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Abstract11

The modeling of single neurons has proved to be an indispensable tool in decipher-12

ing the mechanisms underlying neural dynamics and signal processing. In that sense,13

two types of single-neuron models are extensively used: the conductance-based mod-14

els (CBMs) and the so-called ‘phenomenological’ models, which are often opposed in15

their objectives and their use. Indeed, the first type aims to describe the biophysical16

properties of the neuron cell membrane that underlie the evolution of its potential,17

while the second one describes the macroscopic behavior of the neuron without taking18

into account all its underlying physiological processes. Therefore, CBMs are often19

used to study ‘low-level’ functions of neural systems, while phenomenological models20

are limited to the description of ‘high-level’ functions. In this paper, we develop a21

numerical procedure to endow a dimensionless and simple phenomenological non-22

spiking model with the capability to describe the effect of conductance variations on23

non-spiking neuronal dynamics with high accuracy. The procedure allows to deter-24

mine a relationship between the dimensionless parameters of the phenomenological25
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model and the maximal conductances of CBMs. In this way, the simple model com-26

bines the biological plausibility of CBMs with the high computational efficiency of27

phenomenological models, and thus may serve as a building block for studying both28

‘high-level’ and ‘low-level’ functions of non-spiking neural networks.29

30

Keywords: Simple neuron model; non-spiking neurons; conductance variations;31

bifurcation; Caenorhabditis elegans; retina.32

1 Introduction33

To better understand how neuronal circuits control behavior and brain functions, neuron34

modeling is a widely-used tool. Two types of models characterizing the dynamics of sin-35

gle neurons can be used. The first one is the conductance-based model (CBM), which36

inherits the Hodgkin-Huxley formalism (Hodgkin and Huxley, 1952) and aims to describe37

the biophysical properties of the neuron cell membrane that underlie the evolution of its38

potential. In this model, every individual parameter and state variable has an established39

electrophysiological meaning. Therefore, CBMs are broadly used to understand ‘low-level’40

functions of neural systems (Eliasmith and Trujillo, 2014; O’Leary et al., 2015), such as41

monitoring the effects of specific conductance variations on neuronal dynamics (Giovannini42

et al., 2017; Poirazi and Papoutsi, 2020), or modeling gain- or loss-of-function mutations43

in genes encoding ion channels (Lemaire et al., 2021).44

The second type of model is often qualified by the term ‘phenomenological’, although45

some authors contradict it (Brette, 2015). This type of model was developed in part to46

overcome the drawbacks of CBMs, which are twofold: (i) they have a very high computa-47

tional cost due to their complexity so that only a handful of neurons can be simulated in48

real time (Izhikevich, 2004), and (ii) the insights obtained from a mathematical analysis49

are quite limited as these are high-dimensional systems (Ermentrout and Terman, 2010).50

A phenomenological model therefore aims to be lightweight, simple, and to describe the51

macroscopic behavior of the neuron without taking into account all its underlying physi-52

ological processes. Some classical examples are the FitzHugh–Nagumo model (FitzHugh,53

1961), Izhikevich model (Izhikevich, 2003), or many integrate-and-fire models (Latham54

et al., 2000; Smith et al., 2000; Górski et al., 2021). The counterpart of phenomenological55

models is that their parameters are dimensionless, thus limited to the study of ‘high-level’56

functions of neural systems.57

A simple phenomenological model of non-spiking neurons was recently developed in58

Naudin et al. (2022b). This type of neuron is found in a wide variety of nervous tissues59
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(Davis and Stretton, 1989b; Goodman et al., 1998; Field and Chichilnisky, 2007), encodes60

neuronal information in an analog manner through graded responses (Lockery et al., 2009),61

and plays a crucial role in the functioning of many nervous systems (Roberts and Bush,62

1981; Burrows et al., 1988; Laurent and Burrows, 1989; Davis and Stretton, 1989a; Bidaye63

et al., 2018). Further, three phenotypes of non-spiking neurons can be distinguished (Fig-64

ure S2), each with its own computational properties (Naudin et al., 2022c): (i) near-linear,65

defined by smooth depolarizations or hyperpolarizations from the resting potential (pheno-66

type 1), (ii) bistable, characterized by nonlinear transitions between the resting potential67

and a depolarized potential, with one resting potential (phenotype 2), and (iii) bistable68

with two resting potentials (phenotype 3). Naudin et al. (2022c) described a general pat-69

tern of the phenotypic evolution of non-spiking neurons as a function of changes in calcium70

and potassium conductances. As an example, Figure 1 illustrates the phenotypic transi-71

tions of non-spiking neurons as calcium conductance (gCa) decreases through a well-posed72

retinal cone non-spiking CBM (Kourennyi et al., 2004). To sum up, the wild-type CBM73

endowed with a phenotype 3 switches to a phenotype 2 and then 1 as gCa decreases.74

The aim of this paper is the development of a numerical procedure to determine a75

relationship between the dimensionless parameters of the phenomenological non-spiking76

model (Naudin et al., 2022b) and the calcium conductance of a non-spiking cell, in order77

to reproduce its phenotypic transitions as gCa decreases (Figure 1). In other words, the78

dimensionless parameters of the simple model are expressed as a function of gCa. In79

this way, our resulting simple model, called ‘conductance-based phenomenological non-80

spiking model’, combines the biological plausibility of CBMs with the high computational81

efficiency of phenomenological models, and thus may serve as a building block for studying82

both ‘high-level’ and ‘low-level’ functions of non-spiking neural networks. To illustrate our83

method, the procedure is applied to a model of an intrinsically non-spiking cell type, the84

retinal cone.85

The remainder of the paper is organized as follows. Section 2 describes the evolution86

of the computational characteristics of the retinal cone CBM as gCa decreases, that is87

representative of an ubiquitous and general pattern in non-spiking neurons (Naudin et al.,88

2022c). Section 3 proposes a numerical procedure to build a phenomenological model89

that reproduces the computational characteristic evolution of the retinal cone CBM as gCa90

reduces, as described in Section 2. Then, we analyse in Section 4 the dynamics of the91

resulting model and show that it is well-suited to characterize the phenotypic evolution of92

the neuron as gCa decreases. Finally, Section 5 discusses the implications on the modeling93

of the retina and C. elegans networks which are two non-spiking nervous tissues.94
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Figure 1: Phenotypic transitions of the voltage dynamics as gCa decreases

(Naudin et al., 2022c). A well-posed retinal cone model, with a wild-type phenotype 3,

was used as an illustration. A neuron with such a phenotype displays two resting potential

values (VR1 and VR2). Decreasing gCa changes the voltage dynamics of the neuron which

becomes bistable with only one resting potential (phenotype 2). Finally, the even greater

decrease of gCa leads to the loss of the bistability of the neuron which becomes near-linear

(phenotype 1).

2 Preliminaries: evolution of the non-spiking neuron95

computational characteristics as gCa decreases96

A previous work (Naudin et al., 2022c) determined an ubiquitous and general pattern of97

non-spiking neuron dynamics as gCa decreases, illustrated through a well-posed retinal98

cone CBM (described in Supplementary materials) in Figure 1. It consists in a transition99

from phenotype 3 to 2 and then to 1 as gCa decreases. This section aims at describing100

the computational implications of this phenotypic evolution on the dynamics of the CBM101

under study.102

The evolution of the computational characteristics of a non-spiking CBM can be inferred103

from the evolution of its steady-state current (SSC). Indeed, the SSC is the underlying data104

that confers all the qualitative neuro-computational characteristics to non-spiking neurons105

(Naudin et al., 2022a). Thus, we show in Figure 2.A the evolution of the SSC of the CBM106

under study as gCa decreases. The wild-type (WT) SSC (gCa = 4.92nS) exhibits a region107

with negative slope that becomes less and less steep and then disappears as gCa decreases.108

This evolution is due to a counterbalanced flow of ICa and IK that underlies the negative109

slope in the SSC of the neuron (Naudin et al., 2022c). This specific voltage-dependence of110

membrane current is a common mechanism across the animal phyla, including C. elegans111

neurons (Goodman et al., 1998; Mellem et al., 2008; Nicoletti et al., 2019), vertebrate112

retina cells (Kourennyi et al., 2004; Aoyama et al., 2000; Usui et al., 1996), vertebrate hair113
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cells (Art and Goodman, 1996; Fettiplace, 1987) and thalamocortical neurons (Hughes114

et al., 1999; Williams et al., 1997). Therefore, the evolution of the SSC under the effect of115

decreasing gCa shown in Figure 2.A is representative of a general pattern. This evolution116

implies a qualitative change in the computational characteristics of non-spiking neurons117

that we discuss now.118

The wild-type SSC (gCa = 4.92nS) is N-shaped with two stable zeros (phenotype 3).119

This provides the neuron with two resting potentials, which gives it a short-term memory120

capacity: the response of the cell depends on its recent history of activity by storing121

information about its last input (Figure 2.B). For detailed explanations from a dynamical122

system viewpoint about the mechanism underlying this phenomenon, we refer to Figure123

S3 and Naudin et al. (2022c). Then, the negative slope of the SSC becomes less and124

less steep as gCa decreases (Figure 2.A), until its local minima becomes positive (e.g.,125

gCa = 4.22nS). Therefore, the neuron is still bistable but with only one resting potential126

(phenotype 2). This implies that the neuron has lost its short-term memory capacity, so127

the cell’s response no longer reflects the history of its inputs and of its activity (Figure128

2.C). Finally, an even more decreased value of gCa (e.g., gCa = 2.02nS) gives a monotonic129

SSC: the neuron becomes near-linear. To sum up, the wild-type neuron with phenotype130

3 switches to a phenotype 2, and then from 2 to 1 as gCa decreases. In other words, the131

neuron first loses its short-term memory capacity (transition from phenotype 3 to 2), then132

loses its bistable behavior to a near-linear one (transition from phenotype 2 to 1). One133

last important evolution of the computational characteristics of the neuron as gCa reduces134

is the decrease of the voltage amplitude (Figure 2.D).135

The aim of the following section is to propose a procedure that endows a recent and136

novel non-spiking phenomenological model with the capability to reproduce the evolution137

of these computational characteristics of the retinal cone CBM as gCa varies.138

3 Design procedure of the conductance-based phe-139

nomenological non-spiking model140

This section aims at proposing a methodology to build a simple and lightweight model that141

reproduces the qualitative evolution of non-spiking neuron dynamics as gCa decreases, as142

described in the previous section. The simple model, described in Materials and methods,143

has the advantage of having a very low computational cost so that one can simulate large-144

scale neuronal networks in real time (Naudin et al., 2022b), which is more difficult with145

CBMs due to their complexity (Izhikevich, 2004). Moreover, the simplicity of this model146
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Figure 2: Evolution of the computational characteristics of the retinal cone CBM

as gCa decreases. (A) SSC curve for three different values of gCa (4.92 (WT), 4.12, 2.02).

(B) Short-term memory capacity of the WT phenotype of the CBM (phenotype 3). (Left)

A depolarizing current step (5pA) of 2000ms duration into the neuron is applied. On cessa-

tion of the current step, the voltage stabilizes at its lower resting potential (about −31mV).

(Right) A high transient pulse (20pA) of 100ms duration is first injected into the neuron.

Its membrane potential then relaxes to its highest resting potential value (approximately

−8mV), and finally stabilizes at about −6mV in response to the same current injection

protocol as before (current injection step at 5pA under 2000ms). (C) Response of the

neuron with a reduced value of gCa (gCa = 4.22nS). Whatever the stimulation protocol

used, the neuron stabilizes at a steady-state value of about −29mV: the response of the

neuron no longer reflects the history of its inputs. (D) Decrease of the voltage amplitude

as gCa decreases, for a series of current injections starting from −15pA and increasing to

35pA by 5pA increments.

allows a theoretical mathematical analysis to gain insight into neuronal dynamics (Naudin,147

2022). Thus, this section proposes a methodology to build such a simple model that reliably148

predicts the effects of calcium conductance variations on the neuron dynamics. In this way,149

the model would combine a high computational efficiency and simplicity of mathematical150

analysis, with the biological plausibility of CBMs.151

The methodology is based on the fitting of the evolution of the SSC as gCa decreases152

since it determines the neuro-computational features of a non-spiking neuron, as explained153

above. The fitting of the SSCs by the cubic function154

f(V ) = aV 3 + bV 2 + cV + d (1)
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of the simple model is based on the Lagrange interpolation theorem. This theorem gives155

unique combinations of parameters (a, b, c, d) for which the third-degree polynomial f156

passes through any four given points. Therefore, the aim is to consider four specific points157

of the SSC to be interpolated by f . Figure 3 shows the two general steps of the procedure,158

that we apply to the CBM under study in the case of gCa. The detail of the procedure is159

given below.160

Finding four functions                  and

that fit             and      respectively.

Phenomenological non-spiking model (Naudin et al., 2022b)

Procedure: Lagrange interpolation of 4 pts 
of each SSC to estimate from f. 

Output: 

Conductance-based phenomenological non-spiking model 

Procedure: Polynomial regression to obtain
 that fit its associated points vector. 

Output: 

Step 1

Generating and fitting a series of SSCs 
for N different values of         by the cubic 
function f (#)

Step 2

Figure 3: Overview of the model design procedure. (Top) The phenomenological

non-spiking model (Naudin et al., 2022b) comprises 4 dimensionless parameters a, b, c

and d. (Middle) The two-stage procedure aims to find a relationship between these

parameters and maximal conductances gion of neurons or CBMs. (Bottom) After applying

the procedure, the conductance-based phenomenological non-spiking model is obtained and

depends only on the gion parameter.

7



• Step 1a. Reproducing the wild-type SSC of the neuron by the cubic function f (1):161

Procedure: To fit the wild-type SSC of the neuron (gCa = 4.92nS in our case), we162

need to consider four points to be interpolated by the cubic function f . Based on163

the previous section, the four points of the SSC that play a paramount role in the164

dynamics of the neuron of phenotype 3 are the following:165

– Resting potentials : The two stable zeros of the SSC curve, i.e. the resting166

potentials (red points in Figure 4.A).167

– Local minima and maxima of the SSC: The local minima and maxima of the SSC168

curve (blue points in Figure 4.A) because they determine the current injection169

thresholds at which the voltage jumps to a new plateau.170

Therefore, the parameters (a, b, c, d) of the function f are determined through La-171

grange interpolation so that f passes through these four points.172

Output: One vector of parameters (a, b, c, d) for which the cubic function f(V ) =173

aV 3 + bV 2 + cV + d interpolates the four fundamental points of the SCC of the CBM174

(VR1, VR2 and the local minima and maxima of the SSC curve)175
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Figure 4: (A) The four points of the wild-type SSC to be interpolated by the cubic

function of the simple model. Blue squares denote the local minima and maxima of the

SSC, representing the current injection thresholds at which the neuron jumps to a new

voltage plateau. Red points denote the two stable zeros of the SSC, representing the two

resting potentials of the neuron. (B) The V -coordinate of the upper bound (100pA) of the

SSC of the CBM decreases more and more as gCa decreases, which implies a decrease of

the voltage amplitude of the neuron as gCa decreases. The cubic function f of the simple

model will then reproduce this pattern in its upper bound.

• Step 1b. Generating four points of the SSC to be interpolated for a series of gCa176

associated with phenotypes 3 and 2 by 0.1nS decrements:177

Procedure: The SSC for phenotypes 3 and 2 is N-shaped (Figure 2.A). Then, the178

8



four points for interpolation by the function f are the local minima and maxima179

of the SSC curve, and the two points of the lower and upper bounds (−100pA and180

100pA respectively in this paper):181

– Local minima and maxima of the SSC: For each SSC of the CBM generated182

with a new value of gCa associated with phenotypes 3 and 2, we compute its183

local minima and maxima, as in Step 1. For the CBM under study, we consider184

gCa ∈ {4.82,4.72, . . . ,3.62}.185

– Upper bound of the SSC: As can be seen in Figure 4.B, the V -coordinate of186

the upper bound of the SSC of the CBM decreases more and more as gCa187

decreases. This implies the decrease in voltage magnitude as gCa decreases, a188

paramount computational feature of the CBM shown in the previous section.189

To endow the simple model with this characteristic, we generate points in the190

upper bound that decrease in the V -coordinate in a recusive way from the cubic191

curve obtained in Step 1.192

– Lower bound of the SSC: As can be seen in Figure 4, the V -coordinate of the193

lower bound of the SSC of the CBM remains relatively constant. The cubic194

function f will seek to preserve such a characteristic.195

Output: A series of vector points a⃗ ∶= (a4.92, a4.82, . . . , a3.62), b⃗ ∶= (b4.92, b4.82, . . . , b3.62),196

c⃗ ∶= (c4.92, c4.82, . . . , c3.62), and d⃗ ∶= (d4.92, d4.82, . . . , d3.62).197

• Step 2. Fitting independently the points of a⃗, b⃗, c⃗, and d⃗ obtained in Step 2:198

Procedure: Finding four functions u1, u2, u3 and u4 that verify a = u1(gCa),199

b = u2(gCa), c = u3(gCa) and d = u4(gCa). In this way, we establish a direct rela-200

tionship between the parameters a, b, c, and d of the simple model and the calcium201

conductance gCa of the CBM. To that end, the functions u1, u2, u3 and u4 are con-202

sidered as polynomials so that polynomial regressions are performed to fit the points203

of a⃗, b⃗, c⃗ and d⃗, respectively. We stress the importance to choose polynomials that204

are not too complex, i.e. with degrees that are not too high. Indeed, the SSCs for205

the phenotype 1 are generated from these functions, i.e. for novel values of gCa not206

considered during the building of u1, u2, u3 and u4 through the polynomial regres-207

sion processes. Therefore, the polynomials should not be too complex to avoid an208

overfitting of data points which would lead to an inability of the model to generate209

adequate SSCs for phenotypes 1. In our case, two-degree polynomials u1, u2, u3 and210

u4 will be sufficient to obtain good results (see next section).211

Input: Vector points a⃗ = (a4.92, a4.82, . . . , a3.62), b⃗ = (b4.92, b4.82, . . . , b3.62),212
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c⃗ = (c4.92, c4.82, . . . , c3.62), and d⃗ = (d4.92, d4.82, . . . , d3.62).213

Output: Four functions u1, u2, u3, and u4 that verify a = u1(gCa), b = u2(gCa),214

c = u3(gCa) and d = u4(gCa), such as we obtain the new model:215

τ
dV

dt
= −hgCa

(V ) + I (2)

with216

hgCa
(V ) ∶= u1(gCa)V

3 + u2(gCa)V
2 + u3(gCa)V + u4(gCa). (3)

so that the simple model (2) depends only on the calcium conductance parameter.217

In the next section, we show and discuss the results obtained from the procedure pro-218

posed in this section applied to the CBM under study.219

4 Analysis of the model dynamics220

A procedure to build a simple model that reproduces the qualitative evolution of non-221

spiking neuron dynamics as gCa evolves has been proposed in the previous section. Since222

the qualitative evolution of non-spiking neuron dynamics as gCa evolves is reflected by the223

evolution of the SSC, the procedure consists in reproducing this evolution of the SSC by224

the function hgCa
of the model (2). The result of this procedure is shown in Figure 5 in225

which we compare the evolution of the SSC of the CBM with the function h (Eq. (3)) for226

different values of gCa, starting from 4.92nS and decreasing to 0.02nS by 0.2nS decrements.227

The interpolation functions ui, i = 1, . . . ,4, of the function h are shown in Figure S4. In228

particular, we can observe in Figure 5 that the qualitative evolution of the SSC as gCa229

decreases is reproduced with a high fidelity by the cubic function. The purpose of this230

section is to discuss the implications on the resulting voltage dynamics.231

The first important implication is the occurrence of transitions between different phe-232

notypes for the same gCa values in the CBM as in the simple model. Indeed, the transition233

between phenotype 3 and 2 occurs at gCa = 4.50nS, both in the CBM and in the simple234

model. In other words, the CBM and the simple model lose their short-term memory ca-235

pacity at the same gCa value. Similarly, the transition between phenotype 2 and 1 occurs236

at gCa = 3.59nS in the CBM, and at gCa = 3.50nS in the simple model. Therefore, the loss237

of bistability in favor of a near-linear type behavior occurs at about the same gCa values238

in the CBM as in the simple model.239
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Figure 5: Comparison between the SSC of the CBM and the function h defined in (3) for

a series of calcium conductance values gCa starting from 4.92nS (WT) and decreasing to

0.02nS by 0.2nS decrements.

The second implication stems from the perfect fitting of the function hgCa
with the240

intermediate values of its associated SSC for any value of gCa (see Figure 6.A that exem-241

plifies this for gCa = 4.82nS). For phenotypes 2 and 3, this implies that the voltage jumps242

between the down- and up-states of the neuron occur for the same values in the CBM as in243

the simple model for any value of gCa (Figure 6.B). That is, the saddle-node bifurcations in244

the CBM and in the simple model appear for the same values of injection current. Figure245

S5 shows a representative example (for gCa = 4.82nS) of the voltage jump to its up-state246

in the CBM and in the simple model. In the same way, the CBM and the simple model247

relax to the same resting values for any value of gCa (Figure S6).248

Furthermore, both in the CBM and in the simple model, we observe a loss of the overall249

voltage amplitude as gCa decreases (Figure 6.D), which is a paramount characteristic of the250

behavior of non-spiking neurons under the effect of calcium conductance decrease. This251

observation is partly due to the increase in voltage jump threshold values, as well as the252

decrease in resting potential values (Figure S6), both resulting from the decrease of gCa.253

Finally, a relative deterioration of the fitting of the SSC for higher and lower values can254

be observed in Figure 6.A. Nonetheless, it should be noted that substantial noise in the255

recording of SSCs of non-spiking C. elegans neurons can be observed for extreme values, as256

in the bistable AFD neuron (Figure S7), which is similar to what we obtain (Figure 6.A).257

Taken together, the aforementioned observations confirm that the main qualitative258

features of the raw neuron dynamics are accurately preserved by the simple model. From259

then on, it can be safely concluded that the simple model is adequate for the description260

of the neuron behavior as gCa evolves.261
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Figure 6: (A) Example of SSC (gCa = 4.82nS) of the CBM (in blue) against the function

h4.82 of the simple model (in red) defined in (3). (B) Upper and lower threshold of injection

currents between the down- and up-states in the CBM and in the simple model. (C)

Comparison of the voltage amplitude decrease in CBM and in the simple model.

5 Discussion262

Summary. CBMs and ‘phenomenological’ models are often used to deal with distinct263

issues. CBMs are well suited to study ‘low-level’ functions of nervous systems, depend-264

ing on physiological microscopic parameters such as ion conductances. Indeed, a CBM is265

a biophysical representation of a neuron in which every individual parameter and state266

variable has an established electrophysiological meaning. Nevertheless, the simulation of267

this type of model is very time-consuming, so the size of neural networks composed of268

CBMs that can be studied is inherently limited. In contrast, “phenomenological” models269

are very lightweight and simple so that one can simulate large-scale networks in real time.270

But their drawback is the lack of biophysical realism since it describes the macroscopic271

behavior of neurons regardless the underlying microscopic physiological processes. As a272

consequence, ‘phenomenological’ models exhibit dimensionless parameters and are there-273

fore limited to the study of ‘higher-level’ functions of neural systems. This paper aimed to274
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propose a model for non-spiking neuron dynamics that combines the strengths of the two275

types of models: the biological plausibility of CBMs with the high computational efficiency276

of phenomenological models. To do this, a numerical procedure was proposed to establish277

a relationship between the dimensionless parameters of a non-spiking phenomenological278

model (Naudin et al., 2022b) and the ion conductances of CBMs or neurons. We applied279

it to a model of an intrinsically non-spiking cell type, the retinal cone, associated with280

a decrease in gCa. We showed that the resulting ‘conductance-based phenomenological281

non-spiking model’ was able to accurately depict the phenotypic transitions of non-spiking282

neurons as gCa evolves, previously described with CBMs (Naudin et al., 2022c). Therefore,283

the resulting model combined the biological plausibility of CBMs with the high computa-284

tional efficiency of phenomenological models, and thus may serve as a building block for285

studying both ‘high-level’ and ‘low-level’ functions of non-spiking neural networks.286

Potential applications to the study of the effect of physiological and patho-287

logical changes on non-spiking neural network dynamics. Given the importance288

of ion channels and ion flow for many physiological and pathological functions, both in289

spiking and in non-spiking neurons, it could be valuable to have a direct relationship with290

ion conductances when using phenomenological models. This would allow to study various291

systems and nervous tissues, considering the physiological range of functioning, as well as292

the pathological variations of their associated ion conductance. Our conductance-based293

phenomenological non-spiking model was designed in this context, with a particular fo-294

cus on the calcium conductance variations due to its crucial role in the electrical signal295

generation in non-spiking neurons.296

Indeed, non-spiking neurons, such as C. elegans neurons or retinal cells, exhibit a297

variety of ion channels on their cell membrane, including many voltage-gated calcium and298

calcium-gated potassium channels (Bargmann, 1998; Taylor et al., 2021; Van Hook et al.,299

2019). The flow of ions in and out of the cells through these channels provides non-spiking300

neurons with several crucial physiological properties, including their electrical activity.301

In particular, voltage-gated calcium channels are essential in C. elegans which lacks the302

voltage-gated Na+ channels (Bargmann, 1998) that are usually involved in action potential303

generation in vertebrates. Likewise, in many retinal cell classes including the cone, rod,304

bipolar, horizontal and some amacrine cells, voltage-gated Na+ channels are absent or305

barely expressed, giving great importance to calcium channels in retinal electrical signal306

generation (Van Hook et al., 2019). Therefore, it may be particularly relevant to have the307

ability to assess the impact of calcium gradient variations on neuron behavior as well as308

on network dynamics.309
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Furthermore, several mechanisms may alter the “normal” function of ion channels.310

In particular, many studies show that mutations within genes encoding calcium channels311

are often associated with various neurological and psychiatric diseases (Andrade et al.,312

2019). Yet, these ion channels are ubiquitous in the retina cells, whose electrical activity is313

disturbed as suggested by electrophysiological recordings (electroretinograms) conducted314

in patients suffering from Parkinson’s, Alzheimer’s and Huntington’s diseases, epilepsy,315

depression and schizophrenia (Silverstein et al., 2020). In this case, it would also be of316

particular interest to gain insight into the levels of ion conductance that might lead to317

pathological behavior.318

Taken together, these information confirm that the use of the simple phenomenological319

model, rather than CBMs, to address these issues is justified both by its minimal computa-320

tional cost and by its biological plausibility. This original combination allows for the study321

of precise physiological and pathological changes in a context of large-scale simulations of322

the retina or C. elegans networks.323
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Supplementary materials335

Here we present the phenomenological model capable of reproducing the qualitative be-336

haviors of non-spiking neurons, developed in Naudin et al. (2022b). In addition, we recall337

the role played by the steady-state current (SSC) in the dynamics of non-spiking neurons,338

since the numerical method developed in this paper fundamentally rely on it.339

The phenomenological model340

The phenomenological model, developed in Naudin et al. (2022b), is built on the basis341

of the bifurcation structure of conductance-based models of non-spiking neurons. For the342

convenience of reading the paper, we present it in this section.343

Conductance-based models (CBMs). In CBMs, the dynamics of the membrane po-344

tential V is described by a general equation of the form345

C
dV

dt
= −∑

ion

Iion + I (4)

where C is the membrane capacitance, ∑ion Iion is the total current flowing accross the cell

membrane, and I is an applied current. The currents Iion take the form

Iion = gionm
a
ionh

b
ion(V −Eion)

where m (resp. h) denotes the probability for an activation (resp. inactivation) gate to be346

in the open state; a and b are the number of activation and inactivation gates, respectively;347

gion is the maximal conductance associated with ion; and Eion is the reversal potential.348

Bifurcation dynamics of non-spiking CBMs. In non-spiking CBMs, the SSC curve349

I∞ determines the number of equilibra of the system and their values, as well as the350

bifurcations of the resting state along with the values to which they occur. It takes the351

general form352

I∞(V ) = ∑
ion

Iion∞(V ) where Iion∞(V ) = gionma
ion∞(V )h

b
ion∞(V )(V −Eion) (5)

with353
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x∞(V ) =
1

1 + exp(
V x
1/2 − V

kx
)

, x ∈ {m,h}.

where V x
1/2 and kx are constant parameters.354

Any stationary point of gating variables x ∈ {m,h} must satisfy x∗ = x∞(V∗). Replacing355

this into the first equation on V , fixed points V∗ of such models satisfy the equation356

I∞(V∗) = I. (6)

In other words, equilibria V∗ correspond to the intersection between the SSC I∞ and357

a horizontal line I = c where c is a constant. There are two standard steady-state358

curves I∞, monotonic and cubic (Figure S1), each involving fundamentally different neuro-359

computational properties for non-spiking neurons:360

• As shown in Figure S1.A, CBMs with a monotonic SSC only have one equilibrium361

for any value of I. Non-spiking neurons with such a SSC display a near-linear behav-362

ior characterized by smooth depolarizations or hyperpolarizations from the resting363

potential, such as the RIM neuron (Figure S2).364

• As shown in Figure S1.B, a N-shaped curve leads to a saddle-node bifurcation. When365

I = c1, there are 3 equilibria, noted V c1
1∗ , V

c1
2∗ and V c1

3∗ . Increasing I results in coa-366

lescence of two equilibria (the stable V c1
1∗ with the unstable V c1

2∗ ). The value I = c2,367

at which the equilibria coalesce, is called the bifurcation value. For this value of I,368

there exist 2 equilibria. For I > c2, the system has only one equilibrium (e.g. I = c3).369

In summary, when the parameter I increases, a stable and an unstable equilibrium370

approach, coalesce, and then annihilate each other. Non-spiking neurons with a N-371

shaped SSC display a bistable behavior characterized by a voltage jump between372

the resting potential and a depolarized potential of higher voltage, such as the AFD373

neuron (Figure S2).374

Therefore, it can be stated that the SSC determines the bifurcation structure of non-375

spiking neurons and the equilibrium values of their graded responses to particular stimuli.376

The simple model. Let V represent the membrane potential of a neuron. The simple377

model takes the general form378

τ
dV

dt
= −f(V ) + I (7)
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Figure S1: Two typical shapes of the SSC V → I∞(V ), in red. Intersections of I∞ and

horizontal line I = c (with c constant) correspond to equilibria of the system. We denote

stable equilibria as filled circles  , unstable equilibria as open circles # and saddle-node

equilibria as G#. (A) Monotonic SSC. V c1∗ and V c2∗ correspond to equilibria for a current

injection I = c1 and I = c2 respectively. (B) N-shaped SSC. The number of equilibria of

the system depends on the value of I. For the sake of readibility, we highlight equilibria

only for I = c1, noted V c1
1∗ , V

c1
2∗ and V c1

3∗ .

with f a cubic function which reads as379

f(V ) = aV 3 + bV 2 + cV + d. (8)

The function f plays the same role in the dynamics of the model (7) as the SSC I∞ in

CBMs (4). Indeed, fixed points V∗ of model (7) satisfy

f(V∗) = I

so that the shape of f determines the neuro-computational features of the non-spiking380

model: a monotonic shape involves a near-linear behavior of the model, while a N-shape381

implies a bistable one with the occurrence of two saddle-node bifurcations. Therefore, the382

model proposes a simple cubic expression (8) thats plays the same role as the complex SSC383

expression (5) of CBMs. Parameters a, b, c and d are dimensionless and are estimated in384

order to fit the experimental SSC. Parameter τ describes the constant time for which V385

reaches its equilibrium value V∗. This parameter can be either hand-tuned or estimated386

from experimental voltage.387
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Conductance-based model of the retinal cone388

The conductance-based model of the canonical bistable cell is based on the retinal cone389

cell built in Kourennyi et al. (2004). It has four ion currents: a calcium current (ICa), a390

hyperpolarization-activated current (Ih), a delayed rectifying potassium current (IKv), and391

a leak current (IL). The parameters are expressed in the following units: mV (voltage),392

pA (current), nS (conductance), and ms (time). The membrane capacitance (C) is set393

to 16 nF. We denote by gion the maximal conductance (namely the conductance of the394

channel when all the gates are open), and Eion the reversal potential, that is, the potential395

at which the ion current reverses its direction. Leak current is classically described as396

IL = gL(V −EL) and the remaining currents are described in Table S1.397

Ion current (Iion) αion(V ) and βion(V ) rates gion and Eion

ICa = gCamCahCa(V −ECa) αCa(V ) = 3.1 e(V +16.6)/11.4 gCa = 4.92

dmCa

dt
= αCa(1 −mCa) − βCamCa βCa(V ) = 3.1 e(−V −16.6)/11.4 ECa = 40

Ih = gh(1 − (1 + 3mh)(1 −mh)
3)(V −Eh) αmh

(V ) =
18

(1 + e(V +88)/12)
gh = 3.5

dmh

dt
= αmh

(1 −mh) − βmh
mh βmh

(V ) =
18

(1 + e−(V +18)/19)
Eh = −32.5

IKv = gKvm3
KvhKv(V −EK) αmKv

(V ) =
5(V − 100)

(1 − e−(V −100)/42)
gKv = 2

dmKv

dt
= αmKv

(1 −mKv) − βmKv
mKv βmKv

(V ) = 9 e(20−V )/40 EKv = −80

dhKv

dt
= αhKv

(1 − hKv) − βhKv
hKv αhKv

(V ) = 0.15 e−V /22

βhKv
(V ) =

0.4125

(1 + e(10−V )/7)

Table S1: Summary of ion currents composing the generic bistable model.
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Supplementary figures398

Figure S2: Experimental voltage examples from C. elegans of each phenotype for a series of

current injections starting from −15pA and increasing to 35pA by 5pA increments for the

RIM and AFD neurons, and starting from −2pA and increasing to 10pA by 3pA increments

for the RMD neuron. Phenotype 1 refers to near-linear neurons, phenotype 2 to bistable

neurons with one resting potential, and phenotype 3 to bistable neurons with two resting

potentials. The experimental data of the RIM and AFD neurons have been reproduced

from Naudin et al. (2022a), and from Mellem et al. (2008) for the RMD neuron with the

consent of the authors.
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Figure S3: Diagram explaining the short-term memory capacity of a neuron with a pheno-

type 3. IT1 (resp. IT2) denotes the injection current thresholds at which the neuron jumps

to its upper (resp. lower) voltage plateau. (1) A brief transient stimulus (20 > IT2 pA)

is applied and the voltage converges to V I20∗ . (2) The stimulus ceases so that the voltage

relaxes to V rest2∗ which is the new voltage initial condition. (3) A new depolarizing current

step (5pA) is applied and the voltage goes to V I5
2∗ and not V I5

1∗ since V rest2∗ now belongs to

the basin of attraction of V I5
2∗ . This figure has been reproduced from Naudin et al. (2022c)

with the consent of the authors.
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Figure S5: Comparison of voltage dynamics between CBM and the conductance-based

phenomenological non-spiking model for gCa = 4.82nS for a series of injection currents

starting from −15pA and increasing to 35pA by 5pA increments.
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Figure S7: SSC of the AFD neuron obtained from averaged voltage-clamp recordings

(n = 3) (Liu et al., 2018).
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L. Naudin, J. L. Jiménez Laredo, Q. Liu, and N. Corson. Systematic generation of bio-472

physically detailed models with generalization capability for non-spiking neurons. PloS473

one, 17(5):e0268380, 2022a.474

L. Naudin, J. L. J. Laredo, and N. Corson. A simple model of non-spiking neurons. Neural475

Computation, 34(10), 2022b.476

23



L. Naudin, L. Raison-Aubry, and L. Buhry. General pattern of non-spiking neuron dy-477

namics under the effect of potassium and calcium channel modifications. Under review,478

2022c.479

M. Nicoletti, A. Loppini, L. Chiodo, V. Folli, G. Ruocco, and S. Filippi. Biophysical480

modeling of c. elegans neurons: Single ion currents and whole-cell dynamics of awcon481

and rmd. PloS one, 14(7):e0218738, 2019.482

T. O’Leary, A. C. Sutton, and E. Marder. Computational models in the age of large483

datasets. Current opinion in neurobiology, 32:87–94, 2015.484

P. Poirazi and A. Papoutsi. Illuminating dendritic function with computational models.485

Nature Reviews Neuroscience, pages 1–19, 2020.486

A. Roberts and B. M. Bush. Neurones without impulses: their significance for vertebrate487

and invertebrate nervous systems, volume 6. Cambridge University Press, 1981.488

S. M. Silverstein, D. L. Demmin, J. B. Schallek, and S. I. Fradkin. Measures of reti-489

nal structure and function as biomarkers in neurology and psychiatry. Biomarkers in490

Neuropsychiatry, 2:100018, 2020.491

G. D. Smith, C. L. Cox, S. M. Sherman, and J. Rinzel. Fourier analysis of sinusoidally492

driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model.493

Journal of neurophysiology, 83(1):588–610, 2000.494

S. R. Taylor, G. Santpere, A. Weinreb, A. Barrett, M. B. Reilly, C. Xu, E. Varol,495

P. Oikonomou, L. Glenwinkel, R. McWhirter, et al. Molecular topography of an en-496

tire nervous system. Cell, 184(16):4329–4347, 2021.497

S. Usui, A. Ishihaiza, Y. Kamiyama, and H. Ishii. Ionic current model of bipolar cells in498

the lower vertebrate retina. Vision research, 36(24):4069–4076, 1996.499

M. J. Van Hook, S. Nawy, and W. B. Thoreson. Voltage-and calcium-gated ion channels of500

neurons in the vertebrate retina. Progress in retinal and eye research, 72:100760, 2019.501

S. R. Williams, T. I. Toth, J. P. Turner, S. W. Hughes, and V. Crunelli. The ‘win-502

dow’component of the low threshold ca2+ current produces input signal amplification503

and bistability in cat and rat thalamocortical neurones. The Journal of physiology, 505504

(3):689–705, 1997.505

24


	Introduction
	Preliminaries: evolution of the non-spiking neuron computational characteristics as gCa decreases
	Design procedure of the conductance-based phenomenological non-spiking model
	Analysis of the model dynamics
	Discussion

