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• We transform a StyleGAN generator into a facial landmark heatmap

generator.
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• We beat state-of-the-art in the low training data setting.
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bUniv. Rennes, CNRS, IRISA, France, 263 avenue du Général
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Abstract

While the performance of face alignment models has been improving over

the years, they still need large, annotated datasets during their training to

perform well. In this paper, we propose a new architecture to perform face

alignment with limited training data. Our model is based on StyleGAN, a

popular architecture in the image generation domain, and takes advantage of

its strong generative power to generate accurate facial landmark heatmaps

of real face images, using only a small amount of training data. Even when

trained down to only 50 samples, our model can still predict accurate facial

landmarks. It exceeds state-of-the-art on several face alignment datasets in

the low training data regime.
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1. Introduction

The success of Deep Learning comes mainly from its ability to auto-

matically learn optimal features for the target task instead of relying on

hand-crafted features such as SIFT [1] or HOG [2]. A subdomain of Ma-

chine Learning is Representation Learning; the goal, in this case, is to learn

useful features, e.g., interpretable or that can be used for transfer learning.

One application of representation learning is reducing the number of anno-

tated samples needed to train a model on a downstream discriminative task,

such as classification or regression. Popular representation learning methods

make use of auto-encoders [3, 4, 5], contrastive learning [6, 7, 8], or masked

inputs [9, 10]. While some methods also use Generative Adversarial Networks

(GANs) [11, 12, 13, 14, 15], we think that this idea is very promising and

has not been fully explored, especially with the newest GANs architectures.

Among GANs, StyleGAN is a popular approach thanks to its disentan-

gled latent space that can be distilled into multiple styles [16, 17, 18]. Each

style controls a semantic characteristic of the image such as color scheme,

object shape, or background. Because of its lack of an inference module,

many approaches propose to invert StyleGAN in order to project real im-

ages into its latent space and perform semantic editing of these images

[19, 20, 21, 15, 22, 23, 24, 14, 25]. However, most of these works focus

on image-to-image translation tasks, such as attribute editability, super-

resolution, or inpainting. While some methods have studied the use of Style-

GAN for regression tasks [14, 15], they usually focus on semantic attribute

regression such as face pose or age estimation [15] or don’t evaluate in depth

how well their method performs compared to modern supervised methods or
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semi-supervised methods in the setting of limited training data.

In this work, we study the use of StyleGAN for a challenging regres-

sion task: facial landmark prediction (also called face alignment) with lim-

ited training data. Face alignment tries to localize some pre-defined facial

anatomical keypoints (such as the corners of the mouth, the eyes, the bound-

aries of the face, ...) in a face image. Many downstream tasks rely on the

predicted landmarks such as face swapping or facial expression recognition.

Through the years, the performance of face alignment models has in-

creased, especially since the rise of Deep Learning, although most of the

recent improvements come more from specifically designed training schemes

like complex training losses [26, 27] rather than better network architectures.

Also, because labeling facial keypoints is time-consuming and can be chal-

lenging on images with large poses or occlusions, non-synthetic facial land-

mark datasets are usually relatively small (a few thousand samples) com-

pared to other computer vision tasks such as image classification, making

the trained models prone to overfitting. In this paper, we study whether it is

possible to train a facial landmark detector with only a few samples and still

get good accuracy and generalization. To tackle this challenge, we propose a

new architecture. We transform a pre-trained StyleGAN generator, through

the use of additional layers, into a facial landmark heatmap generator which

can be trained with limited training data. Paired with a StyleGAN encoder,

we can perform face alignment on real images.

With this new framework, we achieve competitive results on multiple

facial landmark datasets, even on images very different from the StyleGAN

generative distribution, and beat state-of-the-art in the low-data regime. Our
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contributions are as follows:

• We propose a new architecture derived from StyleGAN to perform face

alignment with limited training data. On multiple 2D and 3D face

alignment datasets, our method achieves competitive results in the fully

supervised setting and systematically beats state-of-the-art in the low

training data setting.

• We study the use of active learning to improve our results even further.

The rest of our paper is organized as follows: first, we present in Section

2 the StyleGAN architecture and existing works on StyleGAN inversion. We

also introduce the face alignment task and sum up methods dealing with lim-

ited training data for this task. For the last part of this section, we explain

the active learning principle and list several existing methods and applica-

tions. In Section 3, we present our proposed framework for face alignment

with limited training data. Section 4 reports the results of our different

experiments. Finally, Section 5 concludes this paper.

2. Related Work

This section relates works related to our method, based on StyleGAN, and

its purpose: face alignment with limited training data. The active learning

principle is also explained and different existing methods are presented.

2.1. StyleGAN

Generative Adversarial Networks (GANs) [28] have greatly improved the

quality of image generation over the last few years. StyleGAN [16] differs
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from previous GAN architectures by its generative process. Instead of start-

ing from Gaussian noise z ∈ Z (the latent representation) and progressively

increasing the spatial dimensions through the network layers, z is first pro-

jected to an intermediate latent space W via a non-linear mapping network

f : Z → W which produces an intermediate latent code w ∈ W . The input

of the generator is a constant learned vector c1 and at each layer, w is trans-

formed by an affine transformation (different for each layer i) into a style

vector yi and injected into the current feature map via an AdaIn [29] opera-

tion. Each style vector controls a specific aspect of the generated image, style

vectors corresponding to low-resolutions control high-level attributes such as,

for face images, pose, face shape, or hairstyle while high-resolution style vec-

tors control fine-grained aspects such as the color scheme or microstructure.

2.2. StyleGAN Inversion

To semantically edit a synthetic image generated by StyleGAN, we can

modify some of its style vectors. To modify in the same way a real image, we

first need to approximate its StyleGAN latent vector, this is called StyleGAN

inversion. StyleGAN inversion methods are divided into three families. The

optimization-based methods iteratively refine a latent code by minimizing the

reconstruction error [20, 21]. The encoder-based methods train an encoder

to predict the latent code [15, 22, 23, 24, 14, 25]. Finally, hybrid methods

train an encoder to predict an initial latent code which is refined through

optimization [19]. Optimization-based and hybrid-based methods usually

have better reconstruction errors but are much slower than encoder-based.

Rather than predicting the true latent code z ∈ Z or the intermediate

latent code w ∈ W , most methods predict a code for each style: w+ =
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(w1, w2, ..., wn) ∈ W+, n being the number of styles [15, 22, 23, 24]. This

gives more flexibility and improves the reconstruction error. Some methods

predict along w+ a feature map f ∈ F which replaces the first layers of

the generator [21, 25]. This feature map improves the reconstruction error

but also makes it possible to encode images that do not follow the training

dataset alignment (e.g., FFHQ [16]) and Celeba-HQ [30] always have the face

centered in the image and eyes at the same level). For example, translated

or rotated images can still be faithfully encoded and reconstructed.

2.3. StyleGAN for regression

While the most common use cases for StyleGAN inversion are image-to-

image translation tasks, such as attribute edition or super-resolution [19, 20,

21, 22, 23, 24, 25], it can also be used for discriminative tasks like classifica-

tion or regression. GHFeat [14] proposes a StyleGAN encoder which predicts

the style vectors {yi}. Then for each discriminative task, such as face veri-

fication and face alignment, a fully connected layer with the predicted style

vectors as input is trained for the task. However, compared to modern super-

vised methods, its results are quite poor, and it does not study how well its

method would perform when training with limited data. LARGE [15] does

not propose a new StyleGAN encoder architecture but notices that the linear

directions in the latent space which affect image attributes are also linear in

terms of the magnitude of change, so it is possible to create a linear regres-

sion model using a few calibration samples. Unfortunately, its method is

restricted to image attribute regression, such as age or head pose estimation,

and can’t be applied for more complex tasks like facial landmark prediction.

6



2.4. Face Alignment

Rather than directly predicting the position of the landmarks in the im-

age, most of the recent 2D face alignment models predict facial landmark

heatmaps [31], one for each landmark. The landmark position is then in-

ferred from the best local maximum of the heatmap.

In the case of 3D face alignment, we try to detect the true anatomical

position of the keypoints, for example, the landmarks on the outline of the

face remains at the same anatomical position even if there are occluded (the

reader can compare the Figure 2 and 4 for a visual explanation). For this

task, methods can be divided into two families, those that attempt to detect

the landmarks directly [32] or those that aim to fit a 3D face model and then

obtain the landmarks from this model [33, 34, 35]. Wu et al. [36] learn both

tasks at the same time.

Semi-supervised methods try to alleviate the problem of facial landmark

annotations we explained in the introduction of this paper. To do so they use

annotated and non-annotated data during the training. Honori et al. [37] im-

pose equivariance of predicted landmarks to geometric transformations. TS3

[38] uses pseudo-labeling with a teacher-student method. Some methods are

based on transfer learning: 3FabRec [3] trains an auto-encoder to recon-

struct face images and then modifies its decoder to generate facial landmark

heatmaps, SCAF [39] improves 3FabRec by adding skip-connections to the

auto-encoder and using active learning. FaRL [8] uses masked image mod-

eling and image-text contrastive learning on a large text/image pair dataset

to pre-train a network and then use it for several facial downstream tasks

including face alignment. Transfer learning is an interesting principle to train
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with limited annotated data but the whole pipeline can be computationally

expensive and we think the carbon footprint for training a model should be

taken into account. In the case of 3FabRec and SCAF, the self-supervised

training of the encoder is done using millions of face images and lasts for days.

Also, its sole purpose is the face alignment task. FaRL, in its principle, is

more efficient because the pre-trained network can be used for different facial

downstream tasks such as face parsing or facial attribute recognition and not

only facial alignment. But its architecture is based on a visual Transformer

[40], a heavy architecture, and trains on a dataset of 20 million samples using

32 Nvidia V-100 GPUs so the pre-training is very expensive.

Our approach is also based on transfer learning but we don’t need to do

any dedicated pre-training prior to our face alignment training. Rather, we

promote StyleGAN pre-trained generators and encoders, which have been

trained for a completely different purpose: face image generation for gen-

erators and face attribute modification for encoders. It makes the carbon

footprint for the redaction of this paper very low compared to the previously

discussed transfer learning methods.

Another solution to tackle the challenge of facial landmark annotations

is to use synthetic samples. Qian et al. [41] train a network to produce

multiple images with different styles but the same face pose from an input

image to increase the training dataset size. Wood et al. [42] use a fully syn-

thetic dataset created with computer graphics [43] to train a facial landmark

detector. With computer graphics, it is possible to generate a lot of sam-

ples with perfect annotations, but generating such a dataset requires much

computation power and there is always a domain gap between the generated
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images and real face images which may deteriorate the performance of the

model on real test images. Also, if you need a new kind of annotations (addi-

tional landmarks for example), you need to generate again the whole dataset.

While Wood et al. [42] obtain fair results on the face alignment dataset 300-

W [44], it is hard to determine how well their model would perform on more

challenging face alignment datasets such as WFLW [45].

2.5. Active learning

In academic research, most of the time, scientists randomly choose the

labeled samples from the whole labeled training set to demonstrate the ef-

fectiveness of their model in the few-shot setting. Yet, at first, this labeled

training set does not exist for real-world applications, and one must choose

the samples to annotate among an unlabeled training dataset.

The goal of active learning is to select the most valuable samples to anno-

tate rather than sampling them randomly from the initial unlabeled dataset.

Indeed, in the case of random sampling, very similar or easy samples might

be sampled even though they won’t help the model to improve during the

training. Active learning tries to prevent this kind of situation. When anno-

tating samples is very time-consuming, such as annotating facial landmarks,

active learning can be very valuable.

Active learning is an iterative procedure: from a non-annotated dataset

UN , an initial set L0 is annotated and then the model is trained on L0. Once

the training is over, all the remaining unlabeled samples from UN are ranked

using an acquisition function which depends on the model predictions, the K

best samples are annotated and added to L0 giving a new annotated set L1.

Then, the model is trained again from scratch on this new annotated set and
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UN samples are ranked again, etc. This scheme repeats until the exhaustion

of the annotation budget.

The crucial part of active learning is the choice of the acquisition func-

tion. The acquisition functions can be divided into two families even though

works combine both approaches [46]. The first family follows the “uncer-

tainty sampling” principle [47, 48, 39], where the acquisition function tries

to choose the samples where the model is the least confident in its predic-

tions; the acquisition function mimics the training loss. The second family

of acquisition functions is based on “diversity sampling” [49], this time, the

acquisition function tries to select samples that represent the diversity of the

unlabeled dataset and tries to avoid selecting samples too similar.

For works related to our task, Yoo et al. [48] compute the spatial entropy

of body part heatmaps to assess their quality. SCAF [39] proposes a new

acquisition function: the Negative Neighborhood Magnitude which computes

the sum of heatmap pixel values in a window centered on the predicted

landmark position, and uses it for the face alignment task.

3. Method

3.1. Overview

Noticing the quality of StyleGAN [16] for image generation, we propose to

modify its generator so that it generates facial landmarks heatmaps instead.

To apply it to real images, we also need to project them into StyleGAN latent

space. This leads to our proposed framework: from an input face image, we

first approximate its StyleGAN latent vector using a pre-trained Feature-

Style encoder [25], then we use the modified StyleGAN generator to predict
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Figure 1: Our network architecture. We use a pre-trained Feature-style encoder and

StyleGAN2 generator. Additional convolution layers are interleaved with some generator

convolution blocks and are trained to predict landmark heatmaps.

facial landmark heatmaps from this latent vector. The generator is modified

in a way similar to 3FabRec [3]: additional convolution layers are interleaved

with the generator layers and trained to generate facial landmark heatmaps.

Our full architecture can be seen in Fig. 1.

3.2. StyleGAN inversion encoder

We need to choose a StyleGAN inversion model for our architecture. We

don’t consider optimization-based and hybrid models because their computa-

tional time would lead to intractable training time. FFHQ [16], the training

dataset of most StyleGAN generators for face images contains only aligned

images, the face is always perfectly centered, the eyes are always at the same

horizontal position and the zoom is also the same for all images. Many

StyleGAN encoders can only faithfully reconstruct images that follow this
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alignment. But images from face alignment datasets do not follow this align-

ment, it depends on the face detector used or the provided ground truth

bounding boxes, so we need a StyleGAN encoder that can still reconstruct

non-aligned images. That’s why we choose Feature-Style encoder [25] which

outputs the extended latent vector w+ but also a feature map f which makes

it possible to handle non-aligned images.

3.3. Modified StyleGAN generator

3FabRec [3] and then SCAF [39] showed that the decoder of an auto-

encoder trained to reconstruct face images can be modified to predict facial

landmark heatmaps. Indeed, during the generation of a face image from

a latent representation, generator layers must extract (among other face at-

tributes) face shape information from the latent vector to generate the image.

Facial landmark heatmaps can be seen as a face image where only informa-

tion about face shape has been kept. So, we can try to perform some kind

of style transfer by modifying the already trained generator to generate not

RGB face images but facial landmark heatmaps instead. While 3FabRec and

SCAF use a small inverted ResNet-18 as a decoder, we propose to use a more

advanced network: a StyleGAN generator. We detail this architecture in the

following paragraphs.

As explained in Section 2.1, the StyleGAN generator starts from a con-

stant vector c1 followed by StyleGAN blocks which progressively increase the

resolution. Each block is composed of an upsampling operation followed by

two convolutions equipped with an AdaIn [29] operation to inject the layer-

specific style vector. From an image, the Feature-Style encoder predicts 2

codes: the feature code f and the extended latent vector w+ = (w1, w2, ...).
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During image generation, the first layers of the generator (five in this pa-

per) are replaced by the feature code f . Then, each latent vector wi (except

for the first ones) from w+ is transformed into a style vector by an affine

transformation and injected into the corresponding StyleGAN layer through

AdaIN. The last block outputs the reconstructed image.

We modify this architecture to predict facial landmark heatmaps. From a

chosen generator block until the landmark heatmap resolution is reached, in

a similar way to 3FabRec and SCAF, we interleave the generator blocks with

Interleaved Transfer Layers (ITLs) [3]. An ITL is a 3× 3 convolutional layer

located directly after a StyleGAN block. It takes as input the output of the

StyleGAN block and outputs a feature map with the same spatial dimensions

and number of channels of the input, except for the last ITL. This last ITL

generates the landmark heatmaps so this time the number of channels is equal

to the number of landmarks. Fig. 1 shows the full architecture. During the

supervised training, the StyleGAN blocks parameters are frozen, but not the

encoder ones which are fine-tuned while the ITLs are trained.

3.4. Active learning

Optionally, we use active learning to select our samples when training with

limited data. We use the Negative Neighborhood Magnitude (NNM) [39] as

the acquisition function. For each predicted heatmap H̃, the NNM sums

the heatmap pixels values in a square window Wi centered on the predicted

landmark position l̃i (the argmax of the heatmap in our case). To finish the

NNM computation, all the heatmaps sums are then summed again and we

take negative so that the less confident the model is, the greater NNM is.
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NNM(H̃) = −
L∑
i=1

∑
u,v∈Wi

H̃i(u, v) (1)

This acquisition function selects heatmaps with low magnitude around

the predicted landmark positions, it assumes that when the model is not

confident about its prediction, the heatmap magnitude will be low so adding

this sample to the training set would improve the model performance. As

in SCAF [39], we discard the top-10% NNM samples from the potential

candidates to avoid selecting outliers.

4. Experiments

4.1. 2D Face alignment datasets

We evaluated our method on three 2D face alignment datasets commonly

used in the literature.

AFLW: This dataset [50] contains 24,386 face images annotated with 21

landmarks. Following usual practice [38, 3], we ignore the landmarks of the

ears and use 20,000 training images and 4,386 testing images. We evaluate

our model on the Full test set and the Frontal test set, a subset that contains

only images with a frontal view.

300-W: This dataset [44] contains face images annotated using 68 land-

marks. Following the common splits [38, 3], the training set contains 3,148

images while the Full test set contains 689 images and is divided into a

Common test set of 554 images and a Challenging test set of 135 images.

WFLW: This dataset introduced in [45] contains 7,500 training images

and 2,500 testing images annotated with 98 landmarks. The test set is split
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into several (partially overlapping) subsets, each focused on a specific char-

acteristic: pose, expression, illumination, make-up, occlusion, or blur.

4.2. 3D Face alignment datasets

We also evaluated our architecture on the 3D face alignment task to see if

it can also generate accurate 3D facial landmark heatmaps. For this task, we

use two different datasets, one for training and another for evaluation. By 3D

landmarks we actually mean the 2D projections of the 3D landmarks because

to predict the full 3D landmarks we would need to modify our architecture.

300-W-LP: This is a synthetic dataset [33] created from 300-W images

using the profiling method of [33] to render its faces into larger poses. This

dataset contains 122,450 face images with a face pose yaw angle ranging from

-90° to 90°. 68 2D and 3D landmarks annotations are provided for each face.

We train our model on this dataset to predict the 3D landmarks.

AFLW2000-3D: This dataset [33] was constructed by re-annotating the

first 2,000 images of AFLW annotated with 68 3D landmarks consistent with

the ones of 300-W-LP. The face pose also ranges from -90° to 90°. We use

this dataset to evaluate our models trained on 300-W-LP. The dataset can

be divided into 3 subsets according to the absolute face pose: a subset with

almost frontal faces ([0°, 30°]), another one with medium poses ([30°, 60°])

and the last one with profile views ([60°, 90°]).

4.3. Evaluation

As metrics, we use the usual Normalized Mean Error (NME) and Area

Under Curve (AUC) of the Cumulative Error Distribution (CED) to compare

our model to other methods. The NME is defined as:
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NME(%) =
1

N

N∑
i=1

||si − s̃i||
d

∗ 100 (2)

where si and s̃i are the ground truth and predicted location of landmark

i, N the number of landmarks and d a normalization distance.

For 300-W and WFLW, we use the distance between the outer eye cor-

ners as the normalization distance for the NME (NMEinter-ocular). For AFLW,

because of the large number of profile faces, we report both the NME normal-

ized with the diagonal of the ground truth bounding box (NMEdiag) or the

square root of the ground truth bounding box area (
√
wbbox ∗ hbbox) (NMEbox).

We also report the AUC at 7% NMEbox (AUC7
box) for this dataset. For

AFLW2000-3D, as the normalization distance, we also use the square root

of the bounding box area. Because no bounding box is provided for this

dataset, it is computed from the ground truth 3D landmarks.

4.4. Architecture and training parameters

The StyleGAN inversion encoder is a Feature-style encoder [25] pre-

trained on FFHQ [16]. The generator is a StyleGAN2 generator [17] pre-

trained on the same dataset. Input images are resized to 256 × 256 pixels.

We use 5 ITLs (see Section 4.7.2 for details) and output heatmaps of size

128× 128 pixels.

Our models are implemented with PyTorch [51]. We train all our models

for 200,000 training steps using a batch size of 8 on a Nvidia V100 GPU

with 16 GB of memory. For the training loss, we use a standard MSE loss

between the predicted and ground truth heatmaps. As optimizer, we use

Adam [52] (β1 = 0.9, β2 = 0.99) with an initial learning rate of 0.0001
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for the ITLs and 0.00002 for the pre-trained encoder. Both learning rates

are decayed by a factor of 0.995 every 10 epochs. We use random vertical

flip (p=50%), rotation (±30°), translation (±4%), scaling (±5%), occlusions

(p=50%, PyTorch default settings for the bounding box size), Gaussian blur

(p=20%), brightness (p=45%, ±80%) and contrast changes (p=45%, 30%-

200%) as data augmentations.

When training with limited data (without active learning), the training

samples are chosen randomly from among the full training set before each

run. We report the means and standard deviations over 5 runs for all training

sizes except 50, for which we use 10 runs. During active learning, the initial

training set contains 10 random samples. K, the number of samples added

after training depends on the final training set size. We make it large enough

so that there are no more than 5 trainings in total.

4.5. Results on 2D face alignment

4.5.1. Comparison with fully supervised methods

Table 1 shows comparisons of our method with state-of-the-art (SOTA)

on 300-W and WFLW datasets when training with the full training dataset

(except for Wood et al. [42] which is trained on a synthetic dataset). Our

method achieves results comparable to the SOTA of 2019 but is surpassed

by current SOTA methods. For AFLW (see Table 2), we are second on all

metrics, just behind another semi-supervised method [8]. We hypothesize

that these better results, compared to 300-W and WFLW are caused by the

fact that AFLW is relatively easier (only 19 landmarks) and many images

are closer to the ones found in FFHQ, the training dataset for the StyleGAN

encoder and generator. While these results are interesting, our main goal
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Figure 2: Our model predictions on some images of 300W Full test set. Top row shows

landmark predictions and bottom row shows heatmap predictions.

with our method is to train the model with limited training. These results

are discussed in the next subsection. Figure 2 shows predictions of our model

on some images of the 300-W Full test.

4.5.2. Comparison with semi-supervised methods

We compare our method to other semi-supervised methods training with

limited data. On 300-W (Table 4), we surpass other methods for all limited

training sizes ranging from 20% (630 samples) of the full training set (3,148

samples in total) to only 50 samples. When training with this last training

set size, we get comparable or better results than other methods training with

20% of the dataset. Also, the performance of our algorithm does not degrade

significantly when the training set size goes down, even for 50 samples. For

the more challenging dataset WFLW (see Table 3), we also surpass other

methods when training on limited data.

Methods reported their results on AFLW with the NMEdiag or NMEbox

so we computed both metrics (see Table 5). For the NMEdiag, we surpass

other semi-supervised methods on all training set sizes on both the Full and
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300-W WFLW

Method Com. Chal. Full Full

SAN [53] 3.34 6.60 3.98 5.22

LAB [45] 2.98 5.19 3.49 5.27

AVS [41] 3.21 6.49 3.86 4.39

DeCaFa [54] 2.93 5.26 3.39 4.62

AWing [26] 2.72 4.52 3.07 4.36

LUVLi [55] 2.76 5.16 3.23 4.37

HiH [56] 2.93 5.00 3.36 4.18

SHR-FAN [57] 2.61 4.13 2.94 3.72

ADNet [27] 2.53 4.58 2.93 4.14

FaRL [8] 2.56 4.45 2.93 3.96

Wood et al.* [42] 3.03 4.80 3.38 -

Ours 2.97 5.30 3.42 4.62

Ours (standard deviations) 0.01 0.09 0.02 0.03

Table 1: NMEinter-ocular (%) (↓) on the 300-W Common, Challenging and Full test sets,

and on the WFLW Full test set. *Trained on a synthetic dataset.

AFLW dataset

NMEdiag (%)↓ NMEbox (%)↓ AUC7
box ↑

Method Full Frontal Full Full

DSRN [58] 1.86 - - -

SAN [53] 1.91 1.85 4.04 0.540

LAB [45] 1.25 1.14 - -

HR-Net [59] 1.57 1.46 - -

LUVLi [55] 1.39 1.19 2.28 0.680

3FabRec [3] - - 1.84 -

SHR-FAN [57] 1.31 1.19 2.14 0.700

FaRL [8] 0.94 0.82 1.33 0.813

Ours 1.02 0.90 1.45 0.791

Ours (standard deviations) <0.01 <0.01 <0.01 <0.001

Table 2: Comparison with state-of-the-art methods on the AFLW Full and Frontal test

sets.
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WFLW dataset

Method Training set size

7500 1500 750 375 50

(100%) (20%) (10%) (5%) (0.67%)

AVS [41] 4.39 6.00 7.20 - -

3FabRec [3] 5.62 6.51 6.73 7.68 8.39

SCAF [39] 5.50 6.07 6.28 6.72 8.06

SCAF+AL [39] - - 6.24 6.59 7.60

Ours 4.62 5.09 5.44 5.80 7.78

Ours std 0.03 0.08 0.07 0.08 0.20

Ours+AL - 4.94 5.18 5.45 7.30

Ours+AL std - 0.04 0.03 0.04 0.12

Table 3: NMEinter-ocular (%) (↓) when training with limited training set size on the WFLW

Full test set. AL stands for Active Learning.

Frontal test sets. For the NMEbox, we compared our method with FaRL [8],

they only report results for 100%, 10%, and 1% sizes but we can see that

even though they achieve better results when training with the full training

set, their results are even with us on the 10% training set size and we surpass

them on the 1% training set size.

4.5.3. Results with active learning

Figure 3 shows examples of images selected by the Negative Neighborhood

Magnitude (NNM), the active learning acquisition function used. Heatmaps

with low magnitude have various causes: network confusion between the

outline of the face and hair or beard (first two pictures), unusual face pose

(third picture), or almost closed eyes (fourth picture). Also, landmarks on

the outline of the face being the most ambiguous, they usually are the ones

with the lowest heatmap magnitude.
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300-W dataset

Method Training set size

3148 630 315 168 50

(100%) (20%) (10%) (5%) (1.59%)

Com. Ch. Full Com. Ch. Full Com. Ch. Full Com. Ch. Full Com. Ch. Full

RCN+ [37] 3.00 4.98 3.46 - 6.12 4.15 - 6.63 4.47 - 9.95 5.11 - - -

AVS [41] 3.21 6.49 3.86 3.85 - - 4.27 - - 6.32 - - - - -

TS3 [38] 2.91 5.90 3.49 4.31 7.97 5.03 4.67 9.26 5.64 - - - - - -

3FabRec [3] 3.36 5.74 3.82 3.76 6.53 4.31 3.88 6.88 4.47 4.22 6.95 4.75 4.55 7.39 5.10

SCAF [39] 3.48 5.89 3.95 3.66 6.23 4.17 3.87 6.60 4.40 3.93 6.84 4.50 4.33 7.60 4.97

SCAF+AL [39] - - - - - - 3.99 6.49 4.48 4.19 6.78 4.70 4.29 6.93 4.81

Ours 2.97 5.30 3.42 3.14 5.66 3.64 3.22 5.87 3.74 3.33 6.05 3.86 3.57 6.62 4.16

Ours std 0.01 0.09 0.02 0.02 0.04 0.02 0.03 0.06 0.03 0.03 0.13 0.03 0.05 0.21 0.07

Ours+AL - - - 3.12 5.53 3.59 3.20 5.67 3.68 3.32 5.83 3.81 3.54 6.24 4.06

Ours+AL std - - - 0.03 0.05 0.02 0.02 0.05 0.02 0.03 0.04 0.03 0.01 0.13 0.02

Table 4: NMEinter-ocular (%) (↓) when training with limited training set size on 300-W on

the Common, Challenging and Full test sets (first, second and third columns respectively

for each training set size). AL stands for Active Learning.

AFLW dataset
Method Training set size

20000 4000 2000 1000 200 50
(100%) (20%) (10%) (5%) (1%) (0.25%)

Full Fr. Full Fr. Full Fr. Full Fr. Full Fr. Full Fr.

NMEbox (%) ↓
RCN+ [37] 1.61 - - - - - 2.17 - 2.88 - - -
TS3 [38] - - 1.99 1.86 2.14 1.94 2.19 2.03 - - - -
3FabRec [3] 1.87 1.59 1.96 1.74 2.03 1.74 2.13 1.86 2.38 2.03 2.74 2.23
Ours 1.45 1.28 1.60 1.39 1.63 1.41 1.66 1.43 1.79 1.53 2.05 1.71
Ours std <.01 <.01 <.01 0.02 <.01 0.01 <.01 0.03 0.01 0.01 0.03 0.02
Ours+AL - - - - - - 1.66 1.49 1.77 1.56 2.03 1.75
Ours+AL std - - - - - - <.01 0.02 <.01 <.01 0.03 0.04

NMEdiag (%) ↓
FaRL [8] 0.94 0.82 - - 1.15 - - - 1.35 - - -
Ours 1.02 0.90 1.13 0.98 1.15 1.00 1.17 1.01 1.27 1.08 1.45 1.21
Ours std <.01 <.01 <.01 0.01 <.01 0.01 <.01 0.02 0.01 <.01 0.02 0.02
Ours+AL - - - - - - 1.17 1.05 1.25 1.11 1.44 1.24
Ours+AL std - - - - - - <.01 0.02 <.01 <.01 0.02 0.03

Table 5: Comparison with other semi-supervised methods when training with limited

training set size on AFLW on the Full and Frontal test sets (first and second columns

respectively for each training set size). AL stands for Active Learning
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On 300-W, while the use of active learning greatly reduces the NME on

the Challenging test, especially when the training size is very small, there

is no real improvement on the Common test set. It proves the efficiency of

active learning to select hard samples from the unlabeled training set, similar

to the ones found in the Challenging test set.

For WFLW, using active learning always improves the performance of

our model, proving again its efficiency. One should also notice that for both

datasets, the use of active learning also reduces the NME standard deviations;

that would tend to demonstrate that the samples selected by active learning

are similar across the runs.

On AFLW, this time the active learning does not improve much the per-

formance on the Full test set. It decreases it a bit on the Frontal test set,

meaning active learning improves the performance on challenging images such

as profile faces but with the cost of a slightly reduced accuracy on easy faces.

4.6. Results on 3D face alignment

We compare our model to other methods which train on 300-W-LP and

evaluate on the AFLW2000-3D dataset. Although our method only predicts

landmark heatmaps and does rely on estimating a 3D face model like most

of the recent 3D face alignment models [34, 35, 36], our method still obtains

decent results. For the low pose test subset ([0°, 30°]), we obtain a similar

performance to the state-of-the-art. However, for larger poses, our model

falls behind recent methods. This may be explained by the fact there is no

profile face in the pre-training dataset (FFHQ [16]) and because our method

relies on heatmaps, it may be difficult for some images to detect precisely

occluded landmarks. Our model still obtains decent results on many profile
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Figure 3: Some images of 300-W selected by the NNM, the active learning acquisition

function, after a first training on 10 random images. First row: ground truth landmarks.

Second row: predicted landmarks. Third row: ground truth heatmaps. Fourth row: pre-

dicted heatmaps. The NNM successfully selects images where some landmark predictions

are not accurate. These samples will be added to the training labeled set for the next

training iteration and should improve the model performance.
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Figure 4: Our model predictions on some images of AFLW2000-3D. The top row shows

landmark predictions and the bottom row shows heatmap predictions. Even occluded

landmarks are correctly predicted.

face images (see Figure 4).

4.6.1. Results when training with limited training data

We evaluate our model on AFLW2000-3D after training on data sam-

pled from 300-W-LP. We use three different sampling methods, ”Random”:

fully random sampling, ”Balanced”: random sampling but the low (0-30°),

medium (30-60°) and large pose (60-90°) subsets must have equal size and

”Active”: sampling using active learning (same procedure as used for 2D

face alignment). We use different training set sizes, 300, 150, and 48, all

divisible by 3 so we can have perfectly balanced training sets for the ”Bal-

anced” sampling method. Table 7 reports the NMEbox of the models on the

AFLW2000-3D pose subsets. It also reports the face pose distribution of the

training datasets sampled from 300-W-LP. The whole 300-W-LP contains

25% low pose images, 37% medium pose images, and 38% large pose im-

ages so our ”Random” samplings are close to this distribution. ”Balanced”

samplings have by definition a (33%, 33%, 33%) pose distribution. In the
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AFLW2000-3D dataset

Method 0-30° 30-60° 60-90° Balanced Mean

3DDFA [33] 3.78 4.54 7.93 5.42 6.03

3D-FAN [32] 3.16 3.53 4.60 3.79 -

3DDFA-PAMI [60] 2.84 3.57 4.96 3.79 -

PRNet [61] 2.75 3.51 4.61 3.62 3.26

3DDFAv2 [34] 2.63 3.42 4.48 3.51 -

SADRNet [35] 2.66 3.30 4.42 3.46 3.05

SynergyNet [36] 2.65 3.30 4.27 3.41 -

Ours 2.65 3.62 4.89 3.72 3.14

Ours std 0.03 0.07 0.11 0.07 0.03

Table 6: NMEbox (%) (↓) on different subsets of AFLW2000-3D divided by face pose (yaw

angle). ”Balanced” column is the average of the first 3 columns. ”Mean” column reports

the mean NME over the whole AFLW2000-3D dataset.

case of ”Active” sampling, the table shows that active learning heavily fa-

vors the large pose images when selecting samples. It represents more than

half of the final training dataset for all training sizes. Thus, models trained

with active learning perform better on AFLW2000-3D large pose subset, es-

pecially when training with 48 samples where the NME is decreased by 8%

compared to ”Random” and 11% compared to ”Balanced”, but a bit worse

on the low pose and medium pose subsets. Also, compared to training with

the 122,450 images of the whole 300-W-LP, the performance of the models

does not degrade much. For example, there is only a 0.6% increase of NME

on the large pose subset of AFLW2000-3D when training with 300 samples

(0.25% of 300-W-LP size) with active learning compared to training on the

whole dataset.
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300-W-LP/AFLW2000-3D
Sampling Training set size (300-W-LP)

300 150 48
0-30° 30-60° 60-90° 0-30° 30-60° 60-90° 0-30° 30-60° 60-90°

Test NMEbox (%) ↓ (AFLW2000-3D)
Random 2.77 3.73 5.00 2.90 3.92 5.25 3.43 4.73 6.08
std 0.04 0.06 0.09 0.05 0.08 0.11 0.18 0.12 0.21
Balanced 2.74 3.76 5.05 2.86 3.93 5.25 3.23 4.58 6.35
std 0.03 0.04 0.06 0.03 0.06 0.09 0.06 0.08 0.27
Active 2.81 3.75 4.92 2.98 3.94 5.09 3.45 4.70 5.59
std 0.03 0.06 0.06 0.05 0.08 0.10 0.05 0.03 0.08

Training face pose yaw distribution (300-W-LP)
Random 0.25 0.38 0.37 0.28 0.37 0.35 0.26 0.38 0.38
std 0.01 0.02 0.02 0.02 0.03 0.02 0.03 0.03 0.04
Balanced 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
std 0 0 0 0 0 0 0 0 0
Active 0.16 0.34 0.50 0.15 0.33 0.52 0.20 0.26 0.54
std 0.01 0.03 0.04 0.02 0.02 0.02 0.05 0.02 0.06

Table 7: Comparison of different sampling methods for several training set sizes according

to the face pose yaw angle. This table reports the NME of models trained on some 300W-

LP samples and evaluated on the AFLW2000-3D subsets. It also reports the face pose yaw

distribution of the training datasets. ”Random”: training samples are chosen randomly.

”Balanced”: training samples are random but the low, medium and large face pose subsets

must have equal size. ”Active”: training samples are selected using active learning.

4.7. Ablation studies

4.7.1. Encoder fine-tuning

Table 8 reports results on the 300-W and WFLW Full test sets for different

training set sizes whether we fine-tune or not the encoder while training the

ITLs. Fine-tuning improves the performance for all training set sizes on both

datasets, especially on WFLW.

4.7.2. Number of Interleaved Transfer Layers

We made experiments to know if there is an optimal number of Interleaved

Transfer Layers (ITLs), results are reported in Table 9. When training with

the full training set, using only one layer makes the model perform a bit worse

(also confirmed by Wilcoxon’s signed tests not reported in this table). From
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300-W WFLW
Training set size Training set size

3148 315 50 7500 750 50
(100%) (10%) (1.59%) (100%) (10%) (0.67%)

w/o fine-tuning 4.54 4.86 5.99 8.94 9.42 14.36
std 0.02 0.03 0.06 0.08 0.06 0.33

w/ fine-tuning 3.42 3.74 4.16 4.62 5.44 7.78
std 0.02 0.03 0.07 0.03 0.08 0.20

Table 8: NMEinter-ocular (%) (↓) on 300-W and WFLW Full test sets for different training

set sizes with and without encoder fine-tuning.

Num. ITLs 300-W WFLW
Training set size Training set size

3148 315 50 7500 750 50
(100%) (10%) (1.59%) (100%) (10%) (0.67%)

1 3.54 3.76 4.26 4.75 5.68 8.72
std 0.03 0.02 0.09 0.04 0.11 0.35

2 3.44 3.72 4.22 4.65 5.50 8.20
std 0.04 0.03 0.03 0.02 0.04 0.32

3 3.43 3.74 4.13 4.66 5.46 7.65
std 0.04 0.01 0.02 0.08 0.05 0.23

4 3.46 3.73 4.16 4.63 5.43 7.94
std 0.04 0.02 0.03 0.05 0.04 0.27

5 3.42 3.74 4.16 4.62 5.44 7.78
std 0.02 0.03 0.07 0.03 0.07 0.20

6 3.45 3.70 4.15 4.61 5.42 7.82
std 0.03 0.01 0.06 0.4 0.03 0.29

Table 9: NMEinter-ocular (%) (↓) on 300-W and WFLW Full test sets, depending on the

number of Interleaved Transfer Layers (ITLs) and the training set size.

2 to 6 ITLs, the NMEs are very close and most of the time the Wilcoxon’s

test null hypothesis can’t be rejected when comparing two models. For small

training set sizes, such as 50 samples, we need at least 3 layers to have the

best performance. We suppose that when training with limited data, the

encoder can’t be totally fine-tuned because of its large number of parameters

compared to ITLs so more ITLs make the training easier. However, from 3 to

6 layers the standard deviations are overlapping, and again the Wilcoxon’s

tests can’t tell apart the models, so there is no clear winner. For other

experiments in this paper, we used 5 ITLs.
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5. Conclusion

In this paper, we have demonstrated that StyleGAN [16] can be used,

not only for generative tasks such as attribute edition or single attribute

regression like age estimation but also for complex discriminative tasks like

face alignment, even when the training data is limited. Our method can

generate accurate facial landmark heatmaps and obtains competitive results

on multiple face alignment datasets for both 2D and 3D facial landmarks. It

also systematically surpasses other semi-supervised methods when training

with limited data. Another advantage of our method is that we don’t need

to perform any dedicated computationally expensive unsupervised training

on large databases [3, 39, 8], prior to the supervised training because our

model is based on StyleGAN and pre-trained weights are already available.

5.1. Future work

Thanks to the Feature-Style encoder [25], we were able to perform our

training and testing on unaligned images which do not belong to the original

StyleGAN generative distribution. An interesting work would be to align face

alignment dataset images to make them follow FFHQ alignment. Would

this improve performance because images would lie closer to the original

generative distribution, or make it worse because of less face pose diversity

during training, is an open question. Also, because we were more interested

in proving the efficiency of our method rather than beating the state-of-the-

art, we didn’t use any specific trick used in recent face alignment models,

such as facial boundaries heatmaps [45], complex training loss [26, 27], or

attention maps [35] to boost our model. They could be easily applied to our
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method to improve its performance.
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[43] E. Wood, T. Baltrušaitis, C. Hewitt, S. Dziadzio, M. Johnson, V. Estellers, T. J. Cashman,

J. Shotton, Fake it till you make it: Face analysis in the wild using synthetic data alone (2021).

arXiv:2109.15102.

[44] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, M. Pantic, 300 faces in-the-wild challenge: The first facial

landmark localization challenge, in: Proceedings of the IEEE international conference on computer

vision workshops, 2013, pp. 397–403.

[45] W. Wu, C. Qian, S. Yang, Q. Wang, Y. Cai, Q. Zhou, Look at boundary: A boundary-aware

face alignment algorithm, in: Proceedings of the IEEE conference on computer vision and pattern

recognition, 2018, pp. 2129–2138.

[46] A. Kirsch, J. Van Amersfoort, Y. Gal, Batchbald: Efficient and diverse batch acquisition for deep

bayesian active learning, Advances in neural information processing systems 32 (2019) 7026–7037.

[47] Y. Gal, R. Islam, Z. Ghahramani, Deep bayesian active learning with image data, in: International

Conference on Machine Learning, PMLR, 2017, pp. 1183–1192.

[48] D. Yoo, I. S. Kweon, Learning loss for active learning, in: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2019, pp. 93–102.

[49] O. Sener, S. Savarese, Active learning for convolutional neural networks: A core-set approach, arXiv

preprint arXiv:1708.00489 (2017).

[50] M. Koestinger, P. Wohlhart, P. M. Roth, H. Bischof, Annotated facial landmarks in the wild: A large-

scale, real-world database for facial landmark localization, in: 2011 IEEE international conference

on computer vision workshops (ICCV workshops), IEEE, 2011, pp. 2144–2151.

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style, high-performance deep learning

library, in: H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (Eds.),
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