
Cost-Efficient and Latency-Aware Event
Consuming in Workload-Skewed

Distributed Event Queues
Mazen Ezzeddine1,2, Gael Migliorini2, Françoise Baude1, Fabrice Huet1

1Université Côte d’Azur, CNRS, I3S
Nice, France

2HighTech Payment Systems, HPS
Aix En Provence, France

mazen.ezzeddine@univ-cotedazur.fr

6th International Conference on Cloud and Big Data Computing.
Birmingham City University, Birmingham, United Kingdom August 18-20,

2022.

1/13

• Distributed Event Queues : a central component in building
modern large-scale and real-time cloud applications.
– Recording and analyzing web accesses for recommendations and ad

placement, fraud detection, and health care monitoring etc.
– Cloud providers (AWS, GCP, Azure) already offer distributed event queue as

a service

• Latency-aware and cost-efficient event consuming
– Guarantee maximum event processing latency (WSLA) for high percentile

of events, under low cost in terms of event consumer replicas
• Autonomous scale in and out of event consumers replicas to cater to the incoming

arrival rate of events

Motivation and Problem statement (1)

2/13

• Cloud providers offer solutions for autoscaling event consumers in
distributed Event Queues. Two limitations :
– Threshold based autoscalers
– Not designed with workload skewness in mind

• Load aware and fair assignment of events to event consumers according to
event arrivals per event key.

• This work : A framework and methodology for scaling event
consumers of a distributed event queue
1. Guarantee a maximum event processing latency WSLA for high percentile

of events
2. At low cost (in terms of number of event consumer replicas used)
3. Workload skewness support

Motivation and Problem statement (2)

3/13

Context and Background (1)

Event
Producer

Event
Producer

Event Consumer
Group (G)

…

Event
Consumer

Event
Consumer

P0

P1

Pm

Topic

...

Distributed Event queue cluster (e.g., kafka)

Partition p

• = arrival rate of events at time t (events/sec)
• = number of events in the partition backlog at

time t

P

(events/sec)

(events)

4/13

Context and Background (2)

Event Consumer C

• = service rate (events/sec).
• homogeneous consumers

• = Maximum allowable events backlog of the consumer without
violating the latency.

• = arrival rate into the consumer
• = number of events in the backlog
of the consumer

(events/sec).

(events)

P0

P1

Consumer c

5/13

Problem formulation
• What is the minimum number of consumers needed at time t, so that all the

events will be processed in less than the maximum event processing latency

–

• minimal number of event consumers needed at time t so that (maximum
event processing latency) is respected

• Integer Linear Programming (ILP) formulation in the paper.

P1
λ = 40

Lag= 150

P3
λ =30

Lag=200

P4
λ =20

Lag=100

P0
λ = 50

Lag = 300

P2
λ = 30

Lag =100

𝝁 = 100 events/sec

𝝁
 ×

𝑾
𝑺

𝑳
𝑨
=

 5
0

0
e

ve
n

ts

6/13

– Used the bin pack heuristic Least Loaded First Fit Decreasing LLFFD
– LLFFD was proposed to pack VMs to pyhiscal servers in the datacenter

• Guarantees a load balance across the bins (event consumers)
• Detailled example next slide.

Bin Pack heuristic : Least Loaded First Fit
Decreasing LLFFD

7/13

Consumer 1

P0
λ = 50

Lag = 300
P1

λ =40
Lag= 150

P2
λ = 30

Lag =200

P3
λ =30

Lag=200

P4
λ =20

Lag=100

Consumer 2

Least Load First Fit Decreasing

µ = 100 events/sec
𝝁

 ×
𝑾

𝑺
𝑳

𝑨
=

 5
0

0
e

ve
n

ts

System Architecture

Decision Interval

Consumer
µs

Consumer
µs

Event Consumer Group

P0

P1

Pm

Topic Tp

...

Distributed Event queue cluster (e.g., kafka)

Event
Producer

Event Consumer
Group (G)

Event
Consumer

Event
Consumer

Controller

Arrival rate and lag
per partition
Event Consumer

Group info Consumption (service)
rate of each consumer

9/13

AutoScaleCG (, ,WSLA)
Set |Gt-1|to the existing set of event consumers
Set |Gt|= Least-Load FirstFitDecreasing (𝑷

𝒕 , 𝑷
𝒕 , 𝑺𝑳𝑨)

IF |Gt| > |Gt-1|
Scale up by |Gt| |Gt−1| // implicitly will trigger rebalance/reassignment

ELSE IF |Gt| < |Gt-1|
Scale down by |Gt-1| |Gt| //implicitly will trigger rebalance/reassignment

ELSE // Gt-1 Gt

IF currentAssignmentDoesNotViolateTheSLA()
return

ELSE

Trigger a rebalance/reassignment
END IF

END IF

Gt : minimal number of consumers needed at time t, and the assignement of these
consumers to partitions

Controller Autoscale Logic

10/13

Consumer 1
µ = 100, µ*WSLA=500

P0
λ = 50

Lag = 300

P1
λ =40

Lag= 150

P2
λ = 30

Lag =200

P3
λ =30

Lag=200

P4
λ =20

Lag=100

Consumer 2
µ = 100, µ*WSLA=500

Incremental Cooperative Rebalancing
(Kafka recommended/default)

Kafka tries to be fair in terms of number of partitions per consumer without
considering neither the consumer capacity nor load on partitions

11/13

Autoscaling with load-aware assignement
100% latency guarantee.
26.1 replica.minutes.

WSLA = 5 seconds
Decision interval = 1 second

Experimental Work

Autoscaling with load-unaware assignement
(kafka incremental cooperative assignement)

77% latency guarantee
26.1 replica.minutes.

12/13

• A framework for Latency-aware and cost-efficient event consuming from
distributed event queue
– Support for workload skewness
– Complemented with load-aware partitions-consumers assignment

• In distributed Event queues, non-load aware (Incremental Cooperative)
autoscaling strategy is not optimal for latency guarantee

– Much less latency guarantee under same scaling actions and number of replicas as that
of a load-aware autoscaling

• More design space exploration under larger scale deployment
– The heterogenous event consumers case.

Conclusion and Perspectives

13/13

