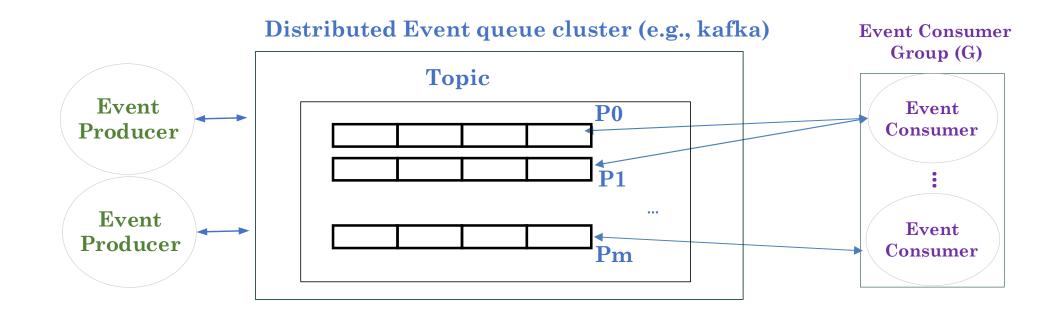


6th International Conference on Cloud and Big Data Computing. Birmingham City University, Birmingham, United Kingdom August 18-20, 2022.

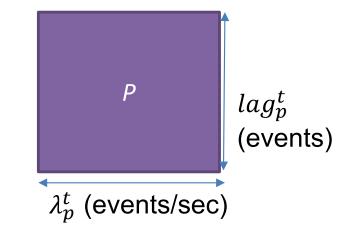
Cost-Efficient and Latency-Aware Event Consuming in Workload-Skewed Distributed Event Queues

Mazen Ezzeddine^{1,2}, Gael Migliorini², Françoise Baude¹, Fabrice Huet¹ ¹Université Côte d'Azur, CNRS, I3S Nice, France ²HighTech Payment Systems, HPS Aix En Provence, France mazen.ezzeddine@univ-cotedazur.fr

- Distributed Event Queues : a central component in building modern large-scale and real-time cloud applications.
 - Recording and analyzing web accesses for recommendations and ad placement, fraud detection, and health care monitoring etc.
 - Cloud providers (AWS, GCP, Azure) already offer distributed event queue as a service
- <u>Latency-aware and cost-efficient</u> event consuming
 - Guarantee maximum event processing latency (WSLA) for high percentile of events, under low cost in terms of event consumer replicas
 - <u>Autonomous scale</u> in and out of event consumers replicas to cater to the incoming arrival rate of events

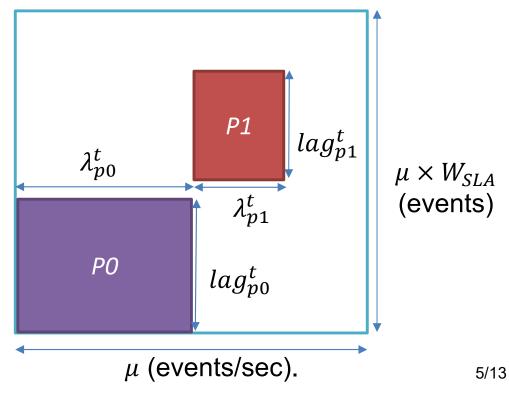


- Cloud providers offer solutions for *autoscaling* event consumers in distributed Event Queues. Two limitations :
 - Threshold based autoscalers
 - Not designed with workload skewness in mind
 - Load aware and fair assignment of events to event consumers according to event arrivals per event key.
- This work : <u>A framework and methodology for scaling event</u> <u>consumers of a distributed event queue</u>
 - 1. Guarantee a maximum event processing latency <u>WsLA</u> for high percentile of events
 - 2. At low cost (in terms of number of event consumer replicas used)
 - 3. Workload skewness support



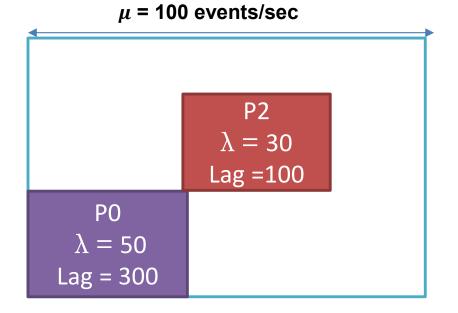
Partition p

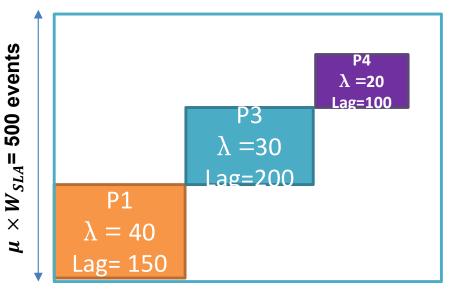
- λ_p^t = arrival rate of events at time t (events/sec)
- lag^t_p = number of events in the partition backlog at time t



Event Consumer C

- μ = service rate (events/sec).
 - homogeneous consumers
- $\mu \times W_{SLA}$ = Maximum allowable events backlog of the consumer without violating the W_{SLA} latency.

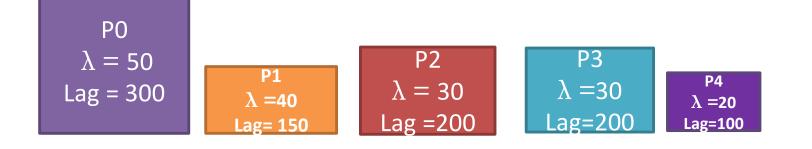

- λ_c^t = arrival rate into the consumer
- lag_c^t = number of events in the backlog of the consumer



Consumer c

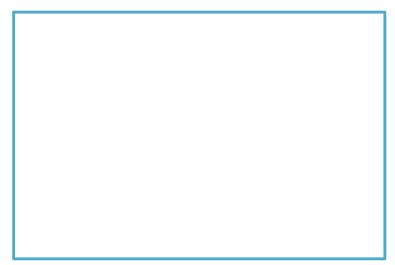
Problem formulation

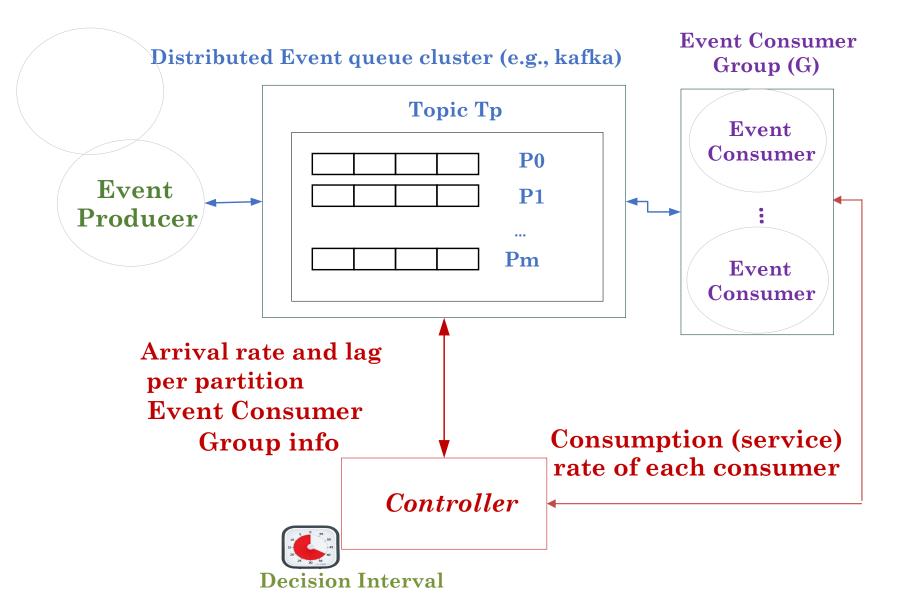
- What is the minimum number of consumers needed at time t, so that all the events will be processed in less than the maximum event processing latency W_{SLA}
 - $\min|G^t| \text{ such that } \forall c_j \in G^t, \ \log_{c_j}^t < \mu \times W_{SLA} \text{ AND } \lambda_{c_j}^t < \mu$
 - $|G^t|$ minimal number of event consumers needed at time t so that W_{SLA} (maximum event processing latency) is respected
 - Integer Linear Programming (ILP) formulation in the paper.



- Used the bin pack heuristic Least Loaded First Fit Decreasing LLFFD
- LLFFD was proposed to pack VMs to pyhiscal servers in the datacenter
 - Guarantees a load balance across the bins (event consumers)
 - Detailled example next slide.

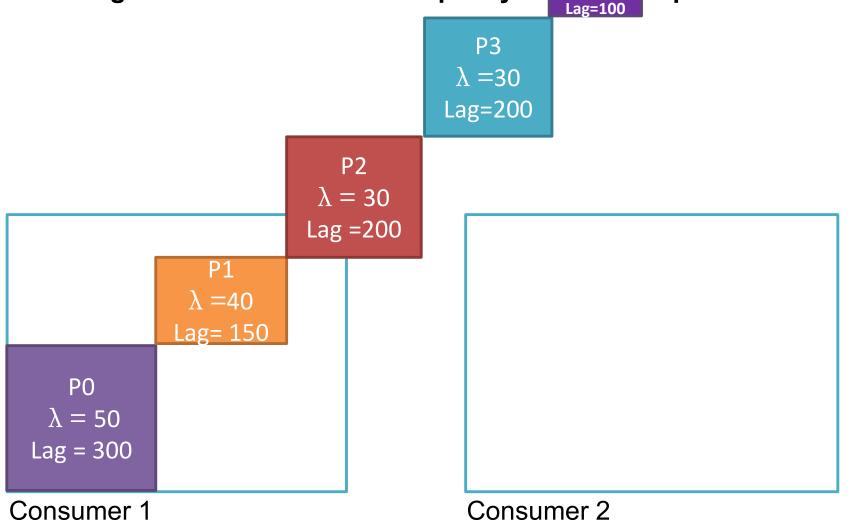
Least Load First Fit Decreasing




Consumer 1

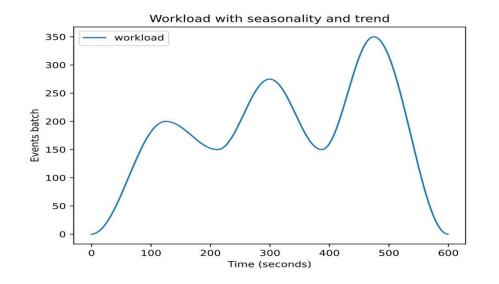
Consumer 2

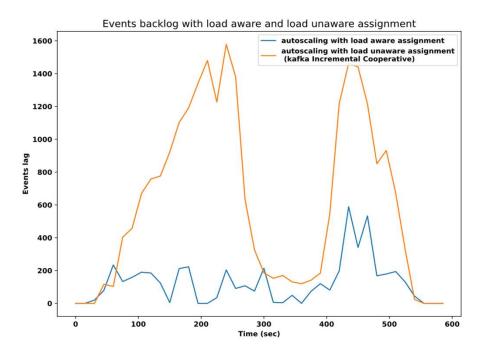
AutoScaleCG (λ_P^t , lag_P^t , W_{SLA})
Set <i>G^{t-1}</i> to the existing set of event consumers
Set $ G^t = Least-Load FirstFitDecreasing (\lambda_P^t, lag_P^t, W_{SLA})$
$\mathbf{IF} \mathbf{G}^t > \mathbf{G}^{t-1} $
Scale up by $ G^t \setminus G^{t-1} / $ implicitly will trigger rebalance/reassignment
ELSE IF $ G^t < G^{t-1} $
Scale down by $ G^{t-1} \setminus G^t / (implicitly will trigger rebalance/reassignment)$
$ELSE \qquad // G^{t-1} = G^t$
IF currentAssignmentDoesNotViolateTheSLA()
return
ELSE
Trigger a rebalance/reassignment
END IF
END IF


G^t : minimal number of consumers needed at time *t*, and the assignement of these consumers to partitions

 μ = 100, μ *WSLA=500

Kafka tries to be fair in terms of number of partitions per consumer without considering neither the consumer capacity nor load on partitions




μ = 100, μ*WSLA=500

Experimental Work

WSLA = 5 seconds Decision interval = 1 second

Autoscaling with load-aware assignement 100% latency guarantee. 26.1 replica.minutes.

Autoscaling with load-unaware assignement (kafka incremental cooperative assignement)

77% latency guarantee **26.1** replica.minutes.

- A framework for Latency-aware and cost-efficient event consuming from distributed event queue
 - Support for workload skewness
 - Complemented with load-aware partitions-consumers assignment
- In distributed Event queues, non-load aware (Incremental Cooperative) autoscaling strategy is not optimal for latency guarantee
 - Much less latency guarantee under same scaling actions and number of replicas as that of a load-aware autoscaling
- More design space exploration under larger scale deployment
 - The heterogenous event consumers case.