
HAL Id: hal-03778323
https://hal.science/hal-03778323

Submitted on 15 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive splines-based logistic regression with a ReLU
neural network

Marie Guyomard, Susana Barbosa, Lionel Fillatre

To cite this version:
Marie Guyomard, Susana Barbosa, Lionel Fillatre. Adaptive splines-based logistic regression with a
ReLU neural network. Les Journées Ouvertes en Biologie, Informatique ET Mathématiques, Jul 2022,
Rennes, France. �hal-03778323�

https://hal.science/hal-03778323
https://hal.archives-ouvertes.fr


Adaptive splines-based logistic regression with a ReLU neural
network

Marie GUYOMARD1, Susana BARBOSA2 and Lionel FILLATRE1

1 University Côte d’Azur, Laboratory I3S, France
2 University Côte d’Azur, Laboratory IPMC, France

Corresponding author: guyomard@i3s.unice.fr

Abstract This paper proposes a non-linear binary classification model. Although linear
classification methods are very popular in the field of personalized medicine because of
their interpretability, they have proven to be too restrictive. Doctors are convinced of the
need to quantify threshold effects for better predictions. Nevertheless, non-linear methods
that can be found in the state of the art are not able to automate the segmentation of
variables (Segmented Logistic Regression) or are difficult to interpret (Random Forests or
Neural Networks). We propose a Neural Network that fully realizes a non-linear logistic
regression. The score function of the logistic regression, initially linear, is replaced by
a piecewise linear function, modeled by spline functions. The particular architecture of
this network automates the segmentation of the variables and guarantees its operational
relevance as well as the explicability of its calculated predictions.

Keywords Non-linear Classification, Splines approximation, Neural Networks.

1 Introduction

The use of Artificial Intelligence in the medical field continues to progress. Machine learning models
for classification allow in many practical cases to avoid invasive methods, such as biopsies, to provide
an accurate diagnosis. The use of Logistic Regression (LR) is widespread. For example, in [1] the LR is
used to predict the development of non-alcoholic cirrhosis. Unlike methods such as boosting, random
forests, and neural networks (NNs), the model estimated by LR is easily interpretable since it depends
on a linear combination of explanatory variables.

Nevertheless, doctors believe that incorporating nonlinear phenomena in the modeling, such as
threshold effects on certain variables, would increase the predictive performance. For example, a
significantly high cholesterol level could be a risk factor for developing a disease while a low cholesterol
level would decrease this risk. For this purpose, a promising track is the use of a LR that exploits a
non-linear model based on piece-wise linear splines. These splines divide the domain of definition of
the explanatory variables into several segments and, on each segment, perform a linear approximation.

The major difficulty of using an approximation with splines relies on the choice of the bounds of
each segment, called knots of the spline. It has been shown in [2,3] that jointly optimizing the knots
and the linear approximation associated with each segment is difficult. The fixed splines based-LR
avoids these optimization issues by fixing a priori the number and the value of the knots. The choice
of knots is therefore rather arbitrary and the model becomes frozen. An alternative is the MARS
(Multivariate Adaptative Regression Splines) model which proposes an adaptive method to compute
the knots. Those are computed recursively in order to progressively improve the performance of the
model. The global performance of the method is not directly optimized but in a greedy and sub-optimal
way. Recently, a third approach has emerged : it establishes a rigorous bridge between deep neural
networks (NNs) and the theory of piecewise linear spline functions. Contrary to the MARS model,
in NNs a global criterion is minimized to learn the segmentation. Unfortunately, the segmentation
produced by an NN is very complex and therefore it becomes impossible to easily interpret the impact
of explanatory variables in the prediction.
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managed by the National Research Agency (ANR) with the reference number ANR-17-EURE-0004.



The main contribution of this paper consists in developing an NN inspired by the MARS model in
order to combine the advantages of MARS and NNs: the minimization of a global criterion to obtain
an NN with an easily explicable architecture. A second contribution consists in proposing an explicit
algorithm to train this NN. Indeed, the authors in [4] demonstrate that it is possible to approximate
MARS models by NNs but their approach, totally theoretical, does not propose any algorithm to train
the NN. Finally, we compare our NN to the previously mentioned methods on a simulated and a real
datasets. Our NN presents comparable or superior performances in prediction to the other approaches
while being fully explainable.

This paper is structured as follows. The section 2 introduces the studied prediction problem. The
section 3 describes our NN architecture. The section 4 presents the experimental results. Finally, the
section 5 concludes the article.

2 Problem Statement

We have N independent and identically distributed pairs (x(i), y(i)) where x(i) is the vector of
explanatory variables and y(i) = {0, 1} is the binary label to predict. The notation (X,Y ) denotes the
pair of random variables from which the pairs (x(i), y(i)) are derived. These data are used to train and
test all the models implemented in the article.

2.1 Bayesian binary classification

A Bayesian Maximum a Posteriori (MAP) classifier assigns a label y to a sample x = [x1, . . . , xd]
based on the decision rule δ : Rd 7→ [0, 1] defined by δ(x) = P̂(Y = y|X = x) where P̂(Y |X) is an
estimate of the conditional a posteriori probability. The LR is the most widely used decision rule for
this kind of problem in the medical field. It is written as

δRL(x) = σ(ψ(x)) =
1

1 + exp (−ψ(x)) , (1)

where σ(·) is the logistic function and ψ(x), called the score function, is a linear function ψ(x) = β⊤x
where β = [β1, . . . , βd] ∈ Rd is a vector of coefficients and β⊤ denotes the transposed vector β. Each
coefficient βi quantifies the impact of the ith component of the vector x on the probability of choosing
the class y = 1. This model is very appreciated for its simplicity and its explicability.

2.2 MARS score function of order 1

In order to obtain a non-linear but still explainable score function, a relevant modeling is brought
by the MARS approach [5]. This model is based on an approximation with adaptive splines of the
score function:

ψMARS(x) =
M∑

m=1

βmhm(x), (2)

where hm(x) is a spline function of the form

hm(x) = [sm(xv(m) − bm)]
+

(3)

=

{
max{0, xv(m) − bm}, if sm = 1,

max{0, bm − xv(m)}, if sm = −1.
(4)

The notation [t]+ = max{0, t} denotes the ReLU function. The function hm(x) depends on the v(m)th

component xv(m) of the vector x. The real bm is the knot of the spline. The integer sm ∈ {−1, 1}
used in conjunction with the ReLU function allows to cancel the left part or the right part of hm(x)
as explained in (4).

The MARS approach learns the hm(x) functions sequentially. At each iteration m ∈ {1, . . . ,M},
the spline function hm(·) that best reduces the learning error is added. The recursive and adaptive
segmentation of the MARS approach is thus similar to that of decision trees. If v(m) ̸= k for all m,
then the kth component of x will never be included in the model. The MARS approach is based on a



greedy optimization algorithm whose global optimality is not established. The recursivity of the model
makes the segmentation of variables uncontrollable. It is possible that a same variable is segmented
a large number of times. However, we know from doctors’ feedback that over-segmenting a biological
variable is not relevant.

2.3 ReLU Neural Networks

The non-linear approach that is currently very widespread is based on a score function produced
by a ReLU NN [6]. In this paper, we consider only single-hidden-layer NNs that are written as

ψNN(x) = β0 + β⊤[Wx+ b]+, (5)

where β ∈ Rp, W ∈ Rp×d is the matrix of weights, b ∈ Rp is the vector of biases, and [z]+ denotes the
vector z where the function [·]+ has been applied to each component. The hidden layer has p neurons.
According to [7], deep networks with the ReLU activation function introduce a partitioning of Rd that
is equivalent to an approximation with multidimensional splines. However, this partitioning is very
complex and generally unexplainable. The figure 2-e illustrates this partitioning when d = 2 with
p = 30 neurons. The straight lines, almost always oblique, intersect and cut the space into polyhedra
with very diverse geometrical shapes. This division explains the flexibility of an NN but also why an
NN is considered as a “black box".

3 Neural Network NN-MARS

In order to benefit from the advantage of training a neural network (minimization of a global
criterion with a gradient descent) and to keep an explicability close to the MARS model, we propose
in this section a piecewise continuous score function modeled with a NN. Our model ψNN-MARS(x) is
written as

ψNN-MARS(x) = β0 +
d∑

j=1

gj(xj), (6)

gj(t) = βj1[bj1 − t]+ + βj2[t− bj2]+, t ∈ R. (7)

In (6), the real nonlinear function gj(·) is applied to xj , the jth component of the vector x ∈ Rd.
The function gj(t) corresponds to a pair of neurons working together: the first neuron is a non-zero
spline before the knot value bj1 and the second one is a non-zero spline after the knot value bj2. As a
result, gj(t) models functions with a pattern composed of 3 linear segments as illustrated in the gray
box on Figure 1. In this figure, the variable X1 can represent for example the weight of a patient.
Being underweight (X1 < b11) or overweight (X1 > b12) increases the probability of developing the
pathology. In contrast, between these two intervals, the impact of weight on disease is negligible. The
segmentation of the network is therefore controlled: at most 3 segments are created for each descriptive
variable.
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Fig. 1. Architecture of NN-MARS: the inputs in blue, the hidden layer in orange and the estimated labels in
green.



Furthermore, the nature of the segmentation operated by the NN-MARS is also controlled. Con-
trary to classical ReLU NNs which create oblique regions by linearly combining the components of x,
the NN-MARS cuts the components of x independently. It relies on hyperplanes that are orthogonal
to the canonical basis of the Rd space, just as decision trees or the MARS model do, as illustrated in
Figure 2-f. The partitioning of the Rd space is done with hypercubes and not polyhedra with com-
plex shapes. The decision rule obtained is easily interpretable: the score function is linear on each
hypercube. In practice, this is equivalent to performing a local LR by thresholding the components
of the vector x. The function ψNN-MARS(x) models the impact of each component xi with a specific
non-linear profile as illustrated in Figure 4. Overall, the NN-MARS is composed of 2d hidden neurons.
Figure 1 shows that the hidden neurons operate in pairs. The training of NN-MARS is done with an
ordinary gradient descent using the cross-entropy as loss function.

4 Experiments

We compare the performance and explainability of NN-MARS to decision trees (DTs), LR Natural
Cubic Splines (LR NCS) [8, section 5.2] with fixed knots using uniform quantiles, MARS, and classical
ReLU NNs. A 5-folds cross validation is realised for each tested method, such that the training
sample is composed of 70% of the data and thus the validation set of the remaining 30%. All the
experiments are implemented in Python with scikit-learn functionalities and Pytorch ones for the
NNs. The computation times displayed in the article are reasonable since a computation server with
a GPU is used.

Simulated data: We simulated x ∈ R2 data in order to visualize the estimated decision boundaries.
We seek to predict the probability of developing a pathology as a function of cholesterol level (x1) and
weight (x2). When the cholesterol level is low, the patient is more protected against the disease. On
the other hand, when it is high, the patient is more at risk. Finally, being underweight or overweight
increases the probability of developing the pathology. Since in real applications the boundary is noisy,
we define the labels using a Bernouilli distribution with the estimated probability of developing the
disease as parameter. The dataset is composed of 2000 patients, such that 1000 are sick (class 1).

Figure 2 presents the six methods compared. The red border represents the decision boundary
of the tested method. The black lines represent the edges of the partitioning produced by the tested
method. The deep NN (Fig. 2 - NN (p = 30)) is the best performing model because its estimated
boundary is the closest to the simulated one. Nevertheless, the interpretation of its decision rule is
too complex because the R2 space is partitioned into many polyhedra, some of which are not very
useful for approximating the boundary. The DT, the LR NCS, MARS as well as NN-MARS segment
the variables by hyperplanes making easier the interpretation of the decision rule (Fig. 2). Indeed,
the partitioning depends on only one variable, contrary to the traditional NNs (Fig.2 - NN (p = 4) &
NN(p = 30)) that lead to oblique regions. For instance, with the proposed method, we can explain to
the doctors that we have to take into account a 3 parts-segmentation of the cholesterol level : one for
the patients with a level lower than −1.6, one for those with a value bigger than −0.3 and finally the
intermediate ones. The MARS model with M = 10 (Fig.2 - MARS) defines 5 knots for the variable
x1 and 5 for x2 in very close values. NN-MARS achieves the same performance as LR NCS with fewer
spline functions, which justifies the need in automating the segmentation and not fixing the knots a
priori.

The NN-MARS performs almost as well as the ReLU NNs while requiring fewer parameters to
be estimated and ensuring a good explainability. Indeed, 9 parameters have to be optimized by the
NN-MARS whereas the ReLU NNs with p = 4 and p = 30 require to estimate respectively 17 and
121 parameters. Although the NN-MARS estimates fewer parameters, the computation time required
to converge to an optimal modeling is higher for the proposed method : 178(±1) seconds for one fold
are required whereas the ReLU NNs with p = 4 and p = 30 take respectively 85(±26) and 120(±27)
seconds. The standard deviations of computation time are higher for the traditional NNs because of the
early stopping process that occur between 4000 and 8000 iterations at each fold, while the NN-MARS
does not necessitate it and runs over 10000 epochs.
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Fig. 2. Results on simulated data for DT, LR NCS, MARS model with M = 10, NN with p = 4 in (5), NN
with p = 30 in (5), NN-MARS (4 nodes, since d = 2). Caption: estimated boundary in red, segmentation in
black.

Finally, an experiment to test the scalability of the proposed method is presented on the figure
3. The AUC (Area Under the Curve) is a criterion appreciated by the doctors [9]. Where accuracy
provides information about the predictive power of a model, the AUC gives an idea of the Sensibility
and the Specificity of a predictive model, that is to say the capability of a tool for identifying a binary
signal (sick or not in our case). The obtained average AUC over the 5-folds cross validation is displayed
on both training and test samples for the NN-MARS, the ReLU NN with p = 4 and the ReLU NN
with p = 30 according to different samplings. The proposed method (Fig. 3 curve in blue) obtains an
AUC equivalent or even higher to the traditional ReLU NNs on the testing sample for all the number
of patients tested. Indeed, traditional ReLU NNs tend to over-fit when only few patients are available
in the training sample. The freezing of some parameters in the neural architecture of NN-MARS does
not affect its predictive performance while improving the interpretability of its decision rule, even when
a few number of patients is available in a cohort.

Number of patients Number of patients

Fig. 3. AUC score (y-axis) on simulated data with different number of patients (x-axis) for the NN-MARS in
blue, ReLU NN with p = 4 in green and ReLU NN with p = 30 in orange on training and validation samples.



Real data: We compared the performance of NN-MARS to other methods on a real data set. The
main objective of the "Parkinson" database [10] is to detect people with Parkinson’s disease from voice
recordings of N = 195 patients (24, 6% with Parkinson). We kept d = 16 biomedical measures of
voice, such as maximum, average, and minimum voice frequencies. The NN-MARS is composed of
32 neurons. The training of the NNs is stopped when the error on the test data does not decrease
anymore in order to avoid overfitting. The results are detailed in the table 1.

Training set Test set
Accuracy AUC Accuracy AUC

LR 0.85 (0.02) 0.87 (0.02) 0.76 (0.01) 0.80 (0.06)
DT 0.91 (0.02) 0.94 (0.02) 0.88 (0.01) 0.77 (0.03)
LR NCS 0.90 (0.02) 0.94 (0.01) 0.82 (0.03) 0.87 (0.05)
MARS 0.90 (0.03) 0.91 (0.06) 0.82 (0.04) 0.89 (0.04)
NN (p = 16) 0.87 (0.04) 0.91 (0.07) 0.81 (0.06) 0.88 (0.07)
NN (p = 70) 0.86 (0.04) 0.91 (0.07) 0.83 (0.06) 0.88 (0.07)
NN-MARS 0.87 (0.01) 0.92 (0.03) 0.83 (0.05) 0.91 (0.05)

Tab. 1. Results of predictive performance on real data (mean and standard deviation in parentheses): the DT,
the LR NCS, the 16-neurons NN, the 70-neurons NN, and the NN-MARS (6).

The LR is less efficient (76% accuracy on the test sample) than the other methods, which highlights
the importance of introducing non-linearity in the modeling. Among all the non-linear methods tested,
NN-MARS obtained the best AUC on the test sample (91%). The automation of the segmentation in
MARS and NN models explains their higher AUCs than the LR NCS. The standard deviations show
that the NN-MARS is more stable than the conventional NNs.
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Fig. 4. Estimated splines on Parkinson dataset for the following features: Minimum voice frequency, Average
voice frequency, Amplitude variation, Shimmer, Shimmer APQ5. Caption: NN-MARS in red, MARS in blue,
LR NCS in green.

An advantage of the NN-MARS is the graphical interpretability of the results. Contrary to tra-
ditional ReLU NNs, the proposed method performs a partitioning with hyperplanes and thus the
univariate estimated splines can be viewed. Figure 4 shows the estimated splines for 5 predictive
variables. Each spline models the impact of the corresponding variable on the classification score.
The estimated knots are represented by the points on the curves. The different methods find similar
profiles for the variables but still quite dissimilar. For example, the NN-MARS (curves in red in Fig.
4) estimates that a low average vocal frequency increases the risks of developing Parkinson, since its
estimated spline increases as the value of this feature decreases. From a certain level, the augmentation
of the vocal frequency decreases the risk of being classified as sick. Moreover, this figure highlights the
limits of the greedy learning of the MARS method. Only 5 variables are segmented, one of them 5
times (Fig. 4-Minimum vocal frequency). The MARS model is not able to increase its predictive per-
formance by adding a new spline function, while it is possible to find a better performing classification
rule, as demonstrated by the NNs in Table 1.

5 Conclusion

This paper develops an explainable neural network for nonlinear binary classification. Threshold
effects are included in the modeling of the problem by approximating splines in the hidden layer of
the network. The particular architecture of this network allows to control the segmentation of the
variables and also to produce an easily understandable decision rule. Thus, this model is adapted



to medical problems and to the expectations of specialists in this field. In future works, it would
be interesting to include categorical variables and interactions between variables in order to improve
predictive performance.
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