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Abstract

A major concern when dealing with financial time series involving a wide variety of
market risk factors is the presence of anomalies. These induce a miscalibration of the models
used to quantify and manage risk, resulting in potential erroneous risk measures. We propose
an approach that aims at improving anomaly detection on financial time series, overcoming
most of the inherent difficulties. Valuable features are extracted from the time series by
compressing and reconstructing the data through principal component analysis. We then
define an anomaly score using a feedforward neural network. A time series is considered to
be contaminated when its anomaly score exceeds a given cut-off value. This cutoff value is
not a hand-set parameter, but rather calibrated as a neural network parameter, throughout
the minimization of a customized loss function. The efficiency of the proposed approach
compared to several well-known anomaly detection algorithms is numerically demonstrated
on both synthetic and real data sets, with high and stable performance being achieved with
the PCA NN approach. We show that value-at-risk estimation errors are reduced when the
proposed anomaly detection model is used with a basic imputation approach to correct the
anomaly.

Key words: anomaly detection, financial time series, principal component analysis, neural
network, missing data, market risk, value at risk.

1 Introduction

In the context of financial risk management, financial risk models are of utmost importance
in order to quantify and manage financial risk. Their outputs, risk measurements, can both
help in the process of decision making and ensure that the regulatory requirements are met
(Basel Committee on Banking Supervision, 2013). Financial management thus heavily relies
on financial risk models and the interpretation of their outputs. The data usually consist of
time series representing a wide variety of market risk factors. A major issue of such data is the
presence of anomalies. A value of the time series is considered to be abnormal whenever its
behaviour is significantly different from the behaviour of the rest of the time series (Hawkins,
1980). In this work, we focus on the detection of abnormal observations in a market risk factor
time series used to calibrate financial risk models. Indeed, erroneous input data may wrongly
impact the calibrated model parameters. A typical example is the estimation of the covariance
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matrix of a bank market risk factors. This covariance matrix is involved in the computation of
value-at risks (VaR) or expected shortfalls (expected losses above the VaR level). Since the true
covariance is unknown, it has to be estimated from the data. However, the presence of anomalies
in the data might have an impact on this estimation. For this specific case, robust methods,
less sensitive to anomalies, can be used. Yet, existing robust estimators are computationally
expensive, with a polynomial or even exponential time complexity in terms of the number of
market risk factors. A faster approach was suggested by Cheng et al. (2019), but this algorithm
only applies to the estimation of the covariance matrix in the case of Gaussian distribution.
Financial risk models used by banks are widespread and various. Therefore, instead of seeking
for a robust version for each of them, we propose to detect anomalies directly on the time series.

Contributions of the Paper Our PCA NN methodology identifies anomalies on time series
using a principal component analysis (PCA) and neural networks (NN) as underlying models.
This methodology overcomes common pitfalls associated with anomaly detection. PCA is first
used as a features extractor on (augmented if needed) data. Anomaly detection is then performed
in two steps. The first step identifies the time series with anomalies evaluating the propensity of
the time series to be contaminated, as reflected by its so-called anomaly score. Toward this end,
we calibrate a feedforward neural network through the minimization of a customized loss. This
customized loss allows us to calibrate the cut-off value on the anomaly scores, without resorting
to expert judgement. In this way, we remove the expert bias. The second step localizes the
anomaly among the observed values of the identified contaminated time series.

Outline The PCA NN approach is detailed in Section 2. Section 3 describes the methodology
used for generating the data on which our approach is thoroughly tested in Sections 4, 5 and
6, exploiting the knowledge of the data generating process for benchmarking purposes. Section
7 illustrates the benefit of using our approach as a data cleaning preprocessing stage on a
downstream task, namely value-at-risk computations. This is completed by further numerical
experiments on real data sets in Section 8. Section 9 concludes. Section A and B provide reviews
of the anomaly detection literature and algorithms. Section C addresses the data stationarity
issue.

2 The PCA NN Anomaly Detection Approach

2.1 Notations

Let

X =
(
X1, X2, . . . , Xi, . . . , Xn

)>
, (1)

where the column-vector Xi =
(
xit1 , x

i
t2 , . . . , x

i
tj . . . , x

i
tp

)
∈ Rp corresponds to the i-th observed

time series, and xitj to the value observed at time tj in the i-th time series.
Our method fits into the supervised framework. We thus assume that the data matrix X

comes along with two label vectors. The first label vector A =
(
A1, . . . , An

)
∈ {0, 1}n identifies

the time series containing anomalies referred to as contaminated time series. For i = 1, . . . , n, we
define the identification labels as

Ai =

{
1 if there exists j such that xitj is an anomaly.
0 otherwise.

(2)

The second label vector L concerns solely the contaminated time series. Its coefficients
correspond to the localization labels, i.e. time stamps at which an anomaly occurs. For
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j = 1, . . . , p and i ∈ Ic = {i : Ai = 1} (the set of contaminated time series),

Li =  when the anomaly occurs at time t for the i-th contaminated time series,

X,A and L are general notations. As the model involves a learning phase, we denote by
XTrain, ATrain and LTrain the data used for calibration and, by XTest, ATest and LTest the
independent data sets on which the model performance is evaluated.

2.2 Methodology Overview

The anomaly detection model we propose is a two step supervised-learning approach. The
contaminated time series identification step aims at identifying among the observed time series
the ones with potential anomalies. The anomaly localization step consists in finding the location
of the anomaly in each contaminated time series identified during the first step.

The model used in the first step falls under the scope of binary classification models, assigning
to each time series a predicted label

Âi =

{
1 if Xi is considered as contaminated by the identification model.
0 otherwise.

The second step uses a multi-classification model. For each contaminated time series identified
in the first step, the model predicts a unique time stamp L̂i at which the anomaly has occurred.
Formally, the observed value at the time stamp t̂i of the i-th contaminated time series is
considered abnormal, meaning that the observation xit̂i is abnormal. Thus,

L̂i = ̂i with ̂i ∈ {1, . . . , p}.

Our two-step anomaly detection model localizes only one anomaly per run, if any. Several
iterations allow removing all anomalies. Indeed, as long as the time series is identified as
contaminated, by the first step of the method, the time series can go through the second step.
Once all anomalies have been localized the final stage of the approach is to remove the abnormal
values and suggest imputation values (see Section 6.1).

2.3 Theoretical Basics of Principal Component Analysis

A fundamental intuition behind our anomaly detection algorithm is the existence of a lower
dimensional subspace where normal and abnormal observations are easily distinguishable. Since
the selected principal components explain a given level of the variance of the data, they represent
the common and essential characteristics to all observations. As one might reasonably expect,
these characteristics mostly represent the normal observations. When the inverse transformation
is applied, the model successfully reconstructs the normal observations with the help of the
extracted characteristics, while it fails into reconstructing the anomalies.

In this section, we recall the theoretical tenets of the principal component analysis (PCA)
useful for our purpose. The idea of PCA is to project the data from the observation space of
dimension p into a latent space of dimension k, with k < p. This latent space is generated by the
k directions for which the variance retained under projection is maximal.

The first principal component U is given by U = w>X, where w is a to-be-determined vector
of weights. Since the PCA aims at maximizing the variance along its principal components, w is
sought for as

arg max
‖w‖=1

w>Σw ,

where Σ is the covariance matrix of X. The optimal solution by the Lagrangian method is given
by Σw = λw , where λ > 0 is a Lagrangian multiplier. Multiplying both sides by w> results in
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w>Σw = λ. Following the same process with an additional constraint regarding the orthogonality
between the principal components, one can show that the k first principal components correspond
to the eigenvectors associated with the k dominant eigenvalues of Σ.

The transfer matrix ΩX ∈ Rk×p is defined by the eigenvectors of Σ associated with its k
largest eigenvalues. This transfer matrix ΩX applied to any observation in the original observation
space projects it into the latent space. Since the transformation is linear, reconstructing the
initial observations from their equivalent in the latent space is straightforward. Using PCA on
the data matrix X, the transfer matrix ΩX can be inferred. The projection of the observations
into the latent space Z ∈ Rn×k is then given by Z = XΩ>X , while their reconstructed values are
given by X̂ = ZΩX .

The reconstruction errors εi for each time series defined by

εi = X̂i −Xi, i = 1, . . . , n, (3)

referred in the sequel as the new features, are our new representation of data, given as inputs
to our models. Algorithm 1 summarizes how to compute these reconstruction errors. The two
steps of the model use the same inputs, namely these reconstruction errors. Nevertheless, the
processing these inputs undergo in each step differs.

Algorithm 1 Features extraction with PCA
inputs : number of principal components k

out of sample data XTest

training data if not trained yet XTrain

if not trained yet then
ΩXTrain ← PCA(XTrain, k)

end
εTrain = XTrain

(
Ω>
XTrainΩXTrain − Ip

)
εTest = XTest

(
Ω>
XTrainΩXTrain − Ip

)
outputs : εTrain reconstruction errors for the train set

εTest reconstruction errors for the test set

2.4 Contaminated Time Series Identification

The first step of the approach aims at identifying the time series with anomalies based on
the reconstruction errors obtained using PCA and Algorithm 1. In this section, we detail the
process these new features undergo. We assign to each reconstruction error an anomaly score
which computation is handled by a neural network (NN) (see Goodfellow et al., 2016). We also
numerically demonstrate that our NN has an advantage over a naive approach in terms of being
able to assess more accurately the propensity of a time series of being contaminated.

Naive approach A naive and natural approach to define the anomaly score is to consider the
`2-norm of the reconstruction errors ε̃i = ‖εi‖2, i = 1, . . . , n. This anomaly score represents the
propensity of a time series to be contaminated or not. The scores are first split into two sets
depending on whether the corresponding time series is contaminated or not. We denote by ε̃c

and ε̃u the set of contaminated and uncontaminated time series anomaly scores, i.e.

ε̃c := {‖εi‖2; Ai = 1 } = {ε̃i, i ∈ Ic}
ε̃u := {‖εi‖2; Ai = 0 } = {ε̃i, i /∈ Ic}.

The density distribution function of each class of time series fu and f c, i.e. for both ε̃c and
ε̃u, is then estimated using kernel density estimation (Węglarczyk, 2018). For l = {c, u}, let εl be
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Figure 1: Empirical densities of anomaly scores given by the naive approach for uncontaminated
time series in black and contaminated time series in red, on the train set (left) and on a test set
(right). The dotted dark red line represents the cut-off value.

an i.i.d sample of nl observations from a population with unknown density f l. The corresponding
kernel estimator is given by

f̂ l(s) =
1

nlh

nl∑
k=1

K
(
s− ε̃lk

h

)
, (4)

where K is a kernel function and h is a smoothing parameter.
The cut-off value s is then chosen as the intersection between the two empirical density

functions, i.e.

ŝ = arg min
s

{
|f̂u(s)− f̂ c(s)| < η

}
,

where η is a to be tuned precision level. The selected cut-off value ŝ represents the value of the
score for which the area under the curve of the density of uncontaminated time series above ŝ
and the area under the curve of contaminated time series below ŝ are as small as possible. We
expect it to correspond to a value exceeded by a relative low number of ε̃i with i /∈ Ic as f̂u(s) is
expected to be flat around the cut-off value exceedance region, and exceeded only by few ε̃i with
i ∈ Ic.

As shown in Figure 1, the naive approach results in a non-negligible overlapping region
between the two densities, both on the train set (left) and for the test set (right). This region
represents the anomaly score associated with time series that could be either contaminated or
uncontaminated. The uncertainty regarding the nature of the observation when its anomaly
score belongs to this region is relatively high in comparison with observations whose anomaly
scores lie on the extreme left-hand or right-hand side of the calibrated cut-off value. Moreover,
because we are not able to provide a clear separation between the scores of uncontaminated and
contaminated time series, we may expect the model to mislabel future observations, resulting in
a high rate of false positives and true negatives.
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Neural network approach In view of getting a clearer separation of the densities, we propose
an alternative approach for the computation of the anomaly scores built upon the reconstruction
errors. Let F denote the function that associates with each reconstruction error εi its anomaly
score. In the naive approach, F corresponds to the `2-norm. Hereafter, F instead represents the
outputs of a feedforward Neural Network (NN). The training of the corresponding NN aims at
minimizing a loss function that reflects our ambition to construct a function F giving accurate
anomaly scores. The network used for computing the anomaly scores is defined by

F (ε) =
(
hH ◦ hH−1 ◦ . . . h2 ◦ h1

)
(ε),

where hi(ε) =
(
W i · ε+ bi

)+ represents the computation carried in the i-th layer of the neural
network with nih hidden units. H stands for the number of layers of the NN, with ReLU
activation applied element-wise. We finally estimate the labels from the outputs following
Â = 1{(F (ε)−s)+>0}.

The idea of the learning is to calibrate the weights W :=
{
W i ∈ Rni

h×n
i−1
h , i = 2, . . . ,H

}
and

the biases b :=
{
bi ∈ Rni

h , i = 1, . . . ,H
}

such that the NN is able to accurately assess to which
extent a time series is contaminated, with a clear distinction between the anomaly scores assigned
to uncontaminated time series and those assigned to the contaminated ones, while integrating
the calibration of the cut-off value s as part of the learning. We denote by Θ := {W , b, s} the
set of parameters to be calibrated through the NN training. To meet these needs, the loss we
minimize during the learning is given by

LΘ

(
A, Â

)
= BCE(A, Â) + AUCDensityuA,F (ε) + AUCDensitycA,F (ε), (5)

where

BCE(A, Â) = − 1

n

∑
i

(
Ai log(Âi) + (1−Ai) log(1− Âi)

)
is the binary cross-entropy, a well-known loss function classically used for classification problems.
To this first component of our loss function, we add two components that aim at downsizing the
overlapping region between the density of anomaly score of both types of observations. In order
to have a control on the latter, we consider AUCDensityu and AUCDentsityc, which correspond
to the area under the curve of the probability density function of anomaly scores the model
assigns to contaminated and uncontaminated observations, respectively, i.e

AUCDensityu(s) =

∫ ∞
s

f̂uA,F (ε)(ω)dω , AUCDensityc(s) =

∫ s

−∞
f̂ cA,F (ε)(ω)dω . (6)

The bounds of these integrals depend on the cut-off value s and define the region for which we
want the probability density functions to be as small as possible, which allows us to estimate
ŝ. The estimated probability density functions f̂uA,F (ε) and f̂

c
A,F (ε) depend on F (ε), the scores

assigned to contaminated time series identification model, and of the identification labels A. We
describe with Algorithm 2, the scoring and cut-off value calibration achieved by the calibration of
a feedforward network with the loss (5). Each update of Θ, AdamStep in Algorithm 2, is carried
following the Adam optimization algorithm of (Kingma and Ba, 2014).
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Algorithm 2 Scoring and cut-off calibration
inputs : learning rate lr

number of maximum iterations K
kernel density estimator parameters K,h
training data εTrain,ATrain

Initialize parameter Θ, L̂ =∞ and count index k = 0
while k < K do

scores← FΘ

(
εTrain

)
scoresc ← scores1ATrain=1

scoresu ← scores1ATrain=0 // Density estimation following (4)
f̂u
ATrain,scoresu

= KernelDensityEstimator(K, h, scoresu)

f̂ c
ATrain,scoresc

= KernelDensityEstimator(K, h, scoresc)
// Loss evaluation following (5) and (6)
AUCDensityu ← NumericalIntegration(f̂u

ATrain,scoresu
, s)

AUCDensityc ← NumericalIntegration(f̂ c
ATrain,scoresc

, s)

Â← 1scores>s

L ← BCE
(
ATrain, Â

)
+ AUCDensityu + AUCDensityc

if L̂ > L then

L̂ ← L
Θ̂← Θ

end

Θ← AdamStep(L,Θ, lr)
k ← k + 1

end
outputs : best calibrated parameter Θ̂ = {Ŵ , b̂, ŝ}.

Approach AUCDensityu AUCDensityc

Naive 0.1725 0.7898
NN 0.05153 0.1550

Approach AUCDensityu AUCDensityc

Naive 0.1897 0.6354
NN 0.1290 0.1367

Table 1: AUC obtained with the naive and the NN approaches for the train set (left) and the
test set (right).

Table 1 shows that with the NN approach the densities of scores assigned to each type of
time series display the expected behaviours on the left-hand (right-hand) side of the cut-off value
for contaminated (uncontaminated) time series, on both the train and test sets. Actually, the
lower AUCDensityu (AUCDensityc), the lower the number of uncontaminated (contaminated)
time series to which are assigned anomaly scores above (below) the cut-off value, which prevents
mislabelling.

Once the features ε and the calibrated NN are provided, the contaminated times series
identification model is ready for use. This step is described by Algorithm 3.
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Figure 2: Empirical densities of anomaly scores given by the NN approach for uncontaminated
time series in black and contaminated time series in red, on the train set (left) and on a test set
(right). The dotted dark red line represents the calibrated cut-off value ŝ.

Algorithm 3 Contaminated time series identification model
inputs : time series to analyze Xi,

calibrated model parameter Θ̂,
εi ← PCAFeaturesExtraction(Xi) ; // cf. Algorithm 1 in Section 2.3
scorei ← F

Θ̂
(εi)

Âi ← 1scorei>ŝ
outputs : identification label Âi.

2.5 Anomaly Localization Step

Once the time series containing an anomaly have been identified, the second step of our approach
aims at localizing an abnormal observation among each contaminated time series. Again we
use the reconstruction errors defined in (3) as inputs of this second step. The difference lies on
the transformation these reconstruction errors undergo before labelling the different time stamp
observations. Namely, we now consider the following transformation of the reconstruction errors:

F (εi) = |εi| = |Xi − X̂i|,

with |·| meant component wise. The model input F (εi) ∈ Rp+ is thus assigned to each time series
Xi ∈ Rp. The time stamp of occurrence of the anomaly is given by

L̂i := arg max
j

{
F (εitj ) : j ∈ {1, . . . , p}

}
.

Algorithm 4 recaps the anomaly localization model.
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Features
extractionX ε

Identificationε Â

Is X
contami-
nated?

Â End

Localizationε L̂

ImputationX, L̂ X̃

no
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Figure 3: Flow chart of our two step anomaly detection model (PCA NN), depicting the process
a time series X goes through.

Algorithm 4 Anomaly Localization Model
inputs : time series Xi to analyze.
εi ← PCAFeaturesExtraction(Xi)

L̂i ← arg max

{
|εit | :  ∈ {1, . . . , p}

}
outputs : anomaly location L̂i.

Note that anomalies are not necessarily extrema. For this reason, the above PCA features
extraction step is necessary. Building on the reconstruction errors, the model identifies these
extrema-anomalies, but also abnormal observations which are not necessarily extrema. This
subtlety of the nature of the observations underlines the importance of going further than taking
the index of the highest observed value of the contaminated time series Xi.

The flow chart of Figure 3 along with Algorithm 5 summarize our approach. When a time
series X is given to our model, we suggest a new representation of X, namely ε, through a
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features engineering step involving PCA. The resulting representation εi feeds the first component
of the model, i.e. the identification step, which evaluates the time series propensity of being
contaminated. The optimal parameter Θ̂ of the identification model solves

Θ̂ = arg min
Θ=(W ,b,s)

∑
X∈X

LΘ

(
A, Â

)
,

where Â = 1F((ΩΩ>−Ip)X)>s and LΘ is the loss function defined in (5). Then, if the model
considers the time series as contaminated, the localization model takes over to localize the
abnormal value in X. For this second step of the model, the time stamp of occurrence of the
anomaly is given by

arg max
j

{(
X
(

Ω>Ω− Ip
))

j
: j ∈ {1, . . . , p}

}
Finally, the anomaly is imputed. As our approach integrates the computation of a reconstruc-

tion of the time series, we could replace the anomaly with the corresponding reconstructed value.
The model will be then able to detect the anomaly and suggest an imputation value. However,
numerical tests described in Section 6.1 show that imputations with naive approaches perform
better.

Algorithm 5 Anomaly Detection Model
inputs : time series Xi to analyze,

calibrated identification model parameter Θ̂
Âi ← IdentificationModel(Xi, Θ̂) // Algorithm 3
if Âi = 1 then
L̂i ← LocalizationModel(Xi) // Algorithm 4

end
outputs : identification label Âi,

anomaly localization L̂i.

3 Data Generation Process

Since anomalies are rare by definition, real data sets are very imbalanced: the proportion of
anomalies compare to normal observations is very small, making the learning phase of the
model difficult. This has led us to first consider synthetic data for the model calibration. The
corresponding data set is obtained through a three-step process including time series simulations,
contamination and data augmentation. We point out that, in the data simulation, care was
taken to ensure that the generated data sets stay realistic. In particular, only few anomalies
were added to time series as described in Section 3.2. To this extent, we still face the problem of
scarcity of anomalies in this synthetic framework, and we provide some preprocessing steps to
sidestep this issue as well.

3.1 Data Simulation

In this section, we describe the model used to simulate the data. Recall that our primary
motivation is to detect anomalies in financial time series. For that purpose, we consider share
price sample paths generated through the Black and Scholes model, i.e. geometric Brownian
motions. Under this framework, the share price St is defined by

St = S0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
. (7)
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where W represents a standard Brownian motion, µ the drift, σ the volatility of the stock and
S0 the initial stock price.

LetN stocks S1, . . . , SN simulated simultaneously from this model, where Si :=
{
Sit0 , S

i
t1 , . . . , S

i
tT

}
is the time series of length T representing the (time discretized) path diffusion of the i-th stock.
Each stock Si has its own drift µi, volatility σi and initial value Sit0 . The paths parameters are
selected randomly according to

Sit0 ∼ N (100, 1) , µi ∼ U ([0.01, 0.2]) , σi ∼ U ([0.01, 0.1]) , i = 1, . . . , N. (8)

For the sake of realism, the Brownian motions driving the N -stocks are correlated. The
contamination of the obtained time series by anomalies is described in the next section.

3.2 Time Series Contamination

We apply a quite naive approach to introduce anomalies into our time series. We introduce the
same fixed number of anomalies nanom to each time series by applying a shock on some original
values of the observed time series. Formally, the -th added anomaly is characterized by its
location t corresponding to the time stamp at which the anomaly has occurred, its shock δ, the
amplitude of the shock is given by |δ| and its sign by sgn (δ). We denote by Sa,i the time series
resulting from the contamination of the i-th clean time series Si. For i ∈ {1, . . . , N}, let J i be
the set of indices of the time stamps at which an anomaly occurs for the i-th time series. For
 ∈ J i, the abnormal values are

Sa,it = Sit (1 + δ) . (9)

The location, sign and amplitude of the shocks are generated randomly according to uniform
distributions:

J ∼ UN,nanom ({1, . . . , p}) , sign (δ) ∼ UN,nanom ({−1, 1}) , |δ| ∼ UN,nanom ([0, ρ]) ,

where ρ is an upper bound on the shock amplitude.
We define the anomaly mask matrix RN×T by setting, for i = 1, . . . , N , and j = 1, . . . , T ,

Ti,j =

{
1 + δj if j ∈ J i.
1 otherwise.

(10)

Under this framework, when we incorporate the anomalies to the clean time series driven by
the geometric Brownian motion, we assign labels to the time series observations according to
whether the values correspond to anomalies or normal observations. We thus provide the labels
Y i
tj associated with each value Sa,itj . Hence, for i = 1, . . . , N , and j = 1, . . . , T ,

Y i
tj =

{
1 if j ∈ J i.
0 otherwise.

(11)

Algorithm 6 recaps the time series contamination procedure, where AnomalyMask and
GetLabels refer to the operators defined by (10) and (11).
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Algorithm 6 Data Contamination
inputs : amplitude range ρ,

number of anomalies to add in time series nanom,
data S

sgn (δ)← UN,nanom ({−1, 1})
|δ| ← UN,nanom ({0, ρ})
J ← UN,nanom ({1, . . . , p})
RN×T 3 T ← AnomalyMask(J , δ)
Sa ← S ◦ T
Y ← GetLabels (J )

outputs : time series with anomalies Sa,
labels associated with each value of the time series Y .

3.3 Data Augmentation

By definition, anomalies are rare events and thus represent only a low fraction of the data set.
Yet the suggested approach needs an important training set for an efficient learning. To overcome
this issue, we apply a sliding window data augmentation technique (Le Guennec et al., 2016).
This method not only extends the number of anomalies within the data set, but also allows
the model to learn that anomalies could be located anywhere in the time series. It consists in
extracting Np = T − p+ 1 sub-time series of length p of the initial observed time series of length
T .

Note that we have to split the data into train and test sets before augmentation to guarantee
that the time series considered in the training set do not share any observation with the ones
we use for the model evaluation. In view of simplification, we introduce the data augmentation
process, without loss of generality, for S and Y . In practice this process has to be applied to
STrain,Y Train and STest, Y Test separately.

For i = 1, . . . , N and q ∈ {1, . . . , Np}, the sub-time series Si,q and the associated labels Y i,q

are defined by (see Algorithm 7)

Si,q =
{
Sitj , j = q, . . . , q + p− 1

}
Y i,q =

{
Y i
tj , j = q, . . . , q + p− 1

}
.

Each sub-time series Si,q+1 thus results from the shift forward in time of one observation of the
previous sub-time series Si,q. The final data set X and the labels sY are then defined as the
matrices whose rows correspond to the sub-time series Si,qq=1,...,Np;i=1,...,N , and Y

i,q
q=1,...,Np;i=1,...,N ,

respectively, i.e.

X =
(
S1,1, S1,2, . . . , S1,Np , S2,1, . . . , Si,q, . . . , SN,Np

)>
,

sY =
(
Y 1,1, Y 1,2, . . . , Y 1,Np , Y 2,1, . . . , Y i,q, . . . , Y N,Np

)>
.

With this data configuration, an observation refers to a time series Si,q obtained through the
sliding window technique. Two observations may represent the same stock but on different time
intervals.
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Algorithm 7 Data Augmentation with sliding window technique
inputs :window size p,

data and labels S,Y ;
Initialize empty slided time series and labels matrices X, sY ;
for i :=1 to N do

for q :=1 to Np do
Si,q ←

{
Sitj |j ∈ {q, . . . , q + p− 1}

}
Y i,q ←

{
Y i
tj |j ∈ {q, . . . , q + p− 1}

}
end
X ← Concatenate

(
X, Si,q

)
sY ← Concatenate

(
sY , Y i,q

)
end
outputs : resulting slided time series and labels X, sY

While the fact that the observations share the same values may be argued to wrongly impact
the learning process, we point out that a real benefit can be drawn from this situation. Indeed,
thanks to this sliding window technique, the number of anomalies is considerably increased. This
technique also allows the model to learn that anomalies could be located anywhere in the time
series, reducing the dependency on the event location (Um et al., 2017).

However, once we apply the sliding window technique, we do not only extend the number
of contaminated time series: the number of uncontaminated time series is also increased. But
the minority class (contaminated time series) has, at least, a significant number of instances,
denoted by N c. In order to get a more balanced data set for the training set, we perform an
undersampling, selecting randomly N c observations from the Nu uncontaminated time series
without any anomalies (RandomSampling in Algorithm 8). The resulting retained number of
observations 2N c is now sufficient to train the model. The test set in turn is imbalanced. To
sharpen the imbalanced characteristic of the test set, we specify a contamination rate rc, which
corresponds to the rate of contaminated time series in the data set. The construction of the test
set is described in Algorithm 8.
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Algorithm 8 Time series selection
Inputs : slided data and labels X,sY ,

contamination rate rc (for test set)

X, sY ←X1sum(sY )≤1,
sY 1sum(sY )≤1 ; // Keep time series with at most one anomaly.

if Train set then

N c = Card
(
sY 1sum(sY )=1

)
// Randomly select the indexes of N c uncontaminated time series
indexu = RandomSampling

({
i; sum(Y i

s ) = 0, i ∈ {1, . . . , NNp}
}
, N c

)
end
if Test set then

N c = Card
(
sY 1sum(sY )=1

)
Nu =

⌈
Nc(1−rc)

rc

⌉
// Randomly select the indexes of N c uncontaminated time series
indexu = RandomSampling

({
i; sum(Y i

s ) = 0, i ∈ {1, . . . , NNp}
}
, Nu

)
end

indexc =
{
i; sum(Y i

s ) = 1, i ∈ {1, . . . , NNp}
}

X ←
(
Xi, for i ∈ indexu ∪ indexc

)
sY ←

(
Y i
s , for i ∈ indexu ∪ indexc

)
outputs : time series X with at most one anomaly,

corresponding labels for identification task A,
corresponding labels for localization task L.

As mentioned in Section 2.2, Algorithm 5 is designed to predict the localization of only one
anomaly, (if there is more than one anomaly in the time series, it should be run iteratively as
detailed in Section 2.2). Here we only consider time series with at most one anomaly (without
loss of generality).

Assumption 1 A time series Si,q contains at most one anomaly among all its observed values.

We assign the identification label Ai,q (see Section 2.1) to each Si,q following the rule

Ai,q =

q+p−1∑
j=q

Y i
tj =

{
1 if there is an anomaly among the observed values of Si,q

0 otherwise.

Regarding the localization labels, we recall that they only concern the time series with an anomaly,
therefore Li,q is defined following

Li,q = arg max
j
Y i,q = arg max

j

{
Y i
tj , j = q, . . . , q + p− 1

}
(12)

With Algorithm 9, we give a rundown of the construction process of the identification and
localization labels, namely A and L departing from sY .

The supervised learning framework is adopted herein, since we have at our disposal labelled
data.

The resulting matrices with the observed values of the time series in X the associated
identification labels in A and localization labels in L constitute the data set used for our model
calibration and evaluation.
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Algorithm 9 Time series labelling
Inputs : slided labels sY ;
A← sum(sY )

L← arg max
{
sY 1sum(sY )=1

}
outputs : corresponding labels for identification task A,

corresponding labels for localization task L.

4 Model Evaluation: Setting the Stage

After introducing the relevant performance metrics used to assess the PCA NN performance,
we describe the synthetic data used for the numerical experiments of Sections 5 to 7. We then
briefly describe the process of the latent space dimension calibration.

4.1 Performance Metrics

Common methods to assess the performance of binary classifiers include true positive and true
negative rates, as well as ROC (Receiver Operating Characteristics) curves, displaying the true
positive rate against the false positive rate. These methods, however, are uninformative when
the classes are severely imbalanced. In this context, F1-score and Precision-Recall curves (PRC)
should be used (Brownlee, 2020; Saito and Rehmsmeier, 2015). They are both based on the
values of

Precision(s) =
true positives

true positives + false positives
against the values of

Recall(s) =
true positives

true positives + false negatives
where s is a cut-off probability varying between 0 and 1. Precision quantifies the number of
correct positive predictions out all positive predictions made, while Recall (often also called
Sensitivity) quantifies the number of correct positive predictions out of all positive predictions
that could have been made. Both focus on the Positives class (the minority class, anomalies)
and disregard the Negatives (the majority class, normal observations).

Our F1-score (Chinchor and Sundheim, 1993; Van Rijsbergen, 1979) combines these two
measures in a single index defined as

F1 = 2 · Precision · Recall

Precision + Recall
. (13)

The closer the F1-score to 1, the better the prediction model.
A PRC displays the values of Precision and Recall as the cut-off s varies from 0 to 1. The

PRC of a skillful model bows towards the point with coordinates (1, 1). The curve of a no-skill
classifier is an horizontal line at some y-level proportional to the proportion of Positives in the
data set. For a balanced data set this proportion is just 0.5 (Brownlee, 2020).

PRC and F1-score are complementary in our approach. The F1-score is used on the anomaly
scores outcomes of the models, to identify the best configuration and the best model. A PRC is
used to select the best cut-off value used in the prediction of the two classes, for each model.

4.2 Synthetic Data Set

The anomaly detection task is performed on N = 20 stocks simultaneously. The stock prices are
diffused according to the Black and Scholes model. Each stock has its own drift and volatility
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and the 20 stocks are correlated, as described in Section 3. Each time series represents T = 1, 500
daily stock prices, split into two sets. The first 1, 000 observations, corresponding to the train set,
are used to learn the model parameters, i.e. the PCA transfer matrix and the NN weights and
biases. The last 500 observations, corresponding to the test set, are used to assess the quality of
the estimated parameters when applied to unseen samples. For the application of the sliding
window technique, we set the length of the resulting time series p to be 206. Table 2 sums up
the composition of each data set before and after data augmentation.

Nb of Time Series Nb of Observed values per time series Nb of anomalies
Train set 20 1,000 4× 20
Test set 20 500 2× 20

Nb of Time Series Nb of Observed values per time series Nb of anomalies
Train set 12,000 206 6,000
Test set 2,500 206 400

Table 2: Data set composition (top) before and (bottom) after data augmentation.

We recall that both steps of the approach are preceeded by a features extraction step, for
which the latent space dimension k needs to be calibrated. As shown by the numerical results
provided in Section C, the features extraction also guarantees the stationarity of the time series
used for the anomaly detection task, ε.

4.3 Calibration of the Latent Space Dimension

When performing PCA, k is determined through a scree-plot, which is the representation of the
proportion of variance explained by each component. The optimal k corresponds to the number
of principal components explaining a given level of the variance of the original data. However,
this method has its limitation as stated in (Linting et al., 2007). More importantly, it is not
suitable for our approach. Indeed, in our case, the number of selected principal components must
achieve a trade-off between information and noise in the latent space. If we consider a too low
number of principal components, we may lose information regarding the normal observations,
leading to false alarms. If a too high number of principal components is retained, we may include
components representing noise, which prevents the model from detecting some anomalies.

To select the optimal dimension of the latent space, we consider the distribution of anomaly
scores obtained through the naive approach of Section 2.4, empirically calibrating a cut-off ŝ
through the non parametric estimation of the distribution of the anomaly scores of uncontaminated
and contaminated time series. We chose to calibrate the dimension of the latent space with
the naive approach, because using the NN to this end would be very costly. Hence, for each
k = 5, 10, . . . , 200, we construct a PCA model from which we infer reconstruction errors which
are then converted into anomaly scores. Based on these anomaly scores, we tune the cut-off
value ŝ thanks to the distributions and we finally convert the scores into labels. We evaluate
the predictions of the naive approach for each value of k. The results on the evaluation metrics
on the train set, as legitimate to choose k, are represented on Figure 4. The highest values are
reached for k ∈ {40, . . . , 145}. The performance seems to be stable in terms of F1-score and
accuracy. Therefore, for computational reasons, we choose the optimal k to be 40.

Figure 4 also shows, as expected, a downward trend of the scores when represented against
the highest values of k. This demonstrates that when a high level of variance is explained, it
become much harder to perform anomaly detection based on the reconstruction errors.
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Figure 4: Performance metrics on train (left) and test (right) sets with respect to the number of
principal component k.

5 Model Evaluation: Main Results

We evaluate the performance of the identification and localization stages of our approach on
synthetic data, using appropriate performance metrics. We demonstrate numerically the efficiency
of the PCA NN over baseline anomaly detection algorithms.

5.1 Contaminated Time Series Identification Step

For the features extraction step, we considered a latent space dimension k = 40. The NN built
to compute the anomaly scores and convert them into labels was calibrated on the train set. The
result of this calibration is shown in Table 3.

Data set Accuracy Precision Recall F1-score
Train set 90.97 % 97.36% 84.21% 90.31 %
Test set 88.58% 61.26% 85.27% 71.30%

Table 3: Performance evaluation of suggested model on synthetic data set for identification step.

Figure 5 shows two contaminated time series identified as such by the model. Figure 6
displays two examples of time series without anomalies accurately identified by the model. Figure
7 displays two time series misidentified by the model.

When an observation deviates significantly from the rest of the time series values, the model
is able to recognise that the concerned time series contains an abnormal observation.

In Figure 6 with uncontaminated time series, we see that even when there is a local upward
trend in the time series values, the model is able to make the distinction between this market
move and the occurrence of an anomaly.

The last set of time series displays some limits of the model. The top graphs in Figure 7
represent the situation where the model did not manage to identify the contaminated time series.
One explanation could be that the size of the anomaly is not significantly large enough to be
spotted by the model. Indeed, looking at the graph, the time series does not seem to contain any
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Figure 5: Two examples of contaminated time series accurately identified by the model. The
stock path and the reconstruction errors are represented in black and brown. The red cross shows
the anomaly localization.
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Figure 6: Two examples of uncontaminated time series accurately identified by the model. The
stock path and the reconstruction errors are represented in black and brown.
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Figure 7: Two examples of time series misidentified by the model. The stock path and the
reconstruction errors are represented in black and brown. The red cross shows the anomaly
localization.

anomaly. In contrast, the bottom graphs in Figure 7 show a stock price path predicted to be
contaminated whereas it is not.

We illustrate the robustness of the approach by assessing the model predictions on 100 distinct
data sets. Table 4 shows the mean and standard deviation over the multiple runs.

Data set Accuracy Precision Recall F1-score
Train set 79.02% (2.4%) 78.69% (2.7%) 79.74% (4.6%) 79.13% (2.7%)
Test set 77.79% (3.9%) 41.87% (5.2%) 80.16% (6.4%) 54.82% (5.2%)

Table 4: Mean (standard deviation) of performance metrics of the suggested model over multiple
runs for the identification step.

5.2 Anomaly Localization Step

Regarding the localization step, the dummy approach consists in taking the argmax of time series
observations as the anomaly location. We distinguish between two cases, anomalies which are
extrema and anomalies which are not. The quality of the detection of our model is assessed for
both types of anomalies. The results are displayed in Tables 5 and 6.

Data set Accuracy Precision Recall F1-score
Train set 89.65% (34.87%) 89.81% (40.53%) 89.65% (34.88%) 89.68% ( 36.56%)
Test set 94.39% (27.78%) 94.49% (31.52%) 94.39% (27.78%) 94.38% (28.94%)

Table 5: Performance evaluation of the suggested model and (the dummy approach) on synthetic
data set for the localization step on all type of anomalies.
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Figure 8: Anomaly localization prediction on two distinct time series.

Data set Accuracy Precision Recall F1-score
Train set 84.22% (0%) 84.55% (0%) 84.28% (0%) 89.68% (0%)
Test set 91.92% (0%) 92.10% (0%) 91.92% (0%) 91.90% (0%)

Table 6: Performance evaluation of the suggested model and the dummy approach on synthetic
data set for the localization step on non extrema anomalies.

Numerical tests show the necessity of the features extraction step for the anomaly localization
task, as applying the dummy approach alone is not enough when the anomaly is not an extreme
value. Figure 8 represents a stock price time series with the true and predicted anomaly location.
In these examples, the locations are accurately predicted.

To guarantee the robustness of the model on the anomaly location, we evaluate the model
prediction on 100 data sets. Table 7 shows the mean and standard deviation for the localization
step of all types of anomaly.

Data set Accuracy Precision Recall F1-score
Train set 89.58% (4.3%) 89.58% (4.3%) 89.96% (4.1%) 89.67% (4.3%)
Test set 89.49% (4.8%) 89.49% (4.8%) 90.00% (4.5%) 89.58% (4.7%)

Table 7: Mean (standard deviation) of performance metrics of suggested model over multiple
runs for localization step on all type of anomalies.

Table 8 displays the results on the localization of non extrema anomalies. These results show
the importance of the features extraction step. If we only consider the maximal observed value
of the time series to be the anomaly, we would not be able to localize any non-extrema anomaly.
Applying Algorithm 4 instead leads to satisfying anomaly detection rates.

Data set Accuracy Precision Recall F1-score
Train set 85.23% (6.0%) 85.23% (6.0%) 85.87% (5.7%) 85.36% (6.0%)
Test set 85.17% (7.1%) 85.17% (7.1%) 86.04% (6.8%) 85.30% (7.1%)

Table 8: Mean (standard deviation) of performance metrics of suggested model over multiple
runs for localization step on non-extreme anomalies.
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5.3 Numerical Results Against Benchmark Models

To assess the performance, the suggested approach is compared numerically with well-known
machine learning algorithms for anomaly detection, that is isolation forest (IF), local outlier
factor (LOF), density based clustering of applications with noise (DBSCAN), k-nearest neighbors
(KNN), and support vector machine (SVM), all reviewed in Section B. In addition to these state
of the art techniques, we consider the recent anomaly detection technique proposed by Akyildirim
et al. (2022), referred to as sig-IF, combining a features extraction step through path signatures
computation with IF.

Tables 9 and 11 summarize the performance on the train and test sets of Section 3 of each
model, for both the contaminated time series identification and the anomaly localization steps.

Train Test
Model Accuracy F1-score Accuracy F1-score
IF 42.31% 42.31% 69.64% 7.022%
LOF 59.95% 59.95% 90.00% 62.41%
DBSCAN 50.00% 66.67% 16.65% 28.53%
sig-IF 49.48% 49.23% 72.32% 15.19%
KNN 94.68% 94.39% 64.82% 26.69%
SVM 81.96% 82.33% 44.39% 27.44%
PCA NN 90.97% 90.31% 88.58% 71.30%

Table 9: Performance evaluation of unsupervised (upper part) and supervised (lower part) models
for contaminated time series identification step.

Algorithm IF LOF DBSCAN KNN SVM sig-IF PCA NN
Exec. Time 0.6915 0.2015 0.1275 1.725 4.572 2.776 0.003523

Table 10: Execution time in seconds for identification of contaminated time series step.

The following paragraphs provide similar conclusions drawn from the results on the identifi-
cation and localization steps (see Tables 9 and 11).

For the unsupervised learning methods, since there is not a proper learning step, even though
Tables 9 and 11 show the scores on the train and test set, these scores should be seen as the
ones obtained by testing the models on independent data sets. For IF, LOF and DBSCAN
models, the performance across the sets is not stable, as a significant difference could be observed
between the scores on the train and test sets. The poor performance of unsupervised learning
algorithms could be explained by the difficulty to estimate the contamination rate for IF and the
LOF algorithms. For DBSCAN the poor performance is rather due to the high dimensionality of
the data. As for the sig-IF approach, its performance in this specific case is not as overwhelming
as when used to detect pump and dump operations in (Akyildirim et al., 2022). This difference
in performance is driven by the fact that, in our case, signatures are computed on the stock price
path only, since no additional information is available to describe the price path we are analyzing.
For pump/dump detection, instead, signatures are computed on a set of variables path including
the price path and additional variables paths helpful in the identification of the pumps/dumps
attempts.

Regarding the supervised approaches, although KNN is outperforming the suggested approach
on the training set, there is a non-negligible decrease of these scores on the test set. This may
suggest an over-fitting on the training data, which makes KNN unable to generalize what it has
learnt to unseen samples. The same trend is seen on the scores with our approach, however the
loss is no as harsh as in the KNN case.
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Hence, according to the results, our PCA based approach seems to be the most suitable
method for the problem at stake of anomaly detection on time series. Its satisfying performance
in terms of accuracy and F1-score, as well as its low computational cost for both steps (see Tables
10 and 12), make the approach stand out.

Train Test
Model Accuracy F1-score Accuracy F1-score
IF 89.79% 2.296% 70.94% 1.611%
LOF 99.51% 0% 2.066% 0.9816%
DBSCAN N/A NA NA NA
sig-IF N/A N/A N/A N/A
KNN 99.99% 99.99% 95.56% 2.794%
SVM NA NA NA NA
PCA NN 89.65% 89.68% 94.39% 94.38%

Table 11: Performance evaluation of unsupervised (upper part) and supervised (lower part)
models for anomaly localization step. Results for DBSCAN, sig-IF and SVM are not provided
due to high computational cost.

Algorithm IF LOF DBSCAN KNN SVM sig-IF PCA NN
Exec. Time 14.50 2.287 N/A 14.19 N/A N/A 0.002004

Table 12: Execution time in seconds for the anomaly localization step. Results for DBSCAN,
sig-IF and SVM are not provided due to high computational cost.

6 Model Evaluation: Additional Results

To take our approach a leap beyond classical anomaly detection algorithms, we evaluate the
anomalies imputation suggested by the PCA NN approach. We also test the robustness of the
calibrated cut-off value and examine the sensitivity of the PCA NN performance to the amplitude
of the anomaly.

6.1 Anomalies Imputation

To assess the imputation values suggested by our approach, we start from time series simulated
without anomalies, then we randomly select a time stamp of the time series and add a noise to
the corresponding value following the methodology described in Section 3.

The imputation value the PCA NN suggests, is the reconstructed observation. This imputation
technique is compared to naive methods of missing values imputation, namely backward fill (BF),
consisting in replacing the anomaly by the previous value, and linear interpolation (LI). The
choice of these imputation methods is motivated by their low computational cost. In fact, the
PCA NN imputation comes at no additional cost as stated before. Therefore, we only challenge
its performance using methods with similar complexity. To assess the quality of the imputation
value suggested by each approach, we consider the following metrics. The imputation errors are
computed on each time series i as

ImputationErrori =

√√√√√∑
j

(
Sitj − S̃

i
tj

)2

nanom
,
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Figure 9: Boxplot representation of the distribution of the errors on time series imputation before
the imputation of anomalies (Ano) and after replacing the anomalies with the reconstructed
values suggested by PCA NN (PCA).

where S̃i refers to as the i-th path price with imputed values. The error on the covariance matrix
is computed as

ErrCov = ‖Σ− Σ̃‖Frob,

where ‖·‖Frob is the Frobenius norm, Σ the sample covariance matrix, and Σ̃ the covariance matrix
estimated on the data after the anomalies have been replaced by their respective imputation
values.

Each stock path was diffused and contaminated 100 times. The anomalies were then imputed
following two baseline approaches (BF and LI). Figure 9 clearly shows that imputation using the
reconstructed values with PCA reduces the imputation error but not as much as basic imputation
techniques (LI and BF) as it is shown on Figure 10. Table 13 shows that the baseline imputation
approaches achieve even lower errors on the estimation of the covariance matrix. Figure 11 shows
a higher mean but a lower variance of the errors for the PCA-based imputation approach. In
conclusion, it would be rather recommended to replace the flagged anomalies with approaches
such as backward fill or linear interpolation.

Method Ano PCA LI BF Clean
Mean 0.004208 0.001575 0.001554 0.001554 0.001552

Standard deviation 0.000272 0.000165 0.000170 0.000172 0.000173

Table 13: Mean and standard deviation error on covariance matrix after imputation of anomalies
with baseline methods.

A natural explanation to the relative inefficiency of the reconstruction value as imputation
value comes from the fact that, by construction, the reconstructed value integrates in its
computation the abnormal value, which is not the case when using other imputation techniques.
Therefore, even if the reconstructed value is closer to the true value than it is to the abnormal
value, the spread between the imputation and the true value is still significant. Figures 12 and
13 illustrate the latter with a plot of a reconstructed and original price path.
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Figure 10: Boxplot representation of the distribution of the errors on time series imputation before
the imputation of anomalies (Ano) and after replacing the anomalies; with the reconstructed
values suggested by PCA (PCA), using linear interpolation (LI) and using backward fill (BF).
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Figure 11: Boxplot representation of the distribution of the errors on covariance matrix (on
several stocks paths samples). Ano, PCA NN, LI, BF and Clean refer to the errors on the
covariance when estimated on time series with anomalies, time series after anomalies imputation
following three approaches: imputation by the reconstructed values suggested by PCA (PCA),
using linear interpolation (LI), with backward fill (BF) and time series without anomalies (Clean).
The Ano, PCA NN, LI, BF and Clean errors on the covariance estimation are all represented
(left). For better visualization we remove the Ano errors (right).
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Figure 12: Original, contaminated and reconstructed stock price path.
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Figure 13: Original, contaminated and imputed stock prices path in black, red and orange.
The two additional graphs represent the region around anomalies, where the cross and circle
respectively show the true value of the stock and its value after imputation of the anomalies
using the reconstructed value suggested by the PCA NN approach.
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6.2 Cut-off Value Robustness

In most anomaly detection models, the cut-off value is a hand-set parameter. In our approach,
the cut-off value is a model parameter and as such it is calibrated through the learning. Testing
the robustness of the cut-off given by the model is therefore a must. The identification step is the
unique step of the approach being concerned by the robustness, since it is the only step involving
the cut-off calibration. Robustness is checked by shocking the suggested cut-off with different
level of noise and observing the impact of these shocks on the model performance. We consider
several shock amplitude γ ∈ ±{10−4, 10−3, 10−2, 10−1, 1, 2}. Table 14 reports the mean and
standard deviation of the scores of the model. The cut-off calibrated on the synthetic training
data sample is shocked. Scores on both train and test sets are computed using the shocked cut-off
values.

γ Accuracy Precision Recall F1

10−4 0.9097 0.9736 0.8421 0.9031
-10−4 0.9097 0.9736 0.8421 0.9031
10−3 0.9097 0.9738 0.8419 0.9031
-10−3 0.9098 0.9737 0.8424 0.9033
10−2 0.9092 0.9747 0.8403 0.9025
-10−2 0.9098 0.9720 0.8439 0.9035
10−1 0.9042 0.9860 0.8201 0.8954
-10−1 0.9103 0.9563 0.8599 0.9056
0 0.9097 0.9736 0.8421 0.9031
1 0.7771 0.9994 0.5546 0.7133
-1 0.5183 0.5093 0.9998 0.6749
2 0.6284 1.0000 0.2567 0.4086
-2 0.5001 0.5000 1.0000 0.6667

γ Accuracy Precision Recall F1

10−4 0.8858 0.6126 0.8527 0.7130
−10−4 0.8858 0.6126 0.8527 0.7130
10−3 0.8858 0.6126 0.8527 0.7130
−10−3 0.8850 0.6105 0.8527 0.7116
10−2 0.8877 0.6179 0.8527 0.7166
−10−2 0.8838 0.6074 0.8527 0.7095
10−1 0.8984 0.6502 0.8432 0.7342
−10−1 0.8672 0.5653 0.8741 0.6866

0 0.8858 0.6126 0.8527 0.7130
1 0.9391 0.9435 0.6746 0.7867
-1 0.2660 0.1848 1.0000 0.3120
2 0.8949 0.9814 0.3753 0.5430
-2 0.1700 0.1670 1.0000 0.2862

Table 14: Performance evaluation after shocking the calibrated cut-off value for the training set
(left) and for the test set (right).

Excluding the extreme cases where the shock amplitude is ±{1, 2}, one could see that the
accuracy is barely impacted by the shocked cut-off values, both on the train and test sets. The
interpretation of the remaining results is split in two and is applicable for both the training and
test sets.

When negative shocks are applied, the model predicts more anomalies and less normal
observations (compared to the predicted numbers with the calibrated cut-off value). Therefore,
the model is able to identify anomalies which were missed initially. Hence, applying negative
shocks increases the recall. As for the precision, i.e. the rate of correctly identified contaminated
time series, since on left hand side of the cut-off value we are in the density region where
contaminated time series represent the dominant class, the new position of the cut-off value leads
to a misidentification of this type of observations. This entails a deterioration of the precision.
Opposite behaviours of the precision and recall are observed when positive shocks are applied,
since some abnormal time series are missed by the model.

Figure 14 shows the precision and recall when cut-off values other than the one we calibrated
are used in our model, on the train and test sets. These scores are also compared with the
performance of the no-skill model1. We note that our approach edges out the no-skill model
on both sets. The area under the curve (AUC) score2 on the train set and the test set are
respectively 0.97 and 0.87. This shows that we are better performing on the train set, which
was expected, but the performance on test set is just as satisfying. These results reinforce our

1The no-skill model assigns to all observations the positive label.
2AUC score ranges from 0 to 1, 1 being the score associated with a perfect model.
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Figure 14: Precision-recall curve of the suggested model (in blue), scores with the calibrated
threshold (red plus), no-skill model scores (green cross) for the training set (left) and a test set
(right).

conclusions regarding the robustness of our approach. One can see that the calibrated cut-off
value represents, for the train set, the point where an equilibrium is being reached between
precision and recall. The calibrated cut-off allows to achieve high precision and recall scores,
simultaneously. We conclude that the cut-off given by the model is suitable for the training
samples and for unseen samples as well.

To briefly sum up this section, although we mentioned that some shocks on the cut-off
value induce higher scores, the improvement over the scores with the calibrated cut-off value
is not significant (unless high amplitude shocks are considered). The numerical tests and the
precision-recall curves are consistent with the robustness of the cut-off value suggested by the
approach.

6.3 Sensitivity to Anomaly Amplitude

Time series are manually contaminated as described in Section 3.2. The abnormal value Sa,it
of the i-th time series results from a shock of the initial value of the time series denoted by
Sit as stated in (9). We recall that the shock is represented by δ, whereas its amplitude |δ| is
uniformly drawn from [0, ρ]. Hence, ρ is the parameter that ultimately controls the amplitude of
the anomaly. Since ρ is fixed by the user, it is interesting to investigate the sensitivity of the
PCA NN approach performance to the amplitude of the shock.

The PCA NN approach evaluated in Sections 5.1-5.2 is calibrated on time series which were
contaminated with shock amplitude drawn from U ([0, ρ]) with ρ = 0.04. For the data sets on
which the model was calibrated and then evaluated, the anomalies were grouped according to
the shock amplitude they result from. For the identification step, we distinguish four groups of
contaminated times. For instance, the first line of Table 15 defines the first group of contaminated
time series, for which the anomalies results from shock amplitude ∈ [0.3091e− 2, 1.46e− 2[. For
this first group with this specific range of amplitude, 77% of the contaminated time series were
identified during the PCA NN identification step.
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Amplitude Range (10−2) Detection ratio
[0.309, 1.46[ 0.77
[1.46, 2.34[ 0.91
[2.34, 2.92[ 0.96
[2.92, 3.78] 0.98

Table 15: Detection ratio of correctly identified contaminated time series on test set, with time
series being grouped according to their anomalies shock amplitude.

Similarly, for the localization step, we consider four groups of anomalies. The first line of
Table 16 represents the anomalies with shock amplitude ∈ [0.309e− 2, 1.31e− 2[. 86% of the
anomalies belonging to this first group were correctly localized by the PCA NN localization step.

Amplitude Range (10−2) Detection ratio
[0.309, 1.31[ 0.86
[1.31, 2.29[ 1.00
[2.29, 2.88[ 1.00
[2.88, 3.78[ 1.00

Table 16: Detection ratio of correctly localized anomalies on test set, with anomalies being
grouped according to their shock amplitude.

The bounds defining each group are chosen to be the minimal value, 25%-quantile, 50%-
quantile, 75%-quantile, and the maximum value over the shock amplitude. From the results of
Tables 15 and 16, one could see that, except for the first group which represents the lowest shock
amplitude, the detection ratio of the remaining groups are similar.

The calibrated PCA NN approach performance is then tested on new data sets contaminated
with distinct values of ρ. Figures 15 and 16 show that the F1 scores are almost similar across the
high values of ρ, both for the train and test sets. Moreover, Figure 16 clearly states similar and
high performance of the localization stage on both data sets, regardless of the value of ρ.
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Figure 15: Mean F1-score for identification step with respect to various values of ρ on train and
test set, respectively represented by the blue and pink curves.

To conclude on the sensitivity of the model performance to the amplitude of the anomaly
shocks, although it is clear that a lower performance is observed on the identification and
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Figure 16: Mean F1-score for localization step with respect to various values of ρ on train and
test set, respectively represented by the blue and pink curves.

localization of smaller amplitude shock anomalies, the detection ratio is still satisfactory for this
category of anomalies.

7 Application to a Downstream Task: Value-at-Risk Computa-
tions

In this section, we illustrate the benefit drawn when applying the PCA NN approach as a
pre-processing before value-at-risk computations.

Given a random variable % representing the loss in portfolio position over a time horizon h,
its value-at-risk at the confidence level α ∈ (1

2 , 1), VaRα(%), is defined by the quantile of level
α of the loss distribution, i.e. P(% ≤ VaRα(%)) = α (assuming % atomless for simplicity). Let
(St)t=t1,...,tT be a path price diffusion distributed according to the Black-Scholes model (7). The
logarithmic returns to maturity are distributed according to the Gaussian distribution

ln

(
St+h
St

)
∼ N

((
µ− σ2

2

)
h, σ2h

)
, (14)

with µ ∈ R and σ > 0.
We assume the vector R of log-returns on our stocks to be joint-normal,

R =
(
R1, R2, . . . , Ri, . . . , RN

)> ∼ NN (µR,ΣR) ,

where Ri = log

(
Si
t+h

Si
t

)
∼ N

(
µi,R, σ

2
i,R

)
and ΣR is the covariance matrix.

We consider a portfolio on N stocks, which return is given by P = Q>R, where Q ∈ RN
defines the composition of the portfolio. Hence, P ∼ N

(
µP , σ

2
P

)
, where µP = Q>µR and

σ2
P = Q>ΣRQ. The value-at-risk for the time horizon h at level α is

VaRα(P ) = µP + qασP , (15)
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Figure 17: Boxplot representation of parametric VaR estimations for P . The green square
represents the mean of VaR estimation.

where qα is the α-quantile of a standard normal distribution and the parameters µR and ΣR are
estimated from different types of time series to evaluate the impact of localizing and removing
anomalies following our approach.

Under the adopted framework, the true VaRα(P ), VaRtheo is thus known and can be computed
using the diffusion parameters. An estimation V̂aRα(P ) can be obtained by replacing the
parameters in (15) by their estimates µ̂P and σ̂P computed from the time series with anomalies,
or after imputation of anomalies. Then, absolute errors and relative errors are computed as

AbsoluteErrorVaR =
∣∣∣VaRα(P )− V̂aRα(P )

∣∣∣ ,
RelativeErrorVaR =

∣∣∣VaRα(P )− V̂aRα(P )
∣∣∣

VaRα(P )

Table 17 summarizes the four VaR estimations we consider in the sequel:

VaR estimation Name µ̂R, Σ̂R estimated on
VaRclean Time series without anomalies
VaRanom Times series with anomalies

VaRloc,true Time series after anomalies imputation knowing their true localization
VaRloc,pred Time series after anomalies imputation based on predicted localization

Table 17: Notations of VaR estimation based on the time series the VaR parameters have been
estimated from.

To conduct this analysis, we generate new stock path samples that we assume to be clean,
fixing the diffusion parameters µR and ΣR. We then add the anomalies following the procedure
described in Section 3. We apply our model to localize the anomalies and replace the localized
anomalies using the backward fill (BF) approach (shown to be the more efficient imputation
technique in Section 6.1). For each stock and each run of simulation, we obtain four estimates of
the distribution parameters of the associated log-returns.
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VaR VaRtheo VaRclean VaRloc,true VaRloc,pred VaRanom

Mean 0.546851 0.546300 0.548392 0.548270 0.569015
Standard Deviation 0.0 0.010105 0.010739 0.010832 0.012268

Table 18: Summary of VaR estimations for P .

Figure 17 and Table 18 summarize the distribution of the VaR estimates for α = 0.99 and
h = 1(day), over several simulation runs. The boxplots show the dispersion of the portfolio VaR
estimates on several diffusions. The green square represents the mean of the VaR estimates. For
the four first boxplots, the means are approximately on the same level, which is confirmed by
the results of Table 18. The anomalies present among the time series observed values have a
non-negligible impact on the distribution parameters estimation, which ultimately causes a wrong
estimation of the VaR. Thanks to the localization of the anomalies by the suggested model and
their imputation as per Section 6.1, we are able to get a more accurate estimation of the VaR.
VaRloc,true and VaRloc,pred are quite similar, which shows that the model accurately localizes the
anomalies.

VaR VaRclean VaRloc,true VaRloc,pred VaRanom

Absolute Error 0.007995 0.008596 0.008622 0.02235
Relative Error 0.014620 0.015720 0.015767 0.04087

Table 19: Mean absolute and relative error on VaR estimations for P .

We also evaluate the error on the VaR estimation using the mean absolute error and the
mean relative error, taking the VaRtheo as our benchmark. As one can tell from Table 19, even
when the distribution parameters are estimated from the clean time series, the VaR computed
with these parameters is not exactly the one computed with the theoretical parameters. This
can be explained by the historical size of the observed values used to estimate the parameters.
This table shows that by removing anomalies we can reduce by a factor two the error on VaR
estimation.

Additionally, we assess the impact on VaRtheo,VaRclean,VaRanom,VaRloc,true and VaRloc,pred

of increasing nanom. To this end, we perform 50 simulation runs of stock paths for nanom and for
each of those scenarios we estimate the VaR on the portfolio. We summarize the results on Figure
18, where each curve represents the mean VaR estimation with respect to nanom along with a
representation of the uncertainty around each evaluated point through a confidence interval.

When we compute the VaR using the abnormal time series, we notice that the difference
between VaRanom and VaRtheo increases with nanom, which is natural to expect. However, when
the time series are cleaned prior to VaR estimation, the curve representing the VaR estimates are
much closer to the ones representing VaRtheo and VaRclean, showing an undeniable improvement
in the accuracy of the VaR estimation over the estimation based on abnormal time series.
Furthermore, VaR estimation after the imputation following the model prediction or knowing the
true localization of the anomalies seem to be quite similar for low nanom, while some discrepancies
between the two become more significant as nanom increases. A natural explanation could be that
when the number of anomalies increases and the model suggests wrong anomalies localization,
normal values are being replaced while true anomalies remain among the observed values, which
wrongly impacts the VaR estimation. However, the results of Tables 20 and 21 indicate that
the anomaly localizations suggested by the model are overall correct and allow removing most
of the anomalies, as the relative error of VaRloc,pred is, regardless of nanom, always lower than
the relative error of VaRanom (e.g a relative error of 0.0248 for VaRloc,pred, against 0.0658 for
VaRanom, when there are 76 anomalies among the 1, 500 observed values of the time series).
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Figure 18: VaR estimation based on parameter estimation from time series with and without
anomalies (purple and light blue curves), time series after localization and imputation of anomalies
with the suggested approach (red curve) and time series imputed knowing the true localization
of the anomalies (brown curve), with respect to nanom.
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nanom VaRclean VaRloc,true VaRloc,pred VaRanom

5 0.012194 0.013796 0.013341 0.037392
15 0.012194 0.012623 0.016676 0.059604
76 0.012194 0.014831 0.024807 0.065791
153 0.012194 0.014644 0.034361 0.073750
307 0.012194 0.020537 0.052244 0.074091

Table 20: Mean relative error of parametric VaR estimations with respect to nanom, for parameters
estimated from clean time series, time series with anomalies, imputed time series following
predicted location (VaRloc,pred) and true anomalies localization (VaRloc,true).

nanom VaRclean VaRloc,true VaRloc,pred VaRanom

5 0.010356 0.011511 0.009678 0.020674
15 0.010356 0.010514 0.012723 0.020172
76 0.010356 0.011842 0.018696 0.019930
153 0.010356 0.013683 0.026117 0.024243
307 0.010356 0.022526 0.057903 0.019207

Table 21: Standard deviation of relative error of parametric VaR estimations with respect to
nanom, for parameters estimated from clean time series, time series with anomalies, imputed time
series following predicted location (VaRloc,pred) and true anomalies localization (VaRloc,true).

8 Numerical Results on Real Data

We consider a labelled real data set including stock prices, bonds yields, CDS spreads, FX
rates, and volatilities. These data were collected from a financial data provider for the period
between 2018 and 2020. These data sets were labelled by experts. They are provided on https:
//github.com/MadharNisrine/PCANN in the form of 132,000 time series (after augmentation).
The train set is balanced, while the test set is imbalanced with 20% of contaminated time series.

To ensure the independence of the train and test data sets, we calibrate the PCA NN approach
considering the time series of 2018 and 2019, while the 2020 time series are dedicated to model
evaluation. The performance evaluation of the PCA NN approach after its calibration on real
data sets is shown in Table 22. As visible from the upper panel, the PCA NN performs quite
well for the identification step. Once the contaminated time series are identified, the model is
able to localize the anomaly with high accuracy, as reflected by the scores on the test set in the
lower panel.

Data set Accuracy Precision Recall F1-score
Train set 92.88 % 99.17% 86.49% 92.40%
Test set 88.15% 72.45% 46.10% 56.35%

Data set Accuracy Precision Recall F1-score
Train set 99.48 % 99.49% 99.48% 99.48%
Test set 96.05% 96.21% 96.05% 95.92%

Table 22: Performance of the PCA NN identification step (upper part) and localization step
(lower part) on the real data set.
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8.1 PCA NN against State of the Art Models on Real Data

Even if the F1-score on the identification step is not that high, the results show that the related
performance remains better than the one of alternative state of the art approaches.

Tables 23 and 24 compare the performance of the PCA NN approach against the state of the
art models of Section B on our real data set. PCA NN outperforms the benchmark models in
both steps, with overwhelming results for the anomaly localization step.

Model Accuracy Precision Recall F1-score
IF 73.17% 18.12% 17.53% 17.82%
LOF 82.33% 44.57% 26.62% 33.33%
DBSCAN 22.74% 15.71% 83.77% 26.46%
sig-IF 73.34% 18.15% 17.47% 17.80%
KNN 70.26% 23.48% 35.06% 28.13%
SVM 50.11% 24.46% 96.10% 39.00%
PCA NN 88.15% 72.45% 46.10% 56.35%

Table 23: Performance evaluation of unsupervised (upper part) and supervised (lower part)
models for contaminated time series identification step.

Model Accuracy Precision Recall F1-score
IF 78.50% 2.173% 98.35% 4.252%
LOF 87.04% 0.3713% 9.616% 0.7151%
DBSCAN N/A N/A N/A N/A
sig-IF N/A N/A N/A N/A
KNN 99.85% 78.38% 95.59% 86.13%
SVM N/A N/A N/A N/A
PCA NN 96.05% 96.21% 96.05% 95.92%

Table 24: Performance evaluation of unsupervised (upper part) and supervised (lower part)
models for contaminated time series localization step. Results for DBSCAN, sig-IF and SVM are
not provided due to high computational cost.

9 Conclusion

We propose a two step approach for detecting anomalies on a panel of time series that can reflect a
wide variety of market risk factors. The first step aims at identifying the contaminated time series,
i.e. time series with anomalies. The second step focuses on the localization of the anomaly among
the observed values of the identified contaminated time series. As preprocessing, our methodology
integrates the extraction of features from the time series with PCA. This part of the method
proves to be essential, as it provides the models with inputs on which the distinction between
abnormal/contaminated and normal instances is eased, while also ensuring the stationarity of
the model (time series) inputs. Another key point of the approach is the calibration of the
cut-off value, the key parameter in the identification of contaminated time series, by means of a
feedforward neural network with a customized loss function. The proposed approach suggests an
imputation value, however this value is strongly influenced by the abnormal value. Therefore,
basic imputation approaches with similar complexity are preferred. Our numerical experiments
show not only that our approach outperforms baseline anomaly detection models, but also show
the real benefit that could be gained from applying it as a data cleaning step preliminary to
VaR computations. Future research could focus on the replacement of PCA by partial least
squares (PLS) or deep PLS (Polson et al., 2021) for endogeniging the features extraction stage.
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Regarding downstream tasks, our approach might be of special interest for reverse stress tests
(Eichhorn et al., 2021).

A Literature Review

We start with a review of the anomaly detection literature. See also Section B for a more technical
presentation of some of the below-mentioned algorithms.

A.1 Baseline Algorithms

Anomaly detection aims at finding an “observation that deviates so much from other observations
as to arouse suspicion that it was generated by a different mechanism" (Hawkins, 1980). The
baseline anomaly detection algorithms, described in (Chandola, 2009), struggle to identify
anomalies in time series, mainly because their assumptions are invalidated. If we consider
models built for spatial data, a major assumption of these models is that observations are
independent, whereas, for time series, high dependency exists between different time stamps.
Clustering-based approaches, like the density based spatial clustering with noise (DBSCAN)
method, are particularly impacted by this aspect: if an anomaly occurs at a given time stamp
and is followed by incorrect values, clustering-based approaches consider that the observations of
the time series belong to two different clusters and thus fail to identify the anomaly. Another
limitation when considering this type of techniques is the choice of the similarity metric used for
data clustering. This task, although being a crucial pillar of these approaches, is not trivial and
becomes very challenging for high dimensional problems.

A.2 Statistical Approach to Anomaly Detection

The statistical techniques for anomaly detection can be split in two families: statistical tests
and predictive models. Both suffer from the curse of dimensionality and model/data mismatch.
When anomaly detection relies on hypothesis tests, it usually tests whether the observations
are drawn from a known distribution (Zhang and Paschalidis, 2017), supposing that the user
knows the probability distribution of the normal observations. Such a parametric framework
narrows down the scope of applicability of hypothesis tests, as the data does not always coincide
with the assumed distribution. Moreover, the tests provided in the literature are not suitable in
multivariate settings (Kurt et al., 2020). The statistical techniques relying on fitting a predictive
model to each time series also require strong assumptions on the data. Predictive models are
usually autoregressive (AR), moving average (MA), or ARMA models. Anomalies are then
detected relatively to the forecasts suggested by the model (Chandola, 2009). In these parametric
approaches, some parameters have to be specified again, starting with the order of the models.
Selecting the optimal model parameters with respect to an information criterion is not always
possible. Additionally, these models assume that the time series are homogeneous, i.e. drawn
from the same distribution (Laptev et al., 2015). This is not always satisfied in the financial risk
management case where several types of market risk factors are treated simultaneously.

A.3 Score Based Anomaly Detection Models

Additional anomaly detection challenges are of general concern. Most of anomaly detection
algorithms are score-based, in the sense that these approaches return an anomaly score reflecting
to which extent the observation is considered to be abnormal by the model. In order to decide
whether an observation is abnormal or not, a cut-off value of the score has to be selected. Empirical
approaches are often used, consisting in setting the cut-off value as a quantile or elbow point of the
distribution of the anomaly score. However, the selected cut-off value according to such methods
remains arbitrary. (Gao and Tan, 2006) propose to rely on a cost of misclassification based on
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a weighted classification accuracy. Approaches to calculate “optimal” weights are described in
(Lu et al., 2019), but they involve a heuristic grid search technique. Another alternative is to
determine the cut-off value by cross validation on the training data (Saha et al., 2009). Finally,
some methods do not select any cut-off value, but are based instead on a contamination rate.
However, fixing a cut-off value or deciding on a contamination rate is not so different.

A.4 Scarcity of Anomalies and Data Augmentation

The scarcity of anomalies within the data sets is another typical problem in anomaly detection.
Anomalies are, by definition, rare events, therefore they are under-represented in the data set
used to fit the models. This under-representation is not helping in the design of a reliable model
able to identify anomalies. Classical methods to overcome this issue consider data augmentation.
These techniques aim at producing new synthetic samples that will ultimately enhance model
performance, leveraging on a better representation of the features space. As reported in (Wen
et al., 2020), time series can be augmented by using a simple transformation in time domain
(Cui et al., 2016), frequency domain (Gao et al., 2020), or more advanced generative approaches
involving deep learning techniques, such as recurrent generative adversarial networks (Esteban
et al., 2017). In practice, the use of generative models for data augmentation of time series
with anomalies presents two limitations. First, training such models requires a large number of
samples to guarantee a satisfactory performance. While restricted Boltzman machines do not
exhibit this problem, (Kondratyev et al., 2020) have shown that they fail into fitting multivariate
complex distributions with nonlinear dependence structure. A more fundamental limitation
affects the very idea behind generative models. Such networks are trained to learn a given
distribution. However, by definition, anomalies are different from each other and therefore there
is not a distribution that characterises them.

A.5 Supervised vs. Unsupervised learning

Since anomalies are the realisations of atypical events for which the distribution is unknown,
it seems quite natural to use unsupervised algorithms. However, these approaches are deemed
more suitable for learning complex patterns and are task specific. Moreover, (Görnitz et al.,
2013) pointed out that they often do not present a high prediction performance, in particular in
high dimensional settings (Ruff et al., 2019). Indeed, the performance of unsupervised shallow
anomaly detection algorithms depends upon a features engineering step. (Akyildirim et al.,
2022) use signatures to extract features which then feed algorithms such as isolation forest. This
combination of techniques is shown to over-perform benchmark approaches. However, the designed
model is task specific (detection of pump and dumps attacks) and the features extraction step
is only efficient when at least one explanatory variable is considered in the analysis. Moreover,
the unavailability of labelled data makes the model building and its evaluation even more
complex. As for supervised methods, the only limitation on which the literature tends to agree
is their incapacity to generalize the learned patterns to new samples, which is the consequence
of misrepresentation of anomalies among the training samples (Zhao and Hryniewicki, 2018).
However, the scarcity of labelled data can be sidestepped through the use of data augmentation
techniques on the fraction of available labelled data. For these reasons the supervised learning
framework is to be preferred even when only a small set of labelled data is available.

A.6 Anomaly Detection on Time Series

Usually, anomaly detection models on time series have two main components. The first component
aims at extracting a parsimonious yet expressive representation of the time series. Several
approaches are suggested in the literature to deal with such features extraction. Recently,
deep neural networks have been shown to suffer from overparametrization and to be often
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computationally expensive (Dempster et al., 2020; Akyildirim et al., 2022). Path signatures are
also computationally demanding. This could perhaps be alleviated by the random signatures
(Compagnoni et al., 2022). However, the information extracted with signatures is of most interest
when the considered paths are characterized by several variables. The resulting representation is
then transformed into a (typically continuous) anomaly score which is in turn converted into a
binary label (Braei and Wagner, 2020).

A.7 PCA and Anomaly Detection

In the literature, PCA is usually used in anomaly detection for its dimension reduction properties.
Anomalies are identified on the latent space, either by applying some anomaly detection algorithm
or by assuming a given distribution on the principal component and identifying the anomalies
relatively to a quantile (Shyu et al., 2006). Assuming that a normal subspace representation of
the data set can be constructed with the first k-components (Ringberg et al., 2007), anomaly
detection is achieved by looking at the observations that cannot be expressed in terms of the
first k-components (Bin et al., 2016). Note that the particular power-fullness of auto-encoder, a
non-linear PCA, as data compressor is not desirable herein, since auto-encoders compress all
patterns including abnormal ones. While (Ding and Tian, 2016) claimed that the PCA-based
models are stable with respect to their parameters, such as the number of principal components k
spanning the subspace or the cut-off level, (Ringberg et al., 2007) found instead that PCA-based
anomaly detection is sensitive to these parameters and to the amplitude of the anomalies. Indeed,
the latter may undermine the construction of the normal subspace representation, in turn leading
to misidentification of anomalies. In light of that, we take an extra care regarding these aspects,
and appropriate tests are conducted to show that the proposed approach is not subject to these
issues. In the end, with a relatively low number of features given by PCA, we are able to
accurately describe the dynamics of market risk factors represented by times series. The reason
standing behind that is the high correlation structure displayed by market risk factors.

B State of the Art Anomaly Detection Models

There are mainly two categories of machine learning anomaly detection models : density-based
models, where a distribution is used to fit the data and anomalies are defined relatively to this
distribution, and depth-based models, which, instead of modeling the normal behaviour, isolate
anomalies.

B.1 Density-Based Models

Density based spatial clustering with noise (DBSCAN) DBSCAN (Ester et al., 1996;
Schubert et al., 2017) is an unsupervised clustering methodology that groups together comparable
observations based on a similarity metric. Clusters are high density regions and are defined by
the ε-neighbourhood of observations and by MinPts, the minimum number of points required to
be in a radius of ε from an observation to form a dense region. An anomaly is any observation
which has not MinPts in its ε-neighbourhood nor appears in the ε-neighbourhood of other
observations.

K-nearest neighbours (KNN) Usually used for classification purposes, KNN (Hand, 2007)
is a supervised algorithm that can be used for anomaly detection as well. For each observation
it selects its closest K observations generally in terms of distance, but other similarity metrics
can be considered. The anomaly score of an observation is computed as function of its distances
to K-nearest neighbours, weighted average of the distances for instance. The points with the
highest anomaly scores are considered as anomalies.
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Support Vector Machines (SVM) The ultimate aim of SVM (Cortes and Vapnik, 1995)
is to define a hyperplan that separates the data. The specificity of this hyperplan is that it
maximizes the distances to the set of features representing each class. When the data is not
linearly separable, a map φ is applied to the initial features vector so the data became linearly
separable in the new space in which it was projected.

B.2 Depth-Based Models

Isolation Forest (IF) The IF method (Hariri et al., 2019) applies a depth approach to detect
anomalies. The algorithm is based on the idea that anomalies are easier to isolate and thus will
be isolated closer to the root, while normal observations are isolated much further from the root.
The algorithm uses random decision trees to separate the observations. The anomaly score is
calculated as the path length to isolate the observation. As it is defined in the algorithm, the
anomaly score will be closer to 1 for anomalies and � 1 for normal observations. This allows
ranking the observations, from the most abnormal observation to the most regular one. However,
the choice of an explicit cut-off between this two type of instances is not obvious.

Local Outlier Factor (LOF) The LOF algorithm (Breunig et al., 2000; Alghushairy et al.,
2020) tries to assess the isolation of one observation relatively to the rest of the data set, before
flagging it as an anomaly. This model relies on the concept of local density. The anomaly score
of an observation x is its local outlier factor, which quantifies how dense is the location area of x
compared to the one of its neighbours. Hence, for each observation, LOFk(x) ≈ 1 means that
the density of observations around x is similar to the one of its neighbours, therefore x could not
be considered as an isolated observation. LOFk(x)� 1, instead, shows that the density of x is
lower compared to its neighbours, hence x should be flagged as anomaly

C The Data Stationary Issue

Assume that a process
(
εit
)
satisfies the following representation

∆εit = γεit−1 + θ1∆εit−1 + . . . + θp−1∆εit−p+1 + zt,

where p is the lag order, ∆ is the difference operator, i.e ∆εt = εt − εt−1, and zt is a white noise.
The stationarity of (εit) is shown using the augmented Dickey-Fuller test (Fuller, 2009). Namely,
the process εi is stationary if there is a unit root, i.e. γ = 0. Therefore, for each εi the test is
carried under the null hypothesis H0 : γ = 0 against H1 : γ < 0.

Set Mean Standard dev. Min 25% 50% 75% Max
Train 1.26e-14 1.74e-13 6.63e-24 3.46e-20 1.92e-18 3.74e-17 3.88e-12
Test 1.51e-14 4.83-13 6.20e-30 4.23e-19 8.45e-18 1.65e-16 4.35e-11

Table 25: Descriptive statistics on p-values for train and test set time series ε.

If the p-values are lower than the significance level, then the null hypothesis is rejected for all
the reconstruction errors and we conclude that the time series we work with do not suffer from
the non-stationarity issue.
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