
HAL Id: hal-03778255
https://hal.science/hal-03778255

Submitted on 6 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cost-Efficient and Latency-Aware Event Consuming in
Workload-Skewed Distributed Event Queues

Mazen Ezzeddine, Gael Migliorini, Françoise Baude, Fabrice Huet

To cite this version:
Mazen Ezzeddine, Gael Migliorini, Françoise Baude, Fabrice Huet. Cost-Efficient and Latency-Aware
Event Consuming in Workload-Skewed Distributed Event Queues. 6th International Conference on
Cloud and Big Data Computing (ICCBDC’2022), Aug 2022, Birmingham, United Kingdom. �hal-
03778255�

https://hal.science/hal-03778255
https://hal.archives-ouvertes.fr

Cost-Efficient and Latency-Aware Event Consuming in Workload-

Skewed Distributed Event Queues

Mazen Ezzeddine
 Université Côte d’Azur, CNRS,

I3S
 HighTech Payment Systems, HPS

 Nice, France
 mazen.ezzeddine@ univ-

cotedazur.fr

Gaël Migliorini
 HighTech Payment Systems, HPS

 Aix En Provence, France
 gael.migliorini@hps-

worldwide.com

Françoise Baude
 Université Côte d’Azur, CNRS,

I3S
 Nice, France

 francoise.baude@univ-

cotedazur.fr

Fabrice Huet
 Université Côte d’Azur, CNRS, I3S

 Nice, France

 fabrice.huet@univ-cotedazur.fr

ABSTRACT

Distributed event queues have emerged as a central component in

building large scale cloud applications. In distributed event queues,

guaranteeing a maximum event processing latency for high

percentile of events in a cost-efficient manner is of paramount

interest. This is achieved through efficient and accurate solutions

to autoscale event consumers to meet the incoming workload.

However, most of current solutions to autoscale event consumers

are threshold-based that add/remove consumer replicas based on a

metric of interest. These autoscalers lack an accurate estimation on

the number of replicas that is just enough to keep up with the arrival

rate of events and are not cost-efficient. Moreover, threshold-based

autoscalers are not designed with workload-skewness in mind.

When the workload is skewed few partitions of the distributed

queue will receive higher percentile of the events produced. In such

cases, the autoscale process must be complemented with a load-

aware assignment of event consumer replicas to queue partitions.

However, load-aware assignment is not performed by threshold-

based autoscalers as they assume a uniform event load across the

partitions of the queue. Hence, in this work, we first express the

problem of cost-efficient scaling of event consumers to achieve a

desired latency as a bin pack problem. This bin pack problem

depends on the arrival rate of events, consumption rate of

consumers, and on the events backlog in the queues. Next, we show

that the process of scaling event consumers in face of skewed

workload is performed by a controller/autoscaler and by one of the

consumer replicas namely the leader. The controller monitors the

cluster state and launches the appropriate number of consumer

replicas. Next, the leader consumer performs a load-aware

assignment of partitions to consumer replicas. In face of skewed

workloads, observed results show order of magnitude gains in

terms of latency guarantee as compared to an autoscale

methodology that is not complemented by a load-aware

assignment.

CCS CONCEPTS

• Applied computing~Service-oriented architectures; • Applied

computing~Event-driven architectures; • Computer systems

organization~Cloud computing

KEYWORDS

Distributed Event Queue, Autoscale, Rebalancing, Producer,

Consumer, Event Driven Microservices, Kubernetes, SLA, Kafka,

Bin Packing, Microservice, Event Driven Microservices.

ACM Reference format:

Mazen Ezzeddine, Gaël Migliorini, Françoise Baude, and Fabrice Huet.

2022. Cost-Efficient and Latency-Aware Event Consuming in Workload-

Skewed Distributed Event Queues. In 2022 6th International Conference

on Cloud and Big Data Computing (ICCBDC 2022), August 18–20, 2022,

Birmingham, United Kingdom. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/ 3555962.3555973

1 INTRODUCTION

Distributed event queues have emerged as a central component in

building large scale cloud applications. They are currently being

used in many real time cloud applications such as recording and

analyzing web accesses for recommendations and ad placement [1],

fraud detection [2] and health care monitoring [3]. Furthermore,

distributed event queues are the backbone for the event driven

microservices software architectural style where an application is

composed of several small services communicating by exchanging

events across a distributed event queue [4][5][6][7]. As such, many

cloud providers already offer a distributed event queue as a service

[8][9][10].

Distributed event queues are composed of several partitions

distributed over a cluster of servers. Event producers generate an

event and publish it into a certain partition of the queue. Consumer

applications pull the events of interest and process them as required

by the application logic. Event consumers are composed of one or

more replicas that jointly consume events out of the event queue,

with each consumer being assigned an exclusive set of partitions.

ICCBDC 2022, August 18–20, 2022, Birmingham, United Kingdom M. Ezzeddine et al.

Also, no more than one consumer can be assigned to a partition.

The set of consumers that are pulling events from the partitions of

the event queue is called consumer group CG. In most applications

(banking, health monitoring), same-key events need to be routed to

the same queue partition and eventually processed by the same

consumer

For event consumer applications, minimizing the time an event

spends waiting in the queue and its processing time is critical to

achieve low response time for high percentile of events at low cost.

Hence, there is an urgent need for frameworks and solutions that

autoscale event consumer applications. In fact, there has been some

research efforts to autoscale event consumer applications that

consume from distributed event queues [8][9][10][11][12].

However, these efforts propose threshold-based autoscalers that

add or remove additional replicas when a metric of interest (e.g.,

CPU utilization) reaches a certain threshold. Unfortunately, such

autoscalers lack an accurate estimation on the number of replicas

that is just enough to keep up with arrival rate of events. In fact,

recent research [13] has shown that these threshold-based

autoscalers are not cost efficient, and hence, clients are over-

charged for under-utilized resources. Also, threshold based

autoscalers may rely on misleading metrics. For example, Amazon

Kinesis [8] is not always capable of accurately identifying

bottlenecks as relying on CPU policy can be misleading [13].

On the other hand, these threshold-based autoscalers assume that

the workload is not skewed and the arrival rate per key

(alternatively the arrival rate per partition) is uniform. However, in

practice cloud applications workloads are skewed [14][15][16].

When the workload is skewed, having an autoscaler that launches

additional consumer replicas based on a metric threshold without

load-aware assignment of consumer replicas to partitions is sub-

optimal. This is because threshold-based autoscalers assume a

uniform arrival rate into all the event queue partitions, and they do

not make any effort to assign consumer replicas to partitions in a

load aware manner. However, when the workload is skewed, the

autoscale process must be complemented with a load-aware

assignment of consumer replicas to queue partitions.

In essence, state of the art distributed event queues such as Kafka

[17][18] does not currently provide any out of the box solution for

consumer group autoscaling. Neither they provide a load-aware

rebalancing (consumers-partitions assignment) to assign partitions

to consumers fairly when the workload is skewed. Besides Kafka

leverages a recent rebalancing logic called Incremental

Cooperative [19] that promotes data locality over load-awareness.

This Incremental Cooperative rebalancing promotes sticking

partitions to their already assigned consumers without taking load-

awareness into consideration, assuming thus that the arrival rate

into each partition is uniform.

Therefore, in this work, we target cost efficient autoscaling of event

consumer applications in face of skewed workloads. We first

express the problem of minimally scaling event consumers to

achieve a desired latency as a bin pack problem that depends on the

arrival rate of events, consumption rate of consumers, and on the

event backlog in the queues. We mathematically formulate the

problem and express it as an integer linear programming ILP

model. Next, we describe in detail the system architecture

implemented as solution for autoscaling workload-skewed event

consumers. We discuss the role of the Controller/Autoscaler

process which decides, using the formulated ILP model, on the

minimum number of event consumers needed to achieve a desired

latency as well as the assignment of the scaled consumers to queue

partitions. We also discuss the role of the event consumer group

leader which performs the partitions-consumers assignment as

suggested by the Controller/Autoscaler i.e., in a load aware

manner.

Finally, it is important to note that in our work, we assume that the

event queue is partitioned in a way that guarantees that the arrival

rate into an individual partition of the event queue (whether with

skewed or non-skewed arrival rate) is less than the maximum

consumer consumption rate. This is because no more than one

consumer can be assigned to a single queue partition. Further, we

do not investigate dynamic distributed event queue

repartitioning/scaling as part of event consumer autoscaling, while

we opt for steady-state stable queues/partitions when a partition is

assigned to exactly one consumer.

Order

µs

Payment

µs

Order_Payment Event queue

Order_Shipment Event queue

Shipment

µs

Order_notification Event queue

Notificati-

on

µs

Figure 1 : An example of an event driven microservices architecture

1.1 Context and Motivational Scenario

We target an event driven microservices architecture where

microservices communicate through a distributed event broker.

Each microservice processes the event it pulls and produces a result

event so that the next microservice in the business workflow could

pull the resulting event and perform the required business logic. As

an example, in Figure 1, the Order microservice creates an

OrderPayment event and places it in the OrderPayment event

queue. Next, the OrderPayment event is picked by the Payment

microservice which processes it and creates an OrderShipment

event, placing it in the OrderShipment event queue and so on.

In this architecture, each latency-critical consumer microservice is

configured with a maximum event processing latency which

identifies the maximum time that an event belonging to that

microservice can exhibit without violating the latency SLA. For

example, if the Payment microservice is configured with maximum

Cost-Efficient and Latency-Aware Event Consuming in Workload-Skewed

Distributed Event Queues
ICCBDC 2022, August 18–20, 2022, Birmingham, United Kingdom WOODSTOCK’18, June, 2018, El Paso, Texas USA

of five seconds event processing latency, then if an OrderPayment

event is delayed for more than five seconds, the event is considered

to violate the latency SLA. Note that the maximum event

processing latency includes the waiting time in the queue and the

processing time which depends on the business logic required by

the microservice.

In the business workflow shown Figure 1, the Payment

microservice is latency-critical and cannot tolerate a maximum

event processing latency of more than five seconds. On the other

hand, the Shipment and Notification microservices are less latency-

critical and can tolerate a maximum event processing latency up to

few minutes. Hence, in accordance with the business requirements

and without loss of the generality, we focus on guaranteeing the

event processing latency SLA of the Payment microservice. That

is, the Order microservice acts as an event producer microservice,

and the Payment microservice acts as a latency-sensitive consumer

microservice configured with a maximum event processing latency

of five seconds.

2 RELATED WORK

Performance SLAs are hard to guarantee. Cloud providers rarely

provide end to end performance guarantee or focus on

overprovisioning of resources and isolation of services to meet a

desired SLA [20][21]. With the proliferation of microservices

architecture, performance SLAs became even more challenging. In

the context of event driven microservices architectures there has

been some effort to autoscale event driven microservices

communicating over a distributed event queue [11][12]. To our

knowledge, none of the published work considers autoscaling event

driven microservices in face of skewed workloads where a load-

aware assignment of event queue partitions to consumers must be

performed. Closest to our work is stream processing autoscaling

which is a central problem in data stream processing research [22].

Prior work has proposed various predictive [23] [24] and heuristic

policies [25] to decide when and how much to scale when input rate

changes. Cloud providers offering stream processing as a service

[8][9][10] provide support for autoscaling. However, they propose

threshold-based autoscalers that add or remove additional replicas

when a metric of interest (e.g., CPU utilization) reaches a certain

threshold. Unfortunately, such autoscalers lack an accurate

estimation on the number of replicas that is just enough to keep up

with arrival rate of events. In fact, recent research [13] has shown

that these threshold-based autoscalers are not cost efficient, and

hence, clients are over-charged for under-utilized resources. Also,

threshold based autoscalers may rely on misleading metrics. For

example, Amazon Kinesis [8] is not always capable of accurately

identifying bottlenecks as relying on CPU policy can be misleading

[13]. Furthermore, none of cloud providers offers a solution for

stream processing autoscale with support of skewed workloads

where a specific instance of a stream operator exhibits much input

rate as compared other instances of the same operator. As with

event driven microservices, this problem is not optimally solved by

simply increasing the parallelism of the operator in question.

Rather, it must be complemented through a fair assignment of

downstream to upstream operators. Research works such as [26]

propose support for workload skewness in stream processing by

dynamic stream rebalancing/reassignment from source operators to

downstream operators. However, [26] does not consider dynamic

autoscaling of operators, rather it investigates dynamic stream

rebalancing on existing operators when the stream is skewed.

Also, notice the difference between scaling stream operators where

downstream operators typically receive events from upstream

operators in a push-based manner, and between scaling event

driven microservices that consume always from upstream

distributed event queues in a pull manner. Kafka distributed event

queue [17][18] is currently one of the most used distributed event

queue in the industry. At this stage, Kafka does not provide out of

the box solution for automatic consumer group autoscaling. Also,

Kafka does not currently provide a load aware rebalancing logic

that can assign consumers to partitions in a load-aware manner

when the workload is skewed. In contrast, Kafka recommendation

is to use the Incremental Cooperative rebalancing logic [19] that

promotes data locality (sticking consumers with their already

assigned partitions) over load-awareness. As we show in the

experimental section, when the workload is skewed promoting data

locality with the Incremental Sticky rebalancing logic results in

much less latency SLA guarantee as compared to a load aware

rebalancing logic.

P0

P1

Pn

Topic T0

P0

P1

Pm

Topic Tp

...

Producer

 µs

Distributed event queue

cluster (e.g., kafka)

 autoscale decisions

Consumer

 µs

Consumer

µs

Consumer Group

Controller process

Auto Scale logic

Figure 2 : The architecture of Kafka distributed event queue. Shown

also in red the newly added Controller module.

3 BACKGROUND AND SYSTEM

ARCHITECTURE

In our implementation prototype we selected Kafka as the

distributed event queue. We first introduce few notions on the

concept of topic (distributed event queue), partition, consumer, and

consumer group. In Kafka, a topic can be thought as a mailbox into

which producer applications write their events. A topic is composed

of several partitions distributed over a cluster of computing servers.

A consumer group is a set of event consumers that jointly and

cooperatively consume events from a certain topic. Generally, for

a topic T, we have n partitions and m consumers that read and

consume events. The (re-)assignment of the m consumers to the n

partitions (or inversely) is called rebalancing (also called

ICCBDC 2022, August 18–20, 2022, Birmingham, United Kingdom M. Ezzeddine et al.

assignment). Rebalancing/assignment might happen several times

during the lifetime of a consumer group such as when the group is

initiated, or when a consumer leaves or joins the group (e.g., an

instance is scaled up/down). Figure 2 shows an example of topics,

partitions and consumer group in Kafka. References [17][18]

provide in depth description of the overall Kafka concepts and

architecture. Figure 2 also shows our newly designed Controller

process which runs independently on the cluster. It queries the

event queue (topic) for information on the arrival rate into each

partition of the topic, maximum consumption rate by each

consumer in the group etc. The Controller query rate is

configurable, and we call it decision interval. In the next subsection

we discuss more in depth the functionality and design of the

Controller process.

3.1 Design of the Controller process

The newly added Controller process is the central module that

monitors the cluster and runs the logic necessary for autoscaling of

latency-sensitive event consumers in face of skewed workloads. In

the next subsections, we first describe the queries launched by the

Controller into the cluster to get the required state of the cluster.

Next, we mathematically formulate the consumer group

autoscaling problem and describe it as integer linear programming

ILP model. Finally, we discuss the logic that the Controller runs to

decide on the minimal number of consumers needed to respect the

WSLA event processing latency, and the assignment of scaled

consumers to partitions.

 Queries by the Controller into Broker. As discussed previously,

a topic can be thought as a mailbox into which producer

applications write events. Each topic is composed of several

partitions. Each partition p has two offset pointers to reference the

last produced and the last committed (processed) events. We define

the per partition event lag at time t, 𝑙𝑎𝑔𝑝
𝑡 , as the number of events

waiting in the partition at time t . It is the difference between the

last produced and last committed pointers at time t as depicted in

equation 1. Similarly, we calculate the arrival rate per partition at

time t, 𝜆𝑝
𝑡 , as the difference between the produced offsets over an

interval of time as shown in equation 2. δ is the decision interval or

the rate at which the Controller queries the event queue for state

updates.

𝑙𝑎𝑔𝑝
𝑡 = (𝑜𝑓𝑓𝑠𝑒𝑡𝑙𝑎𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑝)
t

− (𝑜𝑓𝑓𝑠𝑒𝑡𝑙𝑎𝑠𝑡𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑
𝑝)

𝑡
 (1)

𝜆𝑝
𝑡 =

(𝑜𝑓𝑓𝑠𝑒𝑡𝑙𝑎𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑
𝑝)

𝑡
 − (𝑜𝑓𝑓𝑠𝑒𝑡𝑙𝑎𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑝)
𝑡−𝛿

𝛿

(2)

𝜇 =
𝑒𝑣𝑒𝑛𝑡𝑠 𝑝𝑜𝑙𝑙𝑒𝑑 𝑝𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒

(3)

3.2 Mathematical formulation of the consumer

group autoscaling problem

For a topic T with n partitions, we define the set of arrival rates
into each partition at time t as 𝜆𝑃

𝑡 = {𝜆𝑝1

𝑡 , 𝜆𝑝2

𝑡 , … . , 𝜆𝑝𝑛

𝑡 } , and

similarly, we define the set of lags of each partition at time t as

𝑙𝑎𝑔𝑃
𝑡 = {𝑙𝑎𝑔𝑝1

𝑡 , 𝑙𝑎𝑔𝑝2

𝑡 , … , 𝑙𝑎𝑔𝑝𝑛

𝑡 }. Also, let 𝑐𝑗
𝑡denotes a jth consumer

used at time t. 𝑙𝑎𝑔
𝑐𝑗

𝑡
𝑡 is the lag of the consumer 𝑐𝑗

𝑡 at time t. It is

defined as the sum of lags of each partition assigned to 𝑐𝑗
𝑡 as shown

in equation 4 below.

 𝑙𝑎𝑔
𝑐𝑗

𝑡
𝑡 = ∑ 𝑙𝑎𝑔𝑝𝑖

𝑡

𝑝𝑖 ∈𝑐𝑗
𝑡

 (4)

 𝜆
𝑐𝑗

𝑡
𝑡 = ∑ 𝜆𝑝𝑖

𝑡

𝑝𝑖 ∈𝑐𝑗
𝑡

 (5)

Similarly, 𝜆𝑐𝑗

𝑡 is the arrival rate into the consumer 𝑐𝑗
𝑡 at time t. It

is defined as the sum of arrival rates of each partition assigned to

𝑐𝑗
𝑡 at time t as shown in equation 5. Now consider a time t where

the Controller has to decide on the minimal number of event

consumers in the consumer group (we call it 𝐺𝑡) while still being
able to respect the event latency SLA WSLA. The condition that
shall be preserved to respect WSLA can be formulated as per equation
6 below.

 ∀ 𝑐𝑗
𝑡 ∈ 𝐺𝑡, 𝑙𝑎𝑔

𝑐𝑗
𝑡

𝑡 < 𝜇 × 𝑊𝑆𝐿𝐴 𝐴𝑁𝐷 𝜆𝑐𝑗

𝑡 < 𝜇 (6)

Informally, equation 6 states the following: at time t, when
deciding on the new group of consumers, ensure (in a best effort)

that: (1) each consumer in the group has its arrival rate less than its
consumption rate, and (2) each consumer in the group is lagging by

a number of events less than 𝜇 × 𝑊𝑆𝐿𝐴. 𝜇 × 𝑊𝑆𝐿𝐴 is the maximum

number of events that can be served in less than or equal to 𝑊𝑆𝐿𝐴.

Recall that 𝑊𝑆𝐿𝐴 is the maximum latency an event might exhibit
without violating the latency SLA. Also, note that we use the term
best effort to refer to the case where the Controller finds that the

lag of a partition p is greater than 𝜇 × 𝑊𝑆𝐿𝐴 , in such case the
partition already has an SLA-violating lag. Hence, the Controller

sets the lag of that partition to 𝜇 × 𝑊𝑆𝐿𝐴 (while calculating the
number of consumers needed) and eventually assigns a dedicated
consumer to it.

On the other hand, the cost-efficiency dictates to minimize the

number of event consumers in the group 𝐺𝑡 and this translates to
the equation 7 below.

𝒎𝒊𝒏 |𝑮𝒕| (7)

Therefore, preserving the requirements for cost-efficient
latency-aware event consumer group in distributed event queues is
equivalent to solving the following optimization:

𝑚𝑖𝑛|𝐺𝑡| 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀ 𝑐𝑗
𝑡 ∈ 𝐺𝑡, 𝑙𝑎𝑔

𝑐𝑗
𝑡

𝑡

< 𝜇 × 𝑊𝑆𝐿𝐴 𝐴𝑁𝐷 𝜆
𝑐𝑗

𝑡
𝑡 < 𝜇

(8)

In this context, let 𝐺𝑡 = {𝑐1
𝑡 , 𝑐2

𝑡 , … , 𝑐𝑗
𝑡} denotes the set of

consumers needed at time t to preserve the latency SLA. Also, let

us denote 𝐺𝑡−1 the already existing set of consumers in the
consumer group. The aim now is to decide on the minimum number

of consumers needed at time t, that is, the cardinality of 𝐺𝑡, so that
no event processing latency in the event queue exhibits more than

the maximum event processing latency 𝑤𝑆𝐿𝐴 . In fact, the
optimization problem in (8) can be formulated as an Integer Linear

Programming (ILP) model. In the formulation below 𝑐𝑗
𝑡 , 𝑝𝑖𝑗

𝑡 are

binary variables indicating respectively whether a jth consumer is
used at time t, and whether partition i is assigned to consumer j at
time t.

𝑀𝑖𝑛 |𝐺𝑡| = ∑ 𝑐𝑗
𝑡

𝑛𝑏 𝑡𝑜𝑝𝑖𝑐 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠

𝑗=1

Cost-Efficient and Latency-Aware Event Consuming in Workload-Skewed

Distributed Event Queues
ICCBDC 2022, August 18–20, 2022, Birmingham, United Kingdom WOODSTOCK’18, June, 2018, El Paso, Texas USA

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

∑ 𝑝𝑖𝑗
𝑡

𝑗

= 1 ∀ 𝑖 ; (a)

∑ 𝑝𝑖𝑗
𝑡 𝑙𝑎𝑔𝑝𝑖

𝑡
𝑖 ≤ 𝑐𝑗

𝑡 × 𝜇 × 𝑊𝑆𝐿𝐴 ∀ 𝑗; (b)

∑ 𝑝𝑖𝑗
𝑡 𝜆𝑝𝑖

𝑡
𝑖 ≤ 𝑐𝑗

𝑡 × 𝜇 ∀ 𝑗; (c)

𝑐𝑗
𝑡 , 𝑝𝑖𝑗

𝑡 ; 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

(a) ensures that each partition is assigned to only one consumer, (b)

ensures that the sum of lags of the partitions assigned to each

consumer is less than the SLA-violating lag (i.e., the lag that can be

served in 𝑊𝑆𝐿𝐴 which is equivalent to 𝜇 × 𝑊𝑆𝐿𝐴). Similarly, (c)

ensures that the sum of arrival rates of the partitions assigned to

each consumer is less than the consumer service rate 𝜇. The ILP

formulation shows that the problem of assigning partitions to

consumers while guaranteeing the 𝑊𝑆𝐿𝐴 latency requirement is NP-

complete. This assignment problem is equivalent to a two-

dimensional bin packing where the items are the partitions

described by their arrival rates 𝜆𝑝𝑖 and by their lags 𝑙𝑎𝑔𝑝𝑖, and the

bins are the event consumers described by their service

(consumption) rate 𝜇 and by their service rate multiplied by 𝑊𝑆𝐿𝐴

i.e., 𝜇 × 𝑊𝑆𝐿𝐴. As this assignment problem must be solved online,

we resorted into an approximation algorithm that can solve the

problem in polynomial time. Namely, we used the First Fit

Decreasing FFD bin pack approximation. FFD is a 11/9OPT+ 6/9

approximation of the optimal bin packing solution [27]. To always

guarantee load fairness across the formed bins (event consumers),

we leveraged an FFD variant called least-load FFD . Least-load

FFD (LL-FFD) was proposed by [28] for packing VMs in the

datacenter into a minimal number of physical servers, while

guaranteeing a fair (load-balanced) assignment of VMs to these

physical servers.

Algorithm 1 : The bin pack autoscaler logic executed by

the Controller at each decision interval.

AutoScaleCG (𝜆𝑃
𝑡 , 𝑙𝑎𝑔𝑃

𝑡 ,WSLA)

Set Gt-1 to the current/existing set of consumers

Set Gt = Least-Load FirstFitDecreasing (𝜆𝑃
𝑡 , 𝑙𝑎𝑔𝑃

𝑡 , 𝑊𝑆𝐿𝐴)

IF Gt > Gt-1

 Scale up by 𝐺𝑡\𝐺𝑡−1

ELSE IF Gt < Gt-1

 Scale down by 𝐺𝑡−1\𝐺𝑡

ELSE

 IF currentAssignmentDoesNotViolateTheSLA()

 return

 ELSE

 Trigger a rebalance/reassignment

 END IF

END IF

In essence, at each decision interval the Controller samples the

state of the cluster and runs the LL-FFD based on the sampled

values of partitions lag, partitions arrival rate, and consumers rate

to get 𝐺𝑡 the set of consumers needed at decision interval t. As

shown in Algorithm 1 (AutoScaleCG), the Controller runs the LL-

FFD to get 𝐺𝑡 and produce scaling recommendations accordingly.

Precisely, if |𝐺𝑡| > |𝐺𝑡−1|, then a scale up is needed. The set

𝐺𝑡\𝐺𝑡−1 denotes the set of the consumers to be added. Similarly,

if |𝐺𝑡| < |𝐺𝑡−1| , then a scale down is needed. The set 𝐺𝑡−1\𝐺𝑡
denotes the set of the consumers to be removed. Otherwise, if

|𝐺𝑡| = |𝐺𝑡−1| then neither an addition nor removal of consumers

is needed. Still, we check if the current assignment of partitions to

existing consumers violates the latency SLA. In the positive case,

we trigger a rebalance/reassignment so that the suggested

assignment as outputted by the Controller takes place. Otherwise,

if the existing consumers-partitions assignment does not violate the

latency SLA, the scale logic exits with no action as shown in

Algorithm 1 (AutoScaleCG). AutoScaleCG shows how the

Controller calls the LL-FFD to calculate 𝐺𝑡 , and next produces

scaling recommendations accordingly as discussed above. Note

that the algorithms for the procedures Least-

LoadFirstFitDecreasing and

currentAssignmentDoesNotViolateTheSLA() are shown in the

Appendix section.

3.3 The load-aware assignment of consumers in

the group to queue partitions

As discussed in subsection 3.2, the Controller executes the

procedure AutoScaleCG at each decision interval to decide on the

number of consumers needed to guarantee the latency SLA and

their assignment to partitions. However, the role of the Controller

is restricted to launching or removing event consumer replicas out

of the consumer group. In fact, after that the Controller removed or

added consumers into the existing set of consumers, a

rebalancing/assignment process will implicitly take place. As

mentioned before, rebalancing is the process of assigning partitions

to consumers. It is performed by one of the consumers. Precisely,

as shown in Figure 3, upon rebalancing all the existing consumers

are requested to re-join the consumer group. As per our

modification to the group membership protocol, we have modified

the rebalancing logic so that the consumer group leader contacts the

Controller for its recommended load-aware assignment. This

process is shown in Figure 3 where the consumer group leader upon

rebalancing calls the Controller for the load-aware assignment of

consumers to partitions. In Figure 3, all the modules in red are

newly added to the event queue for load-aware autoscaling.

ICCBDC 2022, August 18–20, 2022, Birmingham, United Kingdom M. Ezzeddine et al.

KafkaConsumer

Consumer 1

Consumer 2

Consumer

Group CG

KafkaConsumer

Kafka/brokers

JoinGroup

JoinGroup

CG leader

Load-aware

assignment

Controller

Admin API :

lag, arrival rate

 consumers

grpc : Load-aware partition-consumers

assignment

Consumption rate of each consumer

Figure 3 : The CG leader calls the Controller for its recommended

assignment of consumers-partitions. All the red modules are newly

added to the architecture for autoscaling of workload-skewed

distributed event queues.

4 EXPERIMENTAL WORK

In this section we report some of the experiments we performed

using the bin pack autoscaler. We also discuss the workloads we

used in the experiments. All the experiments were performed on

Google Cloud using a Kubernetes cluster composed of 5 virtual

machines of type e2-standard-2 (2vcpu, 8GB RAM), Kubernetes

version 1.20.6-gke.1400 and Kafka version 2.7. As discussed in

section 2, we deployed an Order microservice that acts as a

workload-skewed event producer, and a Payment microservice that

acts as a latency-sensitive event consumer microservice configured

with a maximum event processing latency 𝑊𝑆𝐿𝐴 of five seconds.

The Payment consumer microservice operated at 100

events/seconds (using Thread.sleep). Throughout the experiments

we used an event queue with 5 partitions. The decision interval is

defaulted to one second unless otherwise stated.

4.1 Binpack autoscaling of a workload-skewed

event consumer with load-aware assignment,

compared to a non-load-aware threshold-like

autoscaler

In the first set of experiments, we leveraged a 10-minute skewed

workload with an event queue of 5 partitions namely P0, P1, P2,

P3, P4. In the first two minutes the arrival rate into each partition is

set to 15 events per second for a total of 75 events/sec. Next, we

increased the arrival rate into P0 and P1 at rate of 1 events/sec until

they reached 60 events/sec in 45 seconds (time 165 seconds). The

arrival rate into P0 and P1 remains at 60 events/sec thereafter. At

minute 4, we increased the arrival rate into P2 at rate of 1 event/sec

to reach 60 events/sec in 45 seconds (time 285 seconds), P2 remains

at 60 events thereafter. Similarly, at t=6 minutes, we increased P3

events arrival at a rate of 1 event/sec to reach 60 events/sec in 45

seconds (time 405 sec), P3 remains at 60 events/sec until the 8th

minute where all partitions arrival rates fall back to 15

events/second. In this experiment we used a 1 second decision

interval.

Figure 4 : Workload total arrival rate and corresponding scaled replicas.

Figure 4 shows the workload total arrival rate as well as the

corresponding scaled replicas and their timings. In fact, we

repeated this autoscale experiment twice. In the first trial we ran the

bin pack autoscaler complemented with a load-aware assignment

as suggested by our newly designed Controller. In the second trial,

we wanted to emulate a simple threshold-like autoscaler without

load-aware consumers-partitions assignment. Hence, we leveraged

a Controller/Autoscaler that scales the event consumer group

exactly similar to the first experiment. However, instead of the

load-aware assignment as suggested by our work, we leveraged the

default rebalancing/assignment logic in Kafka namely the

Incremental Cooperative. This last promotes stickiness and data

locality i.e., sticking consumers to their already assigned partitions

without taking care of load-awareness. In both experiment trials,

the scaled replicas are shown in Figure 4 . Note that the

consumption rate of consumers is reported dynamically to the

Controller through an RPC call issued by the Controller. The

reported event consumption rate to the Controller was slightly less

than 100 events/sec and on average equivalent to 95 events/second,

due to the overhead.

Figure 5 : : Events backlog during autoscaling a workload-skewed event

consumer both with load-aware (newly designed) and incremental sticky

assignment (Kafka default).

Figure 5 shows the difference in events backlog when running the

bin pack autoscaler complemented with a load-aware assignment

Cost-Efficient and Latency-Aware Event Consuming in Workload-Skewed

Distributed Event Queues
ICCBDC 2022, August 18–20, 2022, Birmingham, United Kingdom WOODSTOCK’18, June, 2018, El Paso, Texas USA

as compared to when leveraging the default Kafka assignment

logic, namely the Incremental Cooperative. As shown, in the first

case the event lag was always in the region of few tens, thus

respecting the 5 seconds SLA latency for the whole time of the

experiment. This translates to 100% latency SLA guarantee at the

cost of 18 replica.minutes. At this same cost of replica.minutes, the

threshold-like autoscaler complemented with the non-load-aware

Incremental Cooperative assignment logic exhibited a lag of up to

6K, and hence only 44% of total events fallen below the 5 seconds

latency and respected the SLA.

This shows the importance of load-aware consumers-partitions

assignment during autoscaling of skewed workloads. As such,

promoting load-awareness over data locality when the workload is

skewed will have better overall effect on the latency SLA. This is

true even if the partitions that will be reassigned to new consumers

while leveraging load-aware rebalancing will exhibit a short time

of event consumption blockage. This short time of consumption

blockage happens during the partitions reassignment process where

the partitions are first revoked by their old consumers and

reassigned to their new consumers. In all experiments, the 90th

percentile of the duration of the partitions reassignment process

during which event consumption is blocked was less than 1 second.

Figure 6 : Workload used in the second experiments.

4.2 Binpack autoscaling with a second skewed

workload and the effect of the decision

interval on the binpack autoscaler

In this set of experiments, we used the same workload employed in

the research work of [11] as shown in Figure 6. To introduce

skewness in the workload, for each batch of events in the workload,

we sent 27% of events to P0 and 27% to P1, while we sent the 46%

remaining events uniformly to P2, P3, P4. 27% was selected in

order to guarantee that over the lifetime of the workload, the arrival

rate into each individual partition will not bypass the event

consumer rate i.e., 100 events/seconds. In this set of experiments,

we employed a cooldown period of 30 seconds. A cooldown period

is an interval of time following a scale operation during which no

scale action scale is triggered.

In a first experiment, we ran the experiment with the bin pack

autoscaler complemented with a load-aware partitions-consumers

assignment as described throughout this paper. We set the decision

interval to 1 second. Figure 7 shows the scale up and down actions

and their timings. In this experiment, we observed that 0 events

violated the latency SLA, that is, all the events processing latency

fallen below 5 seconds. This came at the cost of 26.1

replica.minutes. On the other hand, overprovisioning dictates to

provision 5 replicas for the lifetime of the workload. This translates

to 50 replicas.minutes. Hence, the binpack autoscale solution

showed 52.2% replica.minutes reduction as compared to the

overprovisioning solution.

In a second experiment, we leveraged a threshold-like

Controller/Autoscaler that scales the event consumer group exactly

similar to the first experiment but without load-aware partitions-

consumers assignment. Instead, we employed the Incremental

Cooperative non-load-aware assignment logic. The scaling actions

and their timings are similar to those in Figure 7. On the other hand,

Figure 8 shows the events lag when the binpack autoscaler ran with

a load-aware assignment as proposed in this work, as compared to

the non-load-aware Incremental Cooperative assignment.

Figure 7 : Scaling actions and their timings when running the bin pack

autoscaler

Figure 8 : Events lag when the bin pack autoscaler is complemented with a load-

aware assignment as compared to the case where the bin pack autoscaler is

complemented with incremental cooperative assignment.

As shown in Figure 8, the events backlog when autoscaling while

leveraging the Incremental Cooperative assignment is much higher

as compared to that with load-aware assignment. In fact, with the

non-load-aware Incremental Cooperative assignment only 77% of

events respected the 5 seconds latency SLA. In contrast, when

ICCBDC 2022, August 18–20, 2022, Birmingham, United Kingdom M. Ezzeddine et al.

leveraging the load-aware assignor all the events latency fallen

below 5 seconds which translates to 100% SLA guarantee.

Figure 9 : Scaling actions and their timings when running the bin pack

autoscaler at 30 seconds decision interval.

Figure 10: Events lag when running the bin pack autoscaler with load-

aware assignment at 30 seconds decision interval.

In a third experiment we ran the binpack autoscaler with load aware

assignment at a decision interval of 30 seconds instead of one

second. The scaling actions and their timings are shown in Figure

9. Notice how at time 95 seconds the replicas scaled from 1 to 4 in

one shot. This is because with 30 seconds decision interval, the lag

has accumulated and the bin pack scaler recommended 4 replicas

for being able to serve this lag in WSLA i.e., 5 seconds. Similarly,

notice in Figure 10 how at time 95 seconds the lag dropped in few

seconds to a non SLA-violating value. In this experiment the

percentage of events that respected the 5 seconds SLA latency was

equivalent to 86%.

In fact, throughout the experiments we observed that when the

decision interval is small, e.g., less than 10 seconds, partitions lag

is typically small and the bin pack autoscaler recommendation on

the number of replicas is mostly driven by the partitions arrival rate.

On the other hand, when the decision interval is high, e.g., 30

seconds, partitions lag is typically high and the bin pack autoscaler

recommendation on the number of replicas is driven by the

partitions lag. For example, the first decision to scale from 1 to 4 in

Figure 9 is mainly influenced by the partitions lag. In contrast, in

Figure 7 where the decision interval was 1 second, the intial

transition from 1 to 2 replicas was mainly influenced by the

partitions arrival rates.

ACKNOWLEDGMENTS

This research is funded by the enterprise HighTech Payment

Systems HPS and ANRT through a PhD CIFRE collaboration with
UCA and CNRS I3S laboratory.

REFERENCES
[1] Ken Goodhope, Joel Koshy, Jay Kreps, Neha Narkhede, Richard Park, Jun Rao,

and Victor Yang Ye. Building LinkedIn’s real-time activity data pipeline. IEEE

Data Eng. Bull., 35(2), 2012.

[2] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani. Deep learning for iot

big data and streaming analytics: A survey. IEEE Communications Surveys &

Tutorials, 20(4):2923– 2960, 2018.

[3] K. Al-Aubidy, A. Derbas, and A. Al-Mutairi. Real-time healthcare monitoring

system using wireless sensor network. International Journal of Digital Signals

and Smart Systems, 1(1):26–42, 2017.

[4] R. Laigner, K. Marcos , D. Pedro, B. Leonardo, C. Carlos, M. Lemos, A. Darlan,

L. Sérgio and Y. Z. Yongluan, "From a monolithic big data system to a

microservices event-driven architecture," IEEE 46th Euromicro Conference on

Software Engineering and Advanced Applications, pp. 213-220., 2020.

[5] R. Laigner, K. Marcos , D. Pedro, B. Leonardo, C. Carlos, M. Lemos, A. Darlan,

L. Sérgio and Y. Z. Yongluan, "From a monolithic big data system to a

microservices event-driven architecture," IEEE 46th Euromicro Conference on

Software Engineering and Advanced Applications, pp. 213-220., 2020.

[6] Q. Xiang, P. Xin, H. Chuan, W. Hanzhang, X. Tao, L. Dewei, Z. Gang and C.

Yuanfang, "No Free Lunch: Microservice Practices Reconsidered in Industry,"

arXiv preprint arXiv:2106.07321, 2021.

[7] C. Richardson, "Building microservices: Inter-process communication in a

microservices architecture," 24 July 2015. [Online]. Available:

https://www.nginx.com/blog/building-microservices-inter-process-

communication/. [Accessed 6 June 2022].

[8] Amazon Kinesis. https://aws.amazon.com/kinesis/.

[9] Google Cloud Pub/Sub. https://cloud.google.com/pubsub/

[10] Microsoft Event Hubs. https://azure.microsoft.com/en-us/ services/event-hubs/

[11] P. Chindanonda, V. Podolskiy and M. Gerndt, "Self-Adaptive Data Processing

to Improve SLOs for Dynamic IoT Workloads," Computers, vol. 9, no. 1, p. 12,

2020.

[12] KEDA, Kubernetes-based event-driven autoscaling, https://keda.sh/.

[13] Wang Y, Lyu B, Kalavri V. The non-expert tax: quantifying the cost of auto-

scaling in cloud-based data stream analytics. InBiDEDE@ SIGMOD 2022 Jun

12 (pp. 7-1).

[14] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S.

Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),” in SIGCOMM, 2010.

[15] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula, S.

Shenker, and I. Stoica, “PACMan: Coordinated Memory Caching for Parallel

Jobs,” in NSDI, 2012.

[16] W. Reda, M. Canini, L. Suresh, D. Kostić, and S. Braithwaite, “Rein: Taming

Tail Latency in Key-Value Stores via Multiget Scheduling,” in Twelfth European

Conference on Computer Systems. ACM, 2017. doi: 10.1145/3064176.3064209

p. 95–110.

[17] N. Narkhede, G. Shapira and T. Palino, Kafka: the definitive guide: real-time

data and stream processing at scale, O'Reilly Media, Inc., 2017.

[18] G. Shapira , T. Palino, R. Sivaram and K. Petty, Kafka: The Definitive Guide

Real-Time Data and Stream Processing at Scale, second edition, O’Reilly Media,

Inc., 2021.

[19] S. BLEE-GOLDMAN, "From Eager to Smarter in Apache Kafka Consumer

Rebalances," Confluent, 11 5 2020. [Online]. Available:

https://www.confluent.io/blog/cooperative-rebalancing-in-kafka-streams-

consumer-ksqldb/. [Accessed 29 6 2022].

[20] C. Qu, . R. N. Calheiros and R. Buyya, "Auto-scaling web applications in clouds:

A taxonomy and survey.," ACM Computing Surveys (CSUR), vol. 51, no. 4,

2018.

[21] S. A. Baset, "Cloud SLAs: present and future," ACM SIGOPS Operating

Systems Review, vol. 46, no. 2, pp. 57-66, 2012.

[22] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Katsifodimos.

2020. A Survey on the Evolution of Stream Processing Systems. (08 2020).

https://arxiv.org/pdf/2008.00842.pdf

[23] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, Desislava Dimitrova,

Matthew Forshaw, and Timothy Roscoe. 2018. Three Steps is All You Need: Fast,

Accurate, Automatic Scaling Decisions for Distributed Streaming Dataflows. In

https://aws.amazon.com/kinesis/
https://cloud.google.com/pubsub/
https://keda.sh/
https://arxiv.org/pdf/2008.00842.pdf

Cost-Efficient and Latency-Aware Event Consuming in Workload-Skewed

Distributed Event Queues
ICCBDC 2022, August 18–20, 2022, Birmingham, United Kingdom WOODSTOCK’18, June, 2018, El Paso, Texas USA

Proceedings of the 13th USENIX Conference on Operating Systems Design and

Implementation

[24] Mei, Luwei Cheng, and Vanish et al. Talwar. 2020. Turbine: Facebook’s Service

Management Platform for Stream Processing. In 2020 IEEE 36th International

Conference on Data Engineering (ICDE). 1591–1602.

[25] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik

Ramasamy. 2017. Dhalion: Self-Regulating Stream Processing in Heron. Proc. VLDB

Endow. 10, 12 (aug 2017), 1825–1836

[26] Fang, J., Zhang, R., Fu, T.Z., Zhang, Z., Zhou, A. and Zhu, J., 2017, June. Parallel

stream processing against workload skewness and variance. In Proceedings of the 26th

International Symposium on High-Performance Parallel and Distributed Computing

(pp. 15-26).

[27] Dósa, György (2007). "The Tight Bound of First Fit Decreasing Bin-Packing

Algorithm Is FFD(I) ≤ 11/9OPT(I) + 6/9". Combinatorics, Algorithms, Probabilistic

and Experimental Methodologies.

[28] Ajiro Y, Tanaka A. Improving packing algorithms for server consolidation. Inint.

CMG Conference 2007 Dec 2 (Vol. 253, pp. 399-406).

Appendix
For the sake of completeness, we provide the algorithms for the

Least-Load First Fit Decreasing FFD bin pack algorithm. We also

provide the algorithm for the function

currentAssignmentDoesNotViolateTheSLA().

CurrentAssignmentDoesNotViolateTheSLA()

Set Gt-1 to the existing set of consumers

For each 𝑐𝑗
𝑡−1in Gt-1 do

 IF 𝑙𝑎𝑔
𝑐𝑗

𝑡−1
𝑡 > 𝜇 × 𝑊𝑆𝐿𝐴 OR 𝜆

𝑐𝑗
𝑡−1

𝑡 > 𝜇

 return false

 END IF

END FOR

return true

Least-Load FirstFitDecreasing (𝝀𝑷
𝒕 , 𝒍𝒂𝒈𝑷

𝒕 , WSLA)

Let Gt the set of consumers needed at time t, initially empty

Add a consumer 𝒄𝟎
𝒕 to Gt

𝑐0
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐿𝑎𝑔𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝜇 × 𝑊𝑆𝐿𝐴

𝑐0
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝜇

𝑙𝑎𝑔𝑃
𝑡 = {𝑙𝑎𝑔𝑝1

𝑡 , 𝑙𝑎𝑔𝑝2
𝑡 , … , 𝑙𝑎𝑔𝑝𝑛

𝑡 }

𝜆𝑃
𝑡 = {𝜆𝑝1

𝑡 , 𝜆𝑝2
𝑡 , … . , 𝜆𝑝𝑛

𝑡 }

Sort the set 𝜆𝑃
𝑡 in decreasing order

While true

 Remove any previous partitions-consumers assignment

 For i = 0 to 𝜆𝑃
𝑡 . 𝑠𝑖𝑧𝑒() -1 do

 Sort Gt in ascending order

 For j = 0 to Gt.size() -1 do

 IF 𝑐𝑗
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐿𝑎𝑔𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≥ 𝑙𝑎𝑔𝑝𝑖

𝑡 and

 𝑐𝑗
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≥ 𝜆𝑝𝑖

𝑡

 𝑐𝑗
𝑡. 𝑎𝑠𝑠𝑖𝑔𝑛(𝑝𝑖)

 𝑐𝑗
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐿𝑎𝑔𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −= 𝑙𝑎𝑔𝑝𝑖

 𝑐𝑗
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −= 𝜆𝑝𝑖

𝑡

 break

 End IF

 END FOR

 IF 𝑗 == 𝑮𝒕 . 𝒔𝒊𝒛𝒆()

 Add a consumer 𝑐𝑗
𝑡 to Gt

 𝑐𝑗
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐿𝑎𝑔𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝜇 × 𝑊𝑆𝐿𝐴

𝑐𝑗
𝑡. 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝜇

 break

 End IF

 END FOR

 If i==𝜆𝑃
𝑡 . 𝑠𝑖𝑧𝑒()

 break;

 END IF

END While

return Gt

