LiQuOFETI: a FETI-inspired method for elliptic quadratic optimal control problems
Alexandre Vieira, Pierre-Henri Cocquet

To cite this version:
Alexandre Vieira, Pierre-Henri Cocquet. LiQuOFETI: a FETI-inspired method for elliptic quadratic optimal control problems. HYBRID RESEARCH SCHOOL Domain Decomposition for Optimal Control Problems (2644), Sep 2022, Marseille (CIRM, Centre International de Rencontres Mathématiques), France. hal-03778184

HAL Id: hal-03778184
https://hal.science/hal-03778184
Submitted on 15 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Problem statement

The goal is to solve, with some decomposed scheme, the linear quadratic optimal control
\[
\min_\mu \frac{1}{2} \int (y - y_{\text{target}})^2 + \frac{1}{2} \int f^2
\]
\[\text{s.t. } A \frac{\partial g}{\partial x} + \nabla (b(x)y) + c(x) + \mu y = f + f,\]
\[\forall \Omega,\]
\[y|_{\partial \Omega} = 0,\]
\[A \partial x |_{\partial \Omega} = 0,\]
\[\partial b(x)y |_{\partial \Omega} = 0,\]
\[\partial c(x) |_{\partial \Omega} = 0,\]
\[\partial \mu |_{\partial \Omega} = 0.\]

Here, we will assume that \(A \in L^\infty(\Omega, \mathbb{R}^{d_m \times d_m}), b \in W^{1, \infty}(\Omega, \mathbb{R}^m), c \in L^\infty(\Omega), F \in L^2(\Omega) \) and \(\mu > 0 \).

Algorithm: update of the multiplier

Data: \(\rho > 0, \omega^* < 1, \eta, \lambda > 1. \)

Choose an initial \(f^i, \rho^i, \lambda^i \), \(\forall i \). \(\forall i \), while \(\|\rho_i - \rho_{i-1}\|_2 \leq \eta \) or \(\lambda_i \) unchanged.

Choose \(\lambda^{i+1} = \lambda^i, \rho^{i+1} = \lambda^i + \rho^i (\|y^i - y^*\|) \).

Let \(\rho^{i+1} \) unchanged.

Decrease \(\omega_i : \omega_{i+1} = (\rho^{i+1})^{-1} \omega_i \).

Decrease \(\eta_i : \eta_{i+1} = (\rho^{i+1})^{-1} \eta_i \).

end

A Fourier analysis of \(\lambda^k \)

Using a Fourier Analysis of the necessary and sufficient conditions of optimality of (3) when \(F = 0 \), one may prove that the update of \(\lambda \) in the algorithm produces iterates \(\{\lambda^k\} \), such that
\[
R - \lambda^{k+1} = \left(1 - \|\rho^{k+1}\|^{-1} (D_s - D_\Sigma)^{-1}\right) R - \lambda^k
\]
where \(D_s = \sqrt{\pi a \omega^{1/2}} \Delta x^{1/2} \), and \(\lambda \) is the Fourier transform of \(\lambda \). This coefficient shows how fast \(\{\lambda^k\} \) converges, and it seems to converge fast!

Numerical example

We solve (1) with where \(\Omega = [-1, 1] \times [0, 1], y_{\text{target}}(x, z) = \sin(2\pi x) \sin(2\pi z) \) and \(G(x, z) = \pi^2 \sin(2\pi x) \sin(2\pi z) \) and \(n = 1 \). The optimal solution is \(f^* = 0, y^* = y_{\text{target}} \).

We solve this problem using our augmented lagrangian method. The problem is discretized using Q1 elements on a structured uniform mesh, and the interface is placed at \(\Gamma_i = \{ y = 0 \} \times [0, 1] \).

We retrieve a second order convergence of the solution with respect to the discretization stepsize.

References

Alexandre Vieira, Pierre-Henri Cocquet