
DD for Topo
Opt

A. Vieira,
PH. Cocquet

Introduction

Indirect de-
composition

Direct de-
composition

A domain decomposition approach for a Topology Optimisation
problem

Alexandre Vieira, Pierre-Henri Cocquet

Univ. of Reunion Island - PIMENT
Univ. of Pau - SIAME

25th July 2022

1 / 30



DD for Topo
Opt

A. Vieira,
PH. Cocquet

Introduction

Indirect de-
composition

Direct de-
composition

Content

1 Introduction

2 Indirect decomposition

3 Direct decomposition

2 / 30



DD for Topo
Opt

A. Vieira,
PH. Cocquet

Introduction
Motivation

Indirect de-
composition

Direct de-
composition

Content

1 Introduction
Motivation

2 Indirect decomposition

3 Direct decomposition

3 / 30



DD for Topo
Opt

A. Vieira,
PH. Cocquet

Introduction
Motivation

Indirect de-
composition

Direct de-
composition

Model

Ωs

Ωf

We would like to solve:

min
α,φ
J (u, θ, p)

such that:

∇ · u = 0 in Ω

(u · ∇)u +∇p − Re−1∆u− Riθey+ηhτ (α)u = 0 in Ω

∇ · (uθ)−∇ · (Re−1Pr−1kτ (α, φ)∇θ) = 0 in Ω

α defines the distribution of solid, φ the thermal conduct-
ivity.
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Restriction: temperature evolution only

We focus only on the heat diffusion part of the equations for now. The goal is to
solve:

min ‖θ − θtarget‖2L2(Ω),

s.t. ∇ · (uθ)−∇ · (k∇θ) = f in Ω,

θ|∂Ω = θ0,

k ∈ [a, b],

with f , u given s.t. ∇ · u = 0, and using the control k .
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How to accelerate the resolution?

Faster computation of the gradient through domain decomposition with
optimized transmission conditions : indirect method.
Relaxed optimization problems by subdomain, weakly coupled between
subdomains : direct method.
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Optimality conditions

Gradient expression

Denote θ(k) the solution of:

−∇ · (k∇θ − uθ) = f ,

θ|∂Ω = θ0,

and J(k) = ‖θ(k)− θtarget‖2L2(Ω). Then:

∂kJ(k) = ∇θ · ∇ λ

where λ solves the adjoint equation

∇ · (k∇λ− uλ) = θ − θtarget,

λ|∂Ω = 0,
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Therefore, in order to compute the gradient of the cost, one needs to solve for fixed
k : 

−∇ · (k∇θ − uθ) = f ,

∇ · (k∇λ+ uλ) = θ − θtarget,

θ|∂Ω = θ0,

λ|∂Ω = 0.

Fast resolution of this system =⇒ fast computation of the gradient, used in a
descent method.
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Domain decomposition

Ω1 Ω2

∇ · (uθ)−∇ · (k∇θ) = f on Ω

∇ · (k∇λ+ uλ) = θ − θtarget,

B.C. on ∂Ω

We replace that with:

∇ · (uθn1)−∇ · (k∇θn1) = 0 on Ω1

∇ · (k∇λn1 + uλn1) = θn1 − θtarget on Ω1,

∇ · (uθn2)−∇ · (k∇θn2) = 0 on Ω2

∇ · (k∇λn2 + uλn2) = θn2 − θtarget on Ω2,

B.C. on ∂Ω1 ∩ ∂Ω2

B.C. on ∂Ω
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Domain decomposition

Ω1 Ω2

At the interface, Robin conditions :

k∂x

(
θn1
λn1

)
− u1

2

(
θn1
λn1

)
+ S1

(
θn1
λn1

)
|Γ∩ =

= ∂x

(
θn−1
2

λn−1
2

)
− u1

2

(
θn−1
2

λn−1
2

)
+ S1

(
θn−1
2

λn−1
2

)
|Γ∩ ,

k∂x

(
θn2
λn2

)
− u1

2

(
θn2
λn2

)
+ S2

(
θn2
λn2

)
|Γ∩

= ∂x

(
θn−1
1

λn−1
1

)
− u1

2

(
θn−1
1

λn−1
1

)
+ S2

(
θn−1
1

λn−1
1

)
|Γ∩ .

What choice of operator Si ?

11 / 30



DD for Topo
Opt

A. Vieira,
PH. Cocquet

Introduction

Indirect de-
composition

Direct de-
composition

Subdomain gradient computation

Framework for Fourier analysis : suppose Ω = R2, and the interface is
Γ∩ = {0} × R. Suppose k is constant on Ω and f = θtarget = 0. There exist
functions An

θ(ω),An
λ(ω), Bn

θ (ω),Bn
λ(ω) such that:

θ̂n1(x , ω) = An
θ(ω)er

θ
+(ω)(x−L),

θ̂n2(x , ω) = Bn
θ (ω)er

θ
−(ω)x ,

λ̂n1(x , ω) = An
λ(ω)er

λ
+(ω)(x−L) + Aλθ(ω)θ̂n1(x , ω),

λ̂n2(x , ω) = Bn
λ(ω)er

λ
−(ω)x + Bλθ(ω)θ̂n2(x , ω),

where Aλθ(ω) and Bλθ(ω) are known and

rθ±(ω) =
u1 ±

√
u2
1 + 4k2ω2 − 4iku2ω

2k
, rλ±(ω) =

−u1 ±
√
u2
1 + 4k2ω2 + 4iku2ω

2k
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Subdomain gradient computation

We analyse now the transmission conditions. We suppose that:

Fy (Si (θ, λ))(x , ω) = σi (ω)(θ̂, λ̂)

where σi is a 2× 2 complex matrix. The transmission conditions then read:

k∂x

(
θ̂n1
λ̂n1

)
(0, ω)− u1

2

(
θ̂n1
−λ̂n1

)
(0, ω) + σj(ω)

(
θ̂n1
λ̂n1

)
(0, ω) =

(
M+

r (0, ω) + σj(ω)M+
0 (0, ω)

)(An
θ(ω)

An
λ(ω)

)
,

where M+
r and M+

0 are lower triangular matrices. (A similar expression holds for
θ2, λ2).
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Subdomain gradient computation

Using the iterative process, one proves the following recurrence:(
An
θ(ω)

An
λ(ω)

)
=
[
M+

r (0, ω) + σ1(ω)M+
0 (0, ω)

]−1 [
M−r (0, ω) + σ1(ω)M−0 (0, ω)

]︸ ︷︷ ︸
M1(ω)[

M−r (0, ω)− σ2(ω)M−0 (0, ω)
]−1 [

M+
r (0, ω)− σ2(ω)M+

0 (0, ω)
]︸ ︷︷ ︸

M2(ω)

(
An−2
θ (ω)

An−2
λ (ω)

)

Note: M1 and M2 are both lower triangular.
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Therefore, the optimal choice of σi reads:

σopt
1 (ω) = −M−r (0, ω)

(
M−0 (0, ω)

)−1

=

(
−krθ−(ω) + u1

2 0
kBλθ(ω)[rλ−(ω)− rθ−(ω)] −krλ−(ω)− u1

2

)
,

where

rθ±(ω) =
u1 ±

√
u2
1 + 4k2ω2 − 4iku2ω

2k
, rλ±(ω) =

−u1 ±
√
u2
1 + 4k2ω2 + 4iku2ω

2k

If we apply an inverse Fourier transform: non-local operator Si .
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Optimized operator

∇ · (uθ)−∇ · (k∇θ) = 0 on Ω

−∇ · (uλ)−∇ · (k∇λ) = F (θ) on Ω

B.C. on ∂Ω

Instead of using the optimal (non-local) operator, search for the optimal
lower-triangular matrix Pi , constant, for:

k∂x

(
θn1
λn1

)
(0, y)− u1

2

(
θn1
−λn1

)
(0, y) + P1

(
θn1
λn1

)
(0, y) =

k∂x

(
θn−1
2
λn−1

2

)
(0, y)− u1

2

(
θn−1
2
−λn−1

2

)
(0, y) + P1

(
θn−1
2
λn−1

2

)
(0, y)
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Optimized operator

Optimal in what sense? Denote Pi =

(
pi1 0
pi3 pi4

)
. We still have the recurrence

(
An
θ(ω)

An
λ(ω)

)
= M̃1(ω)M̃2(ω)

(
An−2
θ (ω)

An−2
λ (ω)

)
We want to solve the following problem:

min
pij

max
[ω1,ω2]

‖M̃1(ω)M̃2(ω)‖

for some matrix norm ‖ · ‖.
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Optimized operator

If one uses the spectral radius, one sees that only the diagonal elements appear. It
simplifies the problem to minp11,p21 maxω∈[ω1,ω2] R(p, ω), where

R(p, ω) =

∣∣∣∣∣∣
(
−
√
C (ω) + 2p11

)(
−
√

C (ω) + 2p21

)
(√

C (ω) + 2p11

)(√
C (ω) + 2p21

)
∣∣∣∣∣∣

For this min-max problem, we already have a solution1. But what about the off
diagonal element pi3? It can’t be found using the spectral radius!

1O. Dubois. Optimized Schwarz methods for the advection-diffusion equation and for problems
with discontinuous coefficients. PhD thesis, McGill University PhD, 2007
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Subdomain gradient computation

Figure: Error after 20 iterations. Blue dots: random values in the off-diagonal matrix
element. Red line: zero in the off-diagonal element. 19 / 30
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Perspective: parallel optimization

However, computing the gradient in a parallel way may not be efficient:
It creates a parallel execution part for computing the gradient, but it becomes
sequential for the optimization part.
All the analysis was carried with a constant k , while it should be a control
function.
Each change of the control k implies a new parallel computation

=⇒ What if we solve the optimization problem on each subdomain instead?
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Decomposition in the constraints

min ‖θ − θtarget‖2L2(Ω),

s.t.


∇ · (uθ)−∇ · (k∇θ) = 0 in Ω,

θ|∂Ω = θ0

k ∈ [a, b] a.e. in Ω.

⇐⇒

min
2∑

i=1

‖θi − θtarget‖2L2(Ωi )
,

s.t.


∇ · (uθi )−∇ · (ki∇θi ) = 0 in Ωi ,

θi |∂Ω = θ0, ki ∈ [a, b] a.e. in Ωi

θ1|Γ∩ = θ2|Γ∩ , k1|Γ∩ = k2|Γ∩
k1∂n1θ1 + a(u · n1)θ1 + pθ1 = −k2∂n2θ2 − a(u · n2)θ2 + pθ2.
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Decomposition in the constraints

How to handle the continuity constraints? Add a virtual control on Γ∩, and penalize.

min
2∑

i=1

‖θi − θtarget‖2L2(Ωi )
+

∫
Γ∩

λ(θ1 − θ2) +
ρ

2

∫
Γ∩

(θ1 − θ2)2,

s.t.


∇ · (uθi )−∇ · (ki∇θi ) = 0 in Ωi ,

θi |∂Ω = θ0, ki ∈ [a, b] a.e. in Ωi

k1|Γ∩ = k2|Γ∩
k1∂n1θ1 + a(u · n1)θ1 + pθ1 = −k2∂n2θ2 − a(u · n2)θ2 + pθ2 = g on Γ∩.

Note : once discretized (with FV), the constraint k1 = k2 is handled through a
(geometric) mean of the values on each side of the interface.
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Decomposition in the constraints

min
2∑

i=1

‖θi − θtarget‖2L2(Ωi )
+

∫
Γ∩

λn(θ1 − θ2) +
ρn

2

∫
Γ∩

(θ1 − θ2)2,

s.t.


∇ · (uθi )−∇ · (ki∇θi ) = 0 in Ωi ,

θi |∂Ω = θ0, ki ∈ [a, b] a.e. in Ωi

k1|Γ∩ = k2|Γ∩
k1∂n1θ1 + a(u · n1)θ1 + pθ1 = −k2∂n2θ2 − a(u · n2)θ2 + pθ2 = g on Γ∩.

This is an augmented lagrangian method. Given λn and ρn, solve the optimization
problem, giving kni , θ

n
i . Based on the value of ‖θn1 − θn2‖L2(Γ∩):

increase ρ (the error is still too big),
update λ : λn+1 = λn + ρn(θn1 − θn2).
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1D simplified example

min ‖θ − θtarget‖2L2(Ω),

s.t.


− d

dx

(
k
dθ

dx

)
= 0 in Ω = [−1, 1],

θ(−1) = θ(1) = 0,
k ∈ [1, 11] a.e. in Ω

θtarget solution of d
dx

(
ktarget

dθtarget
dx

)
= 0, where ktarget(x) =

{
3 if x < 0.38
9 otherwise

.

Discretization using a finite volume scheme with a mesh respecting the interface
boundary Γ∩ = {0.4}.
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1D simplified example

min
2∑

i=1

‖θni − θtarget‖2L2(Ω) +

∫
Γ∩

λn(θn1 − θn2) +
ρn

2
(θn1 − θn2)2,

s.t.



− d

dx

(
k1

dθn1
dx

)
= 0 in Ω1 = [−1, 0.4],

− d

dx

(
k2

dθn2
dx

)
= 0 in Ω2 = [0.4, 1],

θ1(−1) = θ2(1) = 0,

k1
dθ1
dx

(0.4) = k2
dθ2
dx

(0.4) = g ,

ki ∈ [1, 11] a.e. in Ωi .

We know that λn should converge to λ∗ = 0.
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1D simplified example
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Figure: Solution of the optimal control problem computed with split domains: θ
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1D simplified example
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Figure: Solution of the optimal control problem computed with split domains: k
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Conclusion

Take-home message

Optimize then decompose (indirect approach):
Optimized operator found, with a lot of restrictions.
Still unclear how to use it in an optimization algorithm without breaking the
parallel process

Decompose then optimize (direct approach):
Easily generalized
Analysis not finished
Seems to work numerically
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Question time!
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