Topology opt of heated channel

> Alexandre Vieira

Introduction

Model analysis Definition Existence and discretization Optimization

Numerical example

Conclusion

Multimaterial topology optimization of a heated channel

Dr. Alexandre Vieira Joint collaboration with Dr. P.-H. Cocquet and Pr. A. Bastide

University of Reunion Island - PIMENT

9th July 2021

Introduction

Alexandre Vieira

Introduction

Model analysis Definition Existence and discretization Optimization

Numerical example

Conclusion

How to design the device to optimize the physical phenomenon?

- minimize temperature at output
- minimize pressure drop
- ...

In a region Ω , suppose a flow occupies a region Ω_f and the solid defines a region Ω_s such that $\Omega = \Omega_f \cup \Omega_s$. Suppose also that the channel is heated.

 \implies Navier-Stokes coupled with advection-diffusion equations.

(Focus only on steady-state model.)

$$\begin{aligned} \nabla \cdot \mathbf{u} &= 0 \quad \text{in } \ \Omega_f \\ (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \mathsf{Re}^{-1}\Delta \mathbf{u} - \mathsf{Ri}\theta e_y &= 0 \quad \text{in } \ \Omega_f \\ \nabla \cdot (\mathbf{u}\theta) - \nabla \cdot (\mathsf{Re}^{-1}\mathsf{Pr}^{-1}k(x)\nabla\theta) &= 0 \quad \text{in } \ \Omega \\ \mathbf{u} &= 0 \quad \text{in } \ \Omega_s \end{aligned}$$

We would like to control the distribution of solid. However, hard to put this in a control context. \implies Penalization technique.

Topology opt of heated channel Ω_{f} Alexandre Vieira analysis Definition Existence and Ω_{s}

 $\begin{aligned} \nabla \cdot \mathbf{u} &= 0 \quad \text{in } \ \Omega\\ (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \mathsf{Re}^{-1}\Delta \mathbf{u} - \mathsf{Ri}\theta e_y + \eta \mathbf{1}_{\Omega_s} \mathbf{u} &= 0 \quad \text{in } \ \Omega\\ \nabla \cdot (\mathbf{u}\theta) - \nabla \cdot (\mathsf{Re}^{-1}\mathsf{Pr}^{-1}k(x,\mathbf{1}_{\Omega_s})\nabla\theta) &= 0 \quad \text{in } \ \Omega \end{aligned}$

Converges as $\eta \to +\infty$ [1]. However, the indicator 1_{Ω_s} is a binary function, so not suitable for optimization.

 \implies Convexification and penalization of intermediate values.

⁰[1] Angot, P., Bruneau, C.H., Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numerische Mathematik, 1999

How to penalize intermediate values ?

How to penalize intermediate values ?

Topology opt of heated channel

Alexandre Vieira

Introduction

Model analysis

Definition

Existence and discretization Optimization

Numerical example

Conclusion

Cost penalization : usual concerning optimization with constraints (barrier methods...). In our case, we minimize the following cost:

$$\int_{\Omega} h_{\tau}(\alpha(x))(1-h_{\tau}(\alpha(x)))dx$$

Since $h_{\tau} : [0,1] \rightarrow [0,1] \implies$ penalizes the values between 0 and 1, and $h_{\tau}(\alpha)$ approximates 1_{Ω_s} .

How to penalize intermediate values ?

Definition

Existence and discretization Optimization

Numerical example

Conclusion

 h_{τ} can be used to penalize intermediate values, and obtain $h_{\tau} \xrightarrow[\tau \to +\infty]{\tau \to +\infty} 0$ or 1.

• SIMP :
$$h_{\tau}(x) = x^{\tau}$$

• RAMP :

$$h_{\tau}(x) = 1 - (1 - x) \frac{1 + \tau}{1 + \tau - \tau x}$$

• Sigmoid : $h_{\tau}(x) = \frac{1}{1 + \exp(-\tau(x - x_0))} - \frac{1}{1 + \exp(\tau x_0)}$

$$\nabla \cdot \mathbf{u} = 0 \quad \text{in } \Omega$$
$$(\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \operatorname{Re}^{-1}\Delta \mathbf{u} - \operatorname{Ri}\theta e_y + \eta h_\tau(\alpha)\mathbf{u} = 0 \quad \text{in } \Omega$$
$$\nabla \cdot (\mathbf{u}\theta) - \nabla \cdot (\operatorname{Re}^{-1}\operatorname{Pr}^{-1}k(x, \mathbf{1}_{\Omega_s})\nabla\theta) = 0 \quad \text{in } \Omega$$

 $\implies \alpha$ defines the distribution of solid. Another problem: how does this affect the conductivity function $k(x, 1_{\Omega_s})$?

Alexandre Vieira

Introduction

Model analysis

Definition

Existence and discretization Optimization

Numerical example

Conclusion

Usually, thermal conductivity = discrete set of constants. We would like to control the distribution of thermal conductivity also!

Interpolation of thermal conductivity constants

We would like to solve:

 $\min_{\alpha,\phi}\mathcal{J}(u,\theta,p)$

such that:

$$\nabla \cdot \mathbf{u} = 0 \quad \text{in } \Omega$$
$$(\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \operatorname{Re}^{-1}\Delta \mathbf{u} - \operatorname{Ri}\theta e_y + \eta h_\tau(\alpha)\mathbf{u} = 0 \quad \text{in } \Omega$$
$$\nabla \cdot (\mathbf{u}\theta) - \nabla \cdot (\operatorname{Re}^{-1}\operatorname{Pr}^{-1}k_\tau(\alpha,\phi)\nabla\theta) = 0 \quad \text{in } \Omega$$

 α defines the distribution of solid, ϕ the thermal conductivity.

Existence of solution

Topology opt of heated channel

Alexandre Vieira

Introduction

Model analysis Definition

Existence and discretization Optimization

Numerical example

Conclusion

We first study the existence of solutions to these equations. Suppose :

 $\alpha, \phi \in \mathcal{U}_{\mathsf{ad}} = \{ \xi \in BV(\Omega) \mid 0 \le \xi(x) \le 1 \mid |D\xi|(\Omega) \le \kappa \}.$

and h_{τ} , k_{τ} are bounded continuous functions with $k(x) \ge k_{\min} > 0$.

Theorem

Given α , $\phi \in \mathcal{U}_{ad}$, and given Ri, input velocity and heat flux small enough, there exists a solution $(u, \theta, p) \in H^1(\Omega)^2 \times H^1(\Omega) \times L^2(\Omega)$.

Optimality problem

Topology opt of heated channel

Alexandre Vieira

Introduction

Model analysis Definition Existence and discretization Optimization

lumerical xample

Conclusion

Suppose now we would like to minimize a functional $\mathcal{J}(\alpha, \phi, u, \theta, p)$ Under some hypothesis, there exists an optimal solution. But more interesting:

Theorem

Define a sequence $(\alpha_h^*, \phi_h^*, u_h^*, \theta_h^*, p_h^*)$ of global optimal solutions to the discretized problem. Then it converges (weak-*, weak-*, strong, strong, strong) to a global optimal solution of the continuous problem.

Numerical example

Numerical example

Code done using Fenics, available online.

Numerical example

Topology opt of heated channel

Alexandre Vieira

ntroduction

Model analysis Definition Existence and discretization Optimization

Numerical example

Conclusion

You may have noticed that the control ϕ depends on the control α , since the distribution of the thermal diffusivity in the solid depends.... On the distribution of solid.

 \implies Advocates for alternating directions!

Optimize first on α , then on ϕ . In all numerical tests: it works way better.

Numerical example

Topology opt of heated channel

Alexandre Vieira

ntroduction

Model analysis Definition Existence and discretization Optimization

Numerical example

Conclusion

For this presentation, I want to compare two approaches:

- **1** Gradually increase τ defining h_{τ} and k_{τ} .
- 2 Keep τ fixed and penalize more and more in the cost $\int_{\Omega} h_{\tau}(\alpha)(1-h_{\tau}(\alpha))$.

Numerical example: function

Numerical example: cost

Conclusion

Topology opt of heated channel

Alexandre Vieira

ntroduction

Model analysis Definition Existence and discretization Optimization

Numerical example

Conclusion

How to solve a complex topology optimization problem applied to fluid dynamics?

- A nice and coherent way to approximate the problem.
- Mathematically sound, and now fully analyzed.
- Gives interesting numerical results.
- Gives hints concerning ways to enhance it!

Conclusion

Topology opt of heated channel

Alexandre Vieira

ntroduction

Model analysis Definition Existence and discretization Optimization

Numerical example

Conclusion

What is left to enhance?

- Computations really long, may hardly converge.
- Works for some examples, and not for others: does their exist a uniform method for all problems?
- Optimal solution for the thermal conductivity still depends on the initial guess: how to enhance this?
- Solution needs to be "cleaned" (how do we remove the holes without altering the optimality?).

We have a preprint!

Topology opt of heated channel

Alexandre Vieira

ntroduction

Model analysis Definition Existence and discretization Optimization

Numerical example

Conclusion

Topology Optimization for Steady-state anisothermal flow targeting solid with piecewise constant thermal diffusivity Alexandre Vieira, Alain Bastide, Pierre-Henri Cocquet https://hal.archives-ouvertes.fr/hal-02569142

Question time!