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ABSTRACT 

Distributed event queues have emerged as a central component in 

building large scale cloud applications. In distributed event queues, 

guaranteeing a maximum event processing latency for high 

percentile of events in a cost-efficient manner is of paramount 

interest. This is achieved through efficient and accurate solutions 

to autoscale event consumers to meet the incoming workload. 

However, most of current solutions to autoscale event consumers 

are threshold-based that add/remove consumer replicas based on a 

metric of interest. These autoscalers lack an accurate estimation on 

the number of replicas that is just enough to keep up with the arrival 

rate of events and are not cost-efficient. Moreover, threshold-based 

autoscalers are not designed with workload-skewness in mind. 

When the workload is skewed few partitions of the distributed 

queue will receive higher percentile of the events produced. In such 

cases, the autoscale process must be complemented with a load-

aware assignment of event consumer replicas to queue partitions. 

However, load-aware assignment is not performed by threshold-

based autoscalers as they assume a uniform event load across the 

partitions of the queue. Hence, in this work, we first express the 

problem of cost-efficient scaling of event consumers to achieve a 

desired latency as a bin pack problem. This bin pack problem 

depends on the arrival rate of events, consumption rate of 

consumers, and on the events backlog in the queues. Next, we show 

that the process of scaling event consumers in face of skewed 

workload is performed by a controller/autoscaler and by one of the 

consumer replicas namely the leader.  The controller monitors the 

cluster state and launches the appropriate number of consumer 

replicas. Next, the leader consumer performs a load-aware 

assignment of partitions to consumer replicas. In face of skewed 

workloads, observed results show order of magnitude gains in 

terms of latency guarantee as compared to an autoscale 

methodology that is not complemented by a load-aware 

assignment. 
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1 INTRODUCTION 

Distributed event queues have emerged as a central component in 

building large scale cloud applications.  They are currently being 

used in many real time cloud applications such as recording and 

analyzing web accesses for recommendations and ad placement [1], 

fraud detection [2] and health care monitoring [3]. Furthermore, 

distributed event queues are the backbone for the event driven 

microservices software architectural style where an application is 

composed of several small services communicating by exchanging 

events across a distributed event queue [4][5][6][7]. As such, many 

cloud providers already offer a distributed event queue as a service 

[8][9][10].  

Distributed event queues are composed of several partitions 

distributed over a cluster of servers. Event producers generate an 

event and publish it into a certain partition of the queue. Consumer 

applications pull the events of interest and process them as required 

by the application logic. Event consumers are composed of one or 

more replicas that jointly consume events out of the event queue, 

with each consumer being assigned an exclusive set of partitions. 
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Also, no more than one consumer can be assigned to a partition. 

The set of consumers that are pulling events from the partitions of 

the event queue is called consumer group CG. In most applications 

(banking, health monitoring), same-key events need to be routed to 

the same queue partition and eventually processed by the same 

consumer 

For event consumer applications, minimizing the time an event 

spends waiting in the queue and its processing time is critical to 

achieve low response time for high percentile of events at low cost. 

Hence, there is an urgent need for frameworks and solutions that 

autoscale event consumer applications. In fact, there has been some 

research efforts to autoscale event consumer applications that 

consume from distributed event queues [8][9][10][11][12]. 

However, these efforts propose threshold-based autoscalers that 

add or remove additional replicas when a metric of interest (e.g., 

CPU utilization) reaches a certain threshold. Unfortunately, such 

autoscalers lack an accurate estimation on the number of replicas 

that is just enough to keep up with arrival rate of events. In fact, 

recent research [13] has shown that these threshold-based 

autoscalers are not cost efficient, and hence, clients are over-

charged for under-utilized resources. Also, threshold based 

autoscalers may rely on misleading metrics. For example, Amazon 

Kinesis [8] is not always capable of accurately identifying 

bottlenecks as relying on CPU policy can be misleading [13]. 

On the other hand, these threshold-based autoscalers assume that 

the workload is not skewed and the arrival rate per key 

(alternatively the arrival rate per partition) is uniform. However, in 

practice cloud applications workloads are skewed [14][15][16]. 

When the workload is skewed, having an autoscaler that launches 

additional consumer replicas based on a metric threshold without 

load-aware assignment of consumer replicas to partitions is sub-

optimal. This is because threshold-based autoscalers assume a 

uniform arrival rate into all the event queue partitions, and they do 

not make any effort to assign consumer replicas to partitions in a 

load aware manner. However, when the workload is skewed, the 

autoscale process must be complemented with a load-aware 

assignment of consumer replicas to queue partitions. 

In essence, state of the art distributed event queues such as Kafka 

[17][18] does not currently provide any out of the box solution for 

consumer group autoscaling. Neither they provide a load-aware 

rebalancing (consumers-partitions assignment) to assign partitions 

to consumers fairly when the workload is skewed. Besides Kafka 

leverages a recent rebalancing logic called Incremental 

Cooperative [19] that promotes data locality over load-awareness. 

This Incremental Cooperative rebalancing promotes sticking 

partitions to their already assigned consumers without taking load-

awareness into consideration, assuming thus that the arrival rate 

into each partition is uniform. 

Therefore, in this work, we target cost efficient autoscaling of event 

consumer applications in face of skewed workloads. We first 

express the problem of minimally scaling event consumers to 

achieve a desired latency as a bin pack problem that depends on the 

arrival rate of events, consumption rate of consumers, and on the 

event backlog in the queues. We mathematically formulate the 

problem and express it as an integer linear programming ILP 

model. Next, we describe in detail the system architecture 

implemented as solution for autoscaling workload-skewed event 

consumers. We discuss the role of the Controller/Autoscaler 

process which decides, using the formulated ILP model, on the 

minimum number of event consumers needed to achieve a desired 

latency as well as the assignment of the scaled consumers to queue 

partitions. We also discuss the role of the event consumer group 

leader which performs the partitions-consumers assignment as 

suggested by the Controller/Autoscaler i.e., in a load aware 

manner.  

Finally, it is important to note that in our work, we assume that the 

event queue is partitioned in a way that guarantees that the arrival 

rate into an individual partition of the event queue (whether with 

skewed or non-skewed arrival rate) is less than the maximum 

consumer consumption rate. This is because no more than one 

consumer can be assigned to a single queue partition. Further, we 

do not investigate dynamic distributed event queue 

repartitioning/scaling as part of event consumer autoscaling, while 

we opt for steady-state stable queues/partitions when a partition is 

assigned to exactly one consumer. 
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Order_Payment Event queue

Order_Shipment Event queue

Shipment
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Order_notification Event queue
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Figure 1 : An example of an event driven microservices architecture 

 

1.1 Context and Motivational Scenario 

We target an event driven microservices architecture where 

microservices communicate through a distributed event broker. 

Each microservice processes the event it pulls and produces a result 

event so that the next microservice in the business workflow could 

pull the resulting event and perform the required business logic. As 

an example, in Figure 1, the Order microservice creates an 

OrderPayment event and places it in the OrderPayment event 

queue. Next, the OrderPayment event is picked by the Payment 

microservice which processes it and creates an OrderShipment 

event, placing it in the OrderShipment event queue and so on. 

In this architecture, each latency-critical consumer microservice is 

configured with a maximum event processing latency which 

identifies the maximum time that an event belonging to that 

microservice can exhibit without violating the latency SLA. For 

example, if the Payment microservice is configured with maximum 
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of five seconds event processing latency, then if an OrderPayment 

event is delayed for more than five seconds, the event is considered 

to violate the latency SLA. Note that the maximum event 

processing latency includes the waiting time in the queue and the 

processing time which depends on the business logic required by 

the microservice. 

In the business workflow shown Figure 1, the Payment 

microservice is latency-critical and cannot tolerate a maximum 

event processing latency of more than five seconds. On the other 

hand, the Shipment and Notification microservices are less latency-

critical and can tolerate a maximum event processing latency up to 

few minutes. Hence, in accordance with the business requirements 

and without loss of the generality, we focus on guaranteeing the 

event processing latency SLA of the Payment microservice. That 

is, the Order microservice acts as an event producer microservice, 

and the Payment microservice acts as a latency-sensitive consumer 

microservice configured with a maximum event processing latency 

of five seconds.  

2 RELATED WORK 

Performance SLAs are hard to guarantee. Cloud providers rarely 

provide end to end performance guarantee or focus on 

overprovisioning of resources and isolation of services to meet a 

desired SLA [20][21]. With the proliferation of microservices 

architecture, performance SLAs became even more challenging. In 

the context of event driven microservices architectures there has 

been some effort to autoscale event driven microservices 

communicating over a distributed event queue [11][12]. To our 

knowledge, none of the published work considers autoscaling event 

driven microservices in face of skewed workloads where a load-

aware assignment of event queue partitions to consumers must be 

performed. Closest to our work is stream processing autoscaling 

which is a central problem in data stream processing research [22]. 

Prior work has proposed various predictive [23] [24] and heuristic 

policies [25] to decide when and how much to scale when input rate 

changes. Cloud providers offering stream processing as a service 

[8][9][10] provide support for autoscaling. However, they propose 

threshold-based autoscalers that add or remove additional replicas 

when a metric of interest (e.g., CPU utilization) reaches a certain 

threshold. Unfortunately, such autoscalers lack an accurate 

estimation on the number of replicas that is just enough to keep up 

with arrival rate of events. In fact, recent research [13] has shown 

that these threshold-based autoscalers are not cost efficient, and 

hence, clients are over-charged for under-utilized resources. Also, 

threshold based autoscalers may rely on misleading metrics. For 

example, Amazon Kinesis [8] is not always capable of accurately 

identifying bottlenecks as relying on CPU policy can be misleading 

[13]. Furthermore, none of cloud providers offers a solution for 

stream processing autoscale with support of skewed workloads 

where a specific instance of a stream operator exhibits much input 

rate as compared other instances of the same operator. As with 

event driven microservices, this problem is not optimally solved by 

simply increasing the parallelism of the operator in question. 

Rather, it must be complemented through a fair assignment of 

downstream to upstream operators. Research works such as [26] 

propose support for workload skewness in stream processing by 

dynamic stream rebalancing/reassignment from source operators to 

downstream operators. However, [26] does not consider dynamic 

autoscaling of operators, rather it investigates dynamic stream 

rebalancing on existing operators when the stream is skewed.  

Also, notice the difference between scaling stream operators where 

downstream operators typically receive events from upstream 

operators in a push-based manner, and between scaling event 

driven microservices that consume always from upstream 

distributed event queues in a pull manner. Kafka distributed event 

queue [17][18] is currently one of the most used distributed event 

queue in the industry. At this stage, Kafka does not provide out of 

the box solution for automatic consumer group autoscaling.  Also, 

Kafka does not currently provide a load aware rebalancing logic 

that can assign consumers to partitions in a load-aware manner 

when the workload is skewed. In contrast, Kafka recommendation 

is to use the Incremental Cooperative rebalancing logic [19] that 

promotes data locality (sticking consumers with their already 

assigned partitions) over load-awareness. As we show in the 

experimental section, when the workload is skewed promoting data 

locality with the Incremental Sticky rebalancing logic results in 

much less latency SLA guarantee as compared to a load aware 

rebalancing logic. 
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Figure 2 : The architecture of Kafka distributed event queue. Shown 

also in red the newly added Controller module. 

3 BACKGROUND AND SYSTEM 

ARCHITECTURE 

In our implementation prototype we selected Kafka as the 

distributed event queue. We first introduce few notions on the 

concept of topic (distributed event queue), partition, consumer, and 

consumer group. In Kafka, a topic can be thought as a mailbox into 

which producer applications write their events. A topic is composed 

of several partitions distributed over a cluster of computing servers. 

A consumer group is a set of event consumers that jointly and 

cooperatively consume events from a certain topic. Generally, for 

a topic T, we have n partitions and m consumers that read and 

consume events. The (re-)assignment of the m consumers to the n 

partitions (or inversely) is called rebalancing (also called 
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assignment). Rebalancing/assignment might happen several times 

during the lifetime of a consumer group such as when the group is 

initiated, or when a consumer leaves or joins the group (e.g., an 

instance is scaled up/down). Figure 2 shows an example of topics, 

partitions and consumer group in Kafka. References [17][18] 

provide in depth description of the overall Kafka concepts and 

architecture. Figure 2  also shows our newly designed Controller 

process which runs independently on the cluster. It queries the 

event queue (topic) for information on the arrival rate into each 

partition of the topic, maximum consumption rate by each 

consumer in the group etc. The Controller query rate is 

configurable, and we call it decision interval. In the next subsection 

we discuss more in depth the functionality and design of the 

Controller process. 

3.1   Design of the Controller process 

The newly added Controller process is the central module that 

monitors the cluster and runs the logic necessary for autoscaling of 

latency-sensitive event consumers in face of skewed workloads. In 

the next subsections, we first describe the queries launched by the 

Controller into the cluster to get the required state of the cluster. 

Next, we mathematically formulate the consumer group 

autoscaling problem and describe it as integer linear programming 

ILP model. Finally, we discuss the logic that the Controller runs to 

decide on the minimal number of consumers needed to respect the 

WSLA event processing latency, and the assignment of scaled 

consumers to partitions. 

 Queries by the Controller into Broker. As discussed previously, 

a topic can be thought as a mailbox into which producer 

applications write events. Each topic is composed of several 

partitions. Each partition p has two offset pointers to reference the 

last produced and the last committed (processed) events. We define 

the per partition event lag at time t, 𝑙𝑎𝑔𝑝
𝑡 , as the number of events 

waiting in the partition at time t . It is the difference between the 

last produced and last committed pointers at time t as depicted in 

equation 1. Similarly, we calculate the arrival rate per partition at 

time t, 𝜆𝑝
𝑡 , as the difference between the produced offsets over an 

interval of time as shown in equation 2. δ is the decision interval or 

the rate at which the Controller queries the event queue for state 

updates. 

𝑙𝑎𝑔𝑝
𝑡 = (𝑜𝑓𝑓𝑠𝑒𝑡𝑙𝑎𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑝 )
t

− (𝑜𝑓𝑓𝑠𝑒𝑡𝑙𝑎𝑠𝑡𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑
𝑝 )

𝑡
 (1)  

𝜆𝑝
𝑡 =  

(𝑜𝑓𝑓𝑠𝑒𝑡𝑙𝑎𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 
𝑝 )

𝑡
 − (𝑜𝑓𝑓𝑠𝑒𝑡𝑙𝑎𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 

𝑝 )
𝑡−𝛿

𝛿 
 

(2) 

 

 

𝜇 =  
# 𝑒𝑣𝑒𝑛𝑡𝑠 𝑝𝑜𝑙𝑙𝑒𝑑 𝑝𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒
 

(3)  

 

3.2 Mathematical formulation of the consumer 

group autoscaling problem 

For a topic T with n partitions, we define the set of arrival rates 
into each partition at time t as 𝜆𝑃

𝑡 = {𝜆𝑝1

𝑡 , 𝜆𝑝2

𝑡  , … . , 𝜆𝑝𝑛

𝑡  } , and 

similarly, we define the set of lags of each partition at time t as 

𝑙𝑎𝑔𝑃
𝑡  =  {𝑙𝑎𝑔𝑝1

𝑡 , 𝑙𝑎𝑔𝑝2

𝑡  , … ,  𝑙𝑎𝑔𝑝𝑛

𝑡  }. Also, let 𝑐𝑗
𝑡denotes a jth consumer 

used at time t. 𝑙𝑎𝑔
𝑐𝑗

𝑡
𝑡  is the lag of the consumer 𝑐𝑗

𝑡  at time t. It is 

defined as the sum of lags of each partition assigned to 𝑐𝑗
𝑡 as shown 

in equation 4 below. 

 𝑙𝑎𝑔
𝑐𝑗

𝑡
𝑡 =  ∑ 𝑙𝑎𝑔𝑝𝑖

𝑡

𝑝𝑖  ∈𝑐𝑗
𝑡

 (4) 

 𝜆
𝑐𝑗

𝑡
𝑡 =  ∑ 𝜆𝑝𝑖

𝑡

𝑝𝑖  ∈𝑐𝑗
𝑡

 (5) 

 

Similarly, 𝜆𝑐𝑗

𝑡  is the arrival rate into the consumer 𝑐𝑗
𝑡 at time t.  It 

is defined as the sum of arrival rates of each partition assigned to 

𝑐𝑗
𝑡  at time t as shown in equation 5.  Now consider a time t where 

the Controller has to decide on the minimal number of event 

consumers in the consumer group (we call it 𝐺𝑡) while still being 
able to respect the event latency SLA WSLA. The condition that 
shall be preserved to respect WSLA can be formulated as per equation 
6 below. 

  ∀ 𝑐𝑗
𝑡  ∈ 𝐺𝑡,  𝑙𝑎𝑔

𝑐𝑗
𝑡

𝑡 <  𝜇 × 𝑊𝑆𝐿𝐴  𝐴𝑁𝐷 𝜆𝑐𝑗

𝑡 <  𝜇  (6) 

Informally, equation 6 states the following:  at time t, when 
deciding on the new group of consumers, ensure (in a best effort) 

that: (1) each consumer in the group has its arrival rate less than its 
consumption rate, and (2) each consumer in the group is lagging by 

a number of events less than 𝜇 × 𝑊𝑆𝐿𝐴. 𝜇 × 𝑊𝑆𝐿𝐴 is the maximum 

number of events that can be served in less than or equal to 𝑊𝑆𝐿𝐴. 

Recall that 𝑊𝑆𝐿𝐴 is the maximum latency an event might exhibit 
without violating the latency SLA. Also, note that we use the term 
best effort to refer to the case where the Controller finds that the 

lag of a partition p is greater than  𝜇 × 𝑊𝑆𝐿𝐴 , in such case the 
partition already has an SLA-violating lag. Hence, the Controller 

sets the lag of that partition to 𝜇 × 𝑊𝑆𝐿𝐴  (while calculating the 
number of consumers needed) and eventually assigns a dedicated 
consumer to it. 

On the other hand, the cost-efficiency dictates to minimize the 

number of event consumers in the group 𝐺𝑡 and this translates to 
the equation 7 below. 

𝒎𝒊𝒏 |𝑮𝒕| (7) 

Therefore, preserving the requirements for cost-efficient 
latency-aware event consumer group in distributed event queues is 
equivalent to solving the following optimization:  

𝑚𝑖𝑛|𝐺𝑡|  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   ∀ 𝑐𝑗
𝑡  ∈ 𝐺𝑡,     𝑙𝑎𝑔

𝑐𝑗
𝑡

𝑡

<  𝜇 × 𝑊𝑆𝐿𝐴  𝐴𝑁𝐷 𝜆
𝑐𝑗

𝑡
𝑡 <  𝜇  

(8) 

In this context, let 𝐺𝑡 =  {𝑐1
𝑡 , 𝑐2

𝑡 , … , 𝑐𝑗
𝑡}  denotes the set of 

consumers needed at time t to preserve the latency SLA. Also, let 

us denote 𝐺𝑡−1  the already existing set of consumers in the 
consumer group. The aim now is to decide on the minimum number 

of consumers needed at time t, that is, the cardinality of 𝐺𝑡, so that 
no event processing latency in the event queue exhibits more than 

the maximum event processing latency  𝑤𝑆𝐿𝐴 . In fact, the 
optimization problem in (8) can be formulated as an Integer Linear 

Programming (ILP) model. In the formulation below 𝑐𝑗
𝑡 ,  𝑝𝑖𝑗

𝑡   are 

binary variables indicating respectively whether a jth consumer is 
used at time t, and whether partition i is assigned to consumer j at 
time t. 

𝑀𝑖𝑛  |𝐺𝑡| =  ∑ 𝑐𝑗
𝑡

𝑛𝑏 𝑡𝑜𝑝𝑖𝑐 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠

𝑗=1
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𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

∑ 𝑝𝑖𝑗
𝑡

𝑗

= 1 ∀ 𝑖 ;   (a) 

∑ 𝑝𝑖𝑗
𝑡 𝑙𝑎𝑔𝑝𝑖

𝑡
𝑖 ≤   𝑐𝑗

𝑡  ×  𝜇 × 𝑊𝑆𝐿𝐴 ∀ 𝑗;  (b) 

∑ 𝑝𝑖𝑗
𝑡 𝜆𝑝𝑖

𝑡
𝑖 ≤   𝑐𝑗

𝑡  × 𝜇 ∀ 𝑗;  (c) 

𝑐𝑗
𝑡 ,  𝑝𝑖𝑗

𝑡  ;  𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

(a) ensures that each partition is assigned to only one consumer, (b) 

ensures that the sum of lags of the partitions assigned to each 

consumer is less than the SLA-violating lag (i.e., the lag that can be 

served in 𝑊𝑆𝐿𝐴  which is equivalent to 𝜇 × 𝑊𝑆𝐿𝐴 ). Similarly, (c) 

ensures that the sum of arrival rates of the partitions assigned to 

each consumer is less than the consumer service rate 𝜇. The ILP 

formulation shows that the problem of assigning partitions to 

consumers while guaranteeing the 𝑊𝑆𝐿𝐴 latency requirement is NP-

complete. This assignment problem is equivalent to a two-

dimensional bin packing where the items are the partitions 

described by their arrival rates 𝜆𝑝𝑖 and by their lags 𝑙𝑎𝑔𝑝𝑖, and the 

bins are the event consumers described by their service 

(consumption) rate 𝜇 and by their service rate multiplied by 𝑊𝑆𝐿𝐴 

i.e.,  𝜇 × 𝑊𝑆𝐿𝐴. As this assignment problem must be solved online, 

we resorted into an approximation algorithm that can solve the 

problem in polynomial time. Namely, we used the First Fit 

Decreasing FFD bin pack approximation. FFD is a 11/9OPT+ 6/9 

approximation of the optimal bin packing solution [27]. To always 

guarantee load fairness across the formed bins (event consumers), 

we leveraged an FFD variant called least-load FFD . Least-load 

FFD (LL-FFD) was proposed by [28] for packing VMs in the 

datacenter into a minimal number of physical servers, while 

guaranteeing a fair (load-balanced) assignment of VMs to these 

physical servers.  

 

Algorithm 1 : The bin pack autoscaler logic executed by 

the Controller at each decision interval. 

AutoScaleCG (𝜆𝑃
𝑡 , 𝑙𝑎𝑔𝑃

𝑡  ,WSLA) 

Set Gt-1 to the current/existing set of consumers 

Set Gt = Least-Load FirstFitDecreasing (𝜆𝑃
𝑡 , 𝑙𝑎𝑔𝑃

𝑡  , 𝑊𝑆𝐿𝐴) 

IF  Gt  >  Gt-1 

 Scale up by 𝐺𝑡\𝐺𝑡−1 

ELSE IF  Gt  <  Gt-1 

               Scale down by 𝐺𝑡−1\𝐺𝑡 

ELSE  

 IF currentAssignmentDoesNotViolateTheSLA() 

  return 

 ELSE  

  Trigger a rebalance/reassignment 

 END IF  

END  IF 

 

In essence, at each decision interval the Controller samples the 

state of the cluster and runs the LL-FFD based on the sampled 

values of partitions lag, partitions arrival rate, and consumers rate 

to get 𝐺𝑡 the set of consumers needed at decision interval t.  As 

shown in Algorithm 1 (AutoScaleCG), the Controller runs the LL-

FFD to get 𝐺𝑡 and produce scaling recommendations accordingly. 

Precisely, if |𝐺𝑡| >  |𝐺𝑡−1|, then a scale up is needed. The set 

𝐺𝑡\𝐺𝑡−1 denotes the set of the consumers to be added. Similarly, 

if |𝐺𝑡| <  |𝐺𝑡−1| , then a scale down is needed. The set 𝐺𝑡−1\𝐺𝑡   
denotes the set of the consumers to be removed.  Otherwise, if 

|𝐺𝑡| = |𝐺𝑡−1| then neither an addition nor removal of consumers 

is needed. Still, we check if the current assignment of partitions to 

existing consumers violates the latency SLA. In the positive case, 

we trigger a rebalance/reassignment so that the suggested 

assignment as outputted by the Controller takes place. Otherwise, 

if the existing consumers-partitions assignment does not violate the 

latency SLA, the scale logic exits with no action as shown in 

Algorithm 1 (AutoScaleCG). AutoScaleCG shows how the 

Controller calls the LL-FFD to calculate 𝐺𝑡 , and next produces 

scaling recommendations accordingly as discussed above. Note 

that the algorithms for the procedures Least-

LoadFirstFitDecreasing and 

currentAssignmentDoesNotViolateTheSLA() are shown in the 

Appendix section. 

3.3   The load-aware assignment of consumers in 

the group to queue partitions 

As discussed in subsection 3.2, the Controller executes the 

procedure AutoScaleCG at each decision interval to decide on the 

number of consumers needed to guarantee the latency SLA and 

their assignment to partitions.  However, the role of the Controller 

is restricted to launching or removing event consumer replicas out 

of the consumer group. In fact, after that the Controller removed or 

added consumers into the existing set of consumers, a 

rebalancing/assignment process will implicitly take place. As 

mentioned before, rebalancing is the process of assigning partitions 

to consumers. It is performed by one of the consumers. Precisely, 

as shown in Figure 3, upon rebalancing all the existing consumers 

are requested to re-join the consumer group. As per our 

modification to the group membership protocol, we have modified 

the rebalancing logic so that the consumer group leader contacts the 

Controller for its recommended load-aware assignment. This 

process is shown in Figure 3 where the consumer group leader upon 

rebalancing calls the Controller for the load-aware assignment of 

consumers to partitions. In Figure 3, all the modules in red are 

newly added to the event queue for load-aware autoscaling. 
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Figure 3 : The CG leader calls the Controller for its recommended 

assignment of consumers-partitions. All the red modules are newly 

added to the architecture for autoscaling of workload-skewed 

distributed event queues. 

4 EXPERIMENTAL WORK 

In this section we report some of the experiments we performed 

using the bin pack autoscaler. We also discuss the workloads we 

used in the experiments. All the experiments were performed on 

Google Cloud using a Kubernetes cluster composed of 5 virtual 

machines of type e2-standard-2 (2vcpu, 8GB RAM), Kubernetes 

version 1.20.6-gke.1400 and Kafka version 2.7. As discussed in 

section 2, we deployed an Order microservice that acts as a 

workload-skewed event producer, and a Payment microservice that 

acts as a latency-sensitive event consumer microservice configured 

with a maximum event processing latency 𝑊𝑆𝐿𝐴 of five seconds. 

The Payment consumer microservice operated at 100 

events/seconds (using Thread.sleep). Throughout the experiments 

we used an event queue with 5 partitions. The decision interval is 

defaulted to one second unless otherwise stated.  

4.1   Binpack autoscaling of a workload-skewed 

event consumer with load-aware assignment, 

compared to a non-load-aware threshold-like 

autoscaler  

In the first set of experiments, we leveraged a 10-minute skewed 

workload with an event queue of 5 partitions namely P0, P1, P2, 

P3, P4. In the first two minutes the arrival rate into each partition is 

set to 15 events per second for a total of 75 events/sec. Next, we 

increased the arrival rate into P0 and P1 at rate of 1 events/sec until 

they reached 60 events/sec in 45 seconds (time 165 seconds). The 

arrival rate into P0 and P1 remains at 60 events/sec thereafter. At 

minute 4, we increased the arrival rate into P2 at rate of 1 event/sec 

to reach 60 events/sec in 45 seconds (time 285 seconds), P2 remains 

at 60 events thereafter. Similarly, at t=6 minutes, we increased P3 

events arrival at a rate of 1 event/sec to reach 60 events/sec in 45 

seconds (time 405 sec), P3 remains at 60 events/sec until the 8th 

minute where all partitions arrival rates fall back to 15 

events/second. In this experiment we used a 1 second decision 

interval. 

 
Figure 4 : Workload total arrival rate and corresponding scaled replicas. 

 

Figure 4  shows the workload total arrival rate as well as the 

corresponding scaled replicas and their timings. In fact, we 

repeated this autoscale experiment twice. In the first trial we ran the 

bin pack autoscaler complemented with a load-aware assignment 

as suggested by our newly designed Controller. In the second trial, 

we wanted to emulate a simple threshold-like autoscaler without 

load-aware consumers-partitions assignment. Hence, we leveraged 

a Controller/Autoscaler that scales the event consumer group 

exactly similar to the first experiment. However, instead of the 

load-aware assignment as suggested by our work, we leveraged the 

default rebalancing/assignment logic in Kafka namely the 

Incremental Cooperative. This last promotes stickiness and data 

locality i.e., sticking consumers to their already assigned partitions 

without taking care of load-awareness. In both experiment trials, 

the scaled replicas are shown in Figure 4 . Note that the 

consumption rate of consumers is reported dynamically to the 

Controller through an RPC call issued by the Controller. The 

reported event consumption rate to the Controller was slightly less 

than 100 events/sec and on average equivalent to 95 events/second, 

due to the overhead. 

 

 
Figure 5 :  : Events backlog during autoscaling a workload-skewed event 

consumer both with load-aware (newly designed) and incremental sticky 

assignment (Kafka default). 

Figure 5 shows the difference in events backlog when running the 

bin pack autoscaler complemented with a load-aware assignment 
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as compared to when leveraging the default Kafka assignment 

logic, namely the Incremental Cooperative. As shown, in the first 

case the event lag was always in the region of few tens, thus 

respecting the 5 seconds SLA latency for the whole time of the 

experiment. This translates to 100% latency SLA guarantee at the 

cost of 18 replica.minutes. At this same cost of replica.minutes, the 

threshold-like autoscaler complemented with the non-load-aware 

Incremental Cooperative assignment logic exhibited a lag of up to 

6K, and hence only 44% of total events fallen below the 5 seconds 

latency and respected the SLA.  

This shows the importance of load-aware consumers-partitions 

assignment during autoscaling of skewed workloads. As such, 

promoting load-awareness over data locality when the workload is 

skewed will have better overall effect on the latency SLA. This is 

true even if the partitions that will be reassigned to new consumers 

while leveraging load-aware rebalancing will exhibit a short time 

of event consumption blockage. This short time of consumption 

blockage happens during the partitions reassignment process where 

the partitions are first revoked by their old consumers and 

reassigned to their new consumers. In all experiments, the 90th 

percentile of the duration of the partitions reassignment process 

during which event consumption is blocked was less than 1 second. 

 
Figure 6 : Workload used in the second experiments. 

 

4.2   Binpack autoscaling with a second skewed 

workload and the effect of the decision 

interval on the binpack autoscaler  

In this set of experiments, we used the same workload employed in 

the research work of [11] as shown in Figure 6. To introduce 

skewness in the workload, for each batch of events in the workload, 

we sent 27% of events to P0 and 27% to P1, while we sent the 46% 

remaining events uniformly to P2, P3, P4.  27% was selected in 

order to guarantee that over the lifetime of the workload, the arrival 

rate into each individual partition will not bypass the event 

consumer rate i.e., 100 events/seconds. In this set of experiments, 

we employed a cooldown period of 30 seconds. A cooldown period 

is an interval of time following a scale operation during which no 

scale action scale is triggered. 

In a first experiment, we ran the experiment with the bin pack 

autoscaler complemented with a load-aware partitions-consumers 

assignment as described throughout this paper. We set the decision 

interval to 1 second. Figure 7 shows the scale up and down actions 

and their timings. In this experiment, we observed that 0 events 

violated the latency SLA, that is, all the events processing latency 

fallen below 5 seconds. This came at the cost of 26.1 

replica.minutes. On the other hand, overprovisioning dictates to 

provision 5 replicas for the lifetime of the workload. This translates 

to 50 replicas.minutes. Hence, the binpack autoscale solution 

showed 52.2% replica.minutes reduction as compared to the 

overprovisioning solution. 

In a second experiment, we leveraged a threshold-like 

Controller/Autoscaler that scales the event consumer group exactly 

similar to the first experiment but without load-aware partitions-

consumers assignment. Instead, we employed the Incremental 

Cooperative non-load-aware assignment logic. The scaling actions 

and their timings are similar to those in Figure 7. On the other hand, 

Figure 8 shows the events lag when the binpack autoscaler ran with 

a load-aware assignment as proposed in this work, as compared to 

the non-load-aware Incremental Cooperative assignment. 

 
Figure 7 : Scaling actions and their timings when running the bin pack 

autoscaler 

 

 
Figure 8 : Events lag when the bin pack autoscaler is complemented with a load-

aware assignment as compared to the case where the bin pack autoscaler is 

complemented with incremental cooperative assignment. 

As shown in Figure 8, the events backlog when autoscaling while 

leveraging the Incremental Cooperative assignment is much higher 

as compared to that with load-aware assignment. In fact, with the 

non-load-aware Incremental Cooperative assignment only 77% of 

events respected the 5 seconds latency SLA. In contrast, when 
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leveraging the load-aware assignor all the events latency fallen 

below 5 seconds which translates to 100% SLA guarantee.  

 
Figure 9 : Scaling actions and their timings when running the bin pack 

autoscaler at 30 seconds decision interval. 

 

 
Figure 10: Events lag when running the bin pack autoscaler with load-

aware assignment at 30 seconds decision interval. 

 

 

In a third experiment we ran the binpack autoscaler with load aware 

assignment at a decision interval of 30 seconds instead of one 

second. The scaling actions and their timings are shown in Figure 

9. Notice how at time 95 seconds the replicas scaled from 1 to 4 in 

one shot. This is because with 30 seconds decision interval, the lag 

has accumulated and the bin pack scaler recommended 4 replicas 

for being able to serve this lag in WSLA i.e., 5 seconds. Similarly, 

notice in Figure 10  how at time 95 seconds the lag dropped in few 

seconds to a non SLA-violating value.  In this experiment the 

percentage of events that respected the 5 seconds SLA latency was 

equivalent to 86%. 

In fact, throughout the experiments we observed that when the 

decision interval is small, e.g., less than 10 seconds, partitions lag 

is typically small and the bin pack autoscaler recommendation on 

the number of replicas is mostly driven by the partitions arrival rate. 

On the other hand, when the decision interval is high, e.g., 30 

seconds, partitions lag is typically high and the bin pack autoscaler 

recommendation on the number of replicas is driven by the 

partitions lag. For example, the first decision to scale from 1 to 4 in 

Figure 9 is mainly influenced by the partitions lag. In contrast, in 

Figure 7 where the decision interval was 1 second, the intial 

transition from 1 to 2 replicas was mainly influenced by the 

partitions arrival rates. 
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Appendix 
For the sake of completeness, we provide the algorithms for the 

Least-Load First Fit Decreasing FFD bin pack algorithm. We also 

provide the algorithm for the function 

currentAssignmentDoesNotViolateTheSLA().  
 

CurrentAssignmentDoesNotViolateTheSLA() 

Set Gt-1 to the existing set of consumers 

For each 𝑐𝑗
𝑡−1in  Gt-1 do 

 IF 𝑙𝑎𝑔
𝑐𝑗

𝑡−1
𝑡 >  𝜇 × 𝑊𝑆𝐿𝐴  OR 𝜆

𝑐𝑗
𝑡−1

𝑡 >   𝜇  

 return false 

 END IF 

END FOR 

return true 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Least-Load FirstFitDecreasing (𝝀𝑷
𝒕 , 𝒍𝒂𝒈𝑷

𝒕  , WSLA) 

Let Gt the set of consumers needed at time t, initially empty 

Add a consumer 𝒄𝟎
𝒕  to Gt 

𝑐0
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐿𝑎𝑔𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  𝜇 × 𝑊𝑆𝐿𝐴   

𝑐0
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  𝜇  

𝑙𝑎𝑔𝑃
𝑡  =  {𝑙𝑎𝑔𝑝1

𝑡 , 𝑙𝑎𝑔𝑝2
𝑡  , … , 𝑙𝑎𝑔𝑝𝑛

𝑡  }  

𝜆𝑃
𝑡 = {𝜆𝑝1

𝑡 , 𝜆𝑝2
𝑡  , … . , 𝜆𝑝𝑛

𝑡  } 

Sort the set 𝜆𝑃
𝑡  in decreasing order 

While true  

 Remove any previous partitions-consumers assignment 

 For i = 0 to 𝜆𝑃
𝑡 . 𝑠𝑖𝑧𝑒() -1 do 

        Sort  Gt  in ascending order 

  For j =  0 to Gt.size() -1 do 

  IF 𝑐𝑗
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐿𝑎𝑔𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≥  𝑙𝑎𝑔𝑝𝑖

𝑡  and  

  𝑐𝑗
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≥ 𝜆𝑝𝑖

𝑡  

    𝑐𝑗
𝑡. 𝑎𝑠𝑠𝑖𝑔𝑛(𝑝𝑖) 

    𝑐𝑗
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐿𝑎𝑔𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −=   𝑙𝑎𝑔𝑝𝑖  

    𝑐𝑗
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −=   𝜆𝑝𝑖

𝑡  

  break 

  End IF 

 END FOR 

 IF  𝑗 == 𝑮𝒕 . 𝒔𝒊𝒛𝒆() 

 Add a consumer 𝑐𝑗
𝑡 to Gt 

 𝑐𝑗
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐿𝑎𝑔𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  𝜇 × 𝑊𝑆𝐿𝐴    

𝑐𝑗
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  𝜇    

 break 

                 End IF 

                       END FOR 

 If i==𝜆𝑃
𝑡 . 𝑠𝑖𝑧𝑒() 

  break; 

 END IF 

END While 

return Gt 

 

 


