Alexandre Vieira 
email: alexandre.vieira@univ-reunion.fr
  
Pierre-Henri Cocquet 
email: pierre-henri.cocquet@univ-pau.fr
  
  
LiQuOFETI : a FETI-inspired method for elliptic quadratic optimal control problems

Problem statement

The goal is to solve, with some decomposed scheme, the linear quadratic optimal control min 1 2 Ω (y -y target ) 2 + α 2 Ω f 2 s.t. Ay = -div (A(x)∇y) + div (b(x)y) + (c(x) + µ)y = F + f, y| ∂Ω = 0.

(1)

Here, we will assume that A ∈ L ∞ (Ω, R d×d ), b ∈ W 1,∞ (Ω; R d ), c ∈ L ∞ (Ω), F ∈ L 2 (Ω) and µ > 0.

A direct approach

In order to find the solutions of this problem, it is usual to solve necessary and sufficient conditions of optimality, expressed through the adjoint equation

     A * p * = y -y target on Ω, p * | ∂Ω = 0, αf + p * = 0,
The resolution of the coupled direct-adjoint equations through a decomposition technique has been analyzed (see for instance [START_REF] Gong | Convergence analysis of the Schwarz alternating method for unconstrained elliptic optimal control problems[END_REF]. However, we find this approach restrictive for several reasons.

1 As with the indirect numerical methods for optimal control problems, focusing on resolving the necessary conditions of optimality turns out to be limited for numerous non-linear/non-quadratic optimization problems. This is mainly due to the fact that the resulting system of optimality is expressed as a DAE, which can be hardly solved, even without any decomposition. It may be even harder if you add further constraints on the state and/or the control, resulting in searching for the solution of variational inequalities with algebraic constraints.

2 Even if we focus on computing the gradient of the cost using only the direct and adjoint equations (and therefore, forgetting about the algebraic equation for a moment), it is still unclear how precise the computation of the states should be in order to compute an approximate gradient, that will then be used in a descent algorithm. The parallelization of such approach is also a source of questions. Instead we will try a direct approach. As long as possible, we will stay in an optimization framework, and decompose directly in the constraints.

Theorem 1: Equivalent decomposed formulation

Problem (1) is equivalent to min 1 2 2 i=1 ∥y i -y target ∥ 2 L 2 (Ω i ) + α∥f i ∥ 2 L 2 (Ω i ) s.t.            Ay i = F + f i in Ω i , y i | ∂Ω = 0, ∂ n A y i | Γ ∩ = (-1) i+1 g, i = 1, 2, y 1 | Γ ∩ = y 2 | Γ ∩ , (2 ) 
where

Γ ∩ = ∂Ω 1 ∩ ∂Ω 2 .
Introduction of a virtual control

Ω 1 Ω 2 Figure 1. Decomposition idea.
The equivalence (2) boils down to two main ideas.

1 The solution should be continuous at the interface Γ ∩ .

2 The normal derivative ∂ n A y i becomes a new unknown that must be controlled with the same function, assuring the continuity of the normal derivative.

An augmented Lagrangian approach

The biggest challenge consists in finding a way to solve (2) with the continuity constraint

y 1 | Γ ∩ = y 2 | Γ ∩ .
For this, we choose an augmented Lagrangian approach, and check its convergence. The new problem to solve now reads:

min 1 2 2 i=1 ∥y i -y target ∥ 2 L 2 (Ω i ) + α∥f i ∥ 2 L 2 (Ω i ) + Γ ∩ λ(y 1 -y 2 ) + ρ 2 Γ ∩ (y 1 -y 2 ) 2 s.t.      Ay i = F + f i in Ω i , y i | ∂Ω = 0, ∂ n A y i | Γ ∩ = (-1) i+1 g, i = 1, 2, (3) 
Note that (3) can be solved in a highly parallel framework, since the computation of the state and the update of the control can be done independently on each subdomain. Only the update of the virtual control g would need a synchronization.

Algorithm: update of the multiplier Data:

ρ 0 ≥ 1, ω * << 1, η * << 1, τ > 1.
Choose an initial f 0 , g 0 , λ 0 . while

∥y k 1 -y k 2 ∥ 2 L 2 (Γ ∩ ) ≥ η * , ∥∂ f,g Ĵ+ (f k , g k )∥ ≥ ω * do
Solve approximately (3) to find f k , g k and the associated pk i , in the sense that :

∥∂ f,g Ĵ+ (f k , g k )∥ = 2 i=1 ∥αf k i -pi ∥ 2 L 2 (Ω i ) + ∥p k 1 -pk 2 ∥ 2 L 2 (Γ ∩ ) ≤ ω k . if ∥y 1 -y 2 ∥ 2 L 2 (Γ ∩ ) ≤ η k then // Update multiplier; Choose λ k+1 = λ(f k , g k , λ k , ρ k ) = λ k + ρ k (y k 1 -y k 2 ); Let ρ k unchanged : ρ k+1 = ρ k ; Decrease ω k : ω k+1 = (ρ k ) -1 ω k ; Decrease η k : η k+1 = (ρ k ) -1/2 ω k ; else // Increase penalization; λ k remains unchanged; Increase ρ k : ρ k+1 = τ ρ k ; Decrease ω k : ω k+1 = (ρ k+1 ) -1 ; Decrease η k : η k+1 = (ρ k+1 ) -1/2 ; end end
Theorem 2: Convergence of the algorithm

Denote x k = (f k 1 , f k 2 , g k
) the solutions produced by Algorithm 1, and suppose it converges to some x * . Define f k as f | Ω i = f k i , and y k the associated state. Then f k , y k converge to the solution of (1).

A Fourier analysis of λ k

Using a Fourier Analysis of the necessary and sufficient conditions of optimality of (3) when F = 0, y target = 0 (analysis of the error correction), one may prove that the update of λ in the algorithm produces iterates {λ k } k such that

R := λk+1 λk = 1 -iρ k α -1/2 (D + -D -) -1 -1
where D ± = √ ±iα -1/2 + ω 2 , and λ is the Fourier transform of λ. This coefficient shows how fast {λ k } converges, and it seems to converge fast! -10-5 0 5 10 0

5 • 10 -2 0.1 ω |R| Figure 2. |R| for ρ k = 3, α = 1.

Numerical example

We solve (1) with where Ω = [-1, 1] × [0, 1], y target (x 1 , x 2 ) = sin(2πx 1 ) sin(2πx 2 ) and F (x 1 , x 2 ) = 8π 2 sin(2πx 1 ) sin(2πx 2 ), α = 1. The optimal solution is f * = 0, y * = y target . We solve this problem using our augmented lagrangian method. The problem is discretized using Q1 elements on a structured uniform mesh, and the interface is placed at Γ ∩ = {0} × [0, 1]. We retrieve a second order convergence of the solution with respect to the discretization stepsize. We see also the fast covergence of λ in the case of y target = F = 0, which is even better than predicted by the theory. 
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  Figure 4. |λ k+1 /λ k | for different iterations.