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Abstract. We present a new parameterisation that relates sureertainties within a Bayesian framework, estimating proba-
face mass balance (SMB: the sum of surface accumulatiomility distributions for each gradient from which we present
and surface ablation) to changes in surface elevation of théest estimates and credibility intervals (Cl) that bound 95 %
Greenland ice sheet (GrIS) for the MAR (Modéle Atmo- of the probability. Below the ELA our gradient estimates are
sphérique RégionaFettweis 2007 regional climate model. mostly positive, because SMB usually increases with eleva-
The motivation is to dynamically adjust SMB as the GrlS tion: 0.56 (95 % Cl—0.22 to 1.33) kg m3 a1 for the north,
evolves, allowing us to force ice sheet models with SMB sim-and 1.91 (1.03 to 2.61) kgni a~! for the south. Above the
ulated by MAR while incorporating the SMB—elevation feed- ELA, the gradients are much smaller in magnitude: 0.09
back, without the substantial technical challenges of cou{—0.03 to 0.23)kgm?3a~1 in the north, and 0.0740.07 to
pling ice sheet and climate models. This also allows us to as0.59) kg nt2 a1 in the south, because SMB can either in-
sess the effect of elevation feedback uncertainty on the Gri®rease or decrease in response to increased elevation.
contribution to sea level, using multiple global climate and  Our statistically founded approach allows us to make prob-
ice sheet models, without the need for additional, expensivabilistic assessments for the effect of elevation feedback un-
MAR simulations. certainty on sea level projectionsdwards et a).2014).

We estimate this relationship separately below and above
the equilibrium line altitude (ELA, separating negative and
positive SMB) and for regions north and south of R from
a set of MAR simulations in which we alter the ice sheet sur-
face elevation. These give four “SMB lapse rates”, gradients
that relate SMB changes to elevation changes. We assess un-
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182 T. L. Edwards et al.: Greenland SMB—elevation feedback parameterisation

1 Introduction sheet extent and forcing from the same RCpelzer et al.
(2013 find that a PDD model underestimates sea level rise
Over the past two decades the Greenland ice sheet (GriS)y 14-31 % compared to MAR. These large variations in re-
has been losing mass at an increasing rate, on averagsonse relative to RCMs may reflect the simplicity of the
142+ 49 Gta'! with a total contribution to global sea level PDD scheme.
of about 8 mm Shepherd et §12012. The GrlS has the po- Ideally, then, we would prefer future projections of GrIS
tential to raise global sea level by several centimetres thisSSMB to be made with the more complete representations in
century, and more in the next, with larger regional changesRCMs rather than simple parameterisations such as the PDD
The sensitivity of the GrIS to climate change is not well- model (for exampldRae et al.2012 Fettweis et a].2013.
known (PCC, 2007, so it is important to improve estimates But the ice flow component of an ISM is still needed to sim-
of its response and make projections of the resulting conulate the dynamical response of the GrIS. ISMs are run at
tribution to sea level over the next one to two centuries tohigher resolution than RCMs (kilometres rather than tens of
inform policy and planning. Underestimating sea level risekilometres), to better represent glacier flow at the ice sheet
would leave coastal cities around the globe at risk, whilemargin.
overestimating it could result in unwarranted expenditure on As the ice sheet evolves in response to climate change,
coastal defence. Projections should therefore include probait also affects the local climate through feedback processes.
bilistic assessments of uncertainty if they are to provide theSome, like the ice albedo feedback, may be simulated within
most robust and complete information for making decisions.the RCM. Others relating to the dynamical response, includ-
Predictions of the GrlIS response to projections of futureing the evolving geometry of the ice sheet, can only be simu-
climate change are made with physically based ice shedtted by coupling the RCM and ISM, or else parameterising
models (ISMs) forced with climate model simulations. ISMs the feedback to adjust the input climate forcing throughout
simulate both parts of ice sheet response: the flow of iceghe simulation.
subject to its boundary conditions (dynamic); and surface One important ice—climate feedback is the set of interac-
mass balance (SMB), which is the sum of surface accumutions between the atmosphere and the ice sheet surface el-
lation and surface ablation (broadly speaking, the balancevation; here we focus on the feedback between the atmo-
of snowfall versus meltwater runoff). However, SMB mod- sphere and ice surface/snow pack. The two main parts of this
els included in ISMs are usually rather simple. Most often SMB—elevation feedback are (i) temperature, where an initial
they use an empirically derived positive degree-day (PDD)increase in air temperature that leads to ice melting lowers
scheme, in which melting is parameterised as a function othe surface elevation and exposes the ice to warmer temper-
the sum of daily air temperatures above melting point, andatures through the atmospheric lapse rate; and (ii) precipita-
runoff is usually modelled from temperature and precipita-tion, where surface elevation changes affect air temperature
tion with a simple snow pack model (edanssens and Huy- and atmospheric circulation and therefore the location and
brechts 2000. Daily climate means are often approximated amount of precipitation. Surface topography in RCMs is usu-
from seasonal means to reduce the input data set size. ally held constant, so they do not incorporate the elevation
At the other end of the spectrum of model complexity are feedback at all. PDD schemes include a parameterisation of
regional climate models (RCMs). These simulate the atmo-the temperature aspect of the feedback, using an atmospheric
sphere and surface over a limited spatial domain, with highetapse rate to adjust the input temperature forcing as the ice
spatial and temporal resolution than global climate modelssheet surface evolves. They do not represent the precipita-
(GCMs), and are forced at their boundaries with GCM simu-tion aspect of the feedback except, in some cases, through a
lations or reanalysis data such as ERA-40. Some RCMs, suchkcaling factor for temperature. Most PDD schemes assume
as MAR (Modeéle Atmosphérique Région&ettweis 2007) constant feedbacks (temperature—elevation, i.e. atmospheric
and RACMO2/GR (e.gEttema et al.2009, include com-  lapse rate correction; precipitation—elevation, i.e. scaling cor-
plex snow/ice schemes that represent many of the physicakection; and ice albedo) that do not vary across the ice sheet
processes that govern SMB. Such RCMs have been showar with climate change (discussed Bpbinson et a).2010
to be quite successful in reproducing the current SMB of theHelsen et al.2011; Stone et al.2010, though there are ex-
GrIS (e.g.Ettema et a].2009 Fettweis et a].201% Vernon  ceptions Tarasov and Peltie002.
et al, 2013. RCMs are computationally expensive so only If we are to simulate SMB with an RCM and how that
short and/or a small number of simulations can be performedSMB is affected by ice topography changes (unieae et al.
Some have suggested that PDD descriptions of ice she€t012 Fettweis et al.2013 who use RCMs with constant ice
response are too sensitive to climate changm (de Wal sheet topography), we must either couple an ISM to an RCM,
1996 van de Berg201)). In contrast, comparisons made or else force an ISM with RCM output using a parameteri-
between RACMO2/GR and thdanssens and Huybrechts sation of the relationship in terms of an “SMB lapse rate”.
(2000 PDD model byMernon et al (2013 andHanna etal.  Coupling an ISM to an RCM or GCM is rarely done because
(201)) find the RCM is more sensitive. In an attempt to it is technically challenging (one example Ridley et al,
make the most robust comparison (e.g. using the same ic2005, and because the climate models, particularly RCMs,
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are too computationally expensive to simulate the timescalesion (Sect.2.2). After deciding on the structure, we estimate
of long-term ice sheet response. The computational expensgrobability distributions for the four SMB-elevation gradi-
also drastically limits opportunities to perform multiple sim- ents (Sect2.3).

ulations to sample uncertainties in modelling choices.

The pragmatic solution is therefore to parameterise the2.1 Climate simulations
SMB-elevation feedback. This allows us to explicitly sim-
ulate the SMB and dynamical responses without the techThe regional climate model MARHgttweis 2007 has been
nical challenges and substantial computational expense dddapted for simulating the climate over Greenland, with
coupling ISMs to RCMs. Provided the parameterisation ad-full coupling to a complex snow/ice model and relatively
equately represents the feedback in MAR, this allows ushigh horizontal resolution (25km). MAR is one of the few
to perform many simulations that we otherwise could not, RCMs (another is RACMO2/GR) that includes the positive
because we can force ISMs with MAR that have not yetfeedback between ice surface albedo and meltiajtyveis
been coupled to it, and sample uncertainties in the feedbacR007), though this is only partially included because the ice
and ice sheet modelling with additional simulations that we sheet extent and elevation are constant (there is no change in
would not otherwise have computational resources to perthe ice—tundra boundary). MAR has been shown to simulate
form. GrIS SMB quite successfully (e.gettweis et al.2017).

Helsen et al.(2011) provide the first such parameter-  We use a set of eight simulations, each 20 yr long, in which
isation, for the relationship between SMB and height in MAR is forced at the boundaries by the ECHAM5 GCM
RACMO2/GR, and use this to adjust the SMB forcing ap- (Roeckner et a]2003 under the SRES A1B emissions sce-
plied to an ISM.Franco et al.(2012 derive relationships nario (Nakicenovt et al, 2000. Two are control simulations,
between the individual components of SMB (snowfall, rain- using the default ice surface topography basedamber
fall, meltwater runoff, and loss by sublimation and evapo- et al. (2001): they are the first two decades (2000—2049,
ration) and elevation changes in MAR, to correct low res- and last two decades (2080-2089 of the MAR ECHAM5-
olution SMB simulations onto a higher resolution ice sheetA1B simulation described bRae et al(2012 andFettweis
topographyHakuba et al(2012 study the SMB response to et al. (2013. The other six are perturbation experiments,
surface elevation changes in a version of the ECHAMS5 GCMthree for each time period, in which we alter the GrIS sur-
(Roeckner et al2003 by lowering the ice sheet topography face height. We use three types of height change: uniform
to 75%, 50% and 25 % of the present day, though do notowering by 50 m (*-50 m”), uniform lowering by 100m
parameterise the relationship. We develop on these studig —100 m”), and NonUniform changes (“NonUn") derived
in method (presented here) and applicatibdwards et a.  from a GrlIS simulation byridley et al.(2005. Ridley et al.
2014. (2005 couple GISM (Greenland Ice Sheet Modeéluy-

We derive a new parameterisation for the elevation feed-brechts and de Woldd999 to the HadCM3 GCM Gordon
back in MAR using a suite of simulations in which the MAR et al, 2000 so that the elevation feedback is included, and
GrlIS surface height is altered. The parameterisation is a sequadruple the atmospheric G@oncentrations from prein-
of four gradients that relate SMB changes to height changesdustrial values. We use the resulting GrlS surface height
These can be used to adjust the input SMB forcing as the icehange after 140 yr, at which point the ice sheet has lost 10 %
sheet geometry evolveEdwards et a).2014). The four gra-  of its original volume. We interpolate these height changes
dients are used according to whether the adjusted mean SMBom the GISM 20 km polar stereographic grid to the MAR
of the previous decade is positive or negative, and whethegrid, and add them to the default topography over ice sheet
the grid cell is in the north or south of the ice sheet. Eleva-grid cells. The ice sheet area is not changed: no cells are
tion feedback uncertainty can be sampled with different SMBchanged from ice to tundra or vice versa. Any negative height
lapse rates; with careful experimental design this can give azalues that result after applying the changes are set to zero,
probabilistic assessment of the effect of elevation feedbacko avoid the ice surface being specified below the bedrock.
uncertainty on sea level. ISM and GCM uncertainty can alsoOur analysis uses the mean of each two-decade simulation,
be sampled by using different models. We present these reaver which the SMB time series is approximately stationary
sults in a companion papdedwards et a).20149). (Rae et al.2012.

Figure 1 shows the default (control) topography and the
height difference between the NonUn and control experi-
2 Method ments. Figure shows the SMB changes for the NonUn ex-
periments and Fig3 the uniform height change experiments.
We derive the parameterisation from a set of MAR simu- These figures show that large decreases in elevation gener-
lations in which the surface elevation is altered (S&ct). ally decrease SMB, due to increased melting and decreased
We try various choices for the parameterisation structuresnowfall (Franco et al.2012. There are two main excep-
judging them by their success in reproducing the SMB re-tions to this that arise from the complex effects of topogra-
sponse in MAR and their flexibility and ease of implementa- phy on local air circulation and precipitation. In the NonUn
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184 T. L. Edwards et al.: Greenland SMB—elevation feedback parameterisation

400
3000

200 200

2000

1000

—-200 ~200

0 -800 —400 -400

Height (m) Height change (m) SMB change (kg m2a™) SMB change (kg m2a™)
400
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Fig. 2. Mean SMB change (perturbed minus control) in the NonUn

experiments, 2000-2019 (left) and 2080-2099 (right). Red dashe®f latitude 77 N (this choice of latitude is explained later).
lineis 77 N. The structure of the data is somewhat similar to that found

by Helsen et al(2011) for RACMO2/GR, with a broadly
linear positive relationship below the equilibrium line alti-

experiments, there is an increase in SMB along the westertude (ELA: the line at which SMB equals zero) and a neg-
ice sheet margin while there is a thinning of the ice sheetative, weaker relationship above the ELA. The behaviour is
(Fig. 2). Here the lowering of the ice sheet surface dampendinear below the ELA within each time period because we
the “barrier wind” that brings warm air from the tundra along use the simulation mean: in a constant climate, the average
the ice sheet margin and enhances meltiran(den Broeke melting is approximately proportional to the average temper-
and Gallée1996. In the uniform height change experiments, ature, which is approximately proportional to elevation. The
surface lowering can lead to either a decrease or increase ibehaviour above the ELA, particularly south of°IN (the
SMB (Fig. 3): a decrease in elevation exposes ice to warmemmajority of the ice sheet), is reminiscent of the complex rela-
air temperatures, which can increase the moisture content dfonship found between precipitation and height in MAR by
the air and enhance precipitation, but conversely an increasEranco et al(2012).
in elevation may cause air to rise and cool, also encourag- There is a clear offset between the beginning and end of
ing precipitation Fettweis et al.2005 Franco et al.2012. the century. At a given height, particularly below the ELA,
These aspects show the importance of using a surface energlye SMB is lower in the warmer climate at the end of the
balance based RCM, rather than simpler models, to accourgentury. This is partly due to the linear dependence of melt-
for such phenomena. The consequences of this complexiting on local temperature in a constant climate (described
for the parameterisation are discussed in Sét. above), but also to two mechanisms that accelerate the melt-

Figure4 shows SMB responses versus height changes foing and runoff as the climate warms. The first is the posi-
the two NonUn experiments, with arrows pointing from con- tive ice albedo feedback. Bare ice appears each summer after
trol to NonUn result, separated into regions north and souththe accumulated winter snowpack melts, and it has a lower
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albedo than snow. So in a warming climate the maximum
area of bare ice (the ablation zone) increases, and a positive
albedo feedback amplifies the warming. MAR has a more |
realistic, lower albedo for bare ice (around 0.45) than most "~ — "+ S S S SR R S
RCMs and therefore a greater sensitivity to warmirgt- Heghchange () g change (m)
tweis et al.(2013 estimate that surface melting increases
exponentially with rising temperatures. The second mechaf9- 5. Scatter plots of SMB changas versus height changa/
nism is the type of precipitation falling on the ice sheet. In _for grlql cells ”Ofth (top rqw) and south (bottom) of*M¥, divided .
the latter part of the century most summer precipitation fa_“Smto grid cells with SMB in both the control and perturbed experi-

. . . ments less than zero (left column) and greater than or equal to zero
as rain rather than snow, and most.of thls_runs off dlrectly(right). Data with height changen | < 25 m are excluded.
to the ocean rather than accumulating as ice. Both mecha-

nisms accelerate the decrease in SMB as the A1B scenario

progresses. _ positively signed). But in the north (top two subfigures), the
FigureS shows the SMB responses versus height changegesponse is the opposite: when elevation decreases, SMB in-

for all of the perturbation experiments except Nonifre-  creases (most points are in the top left quadrant, with posi-

served as a test: Sed.3), divided into four partitions of e AS and negative\h; AS/Ah is negative). This change

SMB (negative and positive) and region (north and south ofin response from north to south can be seen in the maps in

7ZZr't\l)- Eanch data point shows the SMB responﬁg,gggz Fig. 3, particularly for the—100 m experiment (top two sub-

S, = Sf°M) versus the height perturbatiodk; =h;™"—  figures) where the SMB change along the margin is positive

hicofn) for a given grid celi, so each grid cell can appear up (red) north of 77 N and mostly negative (blue) in the south.

to five times. We exclude the 906 grid cells of the NonJn  However, most of the uniform experiment data do lie within

experiment that haveAh |< 25m (see SecR.3). We also  the range of the NonUn results.

exclude cells in which the SMB crosses the ELA between

the control and perturbed experiments (i.e. in which the per2 2 Parameterisation structure

turbed and control SMB have opposite signs) to make distinct

data sets for positive and negative SMB. The parameterisation comprises four “SMB lapse rates”, gra-
Most of the variation in Fig5 is from the NonUn simu-  dients that characterise a linear relationship between SMB

lation, because this has the widest range of height perturbachange and surface elevation change. When testing the pa-

tions. The south has a steeper slope, a stronger relationshijfameterisation, we use the gradients to adjust the control

betweenA S and A#, than the north. SMB using the NonUn height changes and compare with
The uniform perturbation experiments are the short verti-the actual NonUn SMB results. In a companion paper we

cal bands ati = (—50 m,—100 m). Most of the uniform ex-  use the parameterisation with several ice sheet models to

periment data in the south (bottom two subfigures of Bjg. dynamically adjust projections of future SMB as the GrIS

show the behaviour we expect: when elevation decreaseshape evolvedHdwards et a).2014). The four gradients cor-

SMB decreases (most points are in the bottom left quadrantiespond to the four possible combinations of the grid cell

where bothAS and Ah are negative AS/Ah is therefore  adjusted mean SMB over the past decade being positive or

-1500

2000
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negative and the grid cell latitude being north or south of Our height perturbation simulations allow us to derive the
77 N. We estimate these gradients from the ratios of SMBgradients directly from SMB responses to height changes for
changes to height changes{/A#h) in the surface elevation each grid cell, rather than the difference in SMB between
perturbation experiments. This parameterisation structure igrid cells in different locations on the ice sheet (aslgisen
determined by a combination of a priori choices and informalet al, 2011). This is important because the SMB response
tests. may be determined by different physical processes due to

We choose the structure of our parameterisation with thdocal topography and atmospheric circulation patterns. Each
following aims: to preserve as much of the SMB-elevation grid cell i provides an estimate of the gradiént AS/Ah
relationship in the MAR simulations as possible; to use asfrom the SMB change (perturbed SMB minus control SMB,
few assumptions as possible; to be applicable to any SMBAS; = Sipert_ Sl.co’“) versus the elevation change (perturbed
forcing from MAR; and to be simple for the ice sheet mod- height minus control heightah; =hi’e”—h?°"‘). In Fig. 4
ellerto implement. We test the abl'lty of the parameterisationthese Correspond to the arrow S|0pes; in Faghey are the
to reproduce the SMB field in the NonUnsimulation when  y axis values divided by the axis values.
applied to the contral simulation using the NonUn height  we choose not to make the gradients a function of grid cell
changes. location Helsen et al.201% Franco et al.2012, other than

We parameterise the relationship between elevation anghe north—south divide, to avoid dependence on the MAR
mean SMB, using total SMB rather than its individual com- grid resolution Eranco et ai201a and make the parameter-
ponents (as iffranco et al.2012 so itis easier to implement  jsation as generic as possible. A spatially varying parameter-
in ISMs and requires only one simulated variable as the inputsation would be tailored to the current shape of the ice sheet
forcing. We also choose to parameterise changes in SMB agnd the gradients would need to be interpolated for the ISM
a function of changes in elevation (in common wittanco  grid, which could lead to distorting edge effects at discon-
et al, 2012, rather than absolute values (asHelsen etal. tinuities such as the margin, ELA, and grid cell boundaries
201)). If we were to parameterise the relationship between(e.g.Franco et al.2012.
absolute SMBS and absolute heiglit, using a linear model We do not make the gradients a function of climate or time
S=a+bh (e.g.in Fig4), we would force the adjusted SMB  (beginning versus end of the century), because this would
to lie along a single line lying somewhere between the datgestrict our ability to apply the parameterisation to other
from the two time periods; andr,, with large uncertainty  MAR simulations: for the missing years of the A1B scenario
in the intercept due to the climate dependence of SMB at §2020-2079) we could interpolate or otherwise scale the re-
given height. Instead, we can parameterise the relationshiguits, but this would be less reliable or applicable for other
between SMB changes and height change$=bAh, esti-  emissions scenarios and simulations forced by other GCMs.
mating only the gradient. This way SMB can be adjusted  To guide our choices for other aspects of the parameterisa-
up or down the slope apparent in the data, rather than onto fon structure, we consider various methods of estimating and
single line with constant intercept. EIiminating the intercept app|y|ng the gradients and quantify their relative success in
in this way preserves the climate dependence of the SMB-reproducing SMB changes in one of the perturbation exper-
elevation relationship in the MAR simulations, and removesiments. We estimate the gradients from the SMB responses
half the unknown parameters. Working with anomalies ratherin the two NonUn simulations, then use them to adjust the
than absolute values is also a standard approach in climatgmB in the controlr, experiment according to the NonUn
modelling, because the former are thOUght to be SimU'ateCheight Changes_ We quantify success by Comparing the pa-
more reliably than the latter. rameterised cumulative SMB change with the actual results

The adjusted SMB iss?% = SREM 4 pAn, where SRM i the NonUni, simulation, in terms of both the root mean
is the original SMB (kgm?a™t), Ak the height change square error in the spatial pattern and the error in the GrIS
(m), and b the SMB-elevation gradientb=AS/Ah  total (not shown). We base our decisions on a combination
(kgm~3a?). More specifically, for a given MAR grid cell  of practical considerations (such as ease of implementation)

in a yearr a gradienth, is used to adjust the control SMB and these informal sensitivity tests, rather than a systematic
SRCEM using the height difference between the NonUn andgptimisation across all possible choices.
control experimentss?® = SRCM - j, (pNonUn __ peonty The Our final gradients are a function of SMB sign (posi-
gradienth; is selected according to the “reference” SMB and tive/negative) and region (north/south), because these divi-
latitude of the grid cell, where the reference is the mean ofsions make substantial improvements to the parameterisation
the adjusted SMB over the previous 10 yr (ekvards eta).  while not introducing much complexity when implement-
2014 for more details). Using the adjusted SMB for the ref- ing in ISMs. The clear difference in SMB response above
erence means the gradient selection evolves as part of thend below the ELA has already been discussed (Qeti.
feedback, which helps to make the method more robust with\Ve also choose to divide by region because of the distinct
changing climate. regimes in Fig4 in which the north has a shallower gradi-
ent and larger intercept than the south. The uniform height
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change simulations also indicate that the the northern mar2.3 Parameter estimation

gin behaves differently (Fig3). We test the performance of

north—south divisions in half degree intervals in the rangeWe now turn to formal statistical inference to obtain the fi-

74-79 N, and also compare with using no division, and find nal gradient values. We wish to assess the full uncertainty
that 77 N gives the best result. in the SMB-elevation relationship rather than using only

We test two other functional dependencies for the gradi-tuned (“best estimate”) values or performing ad hoc sensi-
ents: eight divisions in SMB rather than two, and height de-tivity tests. This is particularly important given there are op-
pendence as well as SMB dependence. The improvemenigosite sign SMB responses to elevation changes in the simu-
are not marked enough to justify the extra complexity. lations. So we estimate full probability distributions for each

We try three methods for estimating gradients: (a) a lin-of the four gradientsi(= by, by, b3, by) using a Bayesian
ear model ofS versush, (b) a linear model ofAS versus  approach. This also allows us to propagate the probabilis-
Ah with zero intercept, and (c) a non-parametric method.tic SMB—elevation feedback uncertainty to predictions of the
We apply each to the four data sets (positive/negative SMBGrIS contribution to sea leveE@dwards et a).2014).
north/south), and grid cells withA% | <25 m are excluded. We derive initial (“prior”) distributions for the four gradi-

In method (a), a linear fit of vs. h estimates the gradi- ents using SMB responses from five of the six perturbation
entb in Fig. 4; this is a similar approach tblelsen et al.  simulations:—100 m,#; andtz; —50 m,#; andt; and NonUn
(2011, except that we then make the SMB adjustment with¢1. These five experiments thus include parameter estimates
our anomaly method rather than an intercept. In method (b), ainder different climates{ andz,), different height changes
linear fit of AS versusAh estimates the gradiehtin Fig.5; a (—50m, —100 m, and NonUn), and different locations for a
zero intercept reflects our expectation that mean SMB changaniform height change<{50 m,—100 m).

is zero if there is no height change. In method (c), we use We reserve the final simulation (NonUp) as a test of

a non-parametric approach instead of a linear model. Thighe parameterisation, reweighting the prior distributions us-
takes the median ok S/ Ah ratios (y/x in Fig. 5) as an es-  ing the degree of success in reproducing the cumulative sea
timate ofb. Method (a) is the least successful, and (b) is thelevel change to obtain updated (“posterior”) distributions. We
most successful. But we judge that (b) is not an appropri-choose NonUmy because the NonUn height changes span a
ate method, because the fit residuals for grid cells above thevider range and are closer in spatial pattern to those expected
ELA vary systematically as a function of height change. Partin a warmer climate than the uniform height changes, and be-
of this may be due to our constraint of a zero intercept, butcause the SMB signal is larger ferthan forzq; we are more

the data also clearly have non-linear structure (B)gThe  concerned that the parameterisation is valid under a warmer
non-parametric method avoids model assumptions such aslimate than the present day.

normally distributed fit residuals, allowing us to capture all  This division of simulations allows us to try a wide range
the aspects of the MAR response. Our final method is thereef candidates for parameter values but assign larger weights
fore based on (c), though we use the full distribution ratherto those that match the target we wish to reproduce: the ag-
than the median (Se@.3). gregate behaviour of the whole ice sheet.

Our final parameterisation of the SMB—elevation feedback We use histograms of the ratio of SMB changes to height
is therefore a set of four gradients= (b}, b\, b5, b3), that  changesAS / Ak (Fig. 6), as a basis for our prior distribu-
are used to adjust SMB with a linear model of SMB changetions for the four linear gradient values. These are the same
versus elevation change. A gradient is selected from the sadata as in Fig5, which showsAS versusAk. Our mini-
of four according to whether the mean of the adjusted SMBmum threshold for the denominat¢rA’ |> 25 m, removes
in the previous decade is positive (p) or negative (n) andextreme values from the tails of these distributions which sta-
whether the grid cell is north or south of /M (N, S). The  bilises estimation of the ratios. All four distributions show
gradients are estimated from the rativS/A#x of grid cells  that SMB is sometimes positively correlated with height,
in the MAR perturbation experiments. sometimes negatively correlated. Above the ELA (Figs.

The full SMB—elevation relationship is complex, but our and d) the histograms fdr\ and bFS, are very narrow: the
aim is to create a parameterisation that is straightforward t&SMB responses for a given height change are small in magni-
implement: we have therefore partially linearised it, by par-tude with little variation. Below the ELA (Fig$a and c) the
titioning the data four ways and by using a linear model of histograms fom!\, b5 are much broader, showing the wide
SMB adjustment. In the following section our aim is to ac- variation in response for different regions of the ice sheet.
count for this approximation with non-parametric assessmentThese histograms are dominated by the four uniform pertur-
of uncertainties in those linear parameters. With this struc-bation simulations.
ture it is easy to implement the parameterisation, to use it in Each of the four histograms has a different number of grid
forcing an ice sheet model, and to assess the impacts of theells, so we take equally sized subsets of each to obtain a joint
parametric uncertainty (arising in large part from this lineari- sample of the gradient skt for each histogram we order the
sation) using additional ice sheet model simulations. values ofAS / Ah and take the 0.5 % to 99.5 % quantile val-

ues in 0.5 % steps, giving 199 samples of the four gradients
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Fig. 6. Histograms of the ratia S/ Ah for grid cells north (top row)  Fig. 7. Prior (light grey) and posterior (dark grey) distributions of
and south (bottom) of M, divided into grid cells with SMB in  the four value gradient seb,= (b, b, 55.53) for regions north
both the control and perturbed experiments less than zero (left coly,N | top row) and southi®, bottom) of 77 N, and SMB less than

umn) and greater than or equal to zero (right). Data with height,grq 0n, left column) and greater than or equal to zefg, tight).
changg Ak | <25 m are excluded.

N N 1S 1S S o to avoid the difficult task of modelling the spatial correlation
(bp» bn» by, by). These prior distributions are shown in light anq variation of the discrepancies.

grey in Fig.7. _ _ . These assumptions translate to a simple metric for assess-
We use each of these 199 prior estimates of the gradien,g the gradient estimates. The scoring, “likelihood”, func-
set to adjust the control SMB in 2080-2099 according to thetjon js a multivariate (for multiple locations) independent
NonUn height change, and assess their success in reprodugsayssian with constant variance; the exponent is the sum of
ing the target NonUrp, experiment. Each gradient setis used sqyared differences between the adjusted SMB and the target
to calculate a spatial pattern of cumulative SMB change andsp g ogver the subsampled grid cells (independent: a prod-
t_he corresponding total GrIS cumulative sea level contribu-,¢t of Gaussians) divided by the “discrepancy varianeg”
tion. (identically distributed: constant variance). The multiplica-

We simplify the statistical modelling by choosing com- e constant is discarded due to normalisation later. So the
parisons so that the differences (discrepancies) between ﬂ?cores, for the jth of 199 samples df is

adjusted and target SMB at each location are approximately
i.i.d. (independent and identically distributed) in space. We -1 .

make the comparisons approximately independent by “thin-s; = exp|:7 Z(fi] - Zi)2:| ; (1)
ning” (Rougier and Bever2013, using only every 5th grid i

cell (125km spacing). This spacing removes spatial COMMeyyhere £ is the adjusted SMB; the target SMB, and the
lation: an empirical variogram of the thinned discrepanciesyiq ce|l index. The discrepancy variance is a parameter that
is flat for all lengths up to around 800 km (the width of the onresents how closely we expect the parameterised SMB to
ice sheet). We assume the discrepancies are identically diss,atch the target; our choice is discussed below.

tributﬁdr:n space, that is, tlhat the model lis equally "k‘;ly t?\ The weight given to each gradient set is the normalised
match the target at every location. We also assume that t e ‘ ; ; ; _
discrepancies are normally distributed. In the absence of furscore,w/ _SJ/§S/' Note that a single weight Is calcu
ther information and as a first attempt to describe parametertated for each gradient sét rather than individual weights
isation uncertainty, these choices and assumptions allow ukr each of the four components. The most successful
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Table 1. The 2.5% quantile, best estimate, and 97.5% quantile
estimates of the SMB-elevation gradients in k§3mr1, below
(SMB < 0) and above (SMB- 0) the ELA, for regions north and
south of 77 N.

Region 25% Bestestimate 97.5%

SMB <0 North —-0.22 0.56 1.33

South 1.03 1.91 2.61 -20 -20
SMB>0 North —-0.03 0.09 0.23

South —-0.07 0.07 0.59 -0 -0

. T . ~ Cumul. SMB ch 10° Gt Cumul. SMB ch 10° Gt
(“maximum likelihood") gradient sek has the smallest sum il SHE change (10760 il SHE change (107G

of squared diﬁerencgs gnd.therefore the largest weight. VV(Iafig. 8. Cumulative SMB change at the end of the NonUn 2080—
calculate POS'_[enor d'Str'bu“_on.S fo!’ the fgur componen_ts Of2099 simulation: (left) target MAR simulation (perturbed minus
b by reweighting the prior distributions with the normalised ¢ontrol) and (right) result from maximum likelihood gradient et

weights. We estimate probability densities from the his- applied to the NonUn height change (adjusted minus control). Red
tograms with kernel density estimates and use these to estashed line is 77N.

timate the modes of the posterior distributions, which are

our best estimates of the gradients. As we are in a Bayesian

framework, our uncertainties are expressed as “credibility in-in most areas, but cannot reproduce the SMB increases with
tervals” rather than confidence intervals. We estimate 95 yglecreasing elevation along the western and southeastern ice
credibility intervals with bootstrapping: we resample 100 000 sheet margins. Figui@shows the discrepancies between the
times from the 199 gradient values (with replacement, usingwo for all grid cells and the subset used for the likelihood
the normalised weights), smooth these with the same band=alculation. Most of the discrepancies are small over the ice
width, and estimate the 2.5 % and 97.5 % quantiles. sheet interior and larger at the margin.

Our statistical framework requires minimal choices: the Figure7 shows the posterior distributions (dark grey) for
form of the likelihood function; the spacing for the sub- the four gradients; Table gives the best estimates and 95 %
sampling; and a value for the discrepancy variance. Wecredibility intervals. The posterior distributions are mostly
also choose to set the bandwidth (standard deviation of th@ositive, with much larger gradients below the ELA, par-
smoothing) for the kernel density estimation because the auticularly in the south, than above. Most of the distributions
tomatically chosen valueS{lverman 1986 does not seem are fairly symmetric, except the south above the ELA which
to adequately resolve the distribution shapes. We test varbas a low best estimate and a long tail of larger values. The
ious options and make our final choices with the follow- Weighting has a particularly strong effect for grid cells be-
ing considerations: thinning so that the discrepancies apped®W the ELA, drastically narrowing the distributions: effec-
approximately uncorrelated in space; the varianéecho- tively the likelihood scoring gives high weights to the gra-
sen such that the weights are not concentrated on a smatlient estimates derived from the NonUn 2000-2019 experi-
number of gradient estimates and most or all of the dis-ment (large, positive values), rather than the uniform height
crepancies for the maximum likelihood parameterisatign ( change experiments (small, positive and negative values), be-
are in the ranget30 (Pukelsheim1994): and the posterior ~cause these are most successful in reproducing the patterns of
distribution of total GrIS sea level contribution is close to change in the NonUn 2080-2099 experiment.
the target. We choose the smoothing bandwidth so that the We can apply the same weights to the total GrIS cumula-
density profile captures the main features of the histogramtive sea level contributions for each sample of the gradient set
Our final choices are a Gaussian likelihood function; sub-(Fig. 10). The prior distribution is centred close to zero: the
sampling distance 5 grid cells (125km); discrepancy vari-prior estimate of the elevation feedback is that it has no net
ances?=(20x 10% Gt)%; and bandwidths 0.15kgmia?! effect. The update narrows and shifts the posterior distribu-
for gradients below the ELA and 0.05 kgt#a ! above the  tion so that it is centred on the target, a positive contribution
ELA. Sensitivity tests for these choices are described in theérom the feedback.

next section. We test the sensitivity of the results to the elevation thresh-
old and statistical modelling choices. Varying the threshold
2.4 Results (from the default 25 m) between 10m and 50m in 5m in-

tervals changes the results by no more than 0.02kgan?,
Figure8 shows the adjusted cumulative SMB from the max- and in most cases 0.01 kgtha! or zero, for the majority
imum likelihood parameterisatiorb) and the target. The of the gradient best estimates and Cl bounds. The exceptions
maximum likelihood gradient set reproduces the target wellare the best estimates in the souif, (bg) and the upper CI
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Fig. 9. Cumulative SMB change at the end of the NonUn 2080—
2099 simulation: (left) error in the maximum likelihood gradient set ° Lmﬁﬁﬂ
b applied to the NonUn height change (adjusted minus perturbed), =2
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Fig. 10.Prior (blue) and posterior (red) distributions of cumulative
bound for the Iatterl@), where the changes are in the range change in sea Ievel. at 2099 using .parameterised eIevat.ion feedback
0.06-0.12 kg ma-l. These correspond to a 5% change for for height changes in the NonUn S|_mulat|on. The target is the result

n. T p . from the NonUn 2080-2099 experiment (vertical black line).

bg; for the smaller gradienbg the fractional changes are
larger, but the changes plateau (i.e. the gradient estimates sta-
bilise) above 25-30 m, as intended with the use of the thresh-
old. increasing or decreasing the Cl widths by 12—24 %. Decreas-

We try substituting the Gaussian likelihood with a Cauchy ing o to 15 or 10 Gt broadens the discrepancies to abeut 2
(Student’st distribution with one degree of freedom; very but concentrates the weights rather more. Again, we err on
heavy tailed), scaled to match a Gaussian at the 25 % anthe side of conservatism in our choice.
75 % quantiles. Our motivation is that the histogram of dis- In the grid cell sampling (required for independence), us-
crepancies for the maximum likelihood gradient set is fairly ing different spacing does not have a monotonic effect on
sharply peaked. The effect of a Cauchy likelihood is to dis-the results. Decreasing the spacing from 5 grid cells to 4
tribute the weights over a much smaller number of gradient(100 km) or increasing it to 6 (150 km) both have the effect
sets, which drastically narrows the posterior distributions.of decreasing most best estimates and Cl widths. This in-
If we also reduce the bandwidths to match these narrowedicates it is not a problem of using too short a correlation
distributions (from 0.15 to 0.05kgn?a ! below the ELA  length (violating the independence assumption) but of sensi-
and from 0.05 to 0.03kg ? a~! above), the CI widths de- tivity to the grid cell sampling, most likely at the ice sheet
crease by 54-84 %, and the best estimates increase by 13rargin. Of these three choices, the 5 cell spacing produces
38% for three of the gradients and 186 % (from 0.07 tothe best match to the cumulative sea level change inlfeig.
0.20kg m3a~1) for bg. Because the weights are so concen-in other words, both the 4 and 6 cell spacings concentrate
trated, and we wish to be conservative with uncertainty esthe weights on smaller gradients (smaller SMB adjustments),
timates, we choose the Gaussian likelihood. An alternativewvhich match the target spatial pattern well for the particular
approach would be to set a larger discrepancy variance fosampled cells but perform poorly for the ice sheet total us-
the ice sheet margin grid cells than the interior, though oneing all grid cells. We alter the offset of the sampling, which
might be less confident in assigning the value of two uncer-also has a non-monotonic effect. Shifting both the longitudi-
tain parameters rather than one. nal and latitudinal offsets by-3 cells gives a small decrease

The discrepancies for the maximum likelihood parameter-in the best estimate (0 te4 %), while offsets of-2, —1
isation are all within+1.5, which indicates that our dis- and+1 all give higher best estimates (15-34 %, exd@t
crepancy variance is too large; on the other hand, reducing 71-100 %). The effect on Cl width is also mixed; the largest
concentrates the weights on a smaller number of gradient eeffect is onbg, up to 26 %.
timates, leading to narrower posterior distributions and 95% Using a larger discrepancy variance for the margin than
Cls. Changingr from 20 to 15 or 25 Gt does not affect the the interior would reduce the sensitivity of the results to sam-
best estimates much (0-11 %) except for the small-vabfed pling, because the margin grid cells would have less effect on
(43 %). Increasing or decreasiagby 5 Gt has the effect of the likelihood value.
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Using automatically set bandwidths gives wider Cls, under climate change (NonUn) rather than a uniform or frac-
but oversmooths the distributions, for SMB) and nar- tional (Hakuba et al.2012) lowering, because the effects on
rower Cls, but undersmooths the distributions, for S¥B. local atmospheric circulation are potentially quite different.
Changing our bandwidths from 0.15 to 0.1 or 0.2 kg¥a~* We see it is important, particularly for RCMs that include
below the ELA and from 0.05 to 0.03 or 0.07 kgha® the albedo feedback, to assess the elevation feedback under
above affects the Cl widths by small amoutt6—6 %, ex-  different global climate conditions, rather than studying one
cept forby (—23 to 27 %). climate era Franco et al.2012 or correcting the ice sheet

elevation for other climates using a temperature lapse rate
(Helsen et a].2011).

3 Discussion The second set of advantages relate to our parameterisa-
tion structure. Using only a gradient (in common witanco
3.1 Advantages and strengths et al, 2012, rather than a gradient and intercepte(sen

et al, 201J), is more robust because it minimises the prob-

The main advantage of parameterising the GrIS SMB-lem of the climate-dependent offset. In other words, param-
elevation feedback is that it allows us to force ISMs with eterising the relationship between SMB changes and height
SMB simulated by the MAR RCM, which has a more phys- changes, rather than absolute values, retains more informa-
ically realistic representation of the processes than simpldion about the response. A further aspect of flexibility is
schemes such as the PDD, while incorporating the feedbaclour choice to estimate the gradients with a non-parametric

The parameterisation can also be used without ISMs tanethod (no assumed functional form) rather than a linear
make a first order adjustment to SMB, improving projections model as botiHelsen et al(2011) andFranco et al(2012
such aRRae et al(2012 andFettweis et al(2013 by incor- do. Furthermore our parameterisation is very flexible be-
porating the elevation feedback (in effect omitting only the cause, unlike the previous studies, it does not depend on spa-
dynamical ice response): for this, the SMB in a given yeartial location (other than the north—south divide) so it does not
for each grid cell can be converted to an ice-equivalent heightlepend on the RCM resolution or require interpolation to the
change. A third use is adjusting low resolution SMB fields to ISM grid, and is easy to implement.
the observed surface elevation, for better comparisons with The third advantage relates to parameter assessment. We
observations or inputs to ISMs (as Branco et a].2012). estimate the gradients within a formal probabilistic frame-

We have confidence in our parameterisation due, for examwork. This allows us to provide not only a best estimate pa-
ple, to the similarity in patterns between the maximum likeli- rameterisation but the full probability distributions, so that
hood result and the target (F8), and the centring of the pos- ISMs can be used to explore the effect of this uncertainty on
terior sea level distribution on the target (Fid)), and have  the GrIS contribution to sea level and express these as credi-
quantified the effects of the complex non-linear responses irbility intervals.
MAR on the feedback uncertainty.

There are several advantages to our approach relative t8.2 Limitations and further work
the parameterisations bijelsen et al.(2011) and Franco
et al. (2012. The first relate to our RCM simulations, in This is a parameterisation of the SMB-feedback response in
which the relationship between SMB and height appears tan RCM, not of the real world. We have not attempted to
be more complex (e.g. Figl. For Helsen et al.(2011), estimate the parametric or structural uncertainty of MAR,
this may be partly due to the different schemes in MAR and have not used an observational constraint. One approach
and RACMO2/GR, but in general it is due to our use of to explore structural uncertainty would be to compare with
simulations in which both the surface elevation and climateparameterisations derived for other RCMs. Assessing MAR
boundary conditions are alterdetanco et al(2012 alter the  parametric uncertainty would require a perturbed parameter
grid resolution, which produces local changes to elevation,ensemble such as the 11-member HadRM3 ensembMea6f
Helsen et al(2011) do not use altered topography to esti- phy et al.(2009, which is very computationally expensive.
mate their SMB gradients, though they do to assess their peM/e could incorporate observations into the elevation feed-
formance. Neither force the RCM with a global climate dif- back by using them, rather than the target simulation, to cal-
ferent to the present day. Altering the elevation means thereulate the likelihood. We would have to take care that a pa-
is no need for a “space-for-time” substitution. This improves rameterisation based on observed SMB changes would give
the relevance and robustness of the parameterisation becauaecoherent result when applied to RCM simulations. How-
it is based on results from height changes at a given locaever, the effect of a first-order SMB adjustment on sea level
tion, rather than height changes across different spatial locais negligible for a present day ERA-INTERIM forced simu-
tions. We found it is also important to use a wide range oflation (not shown), so observational constraints might in any
height perturbations, that is, that 50-100 m changes are natase be of limited use.
sufficient to explore the relationship. It may also be impor- We use MAR because it is the most successful of the
tant to apply height changes with the spatial pattern expectethree RCMs presented Hae et al.(2012 at reproducing
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the current SMB of the GrIS. If we were to study additional We exclude grid cells with opposite sign SMB in the con-
RCMs, we would derive the parameterisation separately foitrol and perturbation simulations when estimating the gradi-
each. Our preliminary assessment of another RCM used bgnts, because of our division at the ELA. (This exclusion only
Rae et al(2012, HIRHAM, indicates that the SMB response applies to estimating the gradients, not to applying them:
to height is much more linear and less variable than in MAR,when adjusting the MAR SMB, a grid cell may be above
most likely because fewer processes are incorporated sudime ELA before and below after). The arrows that cross the
as the albedo feedback. Uncertainty in SMB projections areELA in Fig. 4 indicate that this filtering may tend to remove
generally thought to be dominated by the choice of GCM, smaller than average gradients from the below ELA sample
rather than RCM (e.dRae et al.2012; two GCMs are used and larger gradients from the above ELA sample. There is
for the projections presented Egwards et al(2014). no significant change in albedo in grid cells that remain on
We note that the parameterisation may not be robust folone side of the ELA or the other, so these show a linear re-
changes in elevation and SMB much greater than those imationship between SMB and elevation. Non-linearity occurs
the NonUn A1B 2080-2099 simulation. mainly for grid cells that are above the ELA (where no bare
We could parameterise each component of SMB sepaice appear in summer) in the control simulation and move be-
rately Franco et al. 2012 or make the parameterisation low the ELA with a new elevation, or vice versa, but these are
structure more complicated in other ways described, but thisot included in the analysis. This exclusion might therefore
would have hindered our aim to test the results from the palead to an underestimate of the uncertainty.
rameterisation in several ISMEdwards et a).2014). Boundaries can lead to unexpected edge effects. If the ice
Our estimation of the gradients is non-parametric, but oursheet were to retreat past°M™N then the parameterisation
adjustment of SMB with these gradients uses a linear modelould shift to using only the south values (i.e. a larger re-
with zero intercept. This linear model is an approximation sponse). However, as we have discussed, we would not rec-
we use to reduce the complexity of the parameterisation. Figommend using this parameterisation for elevation and SMB
ure 4 indicates that the relationship is not quite linear abovechanges far beyond our simulations.
or below the ELA: for example, the gradient in the north is The gradients change stepwise across the north—south
slightly shallower at the lowest elevations. Figbrdicates ~ boundary at 77N. In principle, this could be smoothed out
that the intercept may be non-zero below the ELA. A more with a soft transition in a slightly more complex implemen-
complex parameterisation could account for these departuretion. We include only one boundary rather than several
from our model, though it would be harder to implement.  to minimise edge effects. It might be useful to use a fur-
Figures2 and3 show that a surface lowering can often lead ther regional division, west—east at around W) because
to anincrease in SMB. This is particularly the case in the uni-MAR projects different precipitation responses to a warming
form elevation change simulations (FB).for the north and  climate: along the eastern coast snowfall tends to increase,
east, for small elevation changes, and for the beginning of thevhile along the western coast summer precipitation begins
century. It is also apparent in the NonUn simulations (B)g. to fall as rain.
along the western margin. This behaviour is likely to derive  Our choice of a 25m threshold was made to stabilise
from the precipitation component of SMB, which has a com- the gradient estimates. Most results are not sensitive to this
plex, non-linear relationship with surface elevatiéiighco  choice, but we note that a different threshold would in partic-
et al, 2012. The maximum likelihood gradient set does not ular alter the best estimate and Cl upper bounb@of
reproduce the SMB increases with decreasing height in the Using the mean of each 20yr simulation might lead to
west and southeast (Fif§). The probability distributions do an underestimate of uncertainty by averaging over temporal
incorporate this variation by including the full range of re- variability. However, this variability is incorporated when the
sponses: in other words, other samples frbrgive differ- parameterisation is applied to an annual SMB time series, so
ent correction patterns depending on whether the individuatare would have to be taken to avoid double counting.
components are positive or negatitdvards et a).2014). Finally, the choices of the structure and parameter estima-
But within an individual ISM simulation the four compo- tion depend on the approximations and the prioritisation of
nents ofb are held constant. One way to represent this com-aspects described in Sec2s2 and2.3. Different choices for
plex behaviour more fully would be with a stochastic pa- the statistical modelling might be justifiable, and future work
rameterisation, in which the gradients are randomly samplectould explore this more thoroughly. As mentioned, an alter-
from the distributions through the simulation rather than heldnative choice might be to set a larger discrepancy variance
constant. This would incorporate the effect of both positive for the ice sheet margin grid cells than the interior. The sub-
and negative values of each gradient within a single simu-set of data chosen to ensure independent discrepancies could
lation rather than separate simulations (aEdwards et al.  also be selected by hand rather than regularly spaced, with
2014. However, this would require much more complex sta- the aim of choosing the most informative cells: for example,
tistical modelling to describe the spatial and temporal corre-picking cells along the margin and a smaller number from the
lation structure of the gradients, and more complex imple-interior. Aggregation of data is another possible method for
mentation. removing correlationRougier and Bever2013. Different
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