −ℎ)

)1/2
= Ǧ

1/2
2 ℎ

(
1 + Ǧ3

2Ǧ2
ℎ +$ (ℎ2)

)
.

Then the Lagrange inversion formula gives,

k (h) = 1
Ǧ

1/2
2

h − Ǧ3

2Ǧ2
2
h2 +$ (h3) .

In particular, k (h) ∼ cst · h. Hence (28) and the fact that m /̌ (�, �̌2) = 0 for all � (Eq. (24)) imply that
mkZ (h, 0) = 0 for all h close to 0, that is, Z1,= = Z=,1 = 0 for all = ≥ 0. On the other hand, we get the expression
(25) of Z3,3 by composing the Taylor expansions ofk (h) and of /̌ (�̌2 − ℎ, �̌2 − :), while taking into account
that /̌1,= = /̌=,1 = 0.

By plugging the expressions of Ǧ (� ) and /̌ (�, ) into the relation (25), one can compute the function
Z3,3(ǎ (')), which gives a parametrization of Z3,3(a). The explicit formula, too long to be written down here,
is given in [1]. We check in [1] that it is strictly positive for all ' ∈ ('2 , '∞).

High temperatures (1 < a < a2 ). When a ∈ (1, a2), Lemma 17 tells us that (�̌2 , �̌2) is a pole of /̌ (�, ).
Moreover, this pole is simple in the sense that the denominator � of /̌ satis�es that � (�̌2 , �̌2) = 0 and
m�� (�̌2 , �̌2) = m � (�̌2 , �̌2) ≠ 0. Then it follows from (28) that Z = N/D for some functions N(h, k) and
D (h, k), both analytic at (0, 0), such that D (0, 0) = 0 and mhD (0, 0) = mhD (0, 0) = 1. We will show in
Lemma 22 below that there is always a pair of functions & (h, k) and � (A ), both analytic at the origin, such
that N(h, k) = & (h, k) ·D (h, k) + � (hk). This implies the decomposition Z (h, k) = & (h, k) + � (hk)

D (h,k) . Notice
that � (0) = 0, because N(0, 0) = D (0, 0) = 0 by the continuity of /̌ |

H0×H0
at (�̌2 , �̌2).

Taking the derivatives of the above decomposition of Z (h, k) at k = 0 gives

mhZ (h, 0) = mh& (h, 0) and mkZ (h, 0) = mk& (h, 0) +
�1 · h

D (h, 0) .
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For the same reason as when a > a2 , we have mkZ (h, 0) = 0 for all h close to 0. On the other hand, D (h, 0) ∼ h

as h → 0 because mhD (0, 0) = 1. Thus the limit h → 0 of the above derivatives gives

lim
h→0

mhZ (h, 0) = mh& (0, 0) and mk& (0, 0) + �1 = 0.

By symmetry, mh& (0, 0) = mk& (0, 0), therefore �1 = − limh→0 mhZ (h, 0). After expressing Z (h, 0) in terms of
/̌ (�, �̌2) andk (h) using (28), we obtain the formula (26) for �1.

We check by explicit computation in [1] that �1(a) has the parametrization

�1 (ǎ (')) =

√
(1 + '2) (7 − '2)3 (14'2 − 1 − '4)5

√
2 (3'2 − 1) (29 + 75'2 − 17'4 + '6)2

which is strictly positive for all ' ∈ ('1, '2).

Critical temperature (a = a2 ). When a = a2 , the point (�̌2 , �̌2) is still a pole of /̌ (�, ) by Lemma 17, and
one can check that it is simple in the sense that m�� (�̌2 , �̌2) = m � (�̌2 , �̌2) ≠ 0. Therefore, the decomposition
Z (h, k) = & (h, k) + � (hk)

D (h,k) remains valid. Contrary to the non-critical case, now we have Ǧ2 = 0 and X = 1/3,
thusk (h) ∼ Ǧ−1/3

3 h. Together with the fact that m /̌ (�,�2) = m2
 
/̌ (�,�2) = 0 for all � (Eq. (24)), this implies

mkZ (h, 0) = m2
k
Z (h, 0) = 0 for all h close to 0. Plugging in the decomposition Z (h, k) = & (h, k) + � (hk)

D (h,k) , we
obtain

mk& (h, 0) +
�1ℎ

D (h, 0) = 0 and m2
k& (h, 0) +

�2h
2

D (h, 0) − �1h ·
mkD (h, 0)
D (h, 0)2 = 0 .

Since mhD (0, 0) = 1 and D (h, 0) ∼ h as h → 0, the last term in the second equation diverges like �1h−1 when
h → 0, whereas the other two terms are bounded. This implies that �1 = 0. Plugging �1 = 0 back into the two
equations, we get

mh& (h, 0) = 0 and m2
k& (h, 0) +

�2h
2

D (h, 0) = 0 .

The �rst equation translates to &1,= = &=,1 = 0 for all = ≥ 0. Then, &1,2 = 0 tells us that in the second equation
m2
k
& (h, 0) = &0,2 +$ (h2), whereas �2h2

D (h,0) ∼ �2h when h → 0. Therefore we must have �2 = 0, which in turn
implies m2

k
& (h, 0) = 0, that is, &2,= = &=,2 = 0 for all = ≥ 0.

To obtain the formula for �3, we calculate from the decomposition Z (h, k) = & (h, k) + � (hk)
D (h,k) that

mhmkZ (h, h) = mhmk& (h, h) +
1

D (h, h)2

(
(D (h, h) − 2hmhD (h, h)) � ′(ℎ2) − mhmkD (h, h) � (ℎ2)

)
+ 1
D (h, h)

(
� ′′(ℎ2) · ℎ2 + 2

( mhD (h, h)
D (h, h)

)2
� (ℎ2)

)
(29)

When h → 0, we have mhmk& (h, h) = $ (ℎ4) because &1,= = &=,1 = &2,= = &=,2 = 0. Moreover, using

D (h, h) ∼ 2h D (h, h) − 2hmhD (h, h) = $ (h2) mhmkD (h, h) = $ (1)
mhD (h, h)
D (h, h) ∼

1
2h

and � ′′(h2) ∼ 6�3 · h2 � ′(h2) ∼ 2�3 · h4 � (h2) ∼ �3 · h6

we see that the �rst line of (29) is a $ (h4), whereas the second line is 13
4 �3h

3 + $ (h4). Therefore we have
�3 = 4

13 limh→0 h
−3mhmkZ (h, h). Finally, we obtain the expression (27) of �3 using the relation Z (h, h) =

/̌ (�̌2 −k (h), �̌2 −k (h)) and the fact thatk (h) ∼ Ǧ−1/3
3 h when a = a2 .

Numerical computation gives �3 = 27
20

( 3
2
)2/3

> 0. �

Lemma 22 (Division by a symmetric Taylor series with no constant term). Let N(h, k) and D (h, k) be two
symmetric holomorphic functions de�ned in a neighborhood of (0, 0). Assume that (0, 0) is a simple zero of D,
that is,D (0, 0) = 0 and mhD (0, 0) = mkD (0, 0) ≠ 0. Then there is a unique pair of holomorphic functions & (h, k)
and � (A ) in neighborhoods of (0, 0) and 0 respectively, such that & is symmetric and

N(h, k) = & (h, k) ·D (h, k) + � (hk) . (30)
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Remark 23. When D (0, 0) = 0, the ratio N (h,k)
D (h,k) between two Taylor series N(h, k) and D (h, k) does not in

general have a Taylor expansion at (0, 0). The above lemma gives a way to decompose the ratio into the sum
of a Taylor series & (h, k) and a singular part � (hk)

D (h,k) whose numerator is determined by an univariate function.
The lemma deals with the case where N(h, k) and D (h, k) are symmetric, and the zero of D (h, k) at (0, 0) is
simple. The following remarks discuss how the lemma would change if one modi�es its conditions.

1. In (30), instead of requiring & (h, k) to be symmetric, we can require the remainder term to not depend
on k. Then the decomposition would become N(h, k) = & (h, k) · D (h, k) + � (h2). Notice that the
remainder term does not have any odd power of h, which is a constraint due to the symmetry of N and
D.

Without the assumption that N and D are symmetric, we would have a decomposition N(h, k) =
& (h, k) ·D (h, k) + � (h) where the remainder is a general Taylor series � (h). The proof of Lemma 22
can be adapted easily to treat the non-symmetric case.

2. If (0, 0) is a zero of order = > 1 of D (that is, all the partial derivatives of D up to order = − 1 vanishes at
(0, 0), while at least one partial derivative of order = is nonzero), then one can prove a division formula
similar to (30), but with a di�erent remainder term. For example, when = = 2, the remainder term can be
written as �1(hk) · (h + k) + �2(hk) if m2

h
D (0, 0) ≠ 0, or as �3(B + C) if m2

h
D (0, 0) = 0 but mhmkD (0, 0) ≠ 0.

3. As we will see in the proof below, the decomposition (30) can be made in the sense of formal power
series without using the convergence of the Taylor series of N and D. (In fact this is the easiest way
to construct & (h, k) and � (A ).) The decomposition (30) will be used in the proof of Proposition 24 to
establish asymptotics expansions of Z (h, k) = N (h,k)

D (h,k) when (h, k) → (0, 0). For this purpose, it is not
necessary to know that the series & (h, k) and � (A ) are convergent. Everything can be done by viewing
(30) as an asymptotic expansion with a remainder term $ (max( |h | , |k |)=) for an arbitrary =. However,
we �nd that presenting & (h, k) and � (A ) as analytic functions is conceptually simpler. For this reason,
we will still prove that the series & (h, k) and � (A ) are convergent even if it is not absolutely necessary
for the rest of this paper.

Proof. The proof comes in two steps: �rst we construct order by order two series& (h, k) and � (A ) which satisfy
(30) in the sense of formal power series, and then we show that these series do converge in a neighborhood of
the origin.

We approach the construction of & (h, k) and � (A ) as formal power series as follows: Assume �rst that
& (h, k) and � (A ) are given together with the assumptions of the theorem. In that case, for all = ≥ 0, let
D= (B, C) = [_=]D (_B, _C), and similarly de�ne N= (B, C) and &= (B, C). By construction, D= , N= and &= are
homogeneous polynomials of degree =. The assumptions of the lemma ensure that D= and N= are symmetric,
D0 = 0, and D1(B, C) = 31,0(B + C) where 31,0 := mℎD (0, 0) ≠ 0. On the other hand, let �; = [A ; ] � (A ). Then (30)
is equivalent to

N= = D1&=−1 + (D2&=−2 + · · · +D=&0) + �; · (BC); · 1==2; is even (31)

for all = ≥ 0. Let us show that this recursion relation indeed uniquely determines &= and �; , such that &= (B, C)
is a homogeneous polynomial of degree = and �; ∈ C. When = = 0, (31) gives �0 = N0 ∈ C. When = ≥ 1, we
assume as induction hypothesis that &< (B, C) is a symmetric homogeneous polynomial of degree< for all
< < =. Then (31) can be written as

Ñ= = 31,0(B + C) ·&=−1 + �; · (BC); · 1==2; is even ,

where Ñ= := N= − (D2&=−2 + · · · +D=&0) is a symmetric homogeneous polynomial of degree =. By the
fundamental theorem of symmetric polynomials, a bivariate symmetric polynomial can be written uniquely as
a polynomial of the elementary symmetric polynomials B + C and BC . Isolating the terms of degree zero in B + C ,
we deduce that there is a unique pair &=−1(B, C) and �̃= (A ) such that &=−1(B, C) is symmetric, and

Ñ= (B, C) = 31,0(B + C) ·&=−1(B, C) + �̃= (BC) .
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Moreover, since Ñ= (B, C) is homogeneous of degree =, the polynomials &=−1(B, C) and �̃= (BC) must be homo-
geneous of degree = − 1 and = respectively. When = is odd, this implies �̃= (BC) = 0, and when = = 2; is even,
we must have �̃= (BC) = �; · (BC); for some �; ∈ C. By induction, this completes the construction of &= (B, C) and
�; ∈ C, such that the series de�ned by & (_B, _C) = ∑

=&= (B, C)_= and � (A ) = ∑
; �;A

; satisfy (30) in the sense of
formal power series.

Now let us show that the series � (A ) has a strictly positive radius of convergence. Since D (0, 0) = 0 and
mhD (0, 0) = mkD (0, 0) ≠ 0, by the implicit function theorem, the equation D (h, k̃(h)) = 0 de�nes locally a
holomorphic function k̃ such that k̃(0) = 0 and k̃′(0) = −1. In particular, h · k̃(h) has a Taylor expansion with
leading term −h2, so the inverse function theorem ensures that there exists a holomorphic function i such
that B2 = i (B) · k̃(i (B)) near B = 0. Taking h = i (B) and k = k̃(i (B)) in (30) gives that

N
(
i (B), k̃(i (B))

)
= � (B2)

in the sense of formal power series. Since N, k̃ and i are all locally holomorphic, the series on both sides have
a strictly positive radius of convergence.

It remains to prove that & (h, k) also converges in a neighborhood of the origin. Even though D (0, 0) = 0,
the Taylor series of D (h, k) still has a multiplicative inverse in the space of formal Laurent series C((G)) [[~]].
Therefore we can rearrange Equation (30) to obtain in that space

& (h, k) = N(h, k) − � (hk)
D (h, k) .

The right hand side, which will be denoted by 5 (h, k) below, is a holomorphic function in a neighborhood
of (0, 0) outside the zero set of D (h, k). As seen in the previous paragraph, this zero set is locally the graph
of the function k̃(h) ∼ −h when h → 0. It follows that there exists X > 0 such that 5 is holomorphic in a
neighborhood of (D3X \ D2X ) × DX , where D3X \ D2X is the closed annulus of outer and inner radii 3X and 2X
centered at the origin. The usual Cauchy integral formula for the coe�cient of Laurent series gives

&<,= =

(
1

2c8

)2 ˛
mDX

dk
k=+1

(˛
mD3X

dh
h<+1

5 (h, k) −
˛
mD2X

dh
h<+1

5 (h, k)
)
.

However, by construction, the Laurent series
∑
<∈Z&<,=h

< does not contain any negative power of h. This
implies that the integral over mD2X in the above formula has zero contribution. Therefore we have��&<,= �� = �����( 1

2c

)2‹
mD3X×mDX

dh dk
h<+1k=+1

5 (h, k)
����� ≤ (3X)−<X−= · sup

mD3X×mDX
|5 | .

It follows that the series & (h, k) = ∑
&<,=h

<k= converges in a neighborhood of (0, 0). �

Proposition 24 (Asymptotic expansions of / (D, E)). Let n = n (a, \ ) > 0 be a value for which the holomorphicity
result of Proposition 12 and the bound in Corollary 16 hold. Then for (G,~) varying in �n × �n (when a ≥ a2 ) or
�n × �n,\ (when 1 < a < a2 ), we have

/ (D2G,D2~) = / (1)reg(G,~) +�(D2G) · (1 − ~)U0 +$
(
(1 − ~)U0+X ) for G ≠ 1 and as ~ → 1 , (32)

�(D2G) = �reg(G) + 1 · (1 − G)U1 +$
(
(1 − G)U1+X ) as G → 1 , (33)

/ (D2G,D2~) = / (2)reg(G,~) + 1 · /hom(1 − G, 1 − ~) +$
(
max( |1 − G | , |1 − ~ |)U2+X

)
as (G,~) → (1, 1) , (34)

where 1 = 1 (a) is a number determined by the nonzero constants Z3,3, �1 and �3 in Lemma 21, and /hom(B, C) is a
homogeneous function of order U2 (i.e. /hom(_B, _C) = _U2/hom(B, C) for all _ > 0) that only depends on the phase
of the model. Explicitly:

1 (a) =


Z3,3(a) when a > a2

�1(a) when a ∈ (1, a2)
−�3(a2) when a = a2

and /hom(B, C) =


B3/2C3/2 when a > a2

B1/2C1/2

B1/2+C1/2 when a ∈ (1, a2)
−BC

B1/3+C1/3 when a = a2 .
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On the other hand, / (1)reg(G,~) = / (D2G,D2) − mE/ (D2G,D2) · D2 · (1 − ~) is an a�ne function of ~ satisfying

/ (D2G,D2) = $ (1) and mE/ (D2G,D2) = $ ((1 − G)−1/2) when G → 1 , (35)

whereas�reg(G) is an a�ne function of G , and / (2)reg(G,~) = / (1)reg(G,~) +/ (1)reg(~, G) −% (G,~) for some polynomial
% (G,~) that is a�ne in both G and~. The functions�reg(G) and % (G,~) will be given in the proof of the proposition.

Remark 25. For a �xed G , (32) is an univariate asymptotic expansion in the variable ~. It has the form

(analytic function of ~ near ~ = 1) + constant · (1 − ~)U0 + > ((1 − ~)U0),

which makes it a suitable input to the classical transfer theorem of analytic combinatorics. More precisely,
when we extract the coe�cient of [~@] from (32) using contour integrals on m�n , the contribution of the �rst
term will be exponentially small in @, whereas the contributions of the second and the third terms will be of
order @−(U0+1) and > (@−(U0+1) ), respectively. Similar remarks can be made for (33) with respect to the variable G .

The asymptotic expansion (34) has a form that generalizes (32) and (33) in the bivariate case. Instead of
being analytic with respect to G or ~, the �rst term /

(2)
reg(G,~) is a linear combination of terms of the form

� (G)� (~) or � (G)� (~), where � (G) is analytic in a neighborhood of G = 1, and � (G) is locally integrable on
the contour m�n near G = 1. (The local integrability is a consequence of (35).) As we will see in Section 5.2, a
term of this form will have an exponentially small contribution to the coe�cient of [G?~@] in the diagonal
limit where ?, @ → ∞ and that @/? is bounded away from 0 and ∞. On the other hand, the homogeneous
function /hom(1 − G, 1 − ~) is a generalization of the power functions (1 − ~)U0 and (1 − G)U1 of the univariate
case. Indeed, the only homogeneous functions of order U of one variable B are constant multiples of BU . We
will see in Section 5.2 that the term /hom(1 − G, 1 − ~) gives the dominant contribution of order ?−(U2+2) to the
coe�cient of [G?~@] in the diagonal limit.

Proof. First consider the non-critical temperatures a ≠ a2 . In this case we have X = 1/2, and the de�nition
of Z (h, k) reads / (D2G,D2~) = Z ((1 − G)1/2, (1 − ~)1/2). As seen in the proof of Lemma 21, for any h ≠ 0
close to zero, the function k ↦→ Z (h, k) is analytic at k = 0 and satis�es mkZ (h, 0) = 0. Hence it has a Taylor
expansion of the form

Z (h, k) = Z (h, 0) + 1
2 m

2
kZ (h, 0) · k

2 + 1
6 m

3
kZ (h, 0) · k

3 +$ (k4) .

Plugging h = (1 − G)1/2 and k = (1 − ~)1/2 into the above formula gives the expansion (32) with U0 = 3/2,
/
(1)
reg(G,~) = Z ((1 − G)1/2, 0) + 1

2 m
2
k
Z ((1 − G)1/2, 0) · (1 − ~), and

�(D2G) =
1
6 m

3
kZ ((1 − G)

1/2, 0) .

We can identify the coe�cients in the a�ne function ~ ↦→ /
(1)
reg(G,~) as Z ((1 − G)1/2, 0) = / (D2G,D2) and

1
2 m

2
k
Z ((1− G)1/2, 0) = −D2 · mE/ (D2G,D2). The �rst term is continuous at G = 1, thus of order$ (1) when G → 1.

For the second asymptotics of (35), it su�ces to show that m2
k
Z (h, 0) = $ (h−1).

Low temperatures (a > a2 ). In this case, Z (h, k) = ∑
<,=Z<,= h

<k= with Z1,= = Z=,1 = 0. Hence

�(D2G) =
∑
<≠1

Z<,3(1 − G)</2 = Z0,3 +Z2,3 · (1 − G) +Z3,3 · (1 − G)3/2 +$
(
(1 − G)2

)
,

which gives the expansion (33) with U1 = 3/2, �reg(G) = Z0,3 + Z2,3 · (1 − G) and 1 = Z3,3 > 0. Moreover,
since Z is analytic at (0, 0), we have obviously m2

k
Z (h, 0) = $ (1), which is also an $ (h−1).

On the other hand, by regrouping terms in the expansion Z (h, k) = ∑
<,=Z<,= h

<k= , one can write

Z (h, k) =
∑
<≥0

Z<,0 h
< +

∑
=≥0

Z0,= k
= −Z0,0 +

∑
<≥2

Z<,2 h
< · k2 +

∑
=≥2

Z2,= k
= · h2 −Z2,2 h

2k2

+Z3,3 h
3k3 +$

(
max( |h |, |k |)7

)
.
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After plugging in h = (1 − G)1/2 and k = (1 − ~)1/2, we can identify the �rst line on the right hand side as
/
(2)
reg(G,~) = / (1)reg(G,~)+/ (1)reg(~, G)−% (G,~) with % (G,~) = Z0,0+Z2,0 · (1−G)+Z0,2 · (1−~)+Z2,2 · (1−G) (1−~).

The term Z3,3 h
3 k3 becomes 1 · (1 − G)3/2(1 − ~)3/2. Thus we obtain the expansion (34) with U2 = 3 and

/hom(B, C) = B3/2C3/2.

High temperatures (1 < a < a2 ). In this case, we have Z (h, k) = & (h, k) + � (hk)
D (h,k) . Straightforward

computation gives that

m2
kZ (h, 0) = m

2
k& (h, 0) +

2�2h2

D (h, 0) − 2�1h ·
mkD (h, 0)
D (h, 0)2

m3
kZ (h, 0) = m

3
k& (h, 0) +

6�3h3

D (h, 0) − 6�2h2 · mkD (h, 0)
D (h, 0)2 − 3�1h ·

m2
k
D (h, 0)

D (h, 0)2 + 6�1h ·
(mkD (h, 0))2
D (h, 0)3 .

Using the fact that & (h, k) is analytic at (0, 0), and D (h, 0) ∼ h, mkD (0, 0) = 1 and m2
k
D (h, 0) = $ (1) when

h → 0, we see that m2
k
Z (h, 0) = $ (h−1), whereas all terms in the expansion of m3

k
Z (h, 0) are of order $ (h−1),

except the last term, which is asymptotically equivalent to 6�1h−2. It follows that

�(D2G) =
1
6 m

3
kZ ((1 − G)

1/2, 0) = �1 · (1 − G)−1 +$
(
(1 − G)−1/2

)
,

which gives the expansion (33) with U1 = −1, �reg(G) = 0 and 1 = �1 > 0.
On the other hand, Corollary 16 and the relations �̌2 − � ∼ cst · h and �̌2 −  ∼ cst · k imply that

max( |h |, |k |) is bounded by a constant times |h + k | when (G,~) → (1, 1) in �n × �n,\ . It follows that

1
h + k = $

(
max( |h |, |k |)−1) and 1

D (h, k) =
1

h + k +$ ((h + k)2) =
1

h + k +$ (1) . (36)

From these we deduce that � (hk)
D (h,k) =

�1hk
h+k +$

(
max( |h |, |k |)2

)
. Thus we can regroup terms in the decomposition

Z (h, k) = & (h, k) + � (hk)
D (h,k) to get

Z (h, k) =
∑
<≥0

&<,0h
< +

∑
=≥0

&0,=k
= −&0,0 +

�1hk

h + k +$
(
max( |h |, |k |)2

)
After plugging in h = (1 − G)1/2 and k = (1 − ~)1/2, we can identify the �rst three terms on the right hand
side as / (2)reg(G,~) = / (1)reg(G,~) +/ (1)reg(~, G) −&0,0 up to a term of order$ (max( |1 − G |, |1 − ~ |)). The term �1hk

h+k
becomes 1 · (1−G)

1/2 (1−~)1/2
(1−G)1/2+(1−~)1/2 . Thus we obtain (34) with U2 = 1/2 and /hom(B, C) = B1/2C1/2

B1/2+C1/2 .

Critical temperature (a = a2 ). At the critical temperature, X = 1/3 and the de�nition of Z (h, k) reads
/ (D2G,D2~) = Z ((1 − G)1/3, (1 − ~)1/3). In this case, k ↦→ Z (h, k) has a Taylor expansion of the form

Z (h, k) = Z (h, 0) + 1
6 m

3
kZ (h, 0) · k

3 + 1
24 m

4
kZ (h, 0) · k

4 +$ (k5) ,

because mkZ (h, 0) = m2
k
Z (h, 0) = 0. Plugging h = (1 − G)1/3 and k = (1 − ~)1/3 into the above formula gives

(32) with U0 = 4/3, / (1)reg(G,~) = Z ((1 − G)1/3, 0) + 1
6 m

3
k
Z ((1 − G)1/3, 0) · (1 − ~), and

�(D2G) =
1
24 m

4
kZ ((1 − G)

1/3, 0) .

As in the non-critical case, we identify Z ((1−G)1/3, 0) = / (D2G,D2) and 1
6 m

3
k
Z ((1−G)1/3, 0) = −D2 ·mE/ (D2G,D2).

The �rst term is still continuous at G = 1, thus of order $ (1) when G → 1. Let us show that m3
k
Z (h, 0) is

analytic at h = 0 so that the second term is also continuous.
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From the expansion Z (h, k) = & (h, k) + � (hk)
D (h,k) with �1 = �2 = 0 and &1,= = &2,= = 0 for all =, we obtain

m3
kZ (h, 0) = m

3
k& (h, 0) +

6�3h3

D (h, 0)
1
24 m

4
kZ (h, 0) = &0,4 +

∑
<≥3

&<,4h
< + �4h

4

D (h, 0) − �3h
3 · mkD (h, 0)

D (h, 0)2 .

Recall that D (h, 0) ∼ h and mkD (0, 0) = 1. Then it is not hard to see that m3
k
Z (h, 0) is analytic at h = 0. On

the other hand, the second and the third terms in the expansion of 1
24 m

4
k
Z (h, 0) are $ (h3), whereas the last

term is equivalent to �3h. It follows that

�(D2G) =
1
24 m

4
kZ ((1 − G)

1/3, 0) = &0,4 − �3 · (1 − G)1/3 +$
(
(1 − G)2/3

)
,

which gives the expansion (33) with U1 = 1/3, �reg(G) = &0,4 and 1 = −�3 < 0.
As in the high temperature case, we still have the estimate (36) when (h, k) → (0, 0) such that the

corresponding (G,~) varies in �n × �n . Moreover, at the critical temperature we have �1 = �2 = 0 and
&1,= = &=,1 = &2,= = &=,2 = 0 for all =. Therefore � (hk)

D (h,k) =
�3 (hk)3
h+k + $

(
max( |h |, |k |)6

)
, and we can regroup

terms in the decomposition Z (h, k) = & (h, k) + � (hk)
D (h,k) to get

Z (h, k) =
∑
<≥0

&<,0h
< +

∑
=≥0

&0,=k
= −&0,0 +

∑
<≥3

&<,3h
< · k3 +

∑
=≥3

&3,=k
= · h3

+ �3(hk)
3

h + k +$
(
max( |h |, |k |)6

)
After plugging in h = (1− G)1/3 and k = (1−~)1/3, we can identify the terms on the �rst line of the right hand
side as / (2)reg(G,~) = /

(1)
reg(G,~) + / (1)reg(~, G) − % (G,~) up to a term of order $

(
max( |1 − G |, |1 − ~ |)2

)
, where

% (G,~) = &0,0 +&3,0 · (1 − G) +&0,3 · (1 − ~). The term �3 (hk)3
h+k becomes −1 · (1−G) (1−~)

(1−G)1/3+(1−~)1/3 . Thus we obtain
(34) with U2 = 5/3 and /hom(B, C) = −BC

B1/3+C1/3 . �

Corollary 26. The function G ↦→ �(D2G) has an analytic continuation on �n .

Proof. We have seen in the proof of Proposition 24 that �(D2G) = 1
<! m

<
k
Z ((1 − G)X , 0), where< = 1

X
+ 1 is

equal to 3 when a ≠ a2 , and equal to 4 when a = a2 . The change of variable h = (1 − G)X de�nes a conformal
bijection from G ∈ �n to some simply connected domain Un whose boundary contains the point h = 0.

In the proof of Lemma 21, we have shown that the mapping ℎ ↦→ h = (1 − Ǧ (�̌2 − ℎ))X has an analytic
inversek (h) in a neighborhood of h = 0 such that Z (h, k) = /̌ (�̌2 −k (h), �̌2 −k (k)). Let Ψ(h) = �̌2 −k (h),
then Ψ is a local analytic inverse of the mapping � ↦→ (1 − Ǧ (� ))X , and

Z (h, k) = /̌ (Ψ(h),Ψ(k)) . (37)

By Lemma 14, Ǧ de�nes a conformal bijection from Hn to �n . On the other hand, G ↦→ (1 − G)X is a conformal
bijection from �n to Un . It follows that Ψ can be extended to a conformal bijection from Un to Hn .

Now �x some G∗ ∈ �n and the corresponding h∗ = (1 − G∗)X ∈ Un and �∗ = Ψ(h∗) ∈ Hn . Let K ⊂ Hn be
a compact neighborhood of �∗. According to Remark 20, there exists an open set V containing H0 such that /̌
is holomorphic in K × V. As �̌2 ∈ V, this implies in particular that /̌ is analytic at (�∗, �̌2). Since Ψ(h∗) = �∗
and Ψ(0) = �̌2 , and we have seen that Ψ is analytic at both h∗ and 0, the relation (37) implies that Z is analytic
at (h∗, 0). It follows that �(D2G) = 1

<! m
<
k
Z ((1 − G)X , 0) is analytic at G = G∗. �

Corollary 27. A parametrization of G ↦→ �(D2G) is given by G = Ǧ (� ) and

�̌(� ) =


1
Ǧ

3/2
2

(
/̌3(� ) − Ǧ3

Ǧ2
/̌2(� )

)
when a ≠ a2

1
Ǧ

4/3
3

(
/̌4(� ) − Ǧ4

Ǧ3
/̌3(� )

)
when a = a2

where Ǧ= are de�ned as in Lemma 21, and /̌= (� ) are de�ned by the Taylor expansion /̌ (�, �̌2 −:) =
∑
= /̌= (� ):= .
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Proof. We have seen in the previous proof that �(D2G) = 1
<! mkZ ((1 − G)

X , 0) with< = 3 if a ≠ a2 and< = 4
if a = a2 . Moreover, Z satis�es Z (h, k) = /̌ (�̌2 − k (h), �̌2 − k (k)), where k (ℎ) is the local inverse of
ℎ ↦→ (1 − Ǧ (�̌2 − ℎ))X . It follows that

�̌(� ) ≡ �(D2 · Ǧ (� )) =
1
<! m

<
k /̌

(
�, �̌2 −k (k)

) ��
k=0 . (38)

Using the de�nition of the coe�cients Ǧ= and the Lagrange inversion formula, it is not hard to obtain that

k (k) =


1
Ǧ

1/2
2
k − Ǧ3

2Ǧ2
2
k2 +$ (k3) when a ≠ a2

1
Ǧ

1/3
3
k − Ǧ4

3Ǧ5/3
3
k2 +$ (k3) when a = a2 .

Now plug : = k (k) into /̌ (�, �̌2 − :) =
∑
= /̌= (� ):= , and compute the Taylor expansion in k while taking

into account the fact that /̌1(� ) = 0 for all a and /̌2(� ) = 0 when a = a2 (see Equation (24)). According to
(38), �̌(� ) is given by the coe�cient of k< in this Taylor expansion. Explicit expansion gives the expressions
in the statement of the corollary. �

5 Coe�cient asymptotics of / (D, E, a) — proof of Theorem 2

Theorem 2 gives the asymptotics of I?,@ when ?, @ →∞ in two regimes: either ? →∞ after @ →∞, or ? →∞
and @ →∞ simultaneously while @/? stays in some compact interval [_min, _max] ⊂ (0,∞). We will call the
�rst case two-step asymptotics, and the second case diagonal asymptotics. Let us prove the two cases separately.

5.1 Two-step asymptotics

At the critical temperature a = a2 , the two-step asymptotics of I?,@ has already been established in [21]. The
basic idea is to apply the classical transfer theorem [27, Corollary VI.1] to the function ~ ↦→ / (D2G,D2~) to
get the asymptotics of I?,@ when @ →∞, and then to the function G ↦→ �(D2G) to get the asymptotics of 0?
when ? →∞. Proposition 12 and 24 provide all the necessary input for extending the same schema of proof to
non-critical temperatures.

Proof of Theorem 2 — two-step asymptotics. According to Proposition 12, for any �xed G ∈ �n , the function
~ ↦→ / (D2G,D2~) is holomorphic in the Δ-domain �n,\ . And (32) of Proposition 24 states that, as ~ → 1 in �n,\ ,
the dominant singular term in the asymptotic expansion of ~ ↦→ / (D2G,D2~) is �(D2G) · (1 − ~)U0 . It follows
from the transfer theorem that

D
@
2 · /@ (D2G) ∼

@→∞
�(D2G)
Γ(−U0)

· @−(U0+1) (39)

(Recall that /@ (D) is the coe�cient of E@ in the generating function / (D, E).) The above asymptotics is valid for
all G ∈ �n \ {1}. It does not always hold at G = 1 because �(D2) = ∞ in the high temperature regime. However,
if we replace G by D0

D2
G for some arbitrary D0 ∈ (0, D2), then the asymptotics is valid for all G ∈ �n . Then, by

dividing the asymptotics by the special case of itself at G = 1, we obtain the convergence

/@ (D0G)
/@ (D0)

−−−−→
@→∞

�(D0G)
�(D0)

for all G ∈ �n . For each @, the left hand side is the generating function of a nonnegative sequence
(
D
?

0 ·I?,@
/@ (D0)

)
?≥0

which always sums up to 1 (that is, a probability distribution on N). According to a general continuity theorem
[27, Theorem IX.1], this implies the convergence of the sequence term by term:

D
?

0 · I?,@
/@ (D0)

−−−−→
@→∞

D
?

0 · 0?
�(D0)
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for all ? ≥ 0. On the other hand, (39) implies thatD@2 ·/@ (D0) ∼
@→∞

�(D0)
Γ (−U0) ·@

−(U0+1) . Multiplying this equivalence
with the above convergence gives the asymptotics of I?,@ when @ →∞ in Theorem 2.

The asymptotics of 0? in Theorem 2 is a direct consequence of the transfer theorem, given the asymptotic
expansion (33) of G ↦→ �(D2G) in Proposition 24 and its Δ-analyticity in Corollary 26. �

5.2 Diagonal asymptotics

In the diagonal limit, we have not found a general transfer theorem in the literature that allows one to deduce
asymptotics of the coe�cients I?,@ from asymptotics of the generating function / (D2G,D2~). However, it turns
out that with the ingredients given in Proposition 12 and 24, we can generalize the proof of the classical transfer
theorem in [27] to the diagonal limit in the case of the generating function / (D2G,D2~). Let us �rst describe (a
simpli�ed version of) the proof in [27], before generalizing it to prove the diagonal asymptotics in Theorem 2:

Given a generating function � (G) = ∑
= �=G

= with a unique dominant singularity at G = 1 and an analytic
continuation up to the boundary of a Δ-domain �n,\ , one �rst expresses the coe�cients of � (G) as contour
integrals on the boundary of �n,\

�= =
1

2c8

˛
m�n,\

� (G)
G=+1

dG .

Next, one shows that the integral on the circular part of �n,\ is exponentially small in = and therefore

�= =
1

2c8

ˆ
+n,\

� (G)
G=+1

dG +$ ((1 + n)−=) ,

where +n,\ = m�n,\ \ (1 + n) · mD is the rectilinear part of the contour m�n,\ (see Figure 5(b)). Then one plugs
the asymptotic expansion of � (G) when G → 1 into the integral. One shows that any term that is analytic
at G = 1 in the expansion will have an exponentially small contribution, and terms of the order (1 − G)U and
$ ((1 − G)U ) have contributions of the order =−(U+1) and $

(
=−(U+1)

)
, respectively.

Proof of Theorem 2 — diagonal asymptotics. By Proposition 12, the function (G,~) ↦→ / (D2G,D2~) is holomor-
phic in �n ×�n,\ , and hence we can express the coe�cient [G?~@]/ (D2G,D2~) as a double contour integral and
deform the contours of integral to the boundary of that domain. This gives

D
?+@
2 · I?,@ =

(
1

2c8

)2‹
m�n×m�n,\

/ (D2G,D2~)
G?+1~@+1

dGd~ .

First, let us show that the contour integral can be restricted to a neighborhood of the dominant singularity
(G,~) = (1, 1) with an exponentially small error. Let +n = m�n \ (1 + n) · mD be the rectilinear portion of the
contour m�n . It consists of two oriented line segments living in the Riemann sphere with a branch cut along
(1,∞). Similarly, de�ne+n,\ = m�n,\ \ (1 + n) · mD. The two paths+n and+n,\ are depicted in Figure 5(a–b). For
all (G,~) ∈ m�n × m�n,\ , we have |G | ≥ 1 and |~ | ≥ 1. Moreover, if (G,~) ∉ +n ×+n,\ , then either |G | = 1 + n or
|~ | = 1 + n . Since / (D2G,D2~) is continuous on m�n × m�n,\ , it follows that�����( 1

2c8

)2¨
(m�n×m�n,\ )\(+n×+n,\ )

/ (D2G,D2~)
G?+1~@+1

dGd~

�����
≤

(
1

2c

)2
sup

(G,~) ∈m�n×m�n,\
|/ (D2G,D2~) | · (1 + n)−min(?,@) = $

(
(1 + n)−_min?

)
where we assume without loss of generality _min ≤ 1, so that min(?, @) ≥ _min? whenever @/? ∈ [_min, _max].
Thus we can forget about the integral outside +n ×+n,\ with an exponentially small error in the diagonal limit.

Using the expansion (34) in Proposition 24, we can decompose the integral on +n ×+n,\ as(
1

2c8

)2¨
+n×+n,\

/ (D2G,D2~)
G?+1~@+1

dGd~ = �reg + 1 · �hom + �rem
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where �reg, �hom and �rem are de�ned by replacing / (D2G,D2~) in the integral on the left hand side by / (2)reg(G,~),
/hom(1 − G, 1 − ~) and $ (max( |1 − G |, |1 − ~ |)U2+X ) respectively.

As mentioned in Remark 25, / (2)reg(G,~) is a linear combination of terms of the form � (G)� (~) or� (G)� (~),
where � is analytic in a neighborhood of 1, and� is integrable on+n and+n,\ for n small enough. Consider the
component of �reg corresponding to one such term: the integral factorizes as

¨
+n×+n,\

� (G)� (~)
G?+1~@+1

dGd~ =

(ˆ
+n

� (G)
G?+1

dG
)
·
(ˆ
+n,\

� (~)
~@+1

d~
)
. (40)

Since � is analytic in a neighborhood of 1, we can deform the contour of integration +n in the �rst factor away
from G = 1, so that it stays away from a disk of radius A > 1 centered at the origin. It follows that the integral
is bounded as an$ (A−?). On the other hand, the second integral is bounded by a constant

´
+n,\
|� (~) |d|~ | < ∞

thanks to the integrability of� on +n,\ . Hence the left hand side of (40) is also an$ (A−?). Since �reg is a linear
combination of terms of this form, we conclude that there exists A∗ > 1 such that �reg = $ (A−?∗ ) when ?, @ →∞
and @

?
∈ [_min, _max].

Next, let us prove that �rem = $ (?−U2+2+X ) in the same limit. Consider the change of variables B = ? (1 − G)
and C = ? (1−~), and denote by Vn and Vn,\ respectively the images of+n and+n,\ under this change of variable,
as in Figure 5(c–d). (Notice that these paths now depend on ? .) Then �rem can be written as

�rem =

(
1

2c8

)2¨
Vn×Vn,\

$
(
max(?−1 |B |, ?−1 |C |)U2+X )

(1 − ?−1B)?+1(1 − ?−1C)@+1
dBdC
?2 .

On the one hand, there exists a constant�1 such that
��$ (

max(?−1 |B |, ?−1 |C |)U2+X ) �� ≤ �1 ·?−(U2+X) · ( |B | + |C |)U2+X

for all (B, C) ∈ Vn × Vn,\ . On the other hand, since |B | ≤ ?n and |C cos\ | ≤ ?n for all (B, C) ∈ Vn × Vn,\ , and
@ ≥ _min? , it is not hard to see that�����(1 − B? )?+1����� = (

1 + |B |
?

)?+1
≥ 4�2 |B | and

�����(1 − C? )@+1����� ≥ (
1 + |C | cos\

?

)@+1
≥ 4�2 |C |

for some constant �2 > 0 that only depends on n , \ and _min. It follows that

|�rem | ≤
�1
4c2 · ?

−(U2+2+X)
¨

Vn×Vn,\
( |B | + |C |)U2+X 4−�2 ( |B |+ |C |)d|B | d|C | .

The integral on the right hand side is bounded by the constant 4
´ ∞

0 dA1
´ ∞

0 dA2 · 4−�2 (A1+A2) · (A1 + A2)U2+X < ∞.
Hence �rem = $

(
?−(U2+2+X) ) .

To estimate the term �hom, we make the same change of variables as for �rem. Since /hom is homogeneous of
order U2, we have

�hom =

(
1

2c8

)2¨
Vn×Vn,\

?−U2/hom(B, C)
(1 − ?−1B)?+1(1 − ?−1C)@+1

dBdC
?2

1

Vϵ

(1 + ϵ ) · ∂D

1 + ϵ − i0
0

Vϵ,θ

0

Vϵ−pϵ + i0
−pϵ − i0

θ

O (pϵ )

1 + ϵ + i0

(a) (b) (c) (d)

1

Vϵ,θ

(1 + ϵ ) · ∂D

1 + ϵ
θ

(a)

Figure 5 – The paths of integration +n , +n,\ and Vn , Vn,\ .
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Using again the fact that |B | ≤ ?n and |C | cos\ ≤ ?n for (B, C) ∈ Vn ×Vn,\ , we can expand in the denominator in
the integral as

(
1 − ?−1B

)−(?+1) (1 − ?−1C
)−(@+1)

= exp
(
B + @

?
C

)
·
(
1 +$

(
max( |?−1B2 |, |?−1C2 |

) )
. More precisely,

the big-O means that there exists a constant�3 depending only on n , \ and _min such that for all (B, C) ∈ Vn×Vn,\�����(1 − B? )−(?+1) (
1 − C

?

)−(@+1)
− 4B+

@

?
C

����� ≤ �3
( |B | + |C |)2

?
·
���4B+@? C ��� .

Moreover, there exists �4 > 0 such that |4B+
@

?
C | ≤ 4−�4 ( |B |+ |C |) for all (B, C) ∈ Vn × Vn,\ . It follows that������hom − (

1
2c8

)2¨
Vn×Vn,\

?−U2/hom(B, C) · 4B+
@

?
C · dBdC

?2

�����
≤ 1

4c2

¨
Vn×Vn,\

?−U2 |/hom(B, C) | ·�3
( |B | + |C |)2

?
4−�4 ( |B |+ |C |) · d|B | d|C |

?2

≤ �5 · ?−(U2+3)
¨

Vn×Vn,\
( |B | + |C |)U2+24−�4 ( |B |+ |C |)d|B | d|C | .

where for the last line we used the bound |/hom(B, C) | ≤ cst · ( |B | + |C |)U2 , which is a consequence of the fact
that /hom(B, C) is homogeneous of order U2 and continuous on+n ×+n,\ . The integral on the last line is bounded
by 4
´ ∞

0 dA1
´ ∞

0 dA2 · 4−�4 (A1+A2) · (A1 + A2)U2+2 < ∞. Thus we have

�hom = ?
−(U2+2) ·

(
1

2c8

)2¨
Vn×Vn,\

/hom(B, C)4B+
@

?
CdBdC +$

(
?−(U2+3)

)
.

Let V∞ and V∞,\ be obtained by extending the line segments in Vn and Vn,\ to rays joining the origin to the
in�nity. Thanks to the exponentially decaying factor 4B+

@

?
C in the above integral, one can replace the domain

Vn ×Vn,\ of the integral by V∞ ×V∞,\ while committing an error that is exponentially small in ? (recall that Vn
and Vn,\ depend on ?). Therefore �hom = 2̃ (@/?) · ?−(U2+2) +$

(
?−(U2+3) ) , where

2̃ (_) :=
(

1
2c8

)2¨
V∞×V∞,\

/hom(B, C)4B+_CdBdC .

With the previous estimates for �reg and �rem, we get

D
?+@
2 I?,@ = 1 · 2̃ (@/?) · ?−(U2+2) +$

(
?−(U2+2+X)

)
.

where the big-O estimate is uniform for all ?, @ →∞ such that @/? ∈ [_min, _max].
We �nish the proof by computing 2̃ (_) or, in the notation of Theorem 2, 2 (_) = Γ(−U0)Γ(−U1) · 2̃ (_). Notice

that the value of 2̃ (_) does not depend on the angle \ appearing in the contour of integration V∞,\ .

Low temperatures. When a > a2 , we have /hom(B, C) = B3/2C3/2 and Proposition 12 and 24 allow us take
\ = 0. Then the double integral de�ning 2̃ (_) factorizes as

2̃ (_) =
(

1
2c8

ˆ
V∞

B3/24BdB
)
·
(

1
2c8

ˆ
V∞

C3/24_CdC
)
.

After the change of variable C ′ = _C in the second factor, the formula simpli�es to 2̃ (_)=
(

1
2c8
´
V∞
B3/24BdB

)2
_−5/2.

Since the contour V∞ lives in the Riemann sphere with a branch cut along (−∞, 0), the function B3/2 should be
understood as its principal branch with respect to this branch cut. Therefore

1
2c8

ˆ
V∞

B3/24BdB =
1

2c8

ˆ ∞
0

(
(−A + 80)3/2 − (−A − 80)3/2

)
4−AdA

=
1

2c8

ˆ ∞
0

(
−8A 3/2 − 8A 3/2

)
4−AdA = −Γ(5/2)

c
.

Recall that in the low temperature regime, U0 = U1 = 3/2, and by Euler’s re�ection formula, Γ(5/2)Γ(−3/2) = c .
It follows that 2 (_) = Γ(−3/2)2 · 2̃ (_) = _−5/2.
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High temperatures. When a ∈ (1, a2), we have /hom(B, C) = B1/2C1/2

B1/2+C1/2 and thus

2̃ (_) =
(

1
2c8

)2 ˆ
V∞,\

(ˆ
V∞

B1/2

B1/2 + C1/24
BdB

)
C1/24_CdC .

The inner integral can be expanded in a similar way as in the low temperature caseˆ
V∞

B1/2

B1/2 + C1/24
BdB =

ˆ ∞
0

(
(−A + 80)1/2

(−A + 80)1/2 + C1/2 −
(−A − 80)1/2

(−A − 80)1/2 + C1/2

)
4−AdA

=

ˆ ∞
0

(
8A 1/2

8A 1/2 + C1/2 −
−8A 1/2

−8A 1/2 + C1/2

)
4−AdA =

ˆ ∞
0

28A 1/2C1/2

A + C 4−AdA .

Plugging the right hand side into the expression of 2̃ (_) and changing the order of the integrals on A and on C
yield

2̃ (_) = 1
c

ˆ ∞
0

(
1

2c8

ˆ
V∞,\

C · 4_C
A + C dC

)
A 1/24−AdA .

The function C ↦→ C ·4_C
A+C is meromorphic on C and has a unique (simple) pole at C = −A , with a residue of

−A · 4−_A . By closing the contour V∞,\ far from the origin in the direction of the negative real axis, we see that
the integral on C is given by −1 times the residue. Therefore

2̃ (_) = 1
c

ˆ ∞
0
A 3/24−(1+_)AdA = Γ(5/2)

c
(1 + _)−5/2 .

In the high temperature regime, we have U0 = 3/2 and U1 = −1. Thus 2 (_) = Γ(−3/2)Γ(1) · 2̃ (_) = (1 + _)−5/2.

Critical temperature. When a = a2 , we have /hom(B, C) = −BC
B1/3+C1/3 and one can take \ = 0. In the low and

high temperature regimes, we have used the relation
´
V∞
5 (G)dG =

´ ∞
0 (5 (−A + 80) − 5 (−A − 80)) dA to expand

integrals on V∞. By applying this relation to the integral on B and the integral on C simultaneously, we get

2̃ (_) =
(

1
2c8

)2¨
V∞×V∞

−BC
B1/3 + C1/34

B+_CdBdC

=

(
1

2c8

)2¨
(0,∞)2

©«
∑

(f1,f2) ∈{−1,+1}2

f1f2

(−A1 + f1 · 80)1/3 + (−A2 + f2 · 80)1/3
ª®¬ · (−A1A2) · 4−(A1+_A2)dA1dA2 .

The principal branch of the function B1/3 prescribes that (−A ± 80)1/3 = A 1/34±8
c
3 . One can check by direct

computation that ∑
(f1,f2) ∈{−1,+1}2

f1f2

(−A1 + f1 · 80)1/3 + (−A2 + f2 · 80)1/3
=
−3A 1/3

1 A
1/3
2

A1 + A2
.

Therefore

2̃ (_) =
(

1
2c8

)2
· 3
¨
(0,∞)2

A
4/3
1 A

4/3
2 4−(A1+_A2)

A1 + A2
dA1dA2 .

One can “factorize” this double integral using the relation 1
A1+A2

=
´ ∞

0 4−A1A4−A2AdA :

2̃ (_) = − 3
4c2

ˆ ∞
0

(ˆ ∞
0
A

4/3
1 4−(1+A )A1dA1

) (ˆ ∞
0
A

4/3
2 4−(_+A )A2dA2

)
dA

= − 3
4c2

ˆ ∞
0

(
Γ(7/3) · (1 + A )−7/3

) (
Γ(7/3) · (_ + A )−7/3

)
dA

= −
(√

3
2c Γ(7/3)

)2 ˆ ∞
0
(1 + A )−7/3(_ + A )−7/3dA .

When a = a2 , we have U0 = 4/3 and U1 = 1/3. And by Euler’s re�ection formula, Γ(7/3)Γ(−4/3) = c
sin(7c/3) =

2c√
3 . It follows that

2 (_) = Γ(−4/3)Γ(−1/3) · 2̃ (_) = 4
3

ˆ ∞
0
(1 + A )−7/3(_ + A )−7/3dA . �
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6 Peeling processes and perimeter processes

We recall �rst the essentials of the peeling process for Ising-triangulations with spins on faces, introduced in
[21]. The peeling process is the central object both in the construction of the local limits and in the proofs
of the local convergences. It can be viewed as a deterministic exploration of a �xed map, driven by a peeling
algorithm A. The basic de�nition of the process is identical to that of [21], with the exception that in this
work, the peeling algorithm A is de�ned in a slightly di�erent way. In particular, the algorithm chooses an
edge on the explored boundary instead of a vertex, and after revealing the internal face incident to that edge,
decides where to continue the peeling. Here, the peeling process can be seen as a decorated map version of
the (�lled-in) simple peeling of undecorated maps [18], where the peeling algorithm �rst chooses a boundary
edge, reveals a face adjacent to it, and �nally decides the new unexplored part of the map (in the case when
the unexplored part is disconnected by the revealed face). While the algorithm used in [21] still works in the
low temperature regime, we will need di�erent algorithms in the high temperature regime, as explained in
Section 7.4. We will also note that, unlike in [21], the di�erent peeling algorithms result di�erent laws of the
peeling process.

Throughout this work we assume the following: if an Ising-triangulation has a bicolored boundary, the
algorithm A chooses an edge at the junction of the + and - boundary segments on the boundary of the explored
map. This edge may either have spin + or -. It is easy to see that deletion of the chosen edge and exposure of
the adjacent face preserves the Dobrushin boundary condition of the map, while another type of a peeling
algorithm may complicate the boundary condition. Thus, we call such an algorithm A Dobrushin-stable.
We make the following convention: if the algorithm always chooses a - edge to peel, we denote it by A-;
otherwise if it always chooses a + edge, we denote it by A+; otherwise, the algorithm is “mixed”, choosing
either type of the edges, and denoted by A< .

The choice of the peeling algorithm in each of the temperature regime stems from the di�erent expected
interface geometries in the respective regimes. At a = a2 , we already saw in [21] that the peeling algorithm A-

is particularly well-suited, due to the fact that we take the limit @ →∞ �rst, after which there is an in�nite -
boundary. For a > a2 , we can still make the same choice. However, for a ∈ (1, a2), we will notice that whether
we choose the peeling to explore the left-most or the right-most interface from the root d , the interface will
stay close to the boundary of the half-plane. Thus, in order to explore the local limit by roughly distance layers,
we need to combine two di�erent explorations. This leads us to choose a mixed algorithm A< . In the �rst
limit @ →∞, however, the simplest choice which works is A+.

When we take the local limits @ →∞ and ? →∞ one-by-one, we always peel from a boundary with more
- edges. This is to ensure the peeling process is compatible with the @ = ∞ case. In the limit (?, @) → ∞, it is
more natural to peel from the boundary which contains the vertex d† opposite to the root and at the junction
of the + and - boundaries, which can be seen as a point in the in�nity. For this purpose, we introduce the
target d† for the peeling. See the following subsection for a more precise de�nition. A summary of the peeling

Local convergence a ∈ (1, a2) a ∈ [a2 ,∞)

Pa?,@
(3)
−−−−→
@→∞ P

a
? A+ A-

Pa?
(3)
−−−−→
?→∞

Pa∞ A< A-

Pa?,@
(3)
−−−−−→
?,@→∞

Pa∞ A†< A†-

Table 1 – A summary of the choices of the peeling algorithm in each phase for proving the local
convergences. The peeling algorithms A+ and A- are de�ned in Section 6.1, while A< is de�ned in
Section 7.4. The notation A† refers to the variant of the peeling algorithm A which targets the vertex
d†. See the end of Section 6.1 for de�nition.
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≈

L+k R+p+k′C+

C+ LkL
+
k L+∞−k′ R+p+k′

Pp and P∞ Pp and P∞ P∞ at low temperatures Pp

L+q−k′= ≈

R+∞+k′≈

(k + k′ = q)

Figure 6 – Illustration of the peeling events. Only peeling events revealing a + face are included.
Top: peeling events in a �nite triangulation with Dobrushin boundary condition. The ≈ sign indicates
di�erent peeling events which only di�er by the choice of the unexplored component.
Bottom: peeling events in a typical in�nite triangulation sampled from the laws P? or P∞. Each arrow
indicates that the lower picture can be obtained as a local limit of the upper picture either when @ →∞
or when both ?, @ →∞.

algorithms and the existence of the target is presented in Table 1.
In the following subsection, we de�ne the versions of the peeling process used in this work in the �nite

setting. After that, we generalize those for in�nite Ising triangulations of the half-plane, and study the
properties of the associated perimeter processes.

6.1 Peeling of �nite triangulations

Peeling along the left-most interface: peeling algorithmA-. Assume that an Ising-triangulation (t, f)
has at least one boundary edge with spin -. In this case, the peeling algorithm A- chooses the edge 4 with
spin - immediately on the left to the origin. We remove 4 and reveal the internal face 5 adjacent to it. If 5 does
not exist, then t is the edge map and (t, f) has a weight 1 or a . If 5 exists, let ∗ ∈ {+, -} be the spin on 5 and E
be the vertex at the corner of 5 not adjacent to 4 . Then the possible positions of E are:

Event C∗: E is not on the boundary of t;
Event R∗

:
: E is at a distance : to the right of 4 on the boundary of t; (0 ≤ : ≤ ?);

Event L∗
:
: E is at a distance : to the left of 4 on the boundary of t. (0 ≤ : < @).

If ?, @ < ∞, we also make the identi�cation R∗
?∓: = L∗

@±: , which is useful in the sequel. We de�ne S̃ :=
{C+, C-} ∪ {L+

:
, L-
:
, R+
:
, R-
:

: : ≥ 0} as the set of peeling events. See Figure 6 for graphical illustration of the
peeling events.

The peeling process along the left-most interface I is constructed by iterating the face-revealing operation
described above, yielding an increasing sequence (e=)=≥0 of explored maps. In order to iterate the peeling, we
apply a rule that chooses one of the two unexplored regions, when the peeling step of type R∗

:
or L∗

:
separates

the unexplored map into two pieces. Here, we assume that the boundary contains no target vertex which
determines the unexplored part (this case is treated separately later). In the case of peeling along the left-most
interface, the algorithm A- chooses the unexplored region with greater number of - boundary edges (and in
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case of a tie, the region on the right is chosen). This in particular guarantees that when @ = ∞ and ? < ∞, we
will choose the unbounded region as the next unexplored map. See Figure 7 for illustration.

We can use the sequence of explored maps (e=)=≥0 as the de�nition of the peeling process as follows. At
each time =, the explored map e= consists of a subset of faces of (t, f) containing at least the external face
and separated from its complementary set by a simple closed path. We view e= as a bicolored triangulation
of a polygon with a special uncolored, not necessarily triangular, internal face called the hole. It inherits its
root and its boundary condition from (t, f). The complement of e= is called the unexplored map at time = and
denoted by u= . It is a bicolored triangulation of a polygon. Notice that u= may be the edge map, in which case
e= is simply (t, f) in which an edge is replaced by an uncolored digon. This may, however, only happen at the
last step of the peeling process.

We apply this rule recursively starting from u0 = (t, f). At each step, the construction depends on the
boundary condition of u= :

1. If u= has a bichromatic Dobrushin boundary, let d= be the boundary junction vertex of u= with a - on its
left and a + on its right (d0 = d). Then u=+1 is obtained by revealing the internal face of u= adjacent to
the boundary edge on the left of d= and, if necessary, the algorithm chooses one of the two unexplored
regions according to the rule described above.

2. If u= has a monochromatic boundary condition of spin -, then the peeling algorithm A- chooses the
boundary edge with the vertex d= as an endpoint according to some deterministic function of the
explored map e= , which we specify later in Sections 7.3 and 7.4. We then construct u=+1 from u= and d=
in the same way as in the previous case.

3. If u= has a monochromatic boundary condition of spin + or has no internal face, then we set e=+1 = (t, f)
and terminate the peeling process at time = + 1.

We denote the law of this peeling process by Pa?,@ ≡ P?,@ , where on the right we have dropped the
dependence of a in order to ease the notation and continue to do so in the sequel (with the exception of
Section 6.3, where the index a will be included for clarity). Let (%=, &=) be the boundary condition of u= , and
(-=, .=) = (%= − %0, &= −&0). Also, let S= ∈ S̃ denote the peeling event that occurred when constructing u=

from u=−1. Then the peeling process following the left-most interface can also be de�ned as the random process
(S=)=≥0 on S̃, with the law P?,@ . We view the above quantities as random variables de�ned on the sample
space Ω = BT =

⋃
?,@ BT?,@ . In the sequel, one should understand that any of the sequences (e=)=≥0, (u=)=≥0

and (S=)=≥0 can be viewed as the peeling process, since together with the boundary condition, they contain
the same essential information. Table 2 collects the distribution of the �rst peeling step S1 and the associated
perimeter change in the peeling process driven by A-.

s P?,@+1(S1 = s) (-1, .1) s P?,@+1(S1 = s) (-1, .1)

C+ C
I?+2,@

I?,@+1
(2,−1) C- aC

I?,@+2

I?,@+1
(0, 1)

L+
:

C
I?+1,@−: I1,:

I?,@+1
(1,−: − 1) L-

:
aC
I?,@−:+1 I0,:+1

I?,@+1
(0,−:) (0 ≤ : ≤ @2 )

R+
:

C
I:+1,0 I?−:+1,@

I?,@+1
(−: + 1,−1) R-

:
aC
I:,1 I?−:,@+1

I?,@+1
(−:, 0) (0 ≤ : ≤ ?)

R+
?+: C

I?+1,: I1,@−:

I?,@+1
(−? + 1,−: − 1) R-

?+: aC
I?,:+1 I0,@−:+1

I?,@+1
(−?,−:) (0 < : <

@

2 )

Table 2 – Law of the �rst peeling event S1 under P?,@+1 and the corresponding (-1, .1), where the
peeling is without target. We use the shorthand notations C = C2 (a) and I?,@ = I?,@ (C, a).
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ν < νc ν = νc ν > νc

Figure 7 – Illustration of the interfaces explored by the di�erent versions of the peeling process.
Red: left-most interface (explored by A-). Blue: right-most interface (explored by A+). Shades of green:
interface explored by A< .

Peeling along the right-most interface: peeling algorithm A+. The peeling process along the right-
most interface is similar to the previous one, except that the algorithm A+ chooses the + edge adjacent to d=
if possible. Again, in case there are more than one holes, the algorithm �lls in the one with less - edges by
an independent Boltzmann Ising-triangulation, and if the hole has a monochromatic - boundary, the peeling
continues on that according to some deterministic function. A small subtlety here is that the distribution of
this peeling process di�ers from the previous one, such that the step distribution involves a spin-�ip due to
the deleted boundary edge of di�erent spin. In particular, we also need to take into account that the peeling
algorithm chooses a - edge if the unexplored part has a monochromatic boundary. We denote the distribution
of this peeling by P̂a?,@ ≡ P̂?,@ . For the explicit probabilities of the �rst peeling step, see Table 3.

Peeling with the target d†. Let A be any Dobrushin-stable peeling algorithm (in the sense of the previous
paragraphs). Considering the local limits when ?, @ →∞ simultaneously, it is convenient to de�ne a peeling

s P̂?+1,@ (S1 = s) (-1, .1) s P̂?+1,@ (S1 = s) (-1, .1)

C+ aC
I?+2,@

I?+1,@
(1, 0) C- C

I?,@+2

I?+1,@
(−1, 2)

L+
:

aC
I?+1,@−: I1,:

I?+1,@
(0,−:) L-

:
C
I?,@−:+1 I0,:+1

I?+1,@
(−1,−: + 1) (0 ≤ : ≤ @2 )

R+
:

aC
I:+1,0 I?−:+1,@

I?+1,@
(−:, 0) R-

:
C
I:,1 I?−:,@+1

I?+1,@
(−: − 1, 1) (0 ≤ : ≤ ?)

R+
?+: aC

I?+1,: I1,@−:

I?+1,@
(−?,−:) R-

?+: C
I?,:+1 I0,@−:+1

I?+1,@
(−? − 1,−: + 1) (0 < : <

@

2 )

s P̂0,@+1(S1 = s) s P̂0,@+1(S1 = s)

C+ C
I2,@

I0,@+1
C- aC

I0,@+2

I0,@+1

L+
:
C
I1,@−: I1,:

I0,@+1
L-
:
aC
I0,@−:+1 I0,:+1

I0,@+1

R+
:
C
I1,: I1,@−:

I0,@+1
R-
:
aC
I0,:+1 I0,@−:+1

I0,@+1

Table 3 – Law of the �rst peeling event S1 under P̂?+1,@ and the corresponding (-1, .1), where the
peeling is without target. Due to the possibility that there is no + edge on the boundary, we also present
the step probabilities under the law P̂0,@+1. The notational conventions coincide with Table 2.
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process with a target, where the target is the vertex d† at the junction of the - and + boundaries opposite to d .
The de�nition of this peeling process is as in the previous paragraphs, except when the peeling step separates
the unexplored map into two pieces: in this case, the unexplored part corresponds to the one containing d†,
and the other one is �lled. If d† is contained in both of the separated regions, the one with more - edges is
chosen for the unexplored part. We denote by A† this targeted variant of the peeling algorithm A.

6.2 Peeling of in�nite triangulations

Obtaining the limits of the peeling process for a general temperature a is just a straightforward generalization
of the analysis in our previous work [21]. Indeed, the asymptotics of Theorem 2 give the limit according to the
recipe given in [21]. The �rst limit @ → ∞ yields exactly the same form for the peeling process, where the
step probabilities only depend on a . Following the notation of [21], let Pa? (S1 = s) := lim@→∞ Pa?,@ (S1 = s) and
Pa∞(S1 = s) := lim?→∞ Pa? (S1 = s). We again make the shorthand conventions Pa? ≡ P? and Pa∞ ≡ P∞ which
we continue to use in the sequel except in Section 6.3. The quantities after the �rst limit @ →∞ are collected
in Table 4.

s P? (S1 = s) (-1, .1) s P? (S1 = s) (-1, .1)

C+ C
0?+2

0?
D (2,−1) C-

aC

D
(0, 1)

L+
:

C
0?+1

0?
I1,:D

:+1 (1,−: − 1) L-
:

aCI0,:+1D
: (0,−:) (: ≥ 0)

R+
:

CI:+1,0
0?−:+1

0?
D (−: + 1,−1) R-

:
aCI:,1

0?−:

0?
(−:, 0) (0 ≤ : ≤ ?2 )

R+
?−: CI?−:+1,0

0:+1
0?

D (−? + : + 1,−1) R-
?−: aCI?−:,1

0:

0?
(−? + :, 0) (0 ≤ : <

?

2 )

R+
?+: CI?+1,:

01
0?
D:+1 (−? + 1,−: − 1) R-

?+: aCI?,:+1
00
0?
D: (−?,−:) (: > 0)

Table 4 – Law of the �rst peeling event S1 under P? and the corresponding (-1, .1), where the peeling
is without target. We use the shorthand notations C = C2 (a), D = D2 (a), I?,: = I?,: (C, a) and 0? = 0? (a).
Note the cuto� ?/2 in the �nite boundary segment, which is used for the convergence ? →∞ in the
a > a2 regime (see Table 5).

Taking the second limit ? → ∞ yields a similar peeling process for all 1 < a ≤ a2 , but for a > a2 the
asymptotics of Theorem 2 yield additional non-trivial peeling events. Indeed, since the perimeter exponents U0
and U1 of I?,: and 0? coincide in that case, the probabilities P? (S1 = R+

?±: ) and P? (S1 = R-
?±: ) have non-trivial

limits when ? →∞. For that reason, when ? = ∞ or @ = ∞, we identify d† with∞ and introduce the following
additional peeling step events:

Event R∗∞−: : E is at a distance : to the right of∞ on the boundary of t, viewed from the origin (0 ≤ : < ∞);
Event L∗∞−: : E is at a distance : to the left of∞ on the boundary of t, viewed from the origin (0 ≤ : < ∞).

Let S = S̃ ∪ {R∗∞−: , L
∗
∞−: : ∗ ∈ {+, -}, : ≥ 0}. Observe that the set S in [21] corresponds to the set S̃ here.

We make the identi�cation R∗∞∓: = L∗∞±: , as well as the convention P?,@ (S1 = R∗∞±: ) = P? (S1 = R∗∞±: ) = 0.
Thus, the peeling process can always be de�ned on S.

We de�ne P∞(S1 = R+∞±: ) := lim?→∞ P? (S1 = R+
?±: ) and P∞(S1 = R-∞±: ) := lim?→∞ P? (S1 = R-

?±: ). The
events R+∞±: and R-∞±: can be viewed as jumps of the peeling process to the vicinity of∞. This property of
in�nite jumps results a positive probability of bottlenecks in the local limit when a > a2 . See Section 7.3 for a
more precise analysis of the local limit structure in the low temperature regime. The peeling step probabilities
for ?, @ = ∞ are collected in Table 5.
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s P∞(S1 = s) (-1, .1) s P∞(S1 = s) (-1, .1)

C+
C

D
(2,−1) C-

aC

D
(0, 1)

L+
:

CD:I1,: (1,−: − 1) L-
:

aCD:I0,:+1 (0,−:) (: ≥ 0)

R+
:

CD:I:+1,0 (−: + 1,−1) R-
:

aCD:I:,1 (−:, 0) (: ≥ 0)

R+∞−:
C00
1
0:+1D

:1a>a2 (−∞,−1) R-∞−:
aC01
1
0:D

:1a>a2 (−∞, 0) (: ≥ 0)

R+∞+:
C01
1
0:D

:1a>a2 (−∞,−: − 1) R-∞+:
aC00
1
0:+1D

:1a>a2 (−∞,−:) (: > 0)

Table 5 – Law of the �rst peeling event S1 under P∞ and the corresponding (-1, .1), where the peeling
is without target. We have the same shorthand notation as in the previous tables as well as 1 = 1 (a).

s P̂?+1(S1 = s) (-1, .1) s P̂?+1(S1 = s) (-1, .1)

C+ aC
0?+2

0?+1
(1, 0) C- C

0?

0?+1

1
D2 (−1, 2)

L+
:

aCI1,:D
: (0,−:) L-

:
CI0,:+1

0?

0?+1
D:−1 (−1,−: + 1) (: ≥ 0)

R+
:

aCI:+1,0
0?−:+1

0?+1
(−:, 0) R-

:
CI:,1

0?−:

0?+1

1
D

(−: − 1, 1) (0 ≤ : ≤ ?)

R+
?+: aCI?+1,:

01
0?+1

D: (−?,−:) R-
?+: CI?,:+1

00
0?+1

D:−1 (−? − 1,−: + 1) (: > 0)

s P̂∞(S1 = s) (-1, .1) s P̂∞(S1 = s) (-1, .1)

C+
aC

D
(1, 0) C-

C

D
(−1, 2)

L+
:
aCD:I1,: (0,−:) L-

:
CD:I0,:+1 (−1,−: + 1)

R+
:
aCD:I:+1,0 (−:, 0) R-

:
CD:I:,1 (−: − 1, 1)

Table 6 – Laws of S1 under P̂?+1 (? ≥ 0) and P̂∞, respectively, obtained by taking two successive limits
in Table 3. The peeling is without target. Since we only need this distribution in the high temperature
regime a ∈ (1, a2 ), the bottleneck events are omitted.

The proof that P? de�nes a probability distribution on S goes similarly as in [21, Lemma 6], as well as that
P∞ is a probability distribution on S for 1 < a < a2 . For a > a2 , the total probability from Table 5 sums to

C (a + 1)
(
/0(D)
D
+ /1(D) +

00
D2
+ 01

1
(�(D) − 00)

)
,

which is shown to be equal to one either by a coe�cient extraction argument similar to the one of [21, Lemma 6],
or by a computer algebra calculation.

It follows that P? and P∞, respectively, can be extended to the distribution of the peeling process (S=)=≥0,
and we have the convergence P?,@ −−−−→

@→∞ P? −−−−→
?→∞

P∞ in distribution, where P? and P∞ satisfy the spatial
Markov property (see [21, Proposition 2, Corollary 7]). By symmetric arguments, we recall the same properties
for the laws P̂? and P̂∞, which are obtained as the distributional limits of P̂?,@ . The explicit laws of the �rst
peeling step are collected in Table 6. The expectations corresponding to P and P̂ are called E and Ê, respectively.

By the diagonal asymptotics part of Theorem 2, it is also easy to see that convergences P?,@
(3)
−−−−−→
?,@→∞

P∞

and P̂?,@
(3)
−−−−−→
?,@→∞

P̂∞ hold for every appropriate a . More precisely, since the coe�cient function _ ↦→ 2 (_)
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is continuous on every interval bounded away from zero for every �xed a ∈ (1,∞), we conclude that

lim?,@→∞
2

(
@−<
?−:

)
2

(
@

?

) = 1 for any �xed :,< ∈ Z when @/? ∈ [_min, _max], and the convergence of the one-step

peeling transition probabilities follows. The rest is a repetition of the proof of the convergence P?
(3)
−−−−→
?→∞

P∞.

6.3 Order parameters and connections to pure gravity

Using the information in Table 5, it is not hard to express the order parameter O(a) de�ned in Proposition 5.
We obtain the following formula:

O(a) := Ea∞((-1 + .1)1 |-1 |∨ |.1 |<∞) = (a + 1)C2 (a)
(
/0(D2 (a))
D2 (a)

− / ′0(D2 (a)) − D2 (a)/ ′1(D2 (a))
)
.

Above, the cases |-1 | = ∞ and |.1 | = ∞ may appear if a > a2 , and the latter only if we consider the peeling
with target d†. We have discussed in the introduction that O is an order parameter for the phase transition
around a = a2 Its properties are collected in Proposition 5. See also Figure 8 for the graph of O.

The proof of Proposition 5 is a computation by a computer algebra, presented in [1]. Note that O is
discontinuous at a = a2 , and that O(a) = Ea∞(-1+.1) for 1 < a ≤ a2 . Moreover, the above drift condition in this
regime shows that the peeling process started from the - edge next to the origin drifts to the left, swallowing
the - boundary piece by piece. By symmetry, we also obtain Êa∞(.1) = Ea∞(-1) and Êa∞(-1) = Ea∞(.1), which in
turn yield that the peeling process following the right-most interface drifts to the right. In Section 7.4, we will
use these properties to modify the peeling algorithm so that the peeling process will explore a neighborhood of
the origin in a metric sense, which will be enough to construct the local limit in the high temperature regime.

Remark 28. There is another, and perhaps more natural, order parameter

Õ(a) := Pa∞( |-1 | ∨ |.1 | = ∞) =


0 if 1 < a ≤ a2

(a + 1)C2 (a)
(
00 (a )
D2 (a ) +01 (a)

1 (a) (�(D, a) − 00(a))
)

if a > a2 .

It is easy to see that Õ is continuous at a = a2 . This order parameter is the probability of the occurrence
of a �nite bottleneck in a single peeling step in the (to-be-constructed) local limit Pa∞. It can also be shown
to be increasing and have the limit

√
3

12 as a → ∞. However, since the order parameter O encapsulates all
what we need in the proofs of the local convergences, Õ is not studied further in this work. Its only non-zero
occurrence is related to Lemma 32 in Section 7.3.

Remark 29. In the physics literature, the order parameter for the two-dimensional Ising model is traditionally
the magnetization of the Ising �eld. We do not know the connection of O or Õ to the magnetization. Unlike

ν

O(ν )

νc

Figure 8 – The graph of the order parameter O.
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the magnetization for the Ising model on a regular lattice, O is discontinuous at the critical temperature.
Moreover, it does not tell us about the global geometry of the spin clusters, rather it serves as a “measure” of
the interface behaviour in the local limit. An interesting curiosity is that we can show the free energy density
per boundary edge has a second order discontinuity, even though it is known that the free energy density per
face has a third order discontinuity, telling that the phase transition should be of third order. More precisely,
by the work of Boulatov and Kazakov [15] or an explicit computation [1], we have

− lim
=→∞

1
=

log( [C=]I?,@ (C, a)) = � (a)

where = is the number of interior faces and � has a third order discontinuity at a = a2 . However, we �nd

− lim
@→∞

1
@

log(I?,@ (a)) = − lim
?,@→∞

1
@

log(I?,@ (a)) = log(D2 (a)),

which can be shown to have a second order discontinuity at a = a2 .

Pure gravity-like behavior and some literature remarks. It has been conjectured by physicists that
the Ising model outside the critical temperature falls within the pure gravity universal class (see [4]). In
particular, in the seminal work of Kazakov [30], the fact is justi�ed by computing the zero-temperature and the
in�nite-temperature limits of the free energy, which both coincide with the ones derived from the one-matrix
model. The analysis of our peeling process, and the geometry in the further sections, will give a di�erent
perspective to this phenomenon.

First, we note that lima↘1 Ea∞(.1) = − lima↘1 Ea∞(-1) = − 1
2 . From [10, Section 3.2], we check that this

coincides with the drift of the perimeter process of an exploration which follows the right-most interface of a
�nite percolation cluster on the UIHPT decorated with a face percolation con�guration with parameter ? = 1/2.
This is natural due to the symmetry of the + and - spins. We stress that, since percolation on the triangular
lattice is not self-dual, this falls in the subcritical regime of percolation. Observe also that the geometry of
large Boltzmann Ising-triangulations in the high temperature regime essentially should not depend on the
exact value of Ea∞(-1) = −Ea∞(.1), as long as it is strictly positive and the perimeter exponents U0 + 1 and U2 + 2
of the asymptotics of Theorem 2 are equal to 5/2. Therefore, the geometry of the Ising-decorated random
triangulation of the half-plane in the high temperature regime is similar to the one of the UIHPT decorated with
subcritical face percolation. To our knowledge, this phenomenon has never been explicitly written, though
intuitively well understood.

In the low temperature regime, we have lima→∞O(a) = 1
2
√

3 . This, in turn, coincides with the expectation
of the number of edges swallowed (both to the right or to the left) after a peeling step of the non-decorated
UIHPT of type I. At the level of the peeling process, we �nd that

lim
a→∞

Pa∞(S1 = C+) = lim
a→∞

∞∑
:=0

Pa∞(S1 = L+
:
) = lim

a→∞

∞∑
:=0

Pa∞(S1 = R+
:
)

= lim
a→∞

∞∑
:=0

Pa∞(S1 = R+∞−: ) = lim
a→∞

∞∑
:=1

Pa∞(S1 = L+∞−: ) = lim
a→∞

∞∑
:=1

Pa∞(S1 = R-∞−: ) = 0

and

lim
a→∞

Pa∞(S1 = C-) = 1
√

3
lim
a→∞

∞∑
:=0

Pa∞(S1 = L-
:
) =

1
2 −

1
2
√

3

lim
a→∞

∞∑
:=0

Pa∞(S1 = R-
:
) = 1

2 −
√

3
4 lim

a→∞

∞∑
:=0

Pa∞(S1 = L-∞−: ) =
√

3
12 .

Since these quantities sum to one, we conclude that either the bottlenecks survive in the zero temperature
limit, or the limit does not de�ne a probability distribution. The former follows if we can change the limit
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and the summation above, and that indeed can be done by the following simple argument: We notice that
Pa∞(S1 = L-

:
) ∼ " (a)

:5/2 as : →∞, where

" (a) = lim
:→∞

:5/2
(
aC2 (a)
D2 (a)

00(a)
Γ(−3/2) (: + 1)−5/2

)
=
aC2 (a)
D2 (a)

00(a)
Γ(−3/2) .

An explicit computation shows that lima→∞" (a) ∈ (0,∞), so " (a) is bounded. Moreover, we can show that
Pa∞(S1 = L-∞−: ) has exactly the same asymptotics as : →∞. By this asymptotic formula, one can then �nd a
summable majorant for the above series for large enough a , and therefore the exchange of the limit and the
sum follows from the dominated convergence theorem.

Hence, we �nd a zero temperature limit of the peeling process which shares the behaviour of the peeling
process in the low temperature regime. In that case, the peeling process constructs an in�nite triangulation,
which consists of two in�nite triangulations with the geometry of the UIHPT that are glued together by just
one vertex, which can be viewed as a pinch point in the vicinity of both the origin and the in�nity. The
construction of this local limit is the same as in the upcoming Section 7.3.

The existence of the �nite bottlenecks for a > a2 is well predicted in the physics literature. More precisely:
When a = ∞, the spins are totally aligned. Therefore, for a > a2 , it is predicted that the energy of a spin
con�guration is proportional to the length of the boundary separating di�erent spin clusters, and hence the
minimal energy con�gurations should be those with minimal spin interface lengths. In our setting, we consider
an annealed model where we sample the triangular lattice together with the spin con�guration. Hence, a
bottleneck in the surface is formed. This is explained eg. in [4] and [5]. To our knowledge, this is the �rst time
when the existence of the bottlenecks on Ising-decorated random triangulations is shown rigorously.

7 Local limits and geometry at a ≠ a2

In this section, we extend our analysis of the local limit at a = a2 , considered in [21], to the o�-critical regimes
1 < a < a2 and a > a2 . In [21, Section 5], the idea was to provide a constructive proof of the local convergence
in the following sense: The local limits were constructed by iterating the peeling process, and after noticing
that the peeling explores any ball around the root with respect to the graph distance in a �nite time, the
local convergence followed from the convergence of the peeling process. In this work, we notice that similar
proof strategy for the local convergence extends to every a > 1, under certain amendments. For this reason,
we reformulate the strategy used in [21] for proving Pa2?,@ −−−−→@→∞ Pa2? as an algorithm with fairly general
assumptions on the convergence of a peeling process. This strategy applies almost readily to all of the local
limits at a ∈ (a2 ,∞) with the same choice of a peeling algorithm as for a = a2 by the fact that the interface hits
a neighborhood of the in�nity in a �nite time. On the contrary, if a ∈ (1, a2), the peeling process under the
aforementioned peeling algorithm will stay close to the boundary of the half-plane in�nitely. Therefore, we
need more re�ned arguments in the high temperature phase starting from Proposition 5. In particular, we
construct a mixed peeling algorithm, under which the peeling process explores a neighborhood of the origin
layer by layer in the local limit Pa∞. The choices of the peeling algorithm are summarised in Table 1 in the
preceding section.

7.1 Preliminaries: local distance and convergence

For a map m and A ≥ 0, we denote by [m]A the ball of radius A in m, de�ned as the subgraph of m consisting of
all the internal faces which are adjacent to at least one vertex within the graph distance A − 1 from the origin.
By convention, the ball of radius 0 is just the root vertex. The ball [m]A inherits the planar embedding and the
root corner of m. Thus [m]A is also a map. By extension, if f is a coloring of some faces and some edges of m,
we de�ne the ball of radius A in (m, f), denoted [m, f]A , as the map [m]A together with the restriction of f to
the faces and the edges in [m]A . In particular, we have [[m, f]A ′]A = [m, f]A for all A ≤ A ′. Also, if an edge 4 is

42



in the ball of radius A in a bicolored triangulation of a polygon (t, f), then one can tell whether 4 is a boundary
edge by looking at [t, f]A , since only boundary edges are colored.

The local distance for colored maps is de�ned in a similar way as for uncolored maps: for colored maps
(m, f) and (m′, f ′), let

3loc((m, f), (m′, f ′)) = 2−' where ' = sup {A ≥ 0 : [m, f]A = [m′, f ′]A } .

The set CM of all (�nite) colored maps is a metric space under 3loc. Let CM be its Cauchy completion. As was
the case with the uncolored maps (see e.g. [22]), the space (CM, 3loc) is Polish (i.e. complete and separable).
The elements of CM \ CM are called in�nite colored maps. By the construction of the Cauchy completion,
each element of CM can be identi�ed as an increasing sequence of balls (bA )A ≥0 such that [bA ′]A = bA for all
A ≤ A ′. Thus de�ning an in�nite colored map amounts to de�ning such a sequence. Moreover, if (P(=) )=≥0 and
P(∞) are probability measures on CM, then P(=) converges weakly to P(∞) for 3loc if and only if

P(=) ( [m, f]A = b) −−−−→
=→∞ P(∞) ( [m, f]A = b)

for all A ≥ 0 and all balls b of radius A .
When restricted to the bicolored triangulations of the polygon BT, the above de�nitions construct the

corresponding set BT \ BT of in�nite maps. Recall that BT
(1)
∞ is the set of in�nite bicolored triangulation of

the half plane, that is, elements of BT \ BT which are one-ended and have an external face of in�nite degree.
Recall also the set BT

(2)
∞ , consisting of two-ended bicolored triangulations with an in�nite boundary.

7.2 A general algorithm for constructing local limits

In this subsection, we provide an algorithm for constructing local limits and proving the local convergence for
a generic setup of Boltzmann Ising-triangulations of the disk. The algorithm is already used in our previous
work [21] in the proof of the local convergence P?.@ −−−−→

@→∞ P? .

Assumptions. Suppose we are given a family of probability measures {P; : ; = 1, 2, . . .} supported on BT,
where the index ; is either the full perimeter or the length of a �nite boundary segment of a bicolored, possibly
in�nite, Boltzmann Ising-triangulation with Dobrushin boundary conditions. For example in the latter case,
we may have ; = @ if P; = Pa?,@ and we consider the convergence @ →∞. The point is that {P; : ; = 1, 2, . . .} is
assumed to be a one-parameter family. Recall that the peeling process of a �xed triangulation can be viewed
as a deterministic sequence (e=, u=)=≥0 of explored and unexplored maps, respectively, driven by a peeling
algorithm A. By convention, L (;) (e=)=≥0 denotes the law of the sequence of the explored maps under P; .

Let (u∗
?̃,@̃,=
)?̃,@̃,=≥0 be a family of independent random variables which are also independent of (S=)=≥0,

such that u∗
?̃,@̃,=

is a Boltzmann Ising-triangulation of the (?̃, @̃)-gon, where possibly ?̃ = ∞ or @̃ = ∞. Consider
Z with its nearest-neighbor graph structure and canonical embedding in C, viewed as an in�nite planar map
rooted at the corner at 0 in the lower half plane. Then, the upper half plane is the unexplored map L (;)u0, and
L (;)e0 is de�ned as the deterministic map Z in which the following holds, depending whether the boundary of
length ; is monochromatic or not: the monochromatic boundary of length ; is contained in [0, ;] (if it has spin +)
or in [−;, 0] (if it has spin -), or the bichromatic boundary of length ; = ;1 + ;2 is contained in [−;1, ;2]. Assume
that underP; , one can recover the distribution of e= as a deterministic function of e=−1, S= and (u∗

?̃,@̃,=
)?̃,@̃≥0. We

de�ne L (;) (e=)=≥0 by iterating that deterministic function on L (;)e0, L (;) (S=)=≥0 and (u∗
?̃,@̃,=
)?̃,@̃,=≥0. Let F= be

the f-algebra generated by e= . Then the above construction de�nes a probability measure on F∞ = f (∪=F=),
which we denote by P(;) . Moreover, assume P(;) −−−−→

;→∞
P(∞) in distribution with respect to the discrete topology.

That is, there exists a distribution P(∞) such that for any element l in the (countable) state space of the
sequences (S=)=≥0 and (u∗

?̃,@̃,=
)?̃,@̃,=≥0 up to time =0 < ∞, we have P(;) (l) −−−−→

;→∞
P(∞) (l).

For the peeling algorithm A, we make two assumptions. First, we assume that the algorithm is Dobrushin-
stable, in the sense that A always chooses a boundary edge at the junction of the - and + boundary segments.
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This choice guarantees that the boundary condition always remains Dobrushin or monochromatic. Second,
we assume that A is local, by which we mean the following: If the boundary is bichromatic, A chooses the
boundary edge according to the previous rule such that it is connected to the root d via an explored region by
the peeling excluding the boundary. On the other hand, if the boundary is monochromatic, A chooses an
edge whose endpoints have a minimal graph distance to the origin, according to some deterministic rule if
there are several such choices.

Convergence of the peeling process. Since (u∗
?̃,@̃,=
)?̃,@̃,=≥0 has a �xed distribution and is independent of

(S=)=≥0, it follows that L (;) (S=)=≥0 and (u∗
?̃,@̃,=
)?̃,@̃,=≥0 converge jointly in distribution when ; → ∞ with

respect to the discrete topology. However, because L (;)e0 takes a di�erent value for each ; , the initial condition
L (;)e0 cannot converge in the above sense. This is not a problem, since for any positive integer  , the
restriction of L (;)e0 to a �nite interval [− , ] stabilizes at the value that is equal to the restriction of L (∞)e0
on [− , ]. Therefore, let us consider the truncated map e◦= , obtained by removing from e= all the boundary
edges adjacent to the hole. Then the number of the remaining boundary edges is �nite and only depends
on (S: ):≤= . It follows that for each = �xed, e◦= is a deterministic function of (S: ):≤= , (u∗

?̃,@̃,:
)?̃,@̃≥0;:≤= and e0

restricted to some �nite interval [− , ] where  is determined by (S1, . . . , S=). As the arguments of this
function converge jointly in distribution with respect to the discrete topology (under which every function is
continuous), the continuous mapping theorem implies that

P(;) (e◦= = b) −−−−→
;→∞

P(∞) (e◦= = b) (41)

for every bicolored map b and for every integer = ≥ 0. We can extend this convergence for �nite stopping
times according to the following proposition, which is proven for [21, Lemma 12], mutatis mutandis.

Proposition 30 (Convergence of the peeling process). Let F◦= be the f-algebra generated by e◦= . If \ is an
(F◦= )=≥0-stopping time that is �nite P(∞) -almost surely, then for every bicolored map b,

P(;) (e◦
\
= b) −−−−→

;→∞
P(∞) (e◦

\
= b) . (42)

Construction of P∞. Recall that the explored map e= contains an uncolored face with a simple boundary
called its hole. The unexplored map u= �lls in the hole to give (t, f). We denote by me= , called the frontier
at time =, the path of edges around the hole in e= . For all A ≥ 0, let \A = inf

{
= ≥ 0 : 3e= (d, me=) ≥ A

}
, where

3e= (d, me=) is the minimal graph distance in e= between d and vertices on me= . It is clear that this minimum
is always attained on the truncated map e◦= , therefore 3e= (d, me=) is F◦= = f (e◦=)-measurable and \A is an
(F◦= )=≥0-stopping time. Expressed in words, \A is the �rst time = such that all vertices around the hole of e=
are at a distance at least A from d . Since (t, f) is obtained from e= by �lling in the hole, it follows that

[t, f]A = [e◦
\A
]A

for all A ≥ 0. In particular, the peeling process (e=)=≥0 eventually explores the entire triangulation (t, f) if and
only if \A < ∞ for all A ≥ 0. A su�cient condition for this is provided by the following lemma.

Lemma 31. If the frontier me= becomes monochromatic in a �nite number of peeling steps P(∞) -almost surely,
then \A is almost surely �nite for all A ≥ 0.

Proof. We have \0 = 0. Assume that \A < ∞ almost surely for some A ≥ 0. Then the set +A of vertices at
a graph distance A from the origin in t is P(∞) -almost surely �nite. Since by assumption the frontier me=
becomes monochromatic in a �nite time P(∞) -almost surely, the spatial Markov property yields that me= is
monochromatic in�nitely often.

On the event {\A+1 = ∞} and at the times = > \A such that me= is monochromatic, the peeling algorithm A

chooses to peel an edge with an endpoint in +A by the locality assumption of A. Since +A is �nite, there exists
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a E ∈ +A at which such peeling steps occur in�nitely many times. But each time the vertex E is swallowed with
a non-zero probability, as a consequence the transition probabilities of the one-step peeling. Therefore E can
remain forever on the frontier only with zero probability. This implies that P(∞) (\A+1 < ∞) = 1. By induction,
\A is �nite P(∞) -almost surely for all A ≥ 0. �

We de�ne the in�nite Boltzmann Ising-triangulation of law P∞ by the laws of its �nite balls L (∞) [t, f]A :=
lim
=→∞

L (∞) [e=]A . The external face of L (∞) (t, f) obviously has in�nite degree. Moreover, every �nite subgraph
of L (∞) (t, f) is covered by e= almost surely for some = < ∞. If the peeling process only �lls �nite holes by
the family (u∗

?̃,@̃,=
)?̃,@̃,=≥0, it follows that the complement of a �nite subgraph only has one in�nite component.

That is, P∞ is one-ended, which together with the in�nite boundary tells that the local limit is an in�nite
bicolored triangulation of the half-plane. If the limiting map, however, includes in�nite holes to �ll in with the
peeling, the map has several in�nite connected components with positive probability. In the following section,
we see a concrete example of that case.

7.3 The local limit at low temperatures (a > a2)

Throughout this subsection, �x a ∈ (a2 ,∞). For simplicity, let us �rst consider the case where @ → ∞ and
? → ∞ separately. In Section 6.3, the order parameter O told us that for a > a2 , the peeling process has a
tendency to drift to in�nity. Moreover, from Table 5 we already read that -1 = −∞ with a positive probability.
Thus, we have E∞(-1) = −∞. These properties intuitively mean that the left-most interface drifts to in�nity
much faster than in the critical temperature, in fact even in a �nite time almost surely. Thus, the construction
of the local limit and the proof of the local convergence follows by choosing A = A- and after we verify the
assumptions of the algorithm in the previous section. The geometric view is similar to that in the critical
temperature [21], with the exception that in this case the interface in a realization of the local limit is contained
in a ribbon which is �nite. Therefore, the local limit is not one-ended, unlike in a = a2 , and contains a bottleneck
between the origin and in�nity.

In order to be more precise, let us consider the P? -stopping time

)< = inf {= ≥ 0 : %= ≤ <} ,

where< ≥ 0 is a cuto�. In particular, )0 is the �rst time that the boundary of the unexplored map becomes
monochromatic. Observe that for ? > 2<, we can write )< = inf

{
= ≥ 0 : S= ∈

{
R+
?+:+1, R

-
?+: : : ≥ −<

}}
.

This extends to ? = ∞ in a natural way, and thus )< is also a well-de�ned stopping time under P∞.
Following the notation of [21], denote by L?,@- (resp. L?- and L∞- ) a random variable which has the

same law as the random variable - under P?,@ (resp. under P? and P∞). We start by giving an upper bound for
the tail distribution of )0, which implies in particular that the process L? (%=)=≥0 hits zero almost surely in
�nite time. In other words, the peeling process swallows the + boundary almost surely, exactly as for a = a2 .
What makes the low-temperature regime di�erent is that this property actually holds also for P∞, since by
the in�nite jumps of the peeling process we may have )< < ∞. Moreover, we can easily �nd the explicit
distribution of )< under P∞.

Lemma 32 (Law of )< , a > a2 ). Let a ∈ (a2 ,∞).

1. There exists W > 0 such that P? ()0 > =) ≤ 4−W= for all ? ≥ 1. In particular, )0 is �nite P?-almost surely.

2. Under P∞, the stopping time )< has geometric distribution with parameter

A< := P∞(%1 ≤ <) = P∞()< = 1)

supported on {1, 2, . . .}. That is,
P∞()< = =) = (1 − A<)=−1A<

for = = 1, 2, . . . . In particular, )< is �nite P∞-almost surely for all< ≥ 0.
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Proof. Since a > a2 , we have P? (S1 = R-?) −→ P∞(S1 = R-∞) := Ã ∈ (0, 1), which yields P? ()0 = 1) ≥ P? (S1 =

R-?) ≥ A for all ? ≥ 1, for some constant A ∈ (0, 1). It follows by the Markov property and induction that for
all = ≥ 0,

P? ()0 > = + 1) = E?
[
P%= ()0 ≠ 1)1{)0>=}

]
≤ (1 − A )=+1 ,

from which the �rst claim follows.
For the second claim, the data of Table 5 for a > a2 shows that

P∞()< = 1) = P∞(%1 ≤ <)

=

∞∑
:=0

(
P∞(S1 = R+∞+: ) + P∞(S1 = R-∞+: )

)
+
<−1∑
:=1

P∞(S1 = R+∞−: ) +
<∑
:=1

P∞(S1 = R-∞−: )

= C

(
00
1D

(
a (�(D) − 00) +

<∑
:=2

0:D
:

)
+ 01
1

(
�(D) + a

<∑
:=1

0:D
:

))
=: A< .

By the spatial Markov property and induction,

P∞()< > = + 1) = E∞
[
P∞()< ≠ 1)1{)<>=}

]
= (1 − A<)=+1

for all = ≥ 0, which shows that )< has geometric distribution with parameter A< . �

Remark 33. Observe that by the above proof, lim<→∞ A< = Õ(a), which was introduced as an order parameter
in Remark 28.

The above lemma entails that)< can directly, without further conditioning, be regarded as a time of a large
jump of the perimeter process. In other words, unlike in [21], a suitably chosen peeling process will explore
any �nite neighborhood of the origin in a �nite time, and thus no gluing argument of locally converging maps
is needed. In particular, the general algorithm of Section 7.2 applies. If one wanted to study the local limit via
gluing, one could note that conditional on = < )< , the process %= has a positive drift, a behaviour re�ected by
the order parameter O.

It is easy to see that the above lemma also holds if we de�ne more generally)< := inf{= ≥ 0 : min{%=, &=} ≤
<} and consider the convergence of the peeling process with the target d† under the limit ?, @ → ∞ while
@/? ∈ [_′, _]. We omit the details of this here. The stopping time )< is extensively studied in Section 8.1 for
a = a2 , and the computation techniques for a > a2 are similar. The biggest di�erence compared to the ? = ∞
case is the fact that in the ?, @ < ∞ case, the triangle revealed at the peeling step realizing )< must hit the
boundary at a distance less than< + 1 from d†. The perimeter variations (-1, .1) will also have a di�erent law,
and in particular both -1 and .1 may have in�nite jumps (though not simultaneously).

Recall that in our context of the peeling along the left-most interface, the peeling algorithm A- is used to
choose an edge adjacent to d= on the boundary of the unexplored map u= according to some deterministic
function when its boundary me= is monochromatic of spin - (see Section 6.1). Under P? , we can ensure \A < ∞
almost surely for all A ≥ 0 with the following choice of the peeling algorithm A = A-: Let d= be the vertex on
the frontier realizing the minimal distance 3e= (d, me=) from the origin. Then A- chooses the edge on the left
of d= . This algorithm is obviously local. Since )0 < ∞ almost surely by Lemma 32, Lemma 31 gives \A < ∞
almost surely in P? . Moreover, everything in this paragraph clearly also holds after replacing P? by P∞.

Proof of the convergence Pa?,@
(3)
−−−−→
@→∞ P

a
?

(3)
−−−−→
?→∞

Pa∞ for a > a2 . The (F◦= )-stopping time \A is almost surely �nite
under P? and P∞, and [t, f]A = [e◦\A ]A is a measurable function of e◦

\A
. Thus, the assumptions of the general

algorithm for local convergence hold with the choice P; = Pa?,@ with ; = @ in the �rst limit, and after Pa? is
de�ned, also with P; = Pa? with ; = ? in the second limit. In the �rst limit, the family (u∗

?̃,@̃,=
)?̃,@̃,=≥0 consists

of independent �nite Boltzmann Ising-triangulations, which �ll in the �nite holes formed in the peeling
process (exactly as in a = a2 , see [21]). Assuming Pa? is de�ned for all ? ≥ 0, then the family (u∗

?̃,@̃,=
)?̃,@̃,=≥0 also

contains the elements u∗∞,@̃,= with law Pa
@̃
, which �ll in the hole with in�nite + boundary after a bottleneck
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is formed. Putting things together in this order, it follows from Proposition 30 that Pa?,@ ( [t, f]A = b) −−−−→
@→∞

Pa? ( [t, f]A = b) −−−−→
?→∞

Pa∞( [t, f]A = b) for all A ≥ 0 and every ball b. This implies the local convergence
Pa?,@ −−−−→@→∞ P

a
? −−−−→?→∞

Pa∞. �

Proof of the convergence Pa?,@
(3)
−−−−−→
?,@→∞

Pa∞ while 0 < _′ ≤ @

?
≤ _ for a > a2 . The assumptions of the general algo-

rithm for local convergence hold with the choiceP; = Pa?,@ with ; = ? +@, where ; →∞ such that @ ∈ [_′?, _?].
Since the peeling process with the target d† has the same limit in distribution as the untargeted one, the local
limit is indeed Pa∞. �

The above constructed local limit Pa? is one-ended, since the peeling process only �lls in �nite holes. By
Lemma 32, the untargeted peeling process of the local limit Pa∞ swallows the in�nite + boundary P∞-almost
surely in a �nite time, resulting a �nite bottleneck, after which the peeling process continues to peel the
in�nite triangulation with in�nite - boundary and �nite + boundary. Since the latter one is one-ended, it
follows that the local limit Pa∞ consists of two independent triangulations of laws Pa

?̃
and Pa

@̃
, for some ?̃ ≥ 0

and @̃ ≥ 0, the second one modulo a spin �ip, glued together along a �nite bottleneck. That is, the local limit
Pa∞ is two-ended.

7.4 The local limit at high temperatures (1 < a < a2)

Throughout this subsection, �x a ∈ (1, a2). We start by considering �rst the convergence Pa?,@ → Pa? . For that
purpose, we choose the peeling algorithm A+ de�ned in Section 6.1. The reason for this choice is explained by
Remark 35 and Lemma 37 below. Again, the only thing to show is that P̂? ()0 < ∞) = 1 for every �nite ? ≥ 0.
However, due to the fact that P̂? ()< = 1) ∼ 2< · ?−5/2, we need a di�erent strategy as in [21] to prove that
result. At this point, recall the drift of the perimeter processes: E∞(-1) = −E∞(.1) > 0 from Proposition ??.
This drift is used to estimate the drift of the perimeter process for a large ? < ∞.

Lemma 34. Let a ∈ (1, a2). Then,

lim
?→∞

E? (-1) = E∞(-1) and lim
?→∞

E? (.1) = E∞(.1).

Likewise,
lim
?→∞

Ê? (-1) = Ê∞(-1) and lim
?→∞

Ê? (.1) = Ê∞(.1).

Proof. For ? > < > 1, we make the decomposition

E? (-1) = E?
(
-11{-1≥−<}

)
+ E?

(
-11{-1≤−?+<}

)
+ E?

(
-11{-1∈(−?+<,−<) }

)
.

By the convergence of the peeling process,

E?
(
-11{-1≥−<}

)
−−−−→
?→∞

E∞
(
-11{-1≥−<}

)
−−−−−→
<→∞ E∞(-1) .

For the second term, P? (-1 ≤ −? +<) = P? (%1 ≤ <) ∼ 2< · ?−5/2 as ? →∞ for some constant 2< > 0, which
shows that

E?
(
-11{-1≤−?+<}

)
= −?P? (-1 ≤ −? +<) +

<∑
:=0

:P? (-1 = : − ?) −−−−→
?→∞

0.

Finally, the third term can be explicitly written using the data of Table 4 as

E?
(
-11{-1∈(−?+<,−<) }

)
= −

?−<−1∑
:=<+1

:P? (-1 = −:) = −
?−<−1∑
:=<+1

:

(
CI:+2,0

0?−:

0?
D + aCI:,1

0?−:

0?

)
.
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By the asymptotics I:+2,0
0?−:
0?

∼
?→∞

I:+2,0D
:
2 ∼
:→∞

cst · :−5/2 and a similar one for I:,1
0?−:
0?

, the sum on the
right hand side can be approximated by a remainder of a convergent series, and therefore taking the limits
?,< →∞ yields the claim.

The case lim?→∞ E? (.1) = E∞(.1) is similar, except easier, since it only requires one cuto� at .1 = −<.
Indeed, the same asymptotics hold for .1. The cases lim?→∞ Ê? (-1) = Ê∞(-1) and lim?→∞ Ê? (.1) = Ê∞(.1)
follow by symmetry. �

Remark 35. By Proposition ?? and symmetry, we have then

lim
?→∞

E? (-1) > 0 and lim
?→∞

Ê? (-1) < 0,

and likewise
lim
?→∞

E? (.1) < 0 and lim
?→∞

Ê? (.1) > 0.

This property is the main implication of Lemma 34, which we keep on using in this section.

Remark 36. In [21], we used the same decomposition to show that E? (-1) −−−−→
?→∞

− 1
3E∞(-1) < 0 at a = a2 .

This blow-up of the probability mass was due to the fact that P? (-1 ≤ −? +<) ∼ 2< · ?−1 at a = a2 . Currently,
we do not have an interpretation of this symmetry breaking.

Under mild conditions, a Markov chain on the positive integers with an asymptotically negative drift is
expected to be recurrent. The next lemma veri�es this in our case.

Lemma 37. If a ∈ (1, a2), then )0 is �nite P̂?-almost surely.

Proof. Since (%=)=≥0 is an irreducible Markov chain on the positive integers, it is enough to show that
P̂?′ ()?′ < ∞) = 1 for some ? ′ > 0. Namely, this means that the chain will return to the �nite set {0, . . . ? ′}
in�nitely many times, and thus there exists a recurrent state.

Observe that by Lemma 34, there exists an index ?∗ > 0 such that Ê?′ (-1) ≤ −0 for some 0 > 0 if ? ′ > ?∗.
On the other hand, Ê?′ (-1) ≤ max0≤8≤?∗ Ê8 ( |-1 |) < ∞ for ? ′ ≤ ?∗. Then, it follows that the set {0, . . . , ?∗} is
actually positive recurrent; see [28, Theorem 1] for a more general statement via Lyapunov functions, in which
the Lyapunov function is chosen to be the identical mapping. �

Now, the proof of the local convergence Pa?,@
(3)
−−−−→
@→∞ P

a
? goes along the same lines as in the case a ≥ a2 . Let

us proceed to the proof of the convergence Pa?
(3)
−−−−→
?→∞

Pa∞. For this, we cannot just choose the peeling algorithm
A+ (or A-, respectively) since the peeling exploration under that algorithm drifts to the right (resp. to the left)
in the limit by Lemma 34. These drifts, however, allow us to construct a mixed peeling algorithm A = A< as
follows.

Peeling algorithmA<. Recall that for a ∈ (1, a2), we have the drift conditions E∞(-1) > 0 and E∞(.1) < 0
(together with the symmetric conditions Ê∞(-1) < 0 and Ê∞(.1) > 0). These conditions allows us to construct
the following sequence of stopping times:

Set -0 = .0 = 0 and gA0 = 0.

• Start peeling with A- until the time g;1 := inf{= > 0 : .= < −1}, which is almost surely �nite under P∞
due to the drift condition.

• Proceed peeling with A+ until the time gA1 := inf{= > g;1 : -= < −-g;1 − 1 +min0≤<≤g;1
-<}, which is a.s.

�nite under P̂∞, conditional on g;1.

Repeat inductively for : ≥ 1:

• At time gA
:−1, run peeling with A- until g;

:
:= inf{= > gA

:−1 : .= < −.gA
:−1
− 1 +ming;

:−1≤<≤g
A
:−1
.<}.
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• At time g;
:
, run peeling with A+ until gA

:
:= inf{= > g;

:
: -= < −-g;

:
− 1 +mingA

:−1≤<≤g
;
:
-<}.

Obviously, the above constructed A< is a local and a Dobrushin-stable peeling algorithm. We denote the
law of this peeling process by P̃? (? ∈ N∪∞). Note that the above stopping times may be in�nite if ? < ∞. Let

\̃' := inf{= > g;' : -= < −-g;
'
− 1 + min

gA
'−1≤<≤g

;
'

-<}.

The stopping time \̃' may be in�nite for ? < ∞, but the drift condition assures that P̃∞(\̃' < ∞) = 1. It
follows that under P̃∞, the peeling process with algorithm A< explores the half-plane by distance layers, in
the sense that the �nite stopping time \̃' is an upper bound for the covering time \' of the ball of radius '.
Hence, choosing A = A< in the general construction of the local limit and \ = \' in Proposition 30 will give
the construction of Pa∞ and yield the local convergence Pa?

(3)
−−−−→
?→∞

Pa∞. To be a bit more precise, we still need to

verify that P̃? → P̃∞ weakly. This is shown in the following lemma.

Lemma 38. Let a ∈ (1, a2). Then P̃? → P̃∞ as ? →∞.

Proof. From the construction of P̃? and by the spatial Markov property, for all = ≥ 1 and all s1, · · · , s= ∈ S, as
well as for all : ∈ [1, =] and 1 ≤ <;

1 ≤ <A
1 ≤ · · · ≤ <;

:
≤ <A

:
≤ =, we have

P̃? (S1 = s1, · · · , S= = s=, g;1 =<
;
1, g

A
1 =<A

1, . . . , g
;
:
=<;

:
, gA
:
=<A

:
)

= P? (S1 = s1, . . . , S<;1 = s<;1, g
;
1 =<

;
1)P̂?+G<;1

(S1 = s<;1+1, . . . , S<A1−<;1 = s<A1 , g
A
1 =<A

1)

· · · P?+G<A
:−1
(S1 = s<A

:−1+1, . . . , S<;:−<A:−1
= s<;

:
, g;
:
=<;

:
)P̂?+G

<;
:

(S1 = s<;
:
+1, . . . , S<A

:
−<;

:
= s<A

:
, gA
:
=<A

:
)

· P?+G<A
:

(S1 = s<A
:
+1, . . . , S=−<A

:
= s=),

where the peeling events (s8)1≤8≤= completely determine the perimeter variations (G8)1≤8≤= . By the conver-
gences P? → P∞ and P̂? → P̂∞, and by another application of the spatial Markov property, the right hand side
tends to the limit P̃∞(S1 = s1, · · · , S= = s=, g;1 =<

;
1, g

A
1 =<A

1, . . . , g
;
:
=<;

:
, gA
:
=<A

:
). The claim follows.

�

Proof of the convergence Pa?
(3)
−−−−→
?→∞

Pa∞ for 1 < a < a2 . We write

Pa? ( [t, f]' = b) = Pa? ( [e◦\̃' ]' = b, \̃' < # ) + Pa? ( [t, f]' = b, \̃' ≥ # ),

where the last term satis�es

Pa? ( [t, f]' = b, \̃' ≥ # ) ≤ P̃? (\̃' ≥ # ) −−−−→
?→∞

P̃∞(\̃' ≥ # ) −−−−−→
#→∞

0

by Lemma 38 and the drift condition. Thus, letting �rst ? →∞ and then # →∞ yields the claim. �

Proof of the convergence Pa?,@
(3)
−−−−−→
?,@→∞

Pa∞ while 0 < _′ ≤ @

?
≤ _ for 1 < a < a2 . It is not hard to see that the coun-

terparts of the above lemmas also hold, mutatis mutandis, in the diagonal regime. The essential matter is
that the peeling processes under Pa?,@ converge towards the peeling processes under Pa∞, due to the diagonal
asymptotics. Again, we take into account d† as a target. �

8 The local limit at a = a2 in the diagonal regime

Throughout this section, we assume that a = a2 and @

?
∈ [_′, _] for some 0 < _′ ≤ 1 ≤ _ < ∞ as ?, @ → ∞,

and study the local limit of P?,@ in this setting. We stress that this diagonal regime is slightly less general than
in Theorem 2, since we require that it always contains the main diagonal ? = @. The reason is purely technical
and becomes evident in the proof of Lemma 43 in Appendix A, where we need to control a ratio of random
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perimeters. We �nd, unsurprisingly, the same local limit P∞ = Pa2∞ as discovered in [21]. Moreover, we �nd the
scaling limit of the random time at which the peeling process jumps to a neighborhood of d†. The starting
point of our analysis is the diagonal asymptotics (Theorem 2)

I?,@ (a) ∼
1 · 2 (@/?)

Γ
(
− 4

3
)
Γ

(
− 1

3
)D−(?+@)2 ?−11/3 (a = a2).

It is then easy to see that the peeling step probabilities converge to the same limits as in [21] in the respective
diagonal regime. However, it is natural to make the following modi�cation for the peeling process.

We choose the peeling process with the target d†, driven by the peeling algorithm A†- and described in
Section 6.1: If the peeling step s= splits the triangulation into two pieces, we choose the unexplored part u= to
be the one containing d†. If d† is included in both, we choose the one in the right. This gives rise to a di�erent
perimeter variation process (-=, .=), whose law is described in Table 7.

Accordingly, we de�ne for< ≥ 0

)< := inf{= ≥ 0 : min{%=, &=} ≤ <}.

In other words,)< is just the �rst time at which either the + or the - boundary length of the unexplored map is
at most<. Using the peeling steps, we also see that)< = inf{= ≥ 0 : S= ∈ {R+?−:+1, R

-
?−: , L

+
@−:−1, L

-
@−: : 0 ≤ : ≤

<}}. The analysis of the hitting time )< yield the main new results of this section. The �rst one is a technical
lemma which generalizes the so-called one-jump lemma of [21] to the diagonal setting. Its proof follows the
recipe given in [21, Appendix C], although due to taking the limit along a diagonal, additional technicalities
arise. The second result is Theorem 7, whose proof mimics the proof of [21, Proposition 11]. A key novelty
of the two aforementioned proofs in our current work is controlling the ratio &=/%= of the perimeter during
the course of the peeling exploration described above. Finally, we detail the proof of the local convergence in
the diagonal regime, which follows the idea presented in [21, Sections 5.4-5.5], with important modi�cations
resulting from the fact that there is no presence of an in�nite boundary before taking the limit. However, it
turns out that applying the one-jump lemma 39 works almost exactly like applying the corresponding lemma
in [21].

8.1 The one-jump phenomenon of the perimeter process

Next, we investigate an analog of the large jump phenomenon discovered in [21]. For that, �x n > 0 and let

5n (=) =
(
(= + 2) (log(= + 2))1+n

)3/4
.

s P?,@+1(S1 = s) (-1, .1) s P?,@+1(S1 = s) (-1, .1)

C+ C
I?+2,@

I?,@+1
(2,−1) C- aC

I?,@+2

I?,@+1
(0, 1)

L+
:

C
I?+1,@−: I1,:

I?,@+1
(1,−: − 1) L-

:
aC
I?,@−:+1 I0,:+1

I?,@+1
(0,−:) (0 ≤ : ≤ \@)

R+
:

C
I:+1,0 I?−:+1,@

I?,@+1
(−: + 1,−1) R-

:
aC
I:,1 I?−:,@+1

I?,@+1
(−:, 0) (0 ≤ : ≤ \?)

L+
@−: C

I?+1,: I1,@−:

I?,@+1
(1,−@ + : − 1) L-

@−: aC
I?,:+1 I0,@−:+1

I?,@+1
(0,−@ + :) (0 < : < \@)

R+
?−: C

I?−:+1,0 I:+1,@

I?,@+1
(−? + : + 1,−1) R-

?−: aC
I?−:,1 I:,@+1

I?,@+1
(−? + :, 0) (0 ≤ : < \?)

Table 7 – Law of the �rst peeling event S1 under P?,@+1 and the corresponding (-1, .1) under the peeling
process of the left-most interface with the target d†. In the table, \ ∈ (0, 1) is an arbitrary cuto�, which
roughly measures whether the perimeter process has only small jumps or not. Observe that the last two
rows of the table are redundant with the second and the third row, respectively, in order to emphasize
the cuto� for taking the limit. Taking the limit (?, @) → ∞ gives the data of Table 5.
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De�ne the stopping time

gnG = inf {= ≥ 0 : |-= − `= | ∨ |.= − `= | > G 5n (=)} .

where G > 0.

Lemma 39 (One jump to zero). For all n > 0 and 0 < _′ ≤ 1 ≤ _ < ∞,

lim
G,<→∞

lim sup
?,@→∞

P?,@ (gnG < )<) = 0 while
@

?
∈ [_′, _] .

The proof of Lemma 39 is a modi�cation of the proof of the analogous Lemma 10 in [21]. The necessary
changes are left to Appendix A. Next, we prove the main scaling limit result of this article.

Proof of Theorem 7. First, assuming that a scaling limit of ?−1)< exists for every< ≥ 0, it actually does not
depend on<. Namely, since )0 ≥ )< , the strong Markov property gives

P?,@ ()0 −)< > n?) = E?,@
[
P%)< ,&)< ()0 > n?)

]
≤ E?,@

[
<∑
?′=0

P?′,&)< ()0 > n?) +
<∑
@′=0

P%)< ,@′ ()0 > n?)
]
. (43)

Let " > 0 be some large constant, and �x ? ′ ≤ <. We write

P?′,&)< ()0 > n?) = P?′,&)< ()0 > n?, &)< > ") + P?′,&)< ()0 > n? | &)< ≤ ")P?′,&)< (&)< ≤ ")

≤ P?′,&)< ()0 > n?, &)< > ") +
"∑
@′=0

P?′,@′ ()0 > n?) .

By [21, Proposition 2] (actually, by its analog for the peeling with target), P?′,@ −−−−→
@→∞ P?′ . Therefore, the �rst

term can be bounded from above by P?′ ()0 > n?) + n ′ for any n ′ > 0, provided " is large enough. In that case,
we obtain

<∑
?′=0

P?′,&)< ()0 > n?) ≤
<∑
?′=0

P?′ ()0 > n?) +
<∑
?′=0

"∑
@′=0

P?′,@′ ()0 > n?) + (< + 1)n ′.

It is easy to see that the right hand side converges to zero as ? → ∞ and n ′ → 0. The second term in
Equation (43) is treated similarly, and �nally we deduce P?,@ ()0 −)< > n?) −−−−−→

?,@→∞
0.

Let us then proceed to the existence of the scaling limit. First, �x G > 0,< ∈ N and n ∈ (0, `). Take ? and
@ large enough such that P?,@-almost surely, gnG ≤ )< . Denote E := {gnG < )<} and N= := {gnG > =}. Clearly
(N=)=≥0 is a decreasing sequence, and one can check that

N=+1 ⊂ N= \ {)< = = + 1} ⊂ N=+1 ∪ E . (44)

Let 2< (_) := lim?,@→∞ ? · P?,@ ()< = 1), where the limit is taken such that @/? → _. In other words,
@ = _? + > (?), and from the asymptotics of Theorem 2,

P?,@ ()< = 1) ∼
2<

(
@

?

)
?

(45)

as ?, @ →∞, @/? → _. On the event N= , we have %0+`=−G 5n (=) ≤ %= ≤ %0+`=+G 5n (=) and&0+`=−G 5n (=) ≤
&= ≤ &0 + `= + G 5n (=). This, in particular, gives

_? + `= − G 5n (=) + > (?)
? + `= + G 5n (=)

≤ &=
%=
≤ _? + `= + G 5n (=) + > (?)

? + `= − G 5n (=)
. (46)
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Denote _= := &=/%= . Then combining the previous equation with (45), we also obtain that for %0 = ? and
&0 = @ large enough,

2< (_=) − n
? + `= + G 5n (=)

1N= ≤ 1N=P%=,&= ()< = 1) ≤ 2< (_=) + n
? + `= − G 5n (=)

1N= .

By Markov property, P?,@ (N= \ {)< = = + 1}) = P?,@ (N=) − E?,@
[
1N=P?,@ ()< = 1)

]
. Therefore(

1 − 2< (_=) + n
? + `= − G 5n (=)

)
P?,@ (N=) ≤ P?,@ (N= \ {)< = = + 1})

≤
(
1 − 2< (_=) − n

? + `= + G 5n (=)

)
P?,@ (N=) .

Combining these estimates with the two inclusions in (44), we obtain the upper bounds

P?,@ (N=+1) ≤
(
1 − 2< (_=) − n

? + `= + G 5n (=)

)
P?,@ (N=) ,

and the lower bounds

P?,@ (N=+1 ∪ E) ≥ P?,@ ((N= \ {)< = = + 1}) ∪ E)
≥ P?,@ (N= \ {)< = = + 1}) + P?,@ (E \ N=)

≥
(
1 − 2< (_=) + n

? + `= − G 5n (=)

)
P?,@ (N=) + P?,@ (E \ N=)

≥
(
1 − 2< (_=) + n

? + `= − G 5n (=)

)
P?,@ (N= ∪ E) .

Then, by iterating the two bounds, we get

P?,@ (N# ) ≤
#−1∏
==0

(
1 − 2< (_=) − n

? + `= + G 5n (=)

)
and P?,@ (N# ∪ E) ≥

#−1∏
==0

(
1 − 2< (_=) + n

? + `= − G 5n (=)

)
for any # ≥ 1. Since N= ⊂ {)< > =} ⊂ N= ∪ E up to a P?,@-negligible set, the above estimates imply that

#−1∏
==0

(
1 − 2< (_=) + n

? + `= − G 5n (=)

)
− P?,@ (E) ≤ P?,@ ()< > # ) ≤

#−1∏
:=0

(
1 − 2< (_=) − n

? + `= + G 5n (=)

)
+ P?,@ (E) .

From the Taylor series of the logarithm we see that −G − G2 ≤ log(1 − G) ≤ −G for all G ≥ 0. Therefore, for
any positive sequence (G=)=≥0, we have

exp
(
−
#−1∑
==0

G= −
#−1∑
==0

G2
=

)
≤

#−1∏
==0
(1 − G=) ≤ exp

(
−
#−1∑
==0

G=

)
.

Now, we consider the sum
C?∑
==0

2< (_=) ± n
? + `= ∓ G 5n (=)

.

First, by (46), we see that _= =
_?+`=
?+`= (1 + > (1)) where > (1) is uniform over all = ∈ [0, C?] as ? →∞. Namely,

����1 − _? + `= ± G 5n (=) + > (?)? + `= ∓ G 5n (=)
· ? + `=
_? + `=

���� =
�������
G 5n (=)

(
?+`=
_?+`= + 1

)
+ > (?)

? + `= ∓ G 5n (=)

������� ,
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where the right hand side tends to zero uniformly on = ∈ [0, C?] as ? →∞. On the other hand, we also have
2< (_=)±n

?+`=∓G 5n (=) =
2< (_=)±n
?+`= (1 + > (1)) uniformly on [0, C?], for any �xed C > 0. Hence,

C?∑
==0

2< (_=) ± n
? + `= ∓ G 5n (=)

−−−−→
?→∞

ˆ C

0

2<

(
_+`B
1+`B

)
± n

1 + `B dB = ±n
`

log(1 + `C) +
ˆ C

0

2<

(
_+`B
1+`B

)
1 + `B dB .

Above, we also used the fact that 2< (_) is continuous in _, which follows directly from its de�nition and is
also seen below via an explicit expression. We also have

C?∑
==0

(
2< (_=) + n

? + `= − G 5n (=)

)2
−−−−→
?→∞

0

for all C > 0. Combining this with the last three displays, we conclude that

(1 + `C)−
n
` exp

©«−
ˆ C

0

2<

(
_+`B
1+`B

)
1 + `B dB

ª®®¬ − lim sup
?,@→∞

P?,@ (E) ≤ lim inf
?,@→∞

P?,@ ()< > C?)

≤ lim sup
?,@→∞

P?,@ ()< > C?) ≤ (1 + `C)
n
` exp

©«−
ˆ C

0

2<

(
_+`B
1+`B

)
1 + `B dB

ª®®¬ + lim sup
?,@→∞

P?,@ (E) . (47)

Now take the limit<, G →∞. First, using the data of Table 7, we observe that the sequence (2< (_))<≥0 is
increasing with a �nite limit:

2< (_) = lim
?,@→∞

(
? · P?,@ (%1 ∧&1 ≤ <)

)
= lim

?,@→∞
? ·

<∑
:=1

(
P?,@ (R+?−:+1, R

-
?−: ) + P?,@ (L

+
@−:−1, L

-
@−: )

)
= − 4

3
C2

1 · _7/32 (_)

<∑
:=1
(1 + a2)

(
00
D2
+ 01

)
0:D

:
2

−−−−−→
<→∞ −

4
3

C2

1 · _7/32 (_)
(1 + a2)

(
00
D2
+ 01

)
(�(D2) − 00) =: 2∞(_) . (48)

Furthermore, we notice that (1+a2)
(
00
D2
+ 01

)
(�(D2)−00) = −1`, a computation already done in the proof of [21,

Proposition 11]. This gives 2∞(_) = 4
3

`

2 (_)_7/3 . Moreover, in the limit<, G →∞, the error term lim sup P?,@ (E)
tends to zero due to Lemma 39. The middle terms lim inf?,@→∞ P?,@ ()< > C?) and lim sup?,@→∞ P?,@ ()< > C?)
do not depend on< due to the convergence P?,@ ()0 −)< > n?) −−−−−→

?,@→∞
0 seen at the beginning of the proof.

Thus by sending< →∞ and n → 0, the monotone convergence theorem �nally yields

lim
?,@→∞

P?,@ ()< > C?) = exp
(
−
ˆ C

0
2∞

(
_ + `B
1 + `B

)
dB

1 + `B

)
.

Now recall that
2 (_) = 4

3

ˆ ∞
0
(1 + B)−7/3(_ + B)−7/33B.

We note �rst that
2

(
_ + G
1 + G

)
=

4
3 (1 + G)

11/3
ˆ ∞
G

(1 + B)−7/3(_ + B)−7/3dB .

This yields

d
dG

(ˆ `−1G

0
2∞

(
_ + `B
1 + `B

)
dB

1 + `B

)
=

1
`
· 2∞

(
_ + G
1 + G

)
· 1

1 + G

= (1 + G)−7/3(_ + G)−7/3
(ˆ ∞
G

(1 + B)−7/3(_ + B)−7/33B

)−1
= − d

dG log
ˆ ∞
G

(1 + B)−7/3(_ + B)−7/3dB .

Finally, integrating this equation on each of the sides gives the claim. �
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In order to prove the diagonal local convergence in its full generality as Theorem 4 suggests, we also show
the following generalized bounds:

Proposition 40. For all< ∈ N, the scaling limit of the jump time )< has the following bounds:

∀C > 0 , lim inf
?,@→∞

P?,@ ()< > C?) ≥ exp
(
−
ˆ C

0
max
ℓ∈[_′,_]

2∞

(
ℓ + `B
1 + `B

)
· 3B

1 + `B

)
and

lim sup
?,@→∞

P?,@ ()< > C?) ≤ exp
(
−
ˆ C

0
min

ℓ∈[_′,_]
2∞

(
ℓ + `B
1 + `B

)
· 3B

1 + `B

)
where 2∞ is de�ned as in (48) and the limit is taken such that @/? ∈ [_′, _].

Proof. We modify the above proof as follows: First, (46) translates to

_′? + `= − G 5n (=)
? + `= + G 5n (=)

≤ &=
%=
≤ _? + `= + G 5n (=)
? + `= − G 5n (=)

conditional on N= . Then, the identity &=/%= := _= =
_?+`=
?+`= (1 + > (1)) is to be replaced by the bounds

_′? + `=
? + `= (1 + > (1)) ≤ _= ≤

_? + `=
? + `= (1 + > (1)) .

Finally, we notice that _ ↦→ 2< (_) is a continuous function for every< ≥ 0 on any compact strictly positive
interval, having the limit 2∞(_) as< → ∞ with the same property. Therefore, we can replace 2<

(
_+`B
1+`B

)
in

(47) by its minimum or maximum over the interval [_′, _], respectively, and �nally take the limit< →∞. �

The limit law
P(! > C) :=

ˆ ∞
C

(1 + G)−7/3(_ + G)−7/33G (49)

can be interpreted as the law of the quantum length of an interface resulted from the conformal welding of
two quantum disks in the Liouville Quantum Gravity of parameter W =

√
3, introduced in the context of the

mating of the trees theory in [23] and studied in [7]. More precisely, this measure results from a welding of
two independent quantum disks of parameter W =

√
3 and weight 2 along a boundary segment of length !. See

[23, 6, 7] for precise de�nitions of such quantum disks. In particular, a quantum disk conditioned to have a
�xed boundary length is well-de�ned.

As de�ned in [6], an (', !)-length quantum disk (�, G,~) is a quantum disk decorated with two marked
boundary points G,~, which is sampled in the following way: First, a quantum disk � of a �xed boundary
length ' + ! is sampled. Then, conditional on � , the boundary point G is sampled from the quantum boundary
length measure. Finally, de�ne ~ to be the boundary point of � such that the counterclockwise boundary arc
from G to ~ has length '. By giving the quantum disk an additional weight parameter and setting its value to 2,
the points G and ~ can in fact be sampled independently from the LQG boundary length measure, as explained
in [7].

For two independent
√

3-quantum disks, there is a natural perimeter measure on (0,∞)2, given by

3<(D, E) = D−7/3E−7/33D3E . (50)

This measure is the Lévy measure of a pair of independent spectrally positive 4/3-stable Lévy processes, which
has a direct connection to the jumps of the boundary length processes of SLE(16/3). On the other hand, it
is known that the typical disks swallowed by the SLE(16/3) are

√
3-quantum disks; see [34]. This perimeter

measure allows us to randomize the boundary arc lengths of the quantum disks as follows.
Due to the convergence @/? → _ ∈ (0,∞) (and ?/? → 1) in our discrete picture, we consider the measure

(50) conditional on the set {(D, E) : D = 1 + !, E = _ + !, ! > 0}, such that the two independent quantum disks
have perimeters (_, !) and (!, 1), respectively. This gives rise to the law of the segment ! as

P(! ∈ 3G) = N−1(1 + G)−7/3(_ + G)−7/33G
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where N is a normalizing constant in order to yield a probability distribution. Gluing the two quantum disks
along the boundary segment of length ! such that the marked boundary points of the two disks coincide to
the points d and d†, respectively, �nally yields (49) as the law of the interface length.

The same law of ! has been recently derived in [7, Remark 2.7] as a special case of the general conformal
welding of quantum disks. Since the parameters there also match with the expected ones for the universality
class of the critical Ising model, this gives some hints that the Ising interfaces should indeed converge towards
an SLE(3)-curve on a LQG surface, as predicted in the literature. This convergence remains as an important
open problem.

8.2 The local convergence in the diagonal regime

We recall �rst the de�nition of the local limit P∞ = Pa2∞ (see [21, Section 5.3]). The probability measure P∞ is
de�ned as the law of a random triangulation of the half-plane which is obtained as a gluing of three in�nite,
mutually independent, one-ended triangulations L∞u∞, L∞R∞ and L∞u∗∞ along their boundaries, which
satisfy the following properties: L∞u∞ has the law P0, L∞u∗∞ has the law P0 under the inversion of the spins,
and L∞R∞ is de�ned as the law of the increasing sequence (lim=→∞L∞ [e◦=]A )A ≥0 under P∞. We call R∞ the
ribbon. See [21] for a more detailed study and Figure 9 for an illustration. The fact that the ball [e◦=]A stabilizes
in a �nite time, and thus the limit = → ∞ is well-de�ned, follows from the positive drift of the perimeter
processes. Observe that the boundary of L∞R∞ consists of three arcs: a �nite one consisting of edges of me◦0
only, and two in�nite arcs of spins - and +, respectively. The gluing is performed along the in�nite boundary
arcs such that the spins match with the boundary spins of u∞ and u∗∞, respectively.

Then, �x< ≥ 0, and de�ne R< as the union of the explored map e◦
)<−1 and the triangle explored at )< .

Now the triple (u)< ,R<, u
∗
)<
) partitions a triangulation under P?,@ , such that u)< and u∗

)<
correspond to the

two parts separated by the triangle at )< . We will reroot the unexplored maps u)< and u∗
)<

at the vertices
du and du∗ , which are the unique vertices shared by u)< and R< , and u∗

)<
and R< , respectively. Now the

boundary condition of u)< is denoted by (P, (Q1,Q2)). This notation is in line with [21, Theorem 4]. Similarly,
the boundary condition of u∗

)<
is ((P∗1 ,P∗2 ),Q∗). Observe that the condition

S)< ∈ {R+%)<−1+K< , R
-
%)<−1+K< }

uniquely de�nes an integer K< , which represents the position relative to d† of the vertex where the triangle
revealed at time)< touches the boundary. Here, we make the convention that R+

?+: = L+
@−:−1 and R-

?+: = L-
@−:−1

for : ≥ 0. In particular, |K< | ≤ <. See also [21, Figure 12] for a similar setting when @ = ∞.

Lemma 41 (Joint convergence before gluing). Fix n, G,< > 0, and let J ≡ JnG,< := {gnG = )< ≥ n?}. Then for
any A ≥ 0,

lim sup
?,@→∞

��P?,@ (( [R<]A , [u)< ]A , [u∗)< ]A ) ∈ E
)
− P∞

(
( [R∞]A , [u∞]A , [u∗∞]A ) ∈ E

) ��
≤ lim sup

?,@→∞
P?,@ (J2) + P∞(gnG < ∞)

where E is any set of triples of balls.

Proof. The proof applies the idea of the proof of [21, Lemma 14]. Assuming that known, the only thing one
needs to take care of is the fact that the random numbers P∗1 , P∗2 , Q1 and Q2 tend to∞ uniformly, and that P
and Q∗ stay bounded, conditional on J. Observe also that the random number K< is automatically bounded
in this setting, so we do not need any condition for K< on the event J.

Similarly as in [21], we have the lower bounds P∗1 ≥ ` (n? − 1) − G 5n (n? − 1) =: P∗1 and P∗2 ≥ ? +
min=≥0(`= − G 5n (=)) − 1 −< =: P∗2 as well as the upper bound Q∗ ≤ < + 1 for the boundary condition of u∗

)<
.

For completeness and convenience, let us show similar bounds for the boundary condition of u)< . Let (+ and
(- be the distances from d to du∗ and du along the boundary, respectively. First, expressing the total perimeter
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(a) (b)

Figure 9 – Left: a glimpse of a realization of the local limit at a = a2 after just @ → ∞, which is
considered in [21]. The interface is still �nite. In this work, we bypass this intermediate limit by letting
?, @ →∞ in a diagonal regime. Right: a realization of the ribbon containing the interface in the local
limit at a = a2 .

of u)< , the number of edges between d and d† clockwise and the number of + edges on the boundary of u)< ,
respectively, we �nd the equations 

Q1 + Q2 +P = &)<−1 −K<

(- + Q2 +max{0,K<} = @
P = X −min{0,K<}

where X = 1 if S)< = R+
%)<−1+K< , and otherwise X = 0, as well as (- is the number of - edges on R< ∩ me◦0 . The

solution of this system of equations is 
Q1 = .)<−1 + (- − X
Q2 = @ − (- −max{0,K<}
P = X −min{0,K<}

.

We have (- ∈ [0, 1 − min=≥0(`= − G 5n (=))], and the function = ↦→ `= − G 5n (=) is increasing. Therefore, we
deduce Q1 ≥ ` (n? − 1) −G 5n (n? − 1) − 2 =: Q1 and Q2 ≥ @ +min=≥0(`= −G 5n (=)) − 1−< =: Q2, together with
P ≤ < + 1. The claim follows. �

Proof of the convergence Pa2?,@ → Pa2∞ . The triangulation L?,@ (t, f) (respectively, L∞(t, f)) can be represented
as the gluing the triple L?,@ (R<, u)< , u

∗
)<
) (respectively, L∞(R∞, u∞, u∗∞)) along their boundaries. This is

done pairwise between the three components, taking into account that the location of the root vertex changes
during this procedure. Given a triangulation t with a simple boundary, and an integer ( , let us denote by −→t (

(resp.←−t ( ) the map obtained by translating the root vertex of t by a distance ( to the right (resp. to the left)
along the boundary. Denote by d and d ′ the root vertices of two triangulations t and t′, respectively, and let !
be the number of edges in t and t′ which are admissible for the gluing. More precisely, we assume that ! is a
random variable taking positive integer or in�nite values, such that

L?,@! −−−−−→
?,@→∞

∞ in distribution and L∞! = ∞ almost surely. (51)

Finally, let t ⊕ t′ be the triangulation obtained by gluing the ! boundary edges of t on the right of d to the !
boundary edges of t′ on the left of d ′. The dependence on ! is omitted from this notation because the local
limit of t ⊕ t′ is not a�ected by the precise value of !, provided that (51) holds.
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Now under P?,@ , we have

(t, f) =
−−−−−→
(uR<)(

++(- ⊕ u∗)< where uR< = u)< ⊕
←−−−−
(R<)(

- (52)

where we recall that (+ and (- are the distances from d to du∗ and du along the boundary, respectively. Similarly,
L∞(t, f) can be expressed in terms of u∞, R∞, u∗∞ and (± using gluing and root translation.

On the event J, the perimeter processes (-=)=≥0 and (.=)=≥0 stay above `=−G 5n (=) up to the time gnG . Thus
their minima over [0, gnG ) are reached before the deterministic time #min = sup {= ≥ 0 : `= − G 5n (=) ≤ 0}, and
(+ and (- are measurable functions of the explored map e◦

#min
. It follows that L?,@(± converges in distribution

to L∞(± on the event J. Using the relation (52) together with [21, Lemmas 15-16], we deduce from Lemma 41
that for any G,<, n > 0, and for any A ≥ 0 and any set E of balls, we have

lim sup
?,@→∞

��P?,@ ( [t, f]A ∈ E) − P∞( [t, f]A ∈ E) �� ≤ lim sup
?,@→∞

P?,@ (J2) + P∞(gnG < ∞) .

The left hand side does not depend on the parameters G,< and n . Therefore to conclude that P?,@ converges
locally to P∞, it su�ces to prove that lim sup

?,@→∞
P?,@ (J2) + P∞(gnG < ∞) converges to zero when G,< →∞ and

n → 0. The latter term converges to zero, since if G →∞, we have gnG →∞ almost surely under P∞. For the
�rst term, a union bound gives

P?,@ (J2) ≤ P?,@ (gnG < )<) + P?,@ ()< < n?) ,

where the �rst term on the right can be bounded using Lemma 39:

lim
<,G→∞

lim sup
?,@→∞

P?,@ (gnG < )<) = 0.

For the last term, we use the lower bound of Proposition 40:

lim
n→0

lim sup
?,@→∞

P?,@ ()< < n?) ≤ 1 − lim
n→0

exp
(
−
ˆ n

0
max
ℓ∈[_′,_]

2∞

(
ℓ + `B
1 + `B

)
3B

1 + `B

)
= 0 . �

A A one-jump lemma for the processL?,@ (-=, .=)=≥0 at a = a2

The proof is mostly a modi�cation of a similar proof [21, Appendix C]. Here, we need to take care that both -=
and .= stay close to their asymptotic mean for = < )< with high probability, as ?, @ →∞ with @/? ∈ [_′, _],
where 0 < _′ ≤ 1 ≤ _ < ∞. We follow the exposition and the notation of [21].

For starters, we write

p:,:′ = P∞(−(-1, .1) = (:, : ′)) and pG
:
= P∞(−-1 = :) , p

~

:
= P∞(−.1 = :) .

Then, for : ≤ ? − 2 and : ′ ≤ @ − 1, the basic relation for the comparison of the laws of the perimeter processes
reads

P?,@ (−(-1, .1) = (:, : ′)) =
I?−:,@−:′

I?,@D
:+:′
2

p:,:′ =
I?−:,@−:′D

(?+@)−(:+:′)
2

I?,@D
?+@
2

p:,:′, (53)

as easily veri�ed using the data of Table 7. Observe that this condition is reminiscent of the Doob ℎ-transform
of a random walk, ceased to satisfy it since the condition (53) breaks down for : > ? − 2 or : ′ > @ − 1. We also
introduce the following notation: If � and � are two positive functions de�ned on some set Λ, we say that

• �(~) 4 �(~) for ~ ∈ Λ, if there exists � > 0 such that �(~) ≤ ��(~) for all ~ ∈ Λ;

• �(~) � �(~) for ~ ∈ Λ, if �(~) 4 �(~) and �(~) 4 �(~).

We �x a cuto� \ ∈ (0, 1) and let ?\ := 2
1−\ so that \? ≤ ? − 2 and \@ ≤ @ − 1 for all ?, @ ≥ ?\ . The following

lemma gives estimates for the jump probabilities of the perimeter processes in a single peeling step:
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Lemma 42. Assume throughout the lemma that @/? lies in a �xed compact interval � ⊂ R+ such that 0 ∉ � . Then
the perimeter increments during the �rst peeling step satisfy the following probability estimates:

(i) pG
:
� p~

:
� :−7/3 for : ≥ 1.

(ii) P?,@ ({−-1 = :} ∩ {−.1 ≤ @ − 1}) � :−7/3 and P?,@ (−-1 = ? − :) � ?−1:−4/3 for all ?, @ ≥ ?\ and
1 ≤ : ≤ \? .

(iii) P?,@ ({−.1 = :} ∩ {−-1 ≤ ? − 2}) � :−7/3 and P?,@ (−.1 = @ −:) � ?−1:−4/3 for ?, @ ≥ ?\ and 1 ≤ : ≤ \@.

(iv)
����I?−:,@−:′D?+@−(:+:′)2

I?,@D
?+@
2

− 1
���� 4 ?−1 |: | +?−1/3 and

����I?−:,@−:′D?+@−(:+:′)2

I?,@D
?+@
2

− 1
���� 4 ?−1 |: ′ | +?−1/3 for any (:, ?), (: ′, @)

such that −2 ≤ : ≤ \? and −2 ≤ : ′ ≤ \@.

(v) For ?, @ ≥ ?\ , G ∈ [1, \ (? ∧ @)] and< ≥ 1,

P?,@ (−-1 < ? −<, −.1 < @ −< and (−-1) ∨ (−.1) ≥ G) 4 G−4/3 + ?−1<−1/3 .

In the following, letAG = {(−-1) ∨ (−.1) ≤ G} and, be either ` − -1 or ` − .1.

(vi) P?,@ ({, ≥ ℎ}∩AG ) 4 ℎ−4/3, E?,@ [,1{, ≥ℎ}∩AG
] 4 ℎ−1/3 and E?,@ [, 21{, ≤ℎ}∩AG

] 4 ℎ2/3 for ?, @ ≥ ?\ ,
G ∈ [1, \ (? ∧ @)] and ℎ ∈ [1, G].

(vii) |E?,@ [,1AG
] | 4 G−1/3 for ?, @ ≥ ?\ and G ∈ [1, \ (? ∧ @)].

(viii) For ?, @ ≥ ?\ , G ∈ [1, \ (? ∧ @)] and b ∈ [2G−1, 1],

log
(
E?,@ [4±b, 1AG

]
)
4 G−4/34bG .

Proof. (i) Proven in [21].

(ii) First, since P?,@ ({−-1 = 1} ∩ {−.1 ≤ @ − 1}) has a �nite limit as ?, @ → ∞ while @/? ∈ � , we have
P?,@ ({−-1 = 1} ∩ {−.1 ≤ @ − 1}) � 1. Then for 2 ≤ : ≤ \? , we write

P?,@ ({−-1 = :} ∩ {−.1 ≤ @ − 1}) =
I?−:,@

I?,@D
:
2

p:,0 +
I?−:,@−1

I?,@D
:
2

p:,1.

Since : ≤ \? , the asymptotics of Equation (8) yield I?−:,@
I?,@D

:
2

� 1 and I?−:,@−1
I?,@D

:
2

� 1. The �rst estimate follows then
by (i). For the second estimate, we note that

P?,@ (−-1 = ? − :) = C2
I:,@−1I?−:+2,0

I?,@
+ C2a2

I:,@I?−:,1

I?,@
∼ � (?, @) · 0:D:2 ·

(
(? − : + 2)− 7

3 + (? − :)− 7
3
)
· ? 4

3

where � (?, @) is a bounded constant depending on ?, @ and bounded away from zero. Since 0:D:2 � :−4/3 as
well as (? − : + 2)−7/3 � ?−7/3 � (? − :)−7/3, the desired result follows.

(iii) Since P?,@ ({−.1 = 1} ∩ {−-1 ≤ ? − 2}) has a �nite limit, P?,@ ({−.1 = 1} ∩ {−-1 ≤ ? − 2}) � 1. Then,
assume 2 ≤ : ≤ \@, in which case

P?,@ ({−.1 = :} ∩ {−-1 ≤ ? − 2}) =
I?,@−:

I?,@D
:
2

p0,: +
I?+1,@−:

I?,@D
:
2

p−1,:

Since : ≤ \@, the asymptotics of Equation (8) yield I?,@−:
I?,@D

:
2

� 1 and I?+1,@−:
I?,@D

:
2

� 1. The �rst estimate follows.
Secondly, for : = 2, . . . , \@,

P?,@ (−.1 = @ − :) = C2
I?+1,:I1,@−:−1

I?,@
+ C2a2

I?,:I0,@−:+1

I?,@
∼ �̃ (?, @) · 0:D:2 ·

(
(@ − : + 1)− 7

3 + (@ − : − 1)− 7
3
)
· ? 4

3

where �̃ (?, @) is bounded and bounded away from zero. The result follows since (@ − : + 1)−7/3 � @−7/3 �
(@ − : − 1)−7/3 and @ � ? .
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(iv) From the asymptotic expansion I?,@D?+@2 =
1 ·2 (@/?)

Γ (−4/3)Γ (−1/3) ?
−11/3 (

1 +$ (?−1/3)
)
, we see that there exist

constants � = � (\ ) and ?0 = ?0(\ ) such that for all ?, @ ≥ ?0, −2 ≤ : ≤ \? and −2 ≤ : ′ ≤ \@,

(? − :)−11/3

?−11/3

(
1 −�?−1/3

)
≤
I?−:,@−:′

I?,@D
:+:′
2

≤ (? − :)
−11/3

?−11/3

(
1 +�?−1/3

)
.

After writing down the Taylor expansions of each of the sides of the inequality, the rest of the proof of the
�rst estimate goes similarly as the proof of a corresponding claim in [21]. The second estimate follows after
swapping the roles of ? and @, and : and : ′, respectively, and noting that @−1 |: ′ | + @−1/3 � ?−1 |: ′ | + ?−1/3.

(v) We estimate

P?,@ (−-1 < ? −<, −.1 < @ −< and (−-1) ∨ (−.1) ≥ G)
≤ P?,@ ({−-1 ≤ ? − 2} ∩ {\@ > −.1 ≥ G}) + P?,@ ({−.1 ≤ @ − 1} ∩ {\? > −-1 ≥ G})
+ P?,@ (−-1 ∈ [\?, ? −<]) + P?,@ (−.1 ∈ [\@, @ −<])

4
\@∑
:=G

:−7/3 +
\?∑
:=G

:−7/3 +
(1−\ )?∑
:=<

?−1:−4/3 +
(1−\ )@∑
:=<

?−1:−4/3 4 G−4/3 + ?−1<−1/3,

where we used the results (ii)-(iii).

(vi) This goes similarly as the proof of a corresponding claim in [21], after one notices that the conditions
G ≤ \@ and ℎ ≥ 1 imply {ℎ − ` ≤ −.1 ≤ G} ⊆ {1 ≤ −.1 ≤ \@}.

(vii) For : ≤ ? − 2 and : ′ ≤ @ − 2, Equation (53) gives the estimate

��P?,@ ((−-1,−.1) = (:, : ′)) − p:,:′
�� ≤ p:,:′

�����I?−:,@−:′I?,@D
:+:′
2

− 1

����� .
If, = ` − -1, the equation above then yields

��E?,@ [,1AG
] − E∞ [,1AG

]
�� = ����� G∑

:=−2
(` + :)

(
P?,@ (−-1 = :,−.1 ∈ [−1, G]) − P∞ (−-1 = :,−.1 ∈ [−1, G])

) �����
=

����� G∑
:=−2

G∑
:′=−1
(` + :)

(
P?,@ (−-1 = :,−.1 = :

′) − P∞ (−-1 = :,−.1 = :
′)
) �����

≤
G∑

:=−2

G∑
:′=−1

|` + : |
��P?,@ (−-1 = :,−.1 = :

′) − p:,:′
��

≤
G∑

:=−2

G∑
:′=−1

|` + : |p:,:′
�����I?−:,@−:′I?,@D

:+:′
2

− 1

�����
4

G∑
:=−2
|` + : | (: + 3)−7/3

(
?−1 |: | + ?−1/3

)
4 ?−1/3

where we used the estimates (i) and (iv). If, = ` − .1, symmetry and the second estimate in (iv) yield the
same asymptotic upper bound. The rest of the proof goes like the proof of an analogous claim in [21, Appendix
C].

(viii) This is proven, mutatis mutandis, in [21, Appendix C]. �

Let gG = inf {= ≥ 0 : |-= − `= | ∨ |.= − `= | > G}. Then, using the Markov property, we �nd the following
analog of [21, Lemma 24].
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Lemma 43. Fix some n > 0 and let G = j
(
# (log# )1+n

)3/4. Then for any 0 < _min ≤ 1 ≤ _max < ∞,
\ ∈ (0, _min), ?, @ ≥ ?̃\ := ?\/(1 − \ ) such that @

?
∈ [_min, _max] as well as < ≥ 1 and j, # ≥ 2 such that

G ∈ [1, \
1+\ (? ∧ @)], we have

P?,@ (gG ≤ #, gG < )<) 4
1

(log j + log# )1+n/2
+ #
?
<−1/3 .

Proof. For = ≥ 1, let Δ-= = -= − -=−1 and Δ.= = .= − .=−1, and

�G = inf {= ≥ 1 : (−Δ-=) ∨ (−Δ.=) ≥ G} .

Following the corresponding proof in [21], we bound the probability of the event {gG ≤ #, gG < )<} both in
the cases {�G ≤ gG } (large jump estimate) and {gG < �G } (small jump estimate).

Large jump estimate: union bound. We have

P?,@ (gG ≤ #, gG < )< and �G ≤ gG ) ≤
#∑
==1

P?,@ (= ≤ gG and �G = = < )<) .

If = ≤ gG , in particular %=−1 ≥ ? − G and &=−1 ≥ @ − G . Let

D :=
{
(? ′, @′) : ? ′ ≥ ? − G, @′ ≥ @ − G, _min − \

1 + \ ≤ @
′

? ′
≤ (1 + \ )_max + \

}
. (54)

Then for 8 < gG , we have the estimates

&8

%8
− _max ≤

@ + `8 + G
? + `8 − G − _max ≤

(@ − _max?) + ` (1 − _max)8 + (1 + _max)G
? − G ≤ (1 + _max)G

? − G ≤ \ (1 + _max)

and

&8

%8
−_min ≥

@ + `8 − G
? + `8 + G −_min ≥

(@ − _min?) + ` (1 − _min)8 − (1 + _min)G
?

≥ − (1 + _min)G
?

≥ −(1+_min)
\

1 + \ ,

since by assumption, _min? ≤ @ ≤ _max? and 1 ≤ G ≤ \?

1+\ . In particular, this holds for 8 = = − 1, and we
conclude that (%=−1, &=−1) ∈ D.

On the other hand, �G = = < )< immediately implies %= > <, &= > < and (−Δ-=) ∨ (−Δ.=) ≥ G . Thus,
the Markov property of (%=, &=)=≥0 gives the upper bounds

P?,@ (= ≤ gG and �G = = < )<) ≤ E?,@
(
P%=−1,&=−1 (%1 > <, &1 > <, (−-1) ∨ (−.1) ≥ G) 1{%=−1≥?−G,&=−1≥@−G }

)
≤ sup
(?′,@′) ∈D

P?′,@′ (−-1 < ? −<, −.1 < @ −<, (−-1) ∨ (−.1) ≥ G) .

The assumptions ?, @ ≥ ?̃\ =
?\

1−\ and 1 ≤ G ≤ \
1+\ (? ∧ @) ensure that, for ? ′ ≥ ? − G and @′ ≥ @ − G , the

condition ? ′ ∧ @′ ≥ ?\ with 1 ≤ G ≤ \ (? ′ ∧ @′) is satis�ed. Hence, by Lemma 42 (v),

P?,@ (gG ≤ #, gG < ), and �G ≤ gG ) 4 #

(
G−4/3 + ?−1<−1/3

)
=

j−4/3

(log# )1+n +
#

?
<−1/3. (55)

Small jump estimate: Cherno� bound. For each of the four unit vectors e ∈ Z2, de�ne

geG = inf {= ≥ 0 : (`= − -=, `= − .=) · e ≥ G} ,

so that gG = mine g
e
G . We start by estimating

P?,@ (gG ≤ #, gG < )< and �G > gG ) ≤ P?,@ (gG ≤ #, gG < �G )

≤
∑
e
P?,@

(
gG = geG ≤ #, geG < �G

)
. (56)

60



If geG = = < �G , then (`= − -=, `= − .=) · e =
∑=
8=1(` − Δ-8 , ` − Δ.8) · e ≥ G , and (−Δ-8) ∨ (−Δ.8) ≤ G for

all 8 = 1, . . . , =. Therefore, applying the Cherno� bound,

P?,@ (gG = geG ≤ #, geG < �G ) ≤ 4−bG
#∑
==1

E?,@

[
1{gG=geG==}

=∏
8=1

4b (`−Δ-8 ,`−Δ.8 ) ·e1{(−Δ-8 )∨(−Δ.8 ) ≤G }

]
≤ 4−bG

#∑
==1

E?,@

[
1{gG==}

=∏
8=1

4b (`−Δ-8 ,`−Δ.8 ) ·e1{(−Δ-8 )∨(−Δ.8 ) ≤G }

]
(57)

for all b ≥ 0.
For ?, @ ∈ N ∪ {∞}, let iG,e?,@ (b) = E?,@ [4b (`−-1,`−.1) ·e1AG

], where AG = {(−-1) ∨ (−.1) ≤ G} was already
encountered in Lemma 42. Since the pair (-1, .1) takes only �nitely many values on the event AG and
L?,@ (-1, .1) → L∞(-1, .1) in distribution, we have iG,e?,@ (b) → i

G,e
∞ (b) as ?, @ → ∞ and @/? ∈ � for any

compact interval � ⊆ R+ such that 0 ∉ � . Recall the set D de�ned by (54). Since the peeling process converges
in this set when ? ′, @′→∞, the function iG,e

?′,@′ (b) is continuous in its one-point compacti�cation D∪{(∞,∞)}.
Hence, there exists a pair (?∗, @∗) = (?∗(G, e, b), @∗(G, e, b)) ∈ D ∪ {(∞,∞)} such that

i
G,e
?∗,@∗ (b) = sup

(?′,@′) ∈D∪{(∞,∞) }
i
G,e
?′,@′ (b).

Let (Δ- ∗=,Δ- ∗=)=≥1 be a sequence of i.i.d. random variables independent of (-=, .=)=≥0 and with the same
distribution as L?∗,@∗ (-1, .1). De�ne

(*8 ,+8) =
{
−(Δ-8 ,Δ.8) if 8 ≤ gG
−(Δ- ∗8 ,Δ. ∗8 ) if 8 > gG .

On the event {gG = =}, the future (*8 ,+8)8>= of the process is an i.i.d. sequence independent of the past
such that E?,@ [4b (`+*8 ,`++8 ) ·e1{*8∨+8 ≤G }] = i

G,e
?∗,@∗ (b). Therefore we can continue the bound (57) with

4−bG
#∑
==1

E?,@

[
1{gG==}

=∏
8=1

4b (`+*8 ,`++8 ) ·e1{*8∨+8 ≤G }

]
= 4−bG

#∑
==1

(
i
G,e
?∗,@∗ (b)

)−(#−=)E?,@ [
1{gG==}

#∏
8=1

4b (`+*8 ,`++8 ) ·e1{*8∨+8 ≤G }

]
≤ 4−bG · (1 ∨ iG,e?∗,@∗ (b)

−# ) · E?,@

[
#∏
8=1

4b (`+*8 ,`++8 ) ·e1{*8∨+8 ≤G }

]
. (58)

Now gG is a stopping time with respect to the natural �ltration (F=)=≥0 of the process (*=,+=)=≥0. Therefore
for all 8 ≥ 0,

E?,@
[
4b (`+*8+1,`++8+1) ·e1{*8+1∨+8+1≤G }

���F8 ] = 1{8<gG } · i
G,e
%8 ,&8
(b) + 1{8≥gG } · i

G,e
?∗,@∗ (b) ≤ i

G,e
?∗,@∗ (b) ,

where we have the last inequality due to the fact that (%8 , &8) ∈ D on the event {8 < gG }. By expanding the
expectation in (58) with # successive conditioning, we see that it is bounded by iG,e?∗,@∗ (b)# . Then, combining
(57) and (58) yields

P?,@ (gG = geG ≤ #, geG < �G ) ≤ 4−bG (iG,e?∗,@∗ (b)
# ∨ 1) .

By Lemma 42(viii), there exists a constant � such that iG,e?,@ (b) ≤ exp(�G−4/34bG ) for all ?, @ ≥ ?\ , G ∈
[1, \ (? ∧ @)], b ∈ [2G−1, 1] and unit vector e ∈ Z2. Note that we already have seen in the derivation of the
large jump estimate that the conditions ? ′ ≥ ? − G and @′ ≥ @ − G imply ? ′ ∧ @′ ≥ ?\ and 1 ≤ G ≤ \ (? ′ ∧ @′).
Therefore, we also have iG,e?∗,@∗ (b) ≤ exp(�G−4/34bG ) by the de�nition of iG,e?∗,@∗ (b). Hence,

P?,@ (gG = geG ≤ #, geG < �G ) ≤ exp(−bG +� · #G−4/34bG ) .
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Plugging this into (56) and taking bG = 2 log logG with 2 = 1 + n/2 yields

P?,@ (gG ≤ #, gG < )< and �G > gG ) ≤ 4 exp(−2 log logG +�#G−4/3(logG)2) .

Thanks to the relation between G and # given in the assumptions, we have #G−4/3(logG)2 � j−4/3 (log j+log# )2
(log# )1+n ,

which is bounded by a constant for j, # ≥ 2. It follows that

P?,@ (gG ≤ #, gG < )< and �G > gG ) 4 exp(−2 log logG) � (log j + log# )−2 .

By adding the large jump estimate (55) to the above small jump estimate, we conclude that P?,@ (gG ≤ #, gG <

)<) 4 (log j + log# )−2 + #?−1<−1/3, where we again use the boundedness of j−4/3 (log j+log# )2
(log# )1+n . �

Proof of Lemma 39. Let Δ= = |-= − `= | ∨ |.= − `= |. Recall that gnG = inf {= ≥ 0 : Δ= > G 5n (=)} where 5n (=) =(
(= + 2) (log(= + 2))1+n

)3/4, and we want to prove that

lim
G,<→∞

lim sup
?,@→∞

P?,@ (gnG < )<) = 0 while @

?
∈ [_′, _] .

Consider the sequences (#: ):≥0 and (G: ):≥0 de�ned by #0 = G0 = 0,

Δ#: := #: − #:−1 = 2: and ΔG: := G: − G:−1 =
G

3
(
Δ#: (logΔ#: )1+n

)3/4
.

Then we have #: = 2:+1 − 2 and

G: =
G

3

:∑
8=1

2
3
4 8 · (8 log 2) 3

4 (1+n) ≤ G3 ·
2 3

4 (:+1)

23/4 − 1
(: log 2) 3

4 (1+n) ≤ G
(
2: (log 2: )1+n

)3/4
.

In other words, G: ≤ G 5n (#:−1).
Consider the sequence of horizontal segments �: = {(=, G: ) : = ∈ (#:−1, #: ]}. Due to the previous inequal-

ity, all of these segments are below the curve Δ= = G 5n (=). Let  nG,< be the index : where Δ= goes above �: for
the �rst time up to )< , that is,

 nG,< = inf {: ≥ 1 : ∃= ∈ (#:−1, #: ] s.t. Δ= > G: and = < )<} .

Then we have {gnG < )<} ⊆ { nG,< < ∞}, and an union bound would allow us to restrict our consideration
to the set on the right hand side of the inclusion. Observe that, for any = ≥ 1, the conditions Δ#:−1 ≤ G:−1
and Δ=+#:−1 > G: imply Δ̃= := |-=+#:−1 − -#:−1 − `= | ∨ |.=+#:−1 − .#:−1 − `= | > ΔG: . Therefore by Markov
property of L?,@ (-=, .=)=≥0,

P?,@ ( nG,< = :) ≤ E?,@
[
P%#:−1 ,&#:−1

(
∃= ∈ (0,Δ#: ] s.t. Δ= > ΔG: and = < )<

)
1{Δ#:−1 ≤G:−1 }

]
.

On the other hand, Δ#:−1 ≤ G:−1 also implies

&#:−1

%#:−1
− _ ≤ (@ − _?) + ` (1 − _)#:−1 + (1 + _)G:−1

? + `#:−1 − G:−1
≤ (1 + _)G:−1

? − G:−1

and
&#:−1

%#:−1
− _′ ≥ (@ − _

′?) + ` (1 − _′)#:−1 − (1 + _′)G:−1
? + `#:−1 + G:−1

≥ − (1 + _
′)G:−1

? + G:−1
.

We note that G:−1 ≤ G 5n (Λ?), which is of smaller order than ? . Let _min and _max be positive constants such
that _min < _′ ≤ 1 ≤ _ < _max. Then for ? large enough, &#:−1

%#:−1
∈ [_min, _max]. In this case, we obtain

E?,@
[
P%#:−1 ,&#:−1

(
∃= ∈ (0,Δ#: ] s.t. Δ= > ΔG: and = < )<

)
1{Δ#:−1 ≤G:−1 }

]
≤ sup
?′≥?−G:−1, @′≥@−G:−1,

@′
?′ ∈[_min,_max ]

P?′,@′ (gΔG: ≤ Δ#: , gΔG: < )<) .
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Let :0 = :0(?, @) be the largest : such that#: ≤ Λ(?∧@), where Λ ≥ 1 is some cut-o� value that will be sent
to in�nity after ? , G and<. Explicitly, :0 =

⌊
log2

(Λ
2 (? ∧ @) + 1

) ⌋
, and Δ#:0 =

#:0
2 + 1 = $ (?). Then, for any

�xed G ,< and in the limit ?, @ →∞, we have ΔG: ≤ ΔG:0 ≤ \
1+\ (? ∧@) and ? −G:−1 ≥ ? −G 5n (Λ(? ∧@)) > ?̃\

as well as @ − G:−1 ≥ @ − G 5n (Λ(? ∧ @)) > ?̃\ for all : ≤ :0. Therefore we can apply Lemma 43 to bound the
above supremum, and obtain for large enough ?, @ and :0 that

P?,@ ( nG,< ≤ :0) 4
:0∑
:=1

(
1

(log(G/3) + log(Δ#: ))1+n/2
+ Δ#:

?
<−1/3

)
=

:0∑
:=1

1
(log(G/3) + : log 2)1+n/2

+
#:0

?
<−1/3 4

1
(logG)n/2

+ Λ<−1/3 .

On the other hand, :0 <  nG,< < ∞ implies )< > #:0 . Therefore

P?,@ (:0 <  nG,< < ∞) ≤ P?,@ ()0 > #:0, :0 <  nG,< < ∞)

= E?,@
(
P%#:0−1,&#:0−1 ()0 ≠ 1)1()0>#:0−1)1(:0< nG,<<∞)

)
.

Now )0 > #:0 − 1 implies %#:0−1 ≥ 1 and &#:0−1 ≥ 1, and together with :0 <  nG,< also Δ#:0−1 ≤ G:0 . This
yields the estimate

_′ −
(1 + _′)G:0

? + G:0
≤
&#:0−1

%#:0−1
≤ _ +

(1 + _)G:0

? − G:0
.

Therefore, for ? large enough, we have 0 < _min < _′ − (1+_
′)G:0

?+G:0
< 1 < _ + (1+_)G:0

?−G:0
< _max < ∞. On the

other hand, for ? ′, @′ > 0 such that @′/? ′ ∈ [_min, _max], we have P?′,@′ ()0 = 1) ∼ −a2C2 4
3

0001
12 (@′/?′) (?

′)4/3(@′)−7/3.
Thus, there exist a constant X = X (_min, _max) > 0 such that

P?′,@′ ()0 ≠ 1) ≤ 1 − X

? ′
.

We also have the trivial estimate %= ≤ ? + 2=. In the end, we conclude

E?,@
(
P%#:0−1,&#:0−1 ()0 ≠ 1)1()0>#:0−1)1(:0< nG,<<∞)

)
≤
#:0−1∏
==0

(
1 − X

? + 2=

)
≤ exp ©«−

#:0−1∑
==0

X

? + 2=
ª®¬

≤ exp
(
−
ˆ #:0/?

0

X3G

1 + 2G

)
=

(
1 + 2

#:0

?

)−X2
≤ 2−

X
2

(
#:0

?

)−X2
.

Since #:0 ≥ 2
(
2:0−1 − 1

)
≥ Λ

2 (? ∧@) − 1, it follows that
(
#:0
?

)−X2
4 Λ−

X
2 . We conclude that for every �xed

Λ > 0, and uniformly for G > 0 and< ≥ 1,

lim sup
?,@→∞

P?,@ (gnG < )<) ≤ lim sup
?,@→∞

P?,@ ( nG,< < ∞) 4 (logG)−n/2 + Λ<−1/3 + Λ−X2 .

Taking the limit<, G →∞ and then Λ→∞ �nishes the proof. �
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