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ABSTRACT When cybersecurity is neglected, any network system loses its efficiency, reliability, and
resilience. With the huge integration of the Information, Communication and Technology capabilities, the
Connected Electric Vehicle (CEV) as a transportation form in cities is becoming more and more efficient and
able to reply to citizen and environmental expectations which improve the quality of citizens’ life. However,
this CEV technological improvement increases the CEV vulnerabilities to cyber-attacks resulting to serious
risks for citizens. Thus, they can intensify their negative impact on societies and cause unexpected physical
damage and economic losses. This paper targets the cybersecurity issues for CEVs in parking lots where a
peer-to-peer(P2P) energy transaction system based on blockchain, and smart contract scheme is launched.
A False Data Injection Attack (FDIA) on the electricity price and power signal is proposed and a Machine
Learning/SVM classification protocol is used to detect and extract the right values. Simulation results are
conducted to prove the effectiveness of this proposed model.

INDEX TERMS Blockchain, connected electric vehicles, false data injection attack, machine learning, short

vector machine, smart contract.

I. INTRODUCTION

Connected Electric Vehicles (CEVs) [1] are a new mobility
concept that is growing rapidly over the last decades. CEVs
are a mix of hardware and software pieces with commu-
nication capabilities making them expected to be the main
part of the smart city deployment especially in terms of the
energy ecosystem, clean mobility service and even for data
collect and routing. Compared to traditional transportation
system, CEVs are seen as a new form of mobility in cities
able to help in the energy transition vision by replying to
Net-Zero and COP26 commitments related to environmental
issues, the pollution reduction, and the service efficiency for
citizens. The success of the CEV concept is depending on
its range capability and its battery energy management in
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terms of capacity, the charging and discharging rate, and the
availability of the EV Supply Equipment (EVSE).

In one hand, automakers are already starting manufactur-
ing thousands of new electric cars and trucks which can make
pressure on the current power system especially for peak peri-
ods where an increased number of CEVs are plugged-in in the
same period to charge their batteries. In the other hand, the
CEV is co-locating electricity consumption and control based
on its specific architecture and its capabilities on Information
and Communication Technologies (ICTs) such as intelligent
software systems with capabilities of network and Internet
of Things (IoT). However, as show in Fig.1, all these ICT
capabilities create potential cyber vulnerabilities and access
points with a high risk of data privacy disclosure which can be
maliciously exploited by cyber-attackers. This cybersecurity
problem increases especially where decentralized models are
considered in the interaction between CEVs for data and
energy peer-to-peer (P2P) transaction.

VOLUME 10, 2022


https://orcid.org/0000-0001-8343-6640
https://orcid.org/0000-0002-1922-769X
https://orcid.org/0000-0003-1620-0560

D. Said et al.: Cyber-Attack on P2P Energy Transaction Between CEV: A FDIA Based ML Model

IEEE Access

One of the most common type of cyber-attacks that was
originally introduced in the power systems (see Fig. 2) is the
False Data Injection Attack (FDIA). This type of attack is able
to compromise the most vital concern of the data integrity
by infecting devices and surpassing firewalls. It can create
untruthful values of the state estimation (SE) [2], use malware
to infect servers of power suppliers, falsify the real quantity
of energy truly provided, and maliciously forget the network
states by invalidating nodes. Thus, the FDIA can provide
a huge misleading of the energy distribution, resulting in
devastating power shortage, extra energy transmission costs,
blackouts, and overloads. Mainly, FDIA can target (1) the
electricity price and (2) the power line load. For the first
scenario, this attack manipulates the price data received from
a utility or any other electricity service provider. As a result,
each consumer will receive different electricity prices which
make an uncontrollable demand side management mecha-
nism by messing the metering data transmission. This false
metering can cause for example a dysfunction of the load
balancing procedure or scheduling protocol. The damage is
in terms of instability of the grid network or in terms of
decreased user satisfaction levels. The second case is based
on the malfunction of a system operation caused by injecting
false data into the measurement system. Thus, a hacker can
manipulate the consumer and or the utility load which can
result in significant and costly damage to the power grid.
This damage can go to Smart Grid (SG) infrastructure and
a potential SG failure by overloading the devices and power
lines Which can cost billion of dollars for certain communi-
ties in addition to victims which are losing their life in certain
situations.

To overcome this problem, the attack detection is the most
essential step in minimizing the damages. Several approaches
are proposed since 2010 to detect FDIAs [3]. Some of
them were based on SE type such as the conventional bad
data detection, the SE partitioning, and the detection based
on dynamic SE. Other approaches are based on protection,
among them there are the optimal Phasor Measurement
Unit (PMU) placement [4], and the selection of optimal
measurements.

Another Method to detect FDIA Which is based on sta-
tistical modelling [5], argues that the Generalized Likeli-
hood Ratio (GLR) test detector is not efficient when a large
number of samples are compromised, and the Bayesian test
detector also cannot detect FDIAs if the attacker replaces
current meter readings with historical ones. Also, the quick-
est change detector, the statistical distance index, the sparse
matrix recovery [6] and many other statistical approaches are
used in cybersecurity literature. In this work, we focus on the
detection of FDIA using Machine Learning (ML) approach
(which is the most disruptive method of the Artificial Intel-
ligence (Al)) for a P2P energy transaction between CEVs in
parking lots.

Our contributions are as follows: 1) To date, this work is
the first to focus on applying ML to tackle the cybersecurity
challenge such as FDIA in parking lots where a P2P energy
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transaction between CEVs can be launched. 2) We present a
detailed FDIA model. 3) We highlight the SVM as a powerful
ML technique able to fight the FDIA. 4) The numerical
simulations of FDIA on the price and power data are shown
to prove the efficiency of our proposal.

The remainder of the paper is organized as follows.
Section II discusses some challenges, issues and related work
of cybersecurity in SG. In Section III, our model of the FDIA
is presented. Section IV numerical simulations for the FDIA
model and SVM detector for P2P energy transaction between
CEVs is presented. Finally, concluding remarks and open
issues are drawn in Section V.

Il. RELATED WORKS

The topic of FDIA is attracting several industrials and cyber-
security researchers in different fields and especially in SG
as a centralized architecture. To mitigate the FDIA, many
approaches are proposed in literature. For the FDIA detection,
research works can be classified into 4 essential sub-classes.
The first one focuses on the SE type. The Second one targets
the protection-based defense. The third one considers the
statistical models and the last one is based on the using of
the ML capabilities.

For the first category, in the reference [7], the statistical
test of the Largest Normalized Residual (LNR) is presented
to detect non-critical, single, and multiple, interacting issues
but non-conforming bad data. It is shown that this model is
not efficient for bad leverage points. For the second category,
the authors of [4] propose a PMU placement technique to
ensure that an L1 state estimator has the necessary amount of
resilience against poor measurements. However, PMUs are
expensive, and installing enough of them to ensure sensor
readings is impractical. It is more expensive, particularly with
the integration of new ubiquitous sensing technology into
large-scale of network systems such as Smart Grids.

For the third category, many statistical models were pro-
posed, for example the Bayesian test detector in reference [8]
where authors developed a Bayesian test to identifying relay
misbehavior (false data injection) at the packet level in
loss one-way wireless relay networks, nevertheless, another
study [9] shows that the Bayesian technique fails to detect
an attack when malicious data has the same distribution pat-
tern as historical data or when an adversary replaces current
meter readings with prior readings with the same distribution.
Although these approaches stated above are making improve-
ment in detecting FDI assaults, but they are becoming increas-
ingly limited as FDIAs get more complex and sophisticated
schemes able to surpass the SG protection layers.

In the last category, based on examination of the cur-
rent research works, it found out that many studies were
conducted in the topic of FDIA using ML like [10], [11]
where different ML models like the Recurrent Neural Net-
work (RNN) and Artificial Neural Network (ANN) to detect
FDIA in bad nodes or in power system state estimators and
there are many other studies prove that ML is an efficient tool
to detect FDIA in power system.
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FIGURE 1. Cybersecurity vulnerabilities.

A recent method [12] is targeting the blind FDIA detec-
tion for large-scale power grid and high-level measurement
noise. Also, the reference [13] presents a data-driven FDIA
detection with improves reliability and resilience of the wind
energy forecasting.

We mention that all these research efforts do not tar-
get the ML/SVM classification model in FDIA detection in
a decentralized architecture between CEVs in P2P energy
transaction.

Ill. PROPOSED MODEL

We consider a group of CEVs willing to launch an open
electricity market in a parking lot when all supply plug-ins
are occupied. The system is presented in Fig.3. We suppose
that the parking lot is equipped by a blockchain server [1].
We use a consortium blockchain based Ethereum achitecture
and any CEV buyer or seller can connect to our system.

We take into account a predictive bidding approach
(PBA) [1] based on stochastic bids that will be run into the
smart contract based on a trained model.

The smart contract is a digital contract that eases the
process of agreement between CEVs by imposing prede-
fined clauses such as bidding and payment functions. In our
Blockchain based system, the data integrity, security, trust-
worthiness, and decentralization approach made it a trustful
network. But that doesn’t mean that it will be safe from any
external attack, because the security is guaranteed only in
case we are inside the Blockchain network.
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This system environment is mainly based on ICT capa-
bilities which increase its vulnerability to many kinds of
cyber-attacks such as FDIA.

As presented in Fig.4, we suppose that an attacker injects
a false data vector ’a’ into our training data which will jeop-
ardize the network and deliver a false results.

In this context, FDIA detection is treated as a supervised
binary classification problem. Based on the research work
done in [14] the SVM is more efficient than CNN and KNN in
anomaly detection with 91.29 % of precision. Moreover, the
SVM is a popular practice for training a decision boundary
that divides data into several classes. as shown in Fig.5, the
SVM is based on a hyperplane that maximizes the separation
margin between two classes. The training points which are
close to the limit defining this division margin are called
support vectors. So, in this case we are seeking a hyper-plane
that separates attacked (+1) and secure data (—1) in a N
dimensional feature space. We can illustrate the distribution
of our data by the following system:

WTSi+b=+1, ify,=+1 W
WITSi+b=—1, ify;=—1
considering that:
+1, ifb#0
= 2
Y [—1, ifh=0 @

A hyperplane is represented by a weight vector W € RV
and a bias variable b € R, and a sample S; € Dtrain
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FIGURE 2. Conceptual architecture for our system model.
which results in: be given as:
- B 1 n
W Si+b=0 3) ;Zlgl @)
=

where S; is the feature vector of the given sample which
located on the hyper plane. Fig.5 and Fig.6 illustrate the
process of the attack detection using Machine Learning.

To determine the hyperplane this condition should be
verified:

yiWLSi+b)>1 Vi=1,2,3....T 4)

where T is the number of the training data. As the margin
between the two support vectors D is defined as:

o

W ©)
the maximisation of margin hyper plane can be computed by
the minimization of W?2.

Sometimes the training data is not linearly separable.

In other words, to ensure that the SVM classifier does not
over-fit the noisy data (or to create a soft margin), we have to
introduce a new variable, called slack variable & > 0, to allow
some data points to lie within the margin, and in this case
optimization problem will be descried as:

T
yiw' +b)=1-§ (0)
In case & > 0 we can think of & as an error tern
associated with variable S; and the average error can
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and the determination of the hyper plane will be by solving
this equation:

Y&
i=1

where C in a positive constant that calculates the trade-off
between maximizing the margin and the number of training
data points in the margin.

W
2

I?
+C ®)

min
w,&;

SVM Algorithm

Input: The training data Dtrain = [S,Y] where S is array of input with
N features and Y is an array of class labels € {—1, +1}
Output: Y; = sgn(WT.S; + b)
1: Assign H(x):z:ﬁ\/:1 WTSi+b=0
2: Minimize the quadratic optimization problem: min 6(w, ;)

2
BErexle
3: Calculate the Lagrangian multipliers: minL,(w, b, o) = w —
Zf-vzl ;. Yi. (WIS, +b) + va:, a; Where o is the Lagrange
multiplier
4: Calculate maxLp(w, b,a) = Z?’Zlai—%,zyjzl a,-an,-YjS,'TS,»

subject to ; > 0 and va:l Yia; =0

IV. SIMULATION RESULTS
In this section, we present the simulation results and discus-
sions of our proposed scheme performance. We consider a
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FIGURE 3. A false data injection attack on our machine learning model.
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FIGURE 4. Attack detection using support vector machine.

scenario in a real urban area of Ottawa where 20 parking lots
are sharing a4 x 4 km 2.

The simulation parameters of this study are summarized in
TABLE 1.

To illustrate our problem, we assume that CEVs can inter-
act wirelessly with one another and each CEV decides the
amount of power to be sold or purchased during a certain
period. We suppose that all parking lots have a blockchain
server that is active, and that the blockchain server can
receive all information about CEV buyers and sellers. Also,
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FIGURE 5. Attack detection using the linearly non-separable dataset.

we assume that a bidding auction is launched between CEVs
buyers and sellers of electricity.

To show the effectiveness of our proposed scheme, we con-
sider a cyber attack: (1) on the CEV buying and selling price
data and (2) on the CEV seller power data using for both our

proposed method to compare simulations with and without
FDIA.

A. FDIA ON THE ELECTRICITY PRICE

Fig. 6. highlights the performance of our SVM Algorithm in
detecting FDIA in buying and selling price (represented by

VOLUME 10, 2022
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TABLE 1. Simulation parameters.

Parameter

value

Electricity Price (based
electricity requested level)

15 c¢/kWh [15]

Minimum Electricity Sell- | 8c/k Wh
ing Price(Bidding based

on game theory)

Maximum Electricity Sell- | 18c/k Wh

ing Price(Bidding based
on game theory)

Number of CEV buyers
Ny

10,30,60 [16]

Number of CEV sellers N

10,30,60

Energy requested by CEV
buyers

Uniform distributed be-
tween 20-75%

Energy to sell by CEV
sellers

Uniform distributed be-
tween 20-75%

Dch, DDisch 60 kW DC [17,18,19]

Charging time Max 20 min [20]

CEV SoC Uniform distribution be-
tween 20-100 %

CEV Battery capacity 24 kWh [21]

Electricity price ToU (Ontario) [22]

SoC-BDT The battery depletion

threshold (BDT) [23]

=== =0ur selling price {(SVM Algorithm)
035 === = Qur buying price (SVM Algorithm)
—— Our buying price + FDIA
Our selling price+FDIA

0.3

Selling/Buying price variation

*Time slof (hour)
FIGURE 6. The SVM performance in extracting the right price value
(buying and selling) after FDIA.

TABLE 2. Comparison between the buying and selling price with and
without FDIA.

Average value | Deviation %
Buying price classified with SVM 0.16
Buying price attacked by FDIA 0.234 31
Selling price classified with SVM 0.14
Seling price attacked by FDIA 0.244 42

black and Burgundy color) which reveals a large deviation
margin that disturbs the whole bidding system.

From Fig.6, we can see that our SVM Algorithm performs
well in anomaly detection in the data exchange between
CEVs. Thus, our SVM Algorithm is able to locate and remove
the corrupted data from the price signal to show as our selling
price (blue one) and our buying price (red color).

The Table 2 demystifies the role of the SVM Algorithm in
detecting the FDIA in our system. In fact, the average values
of the buying price with and without FDIA are respectively
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FIGURE 7. The system performance: the selling/buying electricity price in
our open market between CEVs compared to the regulated ones.

0.23 and 0.16 which means a deviation of 31 percent. This
misinformation will make the system failure by harming the
peer’s wallets when they pay more than the real amount of the
price.

The same rationale is used when studying the attacked sell-
ing price and the average values of the selling price with and
without FDIA are respectively 0.24 and 0.14 which means a
deviation of 42 percent.

Thus, the FDIA provides a huge increase in the sell-
ing/buying price will not incentives CEVs to connect to the
system of the electricity liberalized market in parking lots.

Fig.7 shows the selling/buying electricity price in our open
market between CEVs compared to the regulated ones. It is
clear that without cyber-attacks, the price system adapted is
outperforming the regulated one.

B. FDIA ON THE AMOUNT OF ELECTRICITY ANNOUNCED
BY CEV SELLER

In this case we suppose that the electricity profile of the CEV
seller is falsified by an FDIA. We study throw simulations
the capability of our SVM Algorithm to detect and extract
the right electricity profile data. Fig. 8 compares three sig-
nals during a week (only day time is considered): the real
measured data (blue color), the attacked data ( black color)
and the extracted data (red color) using our SVM Algorithm.
From Fig.8, it is clear that our SVM Algorithm is able the
detect and extract the right CVE seller’ power profile. To con-
clude, the FDIA detection remains essential in our system
(between CEVs) in order to maintain our liberalized market
more and more attractive for CEV owners to exchange energy.
Table 3 presents the observation results obtained from Fig. 9,
which illustrates the performance of our SVM Algorithm
from 9 AM to 6 PM in term of FDIA detection and extraction
when the CEV seller power is attacked. As shown in Table 3,
itis clear that the deviation between the true CEV seller power
values and the attacked ones is around 32 percent.
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FIGURE 9. The normalized power exchanged between CEVs after FDIA
during day time (from 9 AM to 6 PM).

We can conclude that our SVM Algorithm can improve
the decentralized trading of the electricity provided by CEV
sellers and buyers in parking lots by tackling cybersecurity
issues when detecting FDIA and extracting the real values for
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40
Time (hour

a0 &0 [y

TABLE 3. Comparison between the buying and selling price with and
without FDIA.

Average value | Deviation %
Average real power with FDIA 0.39

SVM ALgorithm 0.58 32

the electricity price for selling or buying as well as the CEV
electricity profile.

V. CONCLUSION
False data injection attacks are considered to be one of the
most dangerous threats against ML and data driven technolo-
gies. Attackers can damage the whole system and degrade
its performance by injecting malicious data in a training
sequence set of the ML. This paper presents a cybersecurity
scheme able to identify attacked sequence using our SVM
Algorithm. Numerical results and simulations demonstrate
the strength of the proposed algorithm to detect FDIA and
extract the right values.

As a future works, this article can be extended for a large
scale with realistic testbed considering the Denial of the
Service (DoS) and ransomware/crypto-ransomware attacks.
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