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Abstract

With deep learning models growing in size over the
years, sometimes exceeding a billion parameters now,
the need for large, annotated training datasets grows too.
To alleviate this problem, the interest in self-supervised
learning is also increasing. In this domain, with the
rise of Generative Adversarial Networks (GANs) and
particularly StyleGAN, the quality of image generation
is significantly improving. In this paper, we propose
to use StyleGAN to perform face alignment with lim-
ited training data instead of image generation. Our
proposed framework Face Alignment using StyleGAN
Embeddings (FASE) projects real images into StyleGAN
latent space and then predicts facial landmarks from the
latent vectors. Our method achieves state-of-the-art on
multiple face alignment datasets in the few-shot setting.

1. INTRODUCTION

The success of Deep Learning comes mainly from its
ability to automatically learn optimal features for the
target task instead of relying on hand-crafted features
such as HOG [8] or SIFT [33]. A subdomain of Ma-
chine Learning is Representation Learning; the goal, in
this case, is to learn useful features, e.g., interpretable
or that can be used for transfer learning. One main
application of representation learning is reducing the
number of annotated samples needed to train a model
on a downstream task. Popular representation learning
methods make use of auto-encoders [19, 27, 3], Gen-
erative Adversarial Networks (GANSs) [7, 12} 16| 149],
contrastive learning [6] 5] 52] or masked inputs [11} [18].
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Among GANs, StyleGAN is a popular approach
thanks to its disentangled latent space that can be
distilled into multiple styles [25] 26, 24]. Each style
controls a semantic characteristic of the image such as
color scheme, object shape or background. Because of
its lack of inference module, many approaches propose
to invert StyleGAN in order to project real images into
its latent space and perform semantic editing of these
images [17 41} 45| 46, [1}, 23] 49, [51} [38]. However, most
of these works focus on image-to-image translation
tasks, such as attribute editability, super-resolution or
inpainting, and only a few experiment on StyleGAN
latent space for discriminative tasks such as expression
recognition, age estimation or facial landmark detec-
tion [49, 138].

In this work, we study the use of StyleGAN for the
facial landmark detection task (also called face align-
ment) with limited training data. Indeed, labeling facial
keypoints is time-consuming and can be challenging
on images with large poses or occlusions. Thus, fa-
cial landmark datasets are usually relatively small (a
few thousand samples) compared to other computer
vision tasks such as image classification, making the
trained models prone to overfitting on the training
dataset. However, is it still possible to train a facial
landmark detector only with a few samples and get
good accuracy and generalization? To resolve this issue,
we propose a new architecture called Face Alignment
using StyleGAN Embeddings (FASE). We use a pre-
trained StyleGAN encoder to predict StyleGAN latent
vectors and modify a StyleGAN generator to predict
facial landmarks from these latent vectors.

By only slightly modifying the StyleGAN generator
and fine-tuning its encoder, we achieve competitive
results on multiple facial landmark datasets, even on
images very different from the StyleGAN generative



distribution, and beat state-of-the-art in the low-data
regime. Our contributions are as follows:

* We propose a new architecture based on StyleGAN
to perform face alignment with limited training
data.

* We experiment on multiple face alignment
datasets to demonstrate the effectiveness of our
method.

2. REeLATED WORK

2.1. Representation Learning

Representation learning can be divided into 2 cate-
gories. Supervised pre-training and self-supervised
representation learning. In the supervised setup a
network is trained on a specific task with the labels
provided. A common example is the training of a net-
work on the ImageNet dataset for object recognition
[10]. The network can be used then as a backbone
for other vision tasks. However, the features learned
during the pre-training might be limited by the size
and the diversity of the dataset. Indeed, annotating a
dataset is time-consuming even though progress has
been made over the years to get large automatically an-
notated datasets such as JFT-300M [43] or Instagram-1B
[34] but with the cost of noisy labels.

On the other hand, self-supervised representation
learning does not need annotation, or only weak an-
notation, and can then use very large amounts of un-
labeled samples gathered from the internet. In order
to train the network, specific architectures or training
losses have to be used. A popular architecture is the
auto-encoder [19] 27] 3] where an encoder first projects
the sample into latent space and then a decoder is used
to reconstruct the sample from the latent representa-
tion. Sometimes the decoder is replaced with a GAN
[7, 12, 16, 49]. Some other methods follow the con-
trastive setup [6} 5, 52]]: representations of the same
object (data augmentations of an image, text/image
pair, ...) are pushed closer, while representations of
different objects are pushed apart. Recently, methods
based on masking some parts of the input and asking
the network to retrieve these missing parts have gained
interest, first in Natural Language Processing [11] and
then in Computer Vision too [18].

2.2. StyleGAN

StyleGAN [25] differs from previous GAN architec-
tures by its generative process. Instead of starting
from Gaussian noise z € Z (the latent representation)
and progressively increasing the spatial dimensions
through the network layers, z is first projected to an
intermediate latent space W via a non-linear mapping
network f : Z — VW which produces an intermediate
latent code w € W. The input of the generator is a
constant learned vector c and at each layer, w is trans-
formed by an affine transformation (different for each
layer) into a style vector and injected into the current
feature map via an Adaln [21]] operation.

Each style vector controls a specific aspect of the
generated image, style vectors corresponding to low
resolutions will control high-level attributes such as,
for face images, pose, face shape or general hairstyle
while high-resolution style vectors will control more
fine-grained aspects such as the color scheme or mi-
crostructure.

2.3. StyleGAN Inversion

It is easy to semantically edit a synthetic image gen-
erated by StyleGAN by modifying some of its style
vectors. To modify in the same way a real image, we
need first to approximate its StyleGAN latent vector,
this is called StyleGAN inversion. Methods that try
to invert StyleGAN can be divided into three fami-
lies. The optimization-based methods iteratively refine
a latent code by minimizing the reconstruction error
[17, 23]. The encoder-based methods train an encoder to
predict the latent code [41] 145} 149} 51} 138 46]. Finally,
hybrid methods train an encoder to predict an initial
latent code which is refined through optimization [1].
Optimization-based and hybrid-based methods usually
have better reconstruction errors but are much slower
than encoder-based.

Rather than predicting the true latent code z € Z or
the intermediate latent code w € WV, most methods pre-
dict a latent code for each style: w" = (wy, wy, ..., wy) €
W, n being the number of styles [41] 45 46| 38]. This
gives more flexibility and improves the reconstruction
error. Some methods go even further, not only do they
predict w™ but also a feature map f € F which re-
places the first layers of the generator [23} 51]. This
feature map improves the reconstruction error but also
makes it possible to encode images that do not fol-
low the training datasets alignment (e.g., FFHQ and
Celeba-HQ always have the face centered in the image



and eyes at the same level). For example, translated
or rotated images can still be faithfully encoded and
reconstructed.

2.4. Face Alignment

Face alignment (also known as facial landmark detec-
tion) is the task of localizing a set of pre-defined facial
anatomical keypoints (e.g., tip of the nose corners of the
mouth, boundaries of the face, ...). Many downstream
applications make use of the predicted landmarks such
as face swapping or facial expression recognition.

Instead of directly predicting the positions of the
keypoints, most of the current methods use neural
networks to predict facial landmark heatmaps [37].
The final landmark position is inferred from the best
local maximum.

2.5. Semi-supervised Face Alignment

Semi-supervised methods try to alleviate the problem
of facial landmark annotations explained in Section
To do so they use annotated but also non annotated
data during the training. [20] imposes equivariance
of predicted landmarks to geometric transformations.
[40] produces multiple images with different styles
from an input image. [14] uses pseudo-labeling with a
teacher-student method. Some methods are based on
representation learning: [3] trains an auto-encoder to
reconstruct face images and then modifies its decoder
to generate facial landmark heatmaps, [15] improves
[3] by adding skip-connections to the auto-encoder and
using active learning. [52] uses masked image mod-
eling and image-text contrastive learning on a large
text/image pair dataset to pre-train a network then
used for different facial downstream tasks including
face alignment.

3. METHOD

3.1. Overview

We are interested in using StyleGAN [25] latent rep-
resentation to predict facial landmark heatmaps. For
this purpose, we propose a new architecture: Face
Alignment using StyleGAN Embeddings (FASE). From
an input face image, we first approximate its Style-
GAN latent vector using a pre-trained Feature-Style
encoder [51]. Rather than directly predicting facial
landmark positions from the latent vector or styles as
in [49] we follow 3FabRec [3] and SCAF [15] principles:

we modify a pre-trained StyleGAN2 generator [26] by
adding convolution layers interleaved with its convolu-
tion blocks and train these additional layers to generate
facial landmark heatmaps. Our full architecture can be
seen in Fig. [T}

3.2. StyleGAN inversion encoder

We needed to choose a StyleGAN inversion model for
our architecture. We don’t consider optimization-based
and hybrid models because their computational time
would make our architecture training too slow. Among
the encoder-based methods we chose Feature-Style [51]
for its ability to reconstruct not aligned images, such as
images of face alignments datasets, by predicting not
only an extended latent vector w™ but also a feature
map code f.

3.3. Modified StyleGAN generator

[3] and then [15] showed that the decoder of an auto-
encoder trained to reconstruct face images can be mod-
ified to predict facial landmark heatmaps. Indeed,
during the generation of a face image from a latent
representation, generator layers must extract (among
other face attributes) face shape information from the
latent vector to generate the image. Facial landmark
heatmaps can be seen as a face image where only in-
formation about face shape has been kept. So, we can
try to perform a sort of style transfer by modifying the
already trained generator to generate not RGB face im-
ages but facial landmark heatmaps instead. To do so, as
in [3] and [15] we add interleaved transfer layers (ITLs)
inside the generator. The architecture is explained in
detail in the following paragraphs

As seen in Section 2.2} the StyleGAN generator starts
from constant vector ¢; followed by StyleGAN blocks
which progressively increase the resolution. Each
block is composed of an upsampling operation fol-
lowed by two convolutions equipped with an Adaln
[21] operation to inject the layer-specific style vector.
From an image, the Feature-Style encoder predicts 2
codes: the feature code f and the extended latent vec-
tor wt = (wl,wz,...). During the image generation,
the first layers of the generator are replaced by the fea-
ture code f. Then, each latent vector w; (except for the
first ones) from w™ is transformed into a style vector
by an affine transformation and injected into the cor-
responding StyleGAN layer through AdalN. The last
block outputs the reconstructed image.
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Figure 1: Our network architecture. We use a pre-trained Feature-style encoder and StyleGAN2 generator. Additional convolution layers
are interleaved with some generator convolution blocks and are trained to predict landmark heatmaps.

We modify this architecture to predict facial land-
mark heatmaps. From a chosen generator block until
the landmark heatmap resolution is reached, we inter-
leave the generator blocks with Interleaved Transfer
Layers (ITLs). An ITL is a 3 x 3 convolutional layer
located directly after a StyleGAN block. It takes as
input the output of the StyleGAN block and outputs
a feature map with the same spatial dimensions and
number of channels of the input, except for the last ITL.
This last ITL generates the landmark heatmaps so this
time the number of channels is equal to the number of
landmarks. Fig. [I|shows the full architecture. During
the supervised training, the StyleGAN blocks param-
eters are frozen, but not the encoder ones which are
fine-tuned while the ITLs are trained.

4. EXPERIMENTS

4.1. Datasets

We evaluated our method on three datasets commonly
used to evaluate a face alignment model.

AFLW

This dataset [29] contains 24,386 face images annotated
with 21 landmarks. Following usual practice [14), 3],
we ignore the landmarks of the ears, and use 20,000
training images and 4,386 testing images. We evaluate
our model on the Full test set and the Frontal test set, a
subset that contains only images with a frontal view.

300-W

This dataset [42] is an aggregation of five face align-
ment datasets: LFPW [2], AFW [53], HELEN [32],
XM2VTS [35] and IBUG [42]. All these datasets have
been re-annotated using 68 landmarks. Following the
common splits [14}, 3], the training set contains 3148
images while the Full test set contains 689 images and
is divided into a Common test set of 554 images and a
Challenging test set containing 135 images.

WFLW

This dataset introduced in [48] contains 7,500 training
images and 2,500 testing images from the WIDER FACE
dataset [50] annotated with 98 landmarks. The test set
is split into several (partially overlapping) subsets, each
focused on a specific characteristic: pose, expression,
illumination, make-up, occlusion, or blur.

4.2. Evaluation

As metrics, we use the usual Normalized Mean Error
(NME) and Area Under Curve (AUC) of the Cumula-
tive Error Distribution (CED) to compare our model to
other methods. The NME is defined as:

NME(%) = liw*loo )
YTN&E d

where s; and 5; are the ground truth and predicted
location of landmark i, N the number of landmarks



and d a normalization distance.

For 300-W and WFLW, we use the distance between
the outer eye corners as the normalization distance for
the NME (NME;, ier-ocular). For AFLW, because of the
large number of profile face, we report both the NME
normalized with the diagonal of the image (NMEg;,g)
or the geometric mean of the ground truth bounding
box width and height (v/Wppox * Mppoy) (NMEpey). We
also report the AUC at 7% NME, (AUCZ ox) for this
dataset.

4.3. Architecture and training parameters

The encoder is a Feature-style encoder [51] pre-trained
on FFHQ [25]. The generator is StyleGAN2 generator
[26] pre-trained on the same dataset. Input images are
resized to 256 x 256 pixels. We use 5 ITLs (see Section
for details) and outputs heatmaps of size 128 x 128
pixels.

Our models are implemented with PyTorch [39]. We
train all our models for 200,000 training steps using a
batch size of 8 on a Nvidia V100 GPU with 16 GB of
memory. As optimizer, we use Adam [28] (3; = 0.9,
B2 = 0.99) with an initial learning rate of 0.0001 for
the ITLs and 0.00002 for the pre-trained encoder. Both
learning rates are decayed by a factor of 0.995 every 10
epochs. We use random vertical flip (p=50%), rotation
(£30°), translation (£4%), scaling (+5%), occlusions
(p=50%, PyTorch default settings for the bounding
box size), Gaussian blur (p=20%), brightness (p=45%,
£80%) and contrast changes (p=45%, 30%-200%) as
data augmentations.

When training with limited data, the training sam-
ples are chosen randomly among the full training set
before each run. We report the means and standard
deviations over 5 runs for all training sizes except 50,
for which we use 10 runs.

4.4. Comparison with state-of-the-art

Comparison with fully supervised methods

Table [1|shows comparisons of our method with state-
of-the-art (SOTA) on 300-W and WFLW datasets when
training with the full training dataset. Our method
achieves results comparable to the SOTA of 2019 but
is surpassed by current SOTA methods. For AFLW
(see Table , we are second on all metrics, just behind
another semi-supervised method [52]. We hypothe-
size that these better results, compared to 300-W and
WFLW are caused by the fact that AFLW is relatively

300-W WFLW
Method Com. Chal. Full Full
SAN [13] 3.34 6.60 3.98 5.22
LAB [48] 2.98 519 3.49 5.27
AVS [40] 3.21 6.49  3.86 4.39

DeCaFa [9] 293 526 339 | 4.62
AWing [47] 272 452 307 | 436
LUVLI [30] 276 516 323 | 437
HiH [31] 293 500 336 | 4.18
SHRFAN [ | 261 413 294 | 3.72
ADNet [22] | 253 458 293 | 4.14

FaRL [52] 2.56 445 293 3.96
FASE (Ours) 297 530 342 4.62
FASE std 0.01 0.09 0.02 0.03

Table 1: NME;, ;o1 ocuiar (%) (}) on the 300-W Common, Chal-
lenging and Full test sets, and on the WFLW Full test

set.
AFLW dataset
NMEgg + | NMEp,, ¢ AUCL, T

Method Full Frontal Full Full
DSRN [36] 1.86 - - -
SAN [13] 1.91 1.85 4.04 0.540
LAB [48] 1.25 1.14 - -
HR-Net [44] 1.57 1.46 - -
LUVLi [30] 1.39 1.19 2.28 0.680
3FabRec [3] - - 1.84 -
SHR-FAN [4] | 1.31 1.19 2.14 0.700
FaRL [52] 0.94 0.82 1.33 0.813
FASE (Ours) | 1.02 0.90 1.45 0.791
FASE std <0.01 <0.01 <0.01 <0.001

Table 2: Comparison with state-of-the-art methods on the AFLW
Full and Frontal test sets.

easier (only 19 landmarks) and is closer to FFHQ), the
training dataset for the StyleGAN encoder and genera-
tor. While these results are interesting, our goal with
our method is to train the model with limited training.
These results are discussed in the next subsection.

Comparison with semi-supervised methods

We compare our method to other semi-supervised
methods training with limited data. On 300-W (Ta-
ble ), we surpass other methods for all limited train-
ing sizes ranging from 20% (630 samples) of the full
training set (3148 samples in total) to only 50 samples.
When training with this last training set size, we get
comparable or better results than other methods train-
ing with 20% of the dataset. Also, the performance of
our algorithm does not degrade significantly when the



WFLW dataset
Training set size
100% 20% 10% 5% 50
AVS 439 6.00 720 - -
3FabRec 562 651 673 7.68 839
SCAF 550 6.07 628 672 8.06
FASE (Ours) | 462 509 544 580 7.78
FASE std 0.03 008 0.07 0.08 0.20

Method

Table 3: NME;tor-ocutar (%) (1) when training with limited train-
ing set size on the WFLW Full test set.

training set size goes down, even for 50 samples.

For WFLW (see Table [3), we also beat other methods
when training on limited data. However, we have no-
ticed that the performance gap is smaller on the very
little training set size of 50. This may be explained
by the many occlusions and difficult poses of WFLW
which make it very different from FFHQ, the original
training dataset of our StyleGAN encoder and genera-
tor, so our method might need more samples to train
correctly compared to 300-W.

Methods reported their results on AFLW with the
NMEyj,g or NMEy,, so we computed both metrics
(see Table For the NMEy;,g, we surpass other semi-
supervised methods on all training set sizes on both
the Full and Frontal test sets. For the NME,,, we
compared our method with FaRL [52], they only report
results for 100%, 10% and 1% sizes but we can see that
even though they achieve better results when training
with the full training set, their results are even with us
on the 10% training set size and we surpass them on
the 1% training set size.

4.5. Ablation studies
Encoder fine-tuning

Table [f] reports results on the 300-W and WFLW Full
test sets for different training set sizes whether we
fine-tune or not the encoder while training the ITLs.
Fine-tuning improves the performance for all training
set sizes on both datasets, especially on WFLW. As we
can see in Figure [} if the Feature-style encoder [51]
is not fine-tuned during the supervised training, the
reconstructed images do not change and are close to
the original images. However, the predicted heatmaps
might be poor (particularly for the middle image) lead-
ing to mediocre landmark predictions. If we fine-tune
the encoder, the reconstruction error increases, only
the pose and the shape of the face remain in the re-

Original
image

Reconstructed
image w/o
encoder FT

Reconstructed &
image w/ \
encoder FT

Ground truth
heatmaps

Predicted
heatmaps w/o
encoder FT

Predicted
heatmaps w/
encoder FT

Ground truth
landmarks

Predicted
landmarks w/o
encoder FT

Predicted
landmarks w/
encoder FT

Figure 2: Qualitative comparison with and without encoder fine-
tuning (FT) on some images from the WFLW Full test
set.



300-W dataset

Method Training set size

100% 20% 10% 5% 50 (1.5%)
RCN+ [20] 3.00 4.98 3.46 - 6.12 415 - 6.63 447 - 995 5.11 - - -
AVS [40] 321 649 3.86 | 3.85 - - 427 - - 6.32 - - - - -
TS3 [14] 291 590 349 | 431 797 503|467 926 564 - - - - - -

3FabRec [3] | 336 574 382|376 653 431|388 688 447 | 422 695 475|455 739 5.10
SCAF [15] 348 589 395|366 623 417|387 660 440|393 684 450|433 7.60 497
FASE (Ours) | 297 530 342 | 314 566 3.64 | 322 587 3.74 | 333 6.05 386 | 3.57 6.62 4.16
FASE std 0.01 0.09 0.02|0.02 004 002|003 006 003|003 013 003|005 021 0.07

Table 4: NME; 1 ocular (%) (1) when training with limited training set size on 300-W on the Common, Challenging and Full test sets
(first, second and third columns respectively for each training set size).

AFLW dataset

Method Training set size
100% 20% 10% 5% 1% 50 (0.25%)
NMEpox (%) 4
RCN+ [20] 1.61 - - - - - 217 - 2.88 - - -
TS® [14] - - 199 186 | 214 194 | 219 203 - - - -
3FabRec [3] 187 159 | 196 174 | 203 174 | 213 186 | 238 203 | 2.74 223
FASE (Ours) 145 128 | 1.0 139 | 1.3 141 | 166 143 | 1.79 153 | 2.05 171

FASE standard deviations | <.01 <.01 | <.01 0.02 | <01 0.01 | <.01 0.03 | 0.01 0.01 | 0.03 0.02

NMEgiag (%) |
FaRL [52] 094 0.82 - - 1.15 - - - 1.35 - - -
FASE (Ours) 1.02 09 | 113 098 | 1.15 1.00 | 1.17 1.01 | 1.27 1.08 | 145 1.21
FASE standard deviations | <.01 <.01 | <.01 001 | <01 0.01 | <.01 0.02| 001 <.01 | 002 0.02

Table 5: Comparison with other semi-supervised methods when training with limited training set size on AFLW on the Full and Frontal
test sets (first and second columns respectively for each training set size).



300-W WFLW
Training set size Training set size
100% 10% 50 | 100% 10% 50
w/oFT | 454 486 599 | 894 942 1436
std | 002 0.03 0.06 | 008 0.06 0.33
w/FT | 342 374 416 | 462 544 778

std | 0.02 0.03 007 | 003 0.08 0.20

Table 6: NME;tor-ocuiar (%) (J) on 300-W and WFLW Full test
sets for different training set sizes with and without en-
coder fine-tuning.

constructed image, and all other attributes such as
background, hair or skin color are removed. But the
quality of generated heatmaps and thus predicted land-
marks is most of the time improved. The rightmost
image shows a rare failure case where the landmark
predictions are worse when fine-tuning the encoder.

Number of Interleaved Transfer Layers

We made experiments to know if there is an optimal
number of Interleaved Transfer Layers (ITLs), results
are reported in Table [/| When training with the full
training set, using only one layer makes the model
perform a bit worse (also confirmed by Wilcoxon’s
signed tests not reported in this table). From 2 to 6
ITLs, the NMEs are very close and most of the time
the Wilcoxon’s test null hypothesis can’t be rejected
when comparing two models. For small training set
sizes, such as 50 samples, we need at least 3 layers
to have the best performance. We suppose that when
training with limited data, the encoder can’t be totally
fine-tuned because of its large number of parameters
compared to ITLs so more ITLs make the training easier.
However, from 3 to 6 layers the standard deviations are
overlapping, and again the Wilcoxon's tests can’t tell
apart the models, so there is no clear winner. For other
experiments in this paper, we used 5 ITLs.

5. CoNcCLUSION

With FASE, we have demonstrated that StyleGAN [25]
latent space can be used not only for generative tasks
such as image edition but also for discriminative ones
like face alignment, even if both the encoder and gen-
erator have been pre-trained on a dataset with small
diversity in terms of face pose (FFHQ [25]). By mod-
ifying the generator and fine-tuning the encoder, we
achieve superior results to other semi-supervised meth-
ods when training with limited data. Another advan-

Num. ITLs 300-W WFLW
Training set size Training set size
100% 10% 50 | 100% 10% 50

1| 354 376 426 | 475 568 872
std | 003 0.02 0.09| 004 011 035
2| 344 372 422 | 465 550 820
std | 004 003 0.03| 002 0.04 032
3| 343 374 413 | 466 546 7.65
std | 004 001 0.02| 008 0.05 023
4| 346 373 416 | 463 543 794
std | 004 002 0.03]| 005 0.04 027
5| 342 374 416 | 462 544 778
std | 002 003 0.07| 003 0.07 020
6| 345 370 415 | 461 542 782

std | 0.03 0.01 0.06 0.4 0.03 0.29

Table 7: NME;,tor-ocuiar (70) (1) on 300-W and WFLW Full test
sets, depending on the number of Interleaved Transfer
Layers (ITLs) and the training set size.

tage compared to these methods is that we don’t need
to perform any computationally expensive unsuper-
vised training on large databases [3} [15 [52]], prior to
the supervised training, thanks to the abundance of
already pre-trained StyleGAN generators and encoders
available on the internet.

Future work

Thanks to the Feature-Style encoder [51]], we were able
to perform our training and testing on unaligned im-
ages which do not belong to the original StyleGAN
generative distribution. An interesting work would be
to align face alignment dataset images to make them
follow FFHQ alignment. Would this improve perfor-
mance because images would lie closer to the original
generative distribution, or make it worse because of
less face pose diversity during training, is an open
question.
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