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Abstract

We consider time series representing a wide variety of risk factors in the context of
financial risk management. A major issue of these data is the presence of anomalies that
induce a miscalibration of the models used to quantify and manage risk, whence potentially
erroneous risk measures on their basis. Therefore, the detection of anomalies is of utmost
importance in financial risk management. We propose an approach that aims at improving
anomaly detection on financial time series, overcoming most of the inherent difficulties.
One first concern is to extract from the time series valuable features that ease the anomaly
detection task. This step is ensured through a compression and reconstruction of the data
with the application of principal component analysis. We define an anomaly score using
a feed-forward neural network. A time series is deemed contaminated when its anomaly
score exceeds a given cut-off. This cutoff value is not a hand-set parameter, instead it is
calibrated as a parameter of the neural network throughout the minimisation of a customized
loss function. The efficiency of the proposed model with respect to several well-known
anomaly detection algorithms is numerically demonstrated. We show on a practical case of
value-at-risk estimation, that the estimation errors are reduced when the proposed anomaly
detection model is used, together with a naive imputation approach to correct the anomaly.

Key words: anomaly detection, financial time series, principal component analysis, neural
network, density estimation, missing data, market risk, value at risk

1 Introduction

In the context of financial risk management, financial risk models are of utmost importance
in order to quantify and manage financial risk. Their outputs, risk measurements, can either
help in the process of decision making or ensure that the regulatory requirements are met
[Basel Committee on Banking Supervision, 2013]. Financial management thus heavily relies on
financial risk models and the interpretation of their outputs. The data usually consist of time
series representing a wide variety of risk factors. A major issue of such data is the presence of
anomalies. A time series is considered to be abnormal whenever its behaviour is significantly
different from the behaviour of the rest of the time series [Hawkins, 1980]. In this work, we
focus on the detection of abnormal observations in a risk factor time series used to calibrate
financial risk models. Indeed, financial risk models may be sensitive to anomalies, when erroneous
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input data wrongly impact the calibrated model parameters. A typical example could be the
estimation of the covariance matrix of a bank risk factors. The covariance matrix is involved, for
instance, in the computation of Value-at Risks (VaR) or Expected Shortfalls, that is expected
losses above the VaR level. Since the true covariance is unknown, it has to be estimated from the
data. However, the presence of anomalies in the data might have an impact on the estimation.
For this specific case, robust methods, which are less sensitive to anomalies, can be used. Yet,
existing robust estimators are computationally expensive, with a polynomial or even exponential
time complexity in terms of the number of risk factors. A faster approach was suggested by
[Cheng et al., 2019]. Nonetheless, this algorithm only applies to the estimation of the covariance
matrix in the case of a high-dimensional Gaussian distribution. Financial risk models used by
banks are widespread and various. Therefore, instead of seeking for a robust version for each of
them, we propose to detect anomalies directly on the time series. This way we are able to bypass
the problem of sensitivity of all the models to anomalies.

Baseline Algorithms Anomaly detection aims at finding an “observation that deviates so much
from other observations as to arouse suspicion that it was generated by a different mechanism"
[Hawkins, 1980]. The baseline anomaly detection algorithms, described in [Chandola, 2009],
struggle to identify anomalies in time series, mainly because their assumptions are invalidated.
Indeed, first, if we consider models built for spatial data, a major assumption of these models
is that observations are independent, whereas for time series, high dependency exists between
different time stamps. Clustering-based approaches, like the density based spatial clustering
with noise (DBSCAN) method, are particularly impacted by this aspect: if an anomaly occurs
at a given time stamp and is followed by incorrect values, clustering-based approaches consider
that the observations of the time series belong to two different clusters and thus fail to identify
the anomaly. Another limitation when considering this type of techniques is the choice of the
similarity metric used for data clustering. This task, although being a crucial pillar of these
approaches, is not trivial and becomes even more complex for high dimensional problems.

Statistical Approach to Anomaly Detection The statistical techniques for anomaly
detection can be split in two families: statistical tests and predictive models. Both suffer from the
curse of dimensionality and model/data mismatch. When anomaly detection relies on hypothesis
tests, usually they test whether the observations are drawn from a known distribution [Zhang and
Paschalidis, 2017], which supposes that the user knows the probability distribution of the normal
observations. This parametric framework narrows down the scope of applicability of hypothesis
tests, as the data does not always coincide with the assumed distribution. Moreover, the tests
provided in the literature are not suitable in high dimensional settings since they were originally
built for univariate data as explained in [Kurt et al., 2020]. The statistical technique relying
on fitting a predictive model to each time series also requires strong assumptions on the data.
Predictive models are usually autoregressive (AR), moving average (MA), or ARMA models.
Anomalies are then detected relatively to the forecasts suggested by the model [Chandola, 2009].
However, in this parametric approach, some parameters have to be specified, starting with the
order of the models. Selecting the optimal model parameters with respect to an information
criterion is not always possible [Sedman, 2018]. Additionally, these models assume that the time
series are homogeneous, i.e. drawn from the same distribution [Laptev et al., 2015]. This is not
always satisfied in the financial risk management case where several types of risk factors are
treated simultaneously.

Score based Anomaly Detection Models Additional anomaly detection challenges are of
general concern. Most of anomaly detection algorithms are score-based, in the sense that these
approaches return an anomaly score reflecting to which extent the observation is considered to
be abnormal by the model. In order to decide whether an observation is abnormal or not, a
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cut-off value of the score has to be selected. Empirical approaches are often used, consisting
in either setting the cut-off value as a quantile of the distribution of the anomaly score, or in
considering the cut-off value as the elbow point of this distribution. However, the selected cut-off
value according to such methods remains arbitrary. An advanced approach is proposed by [Gao
and Tan, 2006] who propose to rely on the cost of misclassification. In most cases, the latter
is taken as a weighted classification accuracy. Approaches to calculate “optimal” weights are
described in [Lu et al., 2019], but they involve a grid search, technique that may draw near the
optimum but may also diverge. Another alternative is to determine the cut-off value by cross
validation on the training data as in [Saha et al., 2009]. Finally, some methods do not select any
cut-off value, but are based instead on a contamination rate. However, in a sense, fixing a cut-off
value or deciding on a contamination rate is equivalent.

Scarcity of Anomalies and Data Augmentation The scarcity of anomalies within the
data sets is another typical problem in anomaly detection. Anomalies are, by definition, rare
events, therefore they are underrepresented in the data set used to fit the models. This under
representation is not helping in the design of a reliable model able to identify anomalies. Clas-
sical methods to overcome this issue consider data augmentation. These techniques aims at
producing new synthetic samples that will ultimately enhance model performance since a better
representation of the feature space is allowed. As reported in [Wen et al., 2020], time series can
be augmented by using a simple transformation (in time domain [Cui et al., 2016] or frequency
domain [Gao et al., 2020]) or more advanced approaches as generative models, which involve deep
learning techniques (such as recurrent generative adversarial networks [Esteban et al., 2017]).
In practice, the use of generative models for data augmentation of time series with anomalies
presents two limitations. First, training such models requires a large number of samples to
guarantee a satisfactory performance. While restricted Boltzman machines do not exhibit this
problem, [Kondratyev et al., 2020] have shown that they fail into fitting multivariate complex
distributions with non linear dependence structure. A more fundamental limitation affects the
very idea behind generative models. Such networks are trained to learn a given distribution.
However, by definition, anomalies are different from each other and therefore there is not a
distribution that characterises them.

Supervised vs. Unsupervised learning Since anomalies are the realisations of atypical
events for which the distribution is unknown, it seems quite natural to use unsupervised algorithms.
However, these approaches are deemed more suitable for learning complex patterns and are
task specific. Moreover, [Görnitz et al., 2013] pointed out that they often do not present a high
prediction performance, in particular in high dimensional settings [Ruff et al., 2019]. Indeed,
the performance of unsupervised shallow anomaly detection algorithms depend upon a feature
engineering step. [Akyildirim et al., 2022] proposed to use signatures as feature extractors
which are fed to algorithms such as isolation forest. This combination of techniques is shown to
over-perform benchmark approaches. However, the designed model is task specific (detection
of pump and dumps attacks) and the feature extraction step is only efficient when at least one
one explanatory variable is considered in the analysis. Moreover, the unavailability of labelled
data makes the model building and its evaluation even more complex. As for the supervised
methods the only limit on which the literature tends to agree is their incapacity to generalize the
learned patterns to new samples, which is the consequence of misrepresentation of anomalies
among the training samples [Zhao and Hryniewicki, 2018]. However, even a small fraction of
labelled data represents an essential information, that should be integrated during the model
elaboration. By contrast, under the unsupervised learning framework, the use of this scarce
but precious information is not possible [Ruff et al., 2019]. The lack of labelled data can be
sidestepped through the use of data augmentation techniques on the fraction of available labelled
data. Hence, for these reasons the supervised learning framework is to be preferred even when
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only a small set of labelled data is available.

Anomaly detection on Time Series Usually, anomaly detection models on time series have
two main components. The first component aims at extracting a parsimonious yet expressive
representation of the time series. Several approaches are suggested in the literature to deal
with such feature extraction. Recently, deep neural networks have been shown to suffer from
overparametrization and to be often computationally expensive [Dempster et al., 2020, Akyildirim
et al., 2022]. Path signatures are also computationally demanding. This could perhaps be
alleviated by the random signatures [Compagnoni et al., 2022]. However, the information
extracted with signatures is of most interest when the considered paths are characterized by
several variables. The resulting representation is then transformed into an anomaly score. The
second component aims at converting the anomaly score, which is usually a continuous variable,
into a binary label [Braei and Wagner, 2020].

PCA NN Anomaly Detection In this paper, we propose a methodology to identify anomalies
on time series using a principal component analysis (PCA) as underlying model, challenging
current methods by providing a competitive alternative overcoming the above described pitfalls.
PCA is involved in our approach as feature extractor. With a relatively low number of features
given by PCA, we are able to accurately describe the dynamics of risk factors represented by times
series. The reason standing behind that is the high correlation structure displayed by financial
risk factors. The particular power-fullness of auto-encoder, a non-linear PCA, as data compressor
is not desirable herein, since auto-encoders compress all patterns including abnormal ones. In
the literature, PCA is usually used in anomaly detection for its dimension reduction properties.
Anomalies are identified on the latent space, either by applying some anomaly detection algorithm
or by assuming a given distribution on the principal component and identifying the anomalies
relatively to a quantile as in [Shyu et al., 2006]. Once PCA is involved in anomaly detection, the
user assumes that a normal subspace representation of the data set can be constructed with the
first k-components [Ringberg et al., 2007]. Anomaly detection is then achieved by looking at
the observations that cannot be expressed in terms of the first k-components [Bin et al., 2016].
While [Ding and Tian, 2016] claimed that the PCA-based models are stable with respect to
their parameters, such as the number of principal components k spanning the subspace or the
cut-off level, [Ringberg et al., 2007] found instead that PCA-based anomaly detection is sensitive
to these parameters and to the amplitude of the anomalies. Indeed, the latter may undermine
the construction of the normal subspace representation, in turn leading to mis-identification of
anomalies. In light of that, we take an extra care regarding these aspects, and appropriate tests
are conducted to show that the suggested approach is not subject to such issues. In addition, we
introduce a neural network approach to calibrate the anomaly score threshold.

Outline The paper is organised as follows. In Section 2, we present the PCA NN approach
with a particular focus on each step of the technique. A brief description of PCA is also provided
to motivate its use as an efficient feature extractor tool. In Section 3, we present the numerical
framework adopted to generate time series in Section 3.1, then contaminate them (Section
3.2) and the process of data augmentation used to overcome the scaricity of anomalies. Our
main numerical results are provided in Section 4, with the main performance metrics that were
considered to assess the suggested anomaly detection model (Section 4.1). The calibration of the
latent space dimension is described in Section 4.3 followed by the model evaluation in Sections
4.4 and 4.5. We numerically demonstrate the efficiency of our approach over baseline anomaly
detection models in Section 4.6. In Section 4.7, we tackle the issue of anomalies imputation
once detected, comparing the imputation approach suggested by our approach to comparable
imputation techniques (in terms of computational complexity). The calibration of the anomaly
score cut-off value is a main contribution of the approach, therefore its robustness was tested in
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Section 4.8. Finally, we show on a practical case of value-at-risk estimation in Section 5, that the
estimation errors are reduced when the proposed anomaly detection model is used, together with
a naive imputation approach to correct the anomaly. A conclusion of the paper with further
discussions are presented in Section 6.

2 Method: PCA NN Anomaly Detection

After setting the key notations that are used in the remainder of the paper we proceed with the
a general description of our two step method for anomaly detection on time series while briefly
recalling tenets of principle components analysis. Then the first step of the approach i.e. the
contaminated time series identification is introduced whilst explaining the motivation behind
the model suggested for this step. The second step i.e. anomaly localization step is described in
further details at the end of this section.

2.1 Notations

In this section, we introduce the notations that we use in the following sections to describe our
two-step PCA methodology for anomaly detection on financial time series. Let

X =
(
X1, X2, . . . , Xi, . . . , Xn

)>
, (1)

where the column-vector Xi =
(
xit1 , x

i
t2 , . . . , x

i
tj . . . , x

i
tp

)
∈ Rp corresponds to the i-th observed

time series, and xitj to the value observed at time tj in the i-th time series.
Our method fits into the supervised framework. We thus assume that the data matrix X

comes along with two label matrices. The first label matrix A =
(
A1, . . . , An

)
∈ {0, 1}n identifies

the time series containing anomalies referred to as contaminated time series. For i = 1, . . . , n, we
define the identification labels as

Ai =

{
1 if there exists j such that xitj is an anomaly.
0 otherwise.

(2)

The second label matrix L concerns solely the contaminated time series. Its coefficients
correspond to the location labels, that is the time stamps at which an anomaly occurs. For
j = 1, . . . , p and i ∈ Ic = {i : Ai = 1} (the set of contaminated time series),

Li =  when the anomaly occurs at time t for the i-th contaminated time series,

X,A and L are general notations. As the model involves a learning phase, we denote by
XTrain, ATrain and LTrain the data used for calibration and by XTest, ATest and LTest the
independent data set on which the model performance is evaluated.

2.2 Model Description

The anomaly detection model we propose is a two step supervised-learning approach. The
first step, namely Contaminated Time Series Identification Step, aims at identifying among
the observed time series the ones with potential anomalies. The second step, called Anomaly
Localization Step, consists in finding the location of the anomaly in each contaminated time series
identified during the first step.

The model used in the first step falls under the scope of binary classification models, as it
will assign to each time series a predicted label Âi in the following way:

Âi =

{
1 if Xi is considered as contaminated by the identification model.
0 otherwise.
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The second step uses a multi-classification model. For each contaminated time series identified
in the first step, the model predicts a unique time stamp L̂i at which the anomaly has occurred.
Formally, the observed value at the time stamp t̂i of the i-th contaminated time series is
considered abnormal, meaning that the observation xit̂i is abnormal. Thus,

L̂i = ̂i with ̂i ∈ {1, . . . , p}.

Our two-step anomaly detection model locates only one anomaly per run, if any. Hence,
several iterations allow removing all anomalies. Indeed, as long as the time series is identified as
contaminated by the first step of the model, the time series can go through the second step of
the model. Once, all anomalies have been located the final step of the approach would be to
remove the anomalous values and suggest imputation values.

2.3 Theoretical Basics of Principal Component Analysis

In this section, we recall the theoretical tenets of the principal component analysis (PCA) useful
for our purpose. The idea of PCA is to project the data from the observation space of dimension p
into a latent space of dimension k, with k < p. This latent space is generated by the k directions
for which the variance retained under projection is maximal.

The first principal component U is given by the equation

U = w>X with var(U) = w>Σw,

with w a vector of weights to be determined. Since the PCA aims at maximizing the variance
along its principal components, w is sought for as

arg max
‖w‖=1

w>Σw .

The optimal solution by the Lagrangian method is given by

Σw = λw ,

where λ > 0 is a Lagrangian multiplier. Multiplying both sides by w> results in

w>Σw = λ.

Following the same process with an additional constraint regarding the orthogonality between
the principal components, one can show that the k first principal components correspond to the
eigenvectors associated with the k dominant eigenvalues of Σ.

The transfer matrix ΩX ∈ Rk×p is defined by the eigenvectors of Σ associated with its k largest
eigenvalues. This transfer matrix ΩX applied to any observation in the original observation
space projects it into the latent space. Since the transformation is linear, reconstructing the
initial observations from their equivalent in the latent space is straightforward. Using PCA on
the data matrix X, the transfer matrix ΩX can be inferred. The projection of the observations
into the latent space Z ∈ Rn×k is then given by Z = XΩ>X , and their reconstructed values by
X̂ = ZΩX .

The reconstruction errors εi for each time series defined by

εi = X̂i −Xi, i = 1, . . . , n, (3)

are our new representation of data, that are given as inputs to our models, referred in the sequel
as the new features. It is worth stressing that the two steps of the model use the same inputs,
namely these reconstruction errors. Nevertheless, the processing these inputs undergo in each
step differ.
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A fundamental intuition behind the anomaly detection algorithm we suggest is the existence of
a lower dimensional subspace where normal and abnormal observations are easily distinguishable.
Indeed, since the selected principal components explain a given level of the variance of the
data, they represent the common and essential characteristics to all observations. As one might
reasonably expect, these characteristics mostly represent the normal observations. Therefore,
when the inverse transformation is applied, the model successfully reconstructs the normal
observations with the help of the extracted characteristics, while it fails into reconstructing the
anomalies.

Following this intuition, we expect normal observations to have low reconstruction errors, and
higher errors for anomalies. Since this error reflects the degree to which the instance is considered
as abnormal, it can be used to propose an anomaly score according to which each observation
will be labelled as either normal or abnormal. A decision rule thus needs to be defined on the
anomaly score to convert it into a binary label: classically in anomaly detection, a time series is
labelled as abnormal if its anomaly score exceeds a previously determined cut-off value s. This
cut-off value is, in most of anomaly detection algorithms, a hyper-parameter that needs to be
tuned. In this paper, we propose to calibrate s during the learning phase as described in Section
2.4. Algorithm 1 summarizes how to compute the reconstruction errors.

Algorithm 1 Features extraction with PCA
inputs : number of principal components k

out of sample data XTest

training data if not trained yet XTrain

if not trained yet then
ΩXTrain ← PCA(XTrain, k)

end
εTrain = XTrain

(
Ω>
XTrainΩXTrain − Ip

)
εTest = XTest

(
Ω>
XTrainΩXTrain − Ip

)
outputs : εTrain Reconstruction errors for the train set

εTest Reconstruction errors for the test set

In the next sections, we introduce the two steps of our approach, while the first step identifies
the contaminated time series, the second step focuses on the localization of the anomaly in
the time series. Both steps use the reconstruction errors as inputs. The main difference is the
processing undergone by these inputs, while for the first step we use a neural network to compute
an anomaly score which reflects the propensity of the time series of being contaminated (cf.
Section 2.4), a more shallow approach is applied on the reconstruction errors to localise the
abnormal observation in the second step (cf. Section 2.5).

2.4 Contaminated Time Series Identification

Recall that the first step of the approach, that is the Contaminated time series identification
step, aims at identifying the time series with anomalies based on the reconstruction errors that
we obtain using PCA and Algorithm 1. In this section, we detail the process these new features
undergo. In fact, we assign to each reconstruction error an anomaly score which computation
is handled by a neural network (NN). We also numerically demonstrate that our NN have an
advantage over the naive approach in terms of being able to assess more accurately the propensity
of a time series of being contaminated.

Naive approach A naive and natural approach to define the anomaly score is to consider the
`2-norm of the reconstruction errors ε̃i = ‖εi‖2, i = 1, . . . , n. This anomaly score represents the
propensity of a time series to be contaminated or not. The scores are first split into two sets
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depending on whether the corresponding time series is identified as contaminated or not. We
denote by ε̃c and ε̃u the set of contaminated and uncontaminated time series, i.e.

ε̃c := {‖εi‖2; Ai = 1 } = {ε̃i, i ∈ Ic}
ε̃u := {‖εi‖2; Ai = 0 } = {ε̃i, i /∈ Ic}.

The density distribution function of each class of time series fu and f c, i.e. for both ε̃c and
ε̃u, is then estimated using kernel density estimation [Węglarczyk, 2018]. For l = {c, u}, let εl be
an i.i.d sample of nl observations from a population with unknown density f l. The corresponding
kernel estimator is given by

f̂ l(s) =
1

nlh

nl∑
k=1

K
(
s− ε̃lk

h

)
, (4)

where K is a kernel function and h is a smoothing parameter.
The cut-off value s is then chosen as the intersection between the two empirical density

functions, i.e.

ŝ = arg min
s

{
|f̂u(s)− f̂ c(s)| < η

}
,

with η a precision level to be tuned. The selected cut-off value ŝ represents the value of the score
for which the area under the curve of the density of uncontaminated time series above ŝ and the
area under the curve of contaminated time series below ŝ are as small as possible. We expect it
to correspond to a value exceeded by a relative low amount of ε̃i with i /∈ Ic as f̂u(s) is expected
to be flat around the cut-off value exceedance region, and exceeded only by few ε̃i with i ∈ Ic.
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Figure 1: Empirical densities of anomaly scores given by the naive approach for uncontaminated
time series in black and contaminated time series in red, a) on the train set and b) on a test set.
The dotted dark red line represents the cut-off value.
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As shown in Figure 1, the naive approach results in a non-negligible overlapping region
between the two densities, both on the train set (see Figure 1 a)) and for the test set (see
Figure 1 b)). This region represents the anomaly score associated with time series that could be
either contaminated or uncontaminated. The uncertainty regarding the nature of the observation
when its anomaly score belongs to this region is relatively high in comparison with observations
whose anomaly scores lie on the extreme left-hand or right-hand side of the calibrated cut-off
value. Moreover, because we are not able to provide a clear separation between the scores of
uncontaminated and contaminated time series, we may expect the model to mislabel future
observations, resulting a high rate of false positives and true negatives.

Neural network approach In view of getting a clearer separation of the densities, we propose
an alternative approach for the computation of the anomaly scores built upon the reconstructions
errors. Let F denote the function that associates with each reconstruction error εi its anomaly
score. In the naive approach, F corresponds to the `2-norm. Hereafter, F instead represents
the outputs of a feed-forward Neural Network (NN) [see e.g. Goodfellow et al., 2016], whose
architecture is depicted in Figure 3. The training of the corresponding NN aims at minimising a
loss function that reflects our ambition to construct a function F that gives accurate anomaly
scores. The network used for computing the anomaly scores is defined by

F (ε) =
(
hH ◦ hH−1 ◦ . . . h2 ◦ h1

)
(ε),

where hi(ε) =
(
W i · ε+ bi

)+ represents the computation carried in the i-th layer of the neural
network with nih hidden units. H stands for the number of layers of the NN with ReLU activation
applied element-wise. We finally estimate the labels from the outputs following

Â = 1{(F (ε)−s)+>0}. (5)

The idea of the learning is to calibrate the weights W :=
{
W i ∈ Rn

i
h , i = 1, . . . ,H

}
and the

biases b :=
{
bi ∈ R, i = 1, . . . ,H

}
such that the NN is able to accurately assess to which extent

a time series is contaminated, with a clear distinction between the anomaly scores assigned to
uncontaminated time series and those assigned to the contaminated ones, while integrating the
calibration of the cut-off value s as part of the learning. We denote by Θ := {W , b, s} the set of
parameters to be calibrated through the NN training. To meet these needs, the loss we minimise
during the learning is given by

LΘ

(
A, Â

)
= BCE(A, Â) + AUCDensityuA,F (ε) + AUCDensitycA,F (ε) (6)

where

BCE(A, Â) = − 1

n

∑
i

(
Ai log(Âi) + (1−Ai) log(1− Âi)

)
is the binary cross-entropy, a well-known loss function classically used for classification problems.
To this first component of our loss function, we add two components that aim at downsizing the
overlapping region between the density of anomaly score of both types of observations. In order
to have a control on the latter, we consider AUCDensityu and AUCDentsityc, which correspond
to the area under the curve of the probability density function of anomaly scores the model
assigns to contaminated and uncontaminated observations, i.e

AUCDensityu(s) =

∫ ∞
s

f̂uA,F (ε)(ω)dω AUCDensityc(s) =

∫ s

−∞
f̂ cA,F (ε)(ω)dω . (7)

Note that the bounds of these integrals depend on the cut-off value s and define the region for
which we want the probability density function to be as small as possible, which allows us to
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estimate ŝ. The estimated probability density functions f̂uA,F (ε) and f̂ cA,F (ε) depend on F (ε),
the scores assigned by contaminated time series identification model, and of the identification
labels A. We describe with Algorithm 2, the scoring and cut-off value calibration that we achieve
throughout the calibration of a feed-forward network with the customized loss (6). To this end,
the update of Θ, AdamStep in Algorithm 2, is carried following the Adam optimization algorithm
of [Kingma and Ba, 2014].

Algorithm 2 Scoring and cut-off calibration
inputs : learning rate lr

number of maximum iterations K
kernel density estimator parameter K,h
training data εTrain,ATrain

Initialize parameter Θ, L̂ =∞ and count index k = 0
while k < K do

scores← FΘ

(
εTrain

)
scoresc ← scores1ATrain=1

scoresu ← scores1ATrain=0 // Density estimation following (4)
f̂u
ATrain,scoresu

= KernelDensityEstimator(K, h, scoresu)

f̂ c
ATrain,scoresc

= KernelDensityEstimator(K, h, scoresc)
// Loss evaluation following (6) and (7)
AUCDensityu ← NumericalIntegration(f̂u

ATrain,scoresu
, s)

AUCDensityc ← NumericalIntegration(f̂ c
ATrain,scoresc

, s)

Â← 1scores>s

L ← BCE
(
ATrain, Â

)
+ AUCDensityu + AUCDensityc

if L̂ > L then

L̂ ← L
Θ̂← Θ

end

Θ← AdamStep(L,Θ, lr)
k ← k + 1

end
outputs : best calibrated parameter Θ̂ = {Ŵ , b̂, ŝ}.
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Figure 2: Empirical densities of anomaly scores given by the NN approach for uncontaminated
time series in black and contaminated time series in red, on the train set a) and on a test set b).
The dotted dark red line represents the calibrated cut-off value ŝ.

Approach AUCDensityu AUCDensityc

Naive 0.1725 0.7898
NN 0.05153 0.1550

a)

Approach AUCDensityu AUCDensityc

Naive 0.1897 0.6354
NN 0.1290 0.1367

b)

Table 1: AUC obtained with the naive and the NN approaches for a) the train set and b) the
test set.

Table 1 shows that with the NN approach the densities of scores assigned to each type of
time series display the expected behaviours on the left-hand (right-hand) side of the cut-off value
for contaminated (uncontaminated) time series, on the train and test sets. Actually, the lower
AUCDensityu (AUCDensityc) is, the lower the number of uncontaminated (contaminated) time
series to which are assigned anomaly scores above (below) the cut-off value, which prevents
mislabelling.

Once the features X and the calibrated NN are provided, the contaminated times series
identification model is ready for use. This step is described by Algorithm 3.
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Figure 3: Architecture of the network computing the anomaly score ai assuming H = 1, with
the reconstruction error εi as input.

Algorithm 3 Contaminated time series identification model
inputs :Time series to analyze Xi,

Calibrated model parameters Θ̂,
εi ← PCAFeaturesExtraction(Xi) ; // cf. Algorithm 1 in Section 2.3
scorei ← F

Θ̂
(εi)

Âi ← 1scorei>ŝ
outputs : identification label Âi.

2.5 Anomaly localization Step

Once the time series containing an anomaly have been identified, the second step of our approach
aims at locating an abnormal observation (see Section 2.2) among each contaminated time series.
Again we use the reconstruction errors defined in (3) as inputs of this second step. The difference
lies on the transformation these reconstruction errors undergo before labelling the different time
stamp observations. Namely, we now consider the following element-wise transformation of the
reconstruction errors:

F (εi) = |εi| = |Xi − X̂i|.

The model inputs F (εi) ∈ Rp+ is thus assigned to each time series Xi ∈ Rp. The time stamp of
occurrence of the anomaly is given by

L̂i := arg max
j

{
F (εitj ) : j ∈ {1, . . . , p}

}
.

Algorithm 4 recaps the anomaly localization model.
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Algorithm 4 Anomaly Localization Model
inputs : time series Xi to analyze.
εi ← PCAFeaturesExtraction(Xi)

L̂i ← arg max

{
|εit | :  ∈ {1, . . . , p}

}
outputs : anomaly location L̂i.

Note that anomalies are not necessarily extrema. For this reason the above PCA feature
extraction step is necessary. Indeed, building on the reconstruction errors, the model identifies
these extrema-anomalies, but also abnormal observations which are not necessarily extrema. This
subtlety of the nature of the observations underlines the importance of going further than taking
the index of the highest observed value of the contaminated time series Xi.

Features
extractionX ε

Identificationε Â

Is X
contami-
nated?

Â End

Localizationε L̂

ImputationX, L̂ X̃

no

yes

Figure 4: Flow chart of our two step anomaly detection model (PCA NN), depicting the process
a time series X goes through.
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The flow chart of Figure 4 along with Algorithm 5 summarize our approach. When a time
series X is given to our model, we suggest a new representation of X, namely ε, through a
features engineering step involving PCA. The resulting representation εi feeds the first component
of the model, i.e. the identification step, which evaluates the time series likelihood of being
contaminated. The optimal parameter Θ̂ of the identification model solves

Θ̂ = arg min
Θ=(W ,b,s)

∑
X∈X

LΘ

(
A, Â

)
,

where Â = 1F((ΩΩ>−Ip)X)>s and LΘ is the loss function defined in (6). Then, if the model
considers the time series as contaminated, the localization model takes over to localise the
abnormal value in X. For this second step of the model the time stamp of occurrence of the
anomaly is given by

arg max
j

{(
X
(

Ω>Ω− Ip
))

j
: j ∈ {1, . . . , p}

}
Finally, the anomaly is imputed. As our approach integrates the computation of a reconstruc-

tion of the time series, we could replace the anomaly with the corresponding reconstructed value.
The model will be then able to detect the anomaly and suggest an imputation value. However,
numerical tests described in Section 4.7 show that imputations with naive approaches perform
better.

Algorithm 5 Anomaly Detection Model
inputs : time series Xi to analyze,

calibrated identification model parameters
Âi ← IdentificationModel(Xi, Θ̂) // Algorithm 3
if Âi = 1 then
L̂i ← LocalizationModel(Xi) // Algorithm 4

end
outputs : identification label Âi,

anomaly localization L̂i.

3 Data

Since anomalies are rare by definition, real world data sets are very imbalanced, in the sense
that the proportion of anomalies compare to normal observations is very small, making the
learning phase of the model difficult. This has led us to consider synthetic data for the model
calibration. Our data set is obtained through a three-step process including time series simulations,
contamination and data augmentation. We point out that, in the data simulation, care was taken
to ensure that the generated data sets stay realistic. Particularly, only few anomalies were added
to time series as described in Section 3.2. To this extent, we still face the problem of scarcity of
anomalies in this synthetic framework, and we provide some preprocessing steps to sidestep this
issue as well.

3.1 Data Simulation

In this section, we describe the model used to simulate the data. Recall that our primary
motivation is to detect anomalies in financial time series. For that purpose, we consider share
price sample paths generated through the Black and Scholes model i.e. geometric Brownian
motions. Under this framework, the share price (St)t is solution to the stochastic differential
equation
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dSt = Stµdt+ StσdWt, (8)

where W represents a standard Brownian motion, µ the drift and σ the volatility of the stock.
Applying Itô’s lemma to the process defined by log(S), yields

St = S0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
. (9)

LetN stocks S1, . . . , SN simulated simultaneously from this model, with Si :=
{
Sjt0 , S

j
t1
, . . . , SjtT

}
the time series of length T representing the (time discretized) path diffusion of the j-th stock.
Each stock Si has its own drift µi, volatility σi and initial value Sit0 . The paths parameters are
selected randomly according to

Sit0 ∼ N (100, 1) , µi ∼ U ([0.01, 0.2]) , σi ∼ U ([0.01, 0.1]) , i = 1, . . . , N. (10)

For the sake of realism the Brownian motions driving the N -stocks are correlated. We assume
that the time series obtained thanks to the paths diffusion do not contain any type of anomalies.
The contamination of these time series by anomalies is described in the next section.

3.2 Time series Contamination

We apply a quite naive approach to introduce anomalies into our time series. We introduce
the same fixed number of anomalies nanomaly to each time series by applying a shock on some
original values of the observed time series. Formally, the -th added anomaly is characterized by
its location t corresponding to the time stamp at which the anomaly has occurred, its shock δ,
the amplitude of the shock is given by |δ| and its sign by sgn (δ). We denote by Sa,i the time
series resulting from the contamination of the i-th clean time series Si. For i ∈ {1, . . . , N}, let
J i be the set of indices of the time stamps at which an anomaly occurs for the i-th time series.
For  ∈ J i, the abnormal values are

Sa,it = Sit (1 + δ) .

The location, sign and amplitude of the shocks are generated randomly according to uniform
distributions:

J ∼ UN,nanomaly ({1, . . . , p}) , sign (δ) ∼ UN,nanomaly ({−1, 1}) , |δ| ∼ UN,nanomaly ([0, ρ]) ,

where ρ is an upper bound on the shock amplitude.
We define the anomaly mask matrix RN×T by setting, for i = 1, . . . , 20, and j = 1, . . . , T ,

Ti,j =

{
1 + δj if j ∈ J i.
1 otherwise.

(11)

Under this framework, where we incorporate the anomalies to the clean time series driven by
the geometric Brownian motion, we assign labels to the time series observations according to
whether the values correspond to anomalies or normal observations. We thus provide the labels
Y i
tj associated with each value Sa,itj . Hence, for i = 1, . . . , N ,

Y i
tj =

{
1 if j ∈ J i.
0 otherwise.

(12)
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Algorithm 6 recaps the time series contamination procedure, where AnomalyMask and
GetLabels are names for the operators defined by (11) and (12).

Algorithm 6 Data Contamination
inputs :mplitude range ρ,

number of anomalies to add in time series nanomaly,
sata S

sgn (δ)← UN,nanomaly ({−1, 1})
|δ| ← UN,nanomaly ({0, ρ})
J ← UN,nanomaly ({1, . . . , p})
RN×T 3 T ← AnomalyMask(J , δ)
Sa ← S ◦ T
Y ← GetLabels (J )

outputs : time series with anomalies Sa,
labels associated with each value of the time series L.

3.3 Data Augmentation

By definition, anomalies are rare events and thus represent only a low fraction of the data set.
Yet, the suggested approach needs an important training set for an efficient learning. To overcome
this issue, we apply a classical data augmentation technique called the sliding window method.
This method not only extends the number of anomalies within the data set, but also allows
the model to learn that anomalies could be located anywhere in the time series. The sliding
window technique as described by [Le Guennec et al., 2016] consists in extracting Np = T − p+ 1
sub-time series of length p of the initial observed time series of length T .

Note that we have to split the data into train and test sets before augmentation to guarantee
that time series considered in the training set do not share any observation with the ones we use
for the model evaluation. In view of simplification, we introduce the data augmentation process,
without loss of generality, for S and Y , but one should keep in mind that this process has to be
applied to STrain,Y Train and STest,Y Test separately.

For i = 1, . . . , N and q ∈ {1, . . . , Np}, the sub-time series Si,q and the associated labels Y i,q

are defined by (see Algorithm 7)

Si,q =
{
Sitj , j = q, . . . , q + p− 1

}
Y i,q =

{
Y i
tj , j = q, . . . , q + p− 1

}
.

Each sub-time series Si,q+1 thus results from the shift forward in time of one observation of the
previous sub-time series Si,q. The final data set X and the labels Y s are then defined as the
matrices which rows correspond to the sub-time series Si,qq=1,...,Np;i=1,...,N , and Y

i,q
q=1,...,Np;i=1,...,N ,

respectively, i.e.
X =

(
S1,1, S1,2, . . . , S1,Np , S2,1, . . . , Si,q, . . . , SN,Np

)>
,

Ys =
(
Y 1,1, Y 1,2, . . . , Y 1,Np , Y 2,1, . . . , Y i,q, . . . , Y 20,Np

)>
.

With this data configuration, an observation refers to a time series Si,q obtained through the
sliding window technique. Two observations may represent the same stock but on different time
intervals.
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Algorithm 7 Data Augmentation with sliding window technique
inputs :window size p,

data and labels S,Y ;
Initialise empty slided time series and labels matrices X, Ys;
for i :=1 to N do

for q :=1 to Np do
Si,q ←

{
Sitj |j ∈ {q, . . . , q + p− 1}

}
Y i,q ←

{
Y i
tj |j ∈ {q, . . . , q + p− 1}

}
end
X ← Concatenate

(
X, Si,q

)
Ys ← Concatenate

(
Ys, Y

i,q
)

end
outputs : resulting slided time series and labels X,Ys

While the fact that the observations share the same values may be argued to wrongly impact
the learning process, we point out that a real benefit can be drawn from this situation. Indeed,
thanks to this sliding window technique, the number of anomalies is considerably increased. This
technique also allows the model to learn that anomalies could be located anywhere in the time
series, reducing the dependency on the event location [Um et al., 2017].

However, once we apply the sliding window technique, we do not only extend the number
of contaminated time series: the number of uncontaminated time series is also increased. But
the minority class (contaminated time series) has, this time, a significant number of instances
denoted by N c. Therefore, in order to get a balanced data set for the training set, we perform
an undersampling, selecting randomly N c observations from the Nu uncontaminated time series
without any anomalies (RandomSampling in Algorithm 8). It is important to point that the
resulting retained number of observations 2N c is more than enough to train the model. The test
set, in turn is umbalanced. To sharpen the imbalanced characteristic of the test set we specify a
contamination rate rc which corresponds to the rate of contaminated time series in the data set.
The construction of the test set is described in Algorithm 8.
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Algorithm 8 Time series selection
Inputs : slided data and labels X,Ys,

contamination rate rc (for test set)

X,Ys ←X1sum(Ys)≤1,Ys1sum(Ys)≤1 ; // Keep time series with at most one anomaly.
if Train set then

N c = card
(
Ys1sum(Ys)=1

)
// Randomly select the indexes of N c uncontaminated time series
indexu = RandomSampling

({
i; sum(Y i

s ) = 0, i ∈ {1, . . . , NNp}
}
, N c

)
end
if Test set then

N c = card
(
Ys1sum(Ys)=1

)
Nu =

⌈
Nc(1−rc)

rc

⌉
// Randomly select the indexes of N c uncontaminated time series
indexu = RandomSampling

({
i; sum(Y i

s ) = 0, i ∈ {1, . . . , NNp}
}
, Nu

)
end

indexc =
{
i; sum(Y i

s ) = 1, i ∈ {1, . . . , NNp}
}

X ←
(
Xi, for i ∈ indexu ∪ indexc

)
Ys ←

(
Y i
s , for i ∈ indexu ∪ indexc

)
outputs : time series X with at most one anomaly,

corresponding labels for Identification task A,
corresponding labels for localization task L.

As mentioned in Section 2.2, the model is designed to predict the localization of only one
anomaly. If there is more than one anomaly in the time series, this will wrongly impact the
evaluation of the anomaly localization model. Therefore at this stage we only consider time series
with at most one anomaly.

Hence before introducing the labels transformation, it is worth stressing that the following
assumption is being made:

Assumption 1 A time series Si,q contains at most one anomaly among all its observed values.

We assign the identification label Ai,q (see Section 2.1) to each Si,q following the rule

Ai,q =

q+p−1∑
j=q

Y i
tj =

{
1 if there is an anomaly among the observed values of Si,q

0 otherwise.

Regarding the location labels, we recall that they only concern the time series with an anomaly,
therefore Li,q is defined following

Li,q = arg max
j
Y i,q = arg max

j

{
Y i
tj , j = q, . . . , q + p− 1

}
(13)

With Algorithm 9, we give a rundown of the construction process of the identification and
localization labels namely A and L departing from Ys.

The supervised learning framework is adopted herein, since we have at our disposal labelled
data.

18



The resulting matrices with the observed values of the time series in X the associated
identification labels in A and location labels in L constitute the data set used for our model
calibration and evaluation.

Algorithm 9 Time series labelling
Inputs : slided labels Ys;
A← sum(Ys)

L← arg max
{
Ys1sum(Ys)=1

}
outputs : corresponding labels for identification task A,

corresponding labels for localization task L.

4 Model Evaluation

We briefly describe the process of the latent space dimension calibration. Then we evaluate the
performance of the identification and the localization models on synthetic data, using appropriate
performance indicators. And we demonstrate numerically the efficiency of the PCA NN over
baseline anomaly detection algorithms. To take our approach a leap beyond classical anomaly
detection algorithms, we evaluate the anomalies imputation suggest by the PCA NN model.
Lastly, we test the robustness of the calibrated cut-off value.

4.1 Performance Metrics

Common methods to assess the performance of binary classifiers include true positive and true
negative rates, and ROC (Receiver Operating Characteristics) curves, which display the true
positive rate against the false positive rate. These methods, however, are uninformative when
the classes are severely imbalanced. In this context, F1−score and Precision-Recall curves (PRC)
have been shown to be more informative [Brownlee, 2020, Saito and Rehmsmeier, 2015]. They
are both based on the values of

Precision(s) =
true positives

true positives + false positives

against the values of

Recall(s) =
true positives

true positives + false negatives
where s is a cut-off probability varying between 0 and 1. Precision quantifies the number of correct
positive predictions out all positive predictions made; and Recall (often also called Sensitivity)
quantifies the number of correct positive predictions out of all positive predictions that could have
been made. Both focus on the Positives class (the minority class, anomalies) and are unconcerned
with the Negatives (the majority class, normal observations).

The F1−score combines these two measures in a single index by taking the harmonic mean
of those two values. It is derived from the F-Measure introduced in [Chinchor and Sundheim,
1993, Rijsbergen, 1979] and defined as

F1 = 2 · Precision · Recall

Precision + Recall
. (14)

To closer the F1−score is to 1, the better the prediction model is.
PRC display the values of Precision and Recall as the cut-off s varies from 0 to 1. The PR

curve of a skill-ful model bows towards the point with coordinates (1, 1). The curve of a no-skill
classifier will be a horizontal line on the plot with a y-coordinate proportional to the number of
Positives in the data set. For a balanced data set this will be 0.5 Brownlee [2020].
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PRC and F1−score are complementary in our approach. The PRC is used on the anomaly
scores outcomes of the models, it gives the best configuration and the best model, whereas the
F1−score is used to select the best cut-off value used in the prediction of the two classes, for
each model.

4.2 Synthetic Data Set

The anomaly detection task is performed on N = 20 stocks simultaneously. The stock prices are
diffused according to the Black and Scholes model, each stock has its own drift and volatility and
the 20 stocks are correlated, as described in Section 3. Each time series represents T = 1, 500
daily stock prices, split into two sets: 1, 000 observations, corresponding to the train set, are used
to learn the model parameters, that is the PCA transfer matrix and the NN weights and biases.
The last 500 observations, corresponding to the test set, are used to assess the quality of the
estimated parameters when applied to unseen samples. Hence, for the application of the sliding
window technique, we consider that the length of the resulting time series p is 206. Finally, we
obtained XTrain ∈ R12,000×206 and XTest ∈ R2,500×206, with 6, 000 contaminated time series in
the train set and 400 in the test set.

Table 2 sums up the composition of each data set before and after data augmentation. Thanks
to data augmentation, we are able to extend the number of time series in both train and test
sets, going from 20 time series of length 1,000 with 4 anomalies each to 12,000 time series of
length 206, among which 6,000 time series are contaminated for the train set for example.

Nb of Time Series Nb of Observed values per time series Nb of anomalies
Train set 20 1,000 4× 20
Test set 20 500 2× 20

a)

Nb of Time Series Nb of Observed values per time series Nb of anomalies
Train set 12,000 206 6,000
Test set 2,500 206 400

b)

Table 2: Data set composition a) before and b) after data augmentation

We recall that both steps of the model are preceeded by a feature extraction step, for which
the latent space dimension calibration is described in Section 4.3. The features extraction
guarantees the stationarity of the time series used for the anomaly detection task, namely ε, as
shown by the numerical results provided in Appendix B.

4.3 Calibration of the Latent Space Dimension

The dimension k of the latent space in the PCA algorithm needs to be specified. When performing
PCA, k is determined through a scree plot, which is the representation of the proportion of
variance explained by each component. The optimal k corresponds to the number of principal
components explaining a given level of the variance of the original data. However, this method
has its limitation as stated in [Linting et al., 2007], and more importantly it is not suitable for
our approach. Indeed, in our case, the number of selected principal components must achieve
a given trade-off between information and noise in the latent space. If we consider a too low
number of principal components, we may lose information regarding the normal observations,

20



leading to false alarms. If a too high number of principal component is retained, we may include
components representing noise, which prevents the model from detecting some anomalies.

To select the optimal dimension of the latent space, we consider the distribution of anomaly
score obtained through the application of naive approach Section 2.4, empirically calibrating
a cut-off ŝ through the non parametric estimation of the distribution of the anomaly scores of
uncontaminated and contaminated time series. We chose to calibrate the dimension of the latent
space with the naive approach, because using the NN to this end would be very costly. Hence,
for each k = 5, 10, . . . , 200, we construct a PCA model from which we infer reconstruction errors
which are then converted into anomaly scores. Based on these anomaly scores, we tune the
cut-off value ŝ thanks to the distributions and finally convert the scores into labels. We evaluate
the predictions of the naive approach for each value of k. The results on the evaluation metrics
on the train set, as legitimate to choose k, are represented on Figure 5. The highest values are
reached for k ∈ {40, . . . , 145}. The performance seems to be stable in terms of F1-score and
accuracy. Therefore, for computational reasons we choose the optimal k to be 40.

a) b)

Figure 5: Performance metrics on train a) and test b) sets with respect to the number of principal
component k.

Figure 5 also shows, as expected, a downward trend of the scores when represented against
the highest values of k. This demonstrates that when a high level of variance is explained, it
become much harder to perform anomaly detection based on the reconstruction errors.

4.4 Contaminated Time Series Identification Step

For the feature extraction step, we considered a latent space dimension k = 40. The NN built to
compute the anomaly scores and convert them into labels was calibrated on the train set. The
result of this calibration is shown in Table 3.

Data set Accuracy Precision Recall F1-score
Train set 90.97 % 97.36% 84.21% 90.31 %
Test set 88.58% 61.26% 85.27% 71.30%

Table 3: Performance evaluation of suggested model on synthetic data set for identification step

21



0 50 100 150 200
Time stamp

103

104

105

106

107

108

Va
lu

e

Price Path
Anomaly

0 50 100 150 200
Time stamp

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Va
lu

e

Reconstruction Error
Anomaly

a)

0 50 100 150 200
Time stamp

102

104

106

108

110

112

Va
lu

e

Price Path
Anomaly

0 50 100 150 200
Time stamp

1

0

1

2

3

Va
lu

e

Reconstruction Error
Anomaly

b)

Figure 6: Two examples a) and b) of contaminated time series accurately identified by the model.
The stock path and the reconstruction errors are represented in black and brown. The red cross
shows the anomaly localization.

Figure 6 shows two contaminated time series identified as such by the model. Figure 7
displays two examples of time series without anomalies accurately identified by the model. Figure
8 displays two time series misidentified by the model.

When an observation deviates significantly from the rest of the time series values, the model
is able to recognise that the concerned time series contains an abnormal observation.
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Figure 7: Two examples a) and b) of uncontaminated time series accurately identified by the
model. The stock path and the reconstruction errors are represented in black and brown.
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In Figure 7 with uncontaminated time series, we see that even when there is a local upward
trend in the time series values, the model is able to make the distinction between this market
move and the occurrence of an anomaly.
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Figure 8: Two examples a) and b) of time series misidentified by the model. The stock path and
the reconstruction errors are represented in black and brown. The red cross shows the anomaly
localization.

The last set of time series displays some limits of the model. The graphs in Figure 8a)
represent the situation where the model did not manage to identify the contaminated time series.
One explanation could be that the size of the anomaly is not significantly large enough to be
spotted by the model. Indeed looking at the graph the time series does not seem to contain
any anomaly. In contrast, the graphs in Figure 8b) shows a stock price path predicted to be
contaminated whereas it is not.

We illustrate the robustness of the approach by assessing the model predictions on 100 distinct
data sets. Table 4 shows the mean and standard deviation over the multiple runs.

Data set Accuracy Precision Recall F1-score
Train set 79.02% (2.4%) 78.69% (2.7%) 79.74% (4.6%) 79.13% (2.7%)
Test set 77.79% (3.9%) 41.87% (5.2%) 80.16% (6.4%) 54.82% (5.2%)

Table 4: Mean (standard deviation) of performance metrics of the suggested model over multiple
runs for the identification step.

4.5 Anomaly Localization Step

Regarding the localization step, the dummy approach consists in taking the argmax of time series
observations as the anomaly location. We distinguish between two cases, anomalies which are
extrema and anomalies which are not. The quality of the detection of our model is assessed for
both types of anomalies. The results are displayed in Tables 5 and 6.
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Data set Accuracy Precision Recall F1-score
Train set 89.65% (34.87%) 89.81% (40.53%) 89.65% (34.88%) 89.68% ( 36.56%)
Test set 94.39% (27.78%) 94.49% (31.52%) 94.39% (27.78%) 94.38% (28.94%)

Table 5: Performance evaluation of the suggested model and the dummy approach on synthetic
data set for the location step on all type of anomalies.

Data set Accuracy Precision Recall F1-score
Train set 84.22% (0%) 84.55% (0%) 84.28% (0%) 89.68% (0%)
Test set 91.92% (0%) 92.10% (0%) 91.92% (0%) 91.90% (0%)

Table 6: Performance evaluation of the suggested model and the dummy approach on synthetic
data set for the location step on non extrema anomalies.

Numerical tests show the necessity of the feature extraction step for the anomaly location
task, as applying the dummy approach alone is not enough when the anomaly is not an extreme
value. Figure 9 represents a stock price time series with the true and predicted anomaly location.
In these examples, the locations are accurately predicted.
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Figure 9: Anomaly localization prediction on two distinct time series a) and b).

To guarantee the robustness of the model on the anomaly location, we evaluate the model
prediction on 100 data sets. Table 7 shows the mean and standard deviation for the localization
of all types of anomaly.

Data set Accuracy Precision Recall F1-score
Train set 89.58% (4.3%) 89.58% (4.3%) 89.96% (4.1%) 89.67% (4.3%)
Test set 89.49% (4.8%) 89.49% (4.8%) 90.00% (4.5%) 89.58% (4.7%)

Table 7: Mean (standard deviation) of performance metrics of suggested model over multiple
runs for location step on all type of anomalies.

Table 8 displays the results on the localization of non extrema anomalies. These results show
the importance of the feature extraction step. If we only consider the maximal observed value of
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the time series to be the anomaly, we would not be able to localise any non-extrema anomaly.
Applying Algorithm 4 instead leads to satisfying anomaly detection rates.

Data set Accuracy Precision Recall F1-score
Train set 85.23% (6.0%) 85.23% (6.0%) 85.87% (5.7%) 85.36% (6.0%)
Test set 85.17% (7.1%) 85.17% (7.1%) 86.04% (6.8%) 85.30% (7.1%)

Table 8: Mean (standard deviation) of performance metrics of suggested model over multiple
runs for location step on non-extreme anomalies.

4.6 Numerical Results Against Benchmark Models

To assess the performance, the suggested approach is compared with well-known machine learning
algorithms for anomaly detection, that is isolation forest (IF), local outlier factor (LOF), density
based clustering of applications with noise (DBSCAN), k-nearest neighbors (KNN), support
vector machine (SVM), reviewed in Section A. We assess their performance on the data set
described in Section 3. Their results are given in this section.

Tables 9 and 11 summarize the performance on train and test sets of each model for both the
contaminated time series identification and anomaly localization steps.

Train Test
Model Accuracy F1-score Accuracy F1-score
IF 42.31% 42.31% 69.64% 7.022%
LOF 59.95% 59.95% 90.00% 62.41%
DBSCAN 50.00% 66.67% 16.65% 28.53%
KNN 94.68% 94.39% 64.82% 26.69%
SVM 81.96% 82.33% 44.39% 27.44%
PCA NN 90.97% 90.31% 88.58% 71.30%

Table 9: Performance evaluation of supervised (bottom) and unsupervised (top) models for
contaminated time series identification step.

Algorithm IF LOF DBSCAN KNN SVM PCA NN
Exec. Time 0.6915 0.2015 0.1275 1.725 4.572 0.003523

Table 10: Execution time in seconds for identification of contaminated time series step.

The following paragraphs provide similar conclusions drawn from the results on the identifi-
cation and location steps (see Tables 9 and 11).

For the unsupervised learning methods, since there is not a proper learning step, even though
Tables 9 and 11 show the scores on the train and test set, these scores should be seen as the
ones obtained by testing the models on independent data sets. For IF, LOF and DBSCAN
models, the performance across the sets is not stable, as a significant difference could be observed
between the scores on the train and test sets. The poor performance of unsupervised learning
algorithms could be explained by the difficulty to estimate the contamination rate for IF and the
LOF algorithms. For DBSCAN the poor performance is rather due to the high dimensionality of
the data.

Regarding the supervised approaches, although KNN is outperforming the suggested approach
on the training set, there is a non-negligible decrease of these scores on the test set. This may
suggest an over-fitting on the training data, which makes KNN unable to generalize what it has
learnt to unseen samples. The same trend is seen on the scores with our approach, however the
loss is no as harsh as in the KNN case.

25



Hence, according to the results, our PCA based approach seem to be the most suitable
method for the problem at stake of anomaly detection on time series. Besides the relatively
satisfying performance it shows in terms of accuracy and F1-score, its low computational cost
(Tables 10 and 12) for both steps, makes the approach stand out.

Train Test
Model Accuracy F1-score Accuracy F1-score
IF 89.79% 2.296% 70.94% 1.611%
LOF 99.51% 0% 2.066% 0.9816%
DBSCAN N/A NA NA NA
KNN 99.99% 99.99% 95.56% 2.794%
SVM NA NA NA NA
PCA NN 89.65% 89.68% 94.39% 94.38%

Table 11: Performance evaluation of supervised (bottom) and unsupervised (top) models for
anomaly localization step. Results for DBSCAN and SVM are not provided due to high
computational cost.

Algorithm IF LOF DBSCAN KNN SVM PCA NN
Exec. Time 14.50 2.287 N/A 14.19 N/A 0.002004

Table 12: Execution time in seconds for the anomaly localization step.Results for DBSCAN and
SVM are not provided due to high computational cost.

4.7 Anomalies Imputation

To assess the imputation values suggested by our approach, we start from time series simulated
without anomalies, then we randomly select a time stamp of the time series and add a noise to
the corresponding value following the methodology described in Section 3.

The imputation value the PCA NN suggests is the reconstructed observation. This imputation
technique is compared to naive methods of missing values imputation, namely backward fill (BF),
consisting in replacing the anomaly by the previous value, and linear interpolation (LI). The
choice of these imputation methods is motivated by their low computational cost. In fact, the
PCA NN imputation comes at no additional cost as stated before. Therefore, we only challenge
its performance with methods with similar complexity. To assess the quality of the imputation
value suggested by each approach, we consider the following metrics. The imputation errors
ImputationErrori are computed on each time series as

ImputationErrori =

√√√√√∑
j

(
Sitj − S̃

i
tj

)2

nanomaly
,

where S̃i refers to as the i-th path price with imputed values. The error on the covariance matrix
is computed as

ErrCov = ‖Σ− Σ̃‖Frob,

where ‖·‖Frob is the Frobenius norm, Σ the sample covariance matrix and Σ̃ the covariance matrix
estimated on the data after the anomalies have been replaced by their respective imputation
values.
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Each stock path was diffused and contaminated 100 times. The anomalies were then imputed
following two baseline approach (BF and LI). Figure 11 clearly shows that imputation using
the reconstructed values with PCA reduces the error on the estimation of the covariance matrix
compared to the situation where the covariance matrix is estimated on the data with anomalies.
However, Table 13 shows that the baseline imputation approaches achieve even lower errors on
the estimation of the covariance matrix. Figure 12 shows a higher variance of the errors for the
PCA-based imputation approach. In conclusion, it would be rather recommended to replace the
flagged anomalies with approaches such as backward fill or linear interpolation.
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Figure 10: Boxplot representation of the distribution of the errors on time series imputation before
the imputation of anomalies (Ano) and after replacing the anomalies; with the reconstructed
values suggested by PCA (PCA), using linear interpolation (LI) and using backward fill (BF).
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Figure 11: Boxplot representation of the distribution of the errors on time series imputation before
the imputation of anomalies (Ano) and after replacing the anomalies with the reconstructed
values suggested by PCA NN (PCA).
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Figure 12: Boxplot representation of the distribution of the errors on covariance matrix (on
several stocks paths samples). Ano, PCA NN, LI, BF and Clean refer to the errors on the
covariance when estimated on time series with anomalies, time series after anomalies imputation
following three approaches: imputation by the reconstructed values suggested by PCA (PCA),
using linear interpolation (LI), with backward fill (BF) and time series without anomalies (Clean).
The Ano, PCA NN, LI, BF and Clean errors on the covariance estimation are all represented in
a). For better visualization we remove the Ano errors in b).

Method Ano PCA LI BF Clean
Mean 0.004208 0.001575 0.001554 0.001554 0.001552

Standard deviation 0.000272 0.000165 0.000170 0.000172 0.000173

Table 13: Mean and standard deviation error on covariance matrix after imputation of anomalies
with baseline methods.

A natural explanation to the relative inefficiency of the reconstruction value as imputation
value comes from the fact that by definition the reconstructed value integrated in its computation
the abnormal value, which is not the case when using other imputation techniques. Therefore
even if the reconstructed value is closer to the true value than it is to the abnormal value, the
spread between the imputation and the true value is still significant. Figures 13 and 14 illustrate
the latter with a plot of a reconstructed and original price path.
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Figure 13: Original, contaminated and reconstructed stock price path.
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Figure 14: Original, contaminated and imputed stock prices path in black, red and orange.
The two additional graphs represent the region around anomalies, where the cross and circle
respectively show the true value of the stock and its value after imputation of the anomalies
using the reconstructed value suggested by the PCA NN model.

4.8 Cut-off Value Robustness

In most anomaly detection models, the cut-off value is a hand-set parameter. In our approach,
the cut-off value is a model parameter and as such it is calibrated through the learning. Testing
the robustness of the cut-off given by the model is therefore a must. The identification step is the
unique step of the approach being concerned by the robustness, since it is the only step involving
the cut-off calibration. Robustness is checked by shocking the suggested cut-off with different
level of noise and observing the impact of these shocks on the model performance. We consider
several shocks amplitude γ ∈ ±{10−4, 10−3, 10−2, 10−1, 1, 2}. Table 14 reports the mean and
standard deviation of the scores of the model. The cut-off calibrated on the synthetic training
data sample is shocked. Scores on both train and test sets are computed using the shocked cut-off
values.
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γ Accuracy Precision Recall F1
10−4 0.9097 0.9736 0.8421 0.9031
-10−4 0.9097 0.9736 0.8421 0.9031
10−3 0.9097 0.9738 0.8419 0.9031
-10−3 0.9098 0.9737 0.8424 0.9033
10−2 0.9092 0.9747 0.8403 0.9025
-10−2 0.9098 0.9720 0.8439 0.9035
10−1 0.9042 0.9860 0.8201 0.8954
-10−1 0.9103 0.9563 0.8599 0.9056
0 0.9097 0.9736 0.8421 0.9031
1 0.7771 0.9994 0.5546 0.7133
-1 0.5183 0.5093 0.9998 0.6749
2 0.6284 1.0000 0.2567 0.4086
-2 0.5001 0.5000 1.0000 0.6667

a)

γ Accuracy Precision Recall F1
10−4 0.8858 0.6126 0.8527 0.7130
−10−4 0.8858 0.6126 0.8527 0.7130
10−3 0.8858 0.6126 0.8527 0.7130
−10−3 0.8850 0.6105 0.8527 0.7116
10−2 0.8877 0.6179 0.8527 0.7166
−10−2 0.8838 0.6074 0.8527 0.7095
10−1 0.8984 0.6502 0.8432 0.7342
−10−1 0.8672 0.5653 0.8741 0.6866

0 0.8858 0.6126 0.8527 0.7130
1 0.9391 0.9435 0.6746 0.7867
-1 0.2660 0.1848 1.0000 0.3120
2 0.8949 0.9814 0.3753 0.5430
-2 0.1700 0.1670 1.0000 0.2862

b)

Table 14: Performance evaluation after shocking the calibrated cut-off value for a) the training
set and b) for the test set.

Excluding the extreme cases where the shock amplitude is ±{1, 2}, one could see that the
accuracy is barely impacted by the shocked cut-off values both on the train and test sets. The
interpretation of the remaining results is split in two and is applicable for both the training and
test sets.

When negative shocks are applied, the model predicts more anomalies and less normal
observations (compared to the predicted numbers with the calibrated cut-off value). Therefore,
the model is able to identify anomalies which were missed initially. Hence, applying negative
shocks increases the recall. As for the precision, i.e. the rate of correctly identified contaminated
time series, since on left hand side of the cut-off value we are in the density region where
contaminated time series represent the dominant class, the new position of the cut-off value leads
to a misidentification of this type of observations. This entails a deterioration of the precision.
Opposite behaviours of the precision and recall are observed when positive shocks are applied
since some abnormal time series are missed by the model.

Figure 15 shows the precision and recall when cut-off values other than the one we calibrated
are used in our model, on the train and test sets. These scores are also compared with the
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Figure 15: Precision-recall curve of the suggested model (in blue), scores with the calibrated
threshold (red plus), no skill model scores (green cross) for the training set a) and a test set b).

performance of the no skill model1. We note that our approach edges out the no skill model on
both sets. The area under the curve (AUC) score on the train set and the test set are respectively
0.97 and 0.87 (as a reminder, AUC score ranges from 0 to 1, 1 being the score associated with a
perfect model). This shows that we are better performing on the train set, which was expected,
but the performance on test set is just as satisfying. These results reinforce our conclusions
regarding the robustness of our approach. One can see that the calibrated cut-off value represents,
for the train set, the point where an equilibrium is being reached between precision and recall.
The calibrated cut-off allows to achieve high precision and recall scores simultaneously. Thus we
conclude that the cut-off given by the model is suitable for the training samples and for unseen
samples as well.

To briefly sum up this section, although we mentioned that some shocks on the cut-off induce
higher scores, the improvement over the scores with the calibrated cut-off is not significant (unless
high amplitude shocks are considered). The numerical tests and the precision-recall curves are
consistent with the robustness of the cut-off value suggested by the approach.

5 Application to a Downstream Task: Value-at-Risk Computa-
tions

In this section, we illustrate the benefit that could be drawn when applying the PCA NN approach
as pre-processing step for value-at-risk computations.

Given a random variable ∆X representing the potential loss in portfolio position over a time
horizon ∆t, the value-at-risk quantile at level 1− α, VaR1−α, is defined by

VaR1−α (∆X) := − inf{x : P (∆X ≤ x) ≥ 1− α}.

The VaR1−α over a time horizon ∆t corresponds to the greatest loss that may be exceeded
with probability α in the period ∆t. Let (St)t=t0,...,tT be a path price diffusion distributed
according to the Black-Scholes model (9). The logarithmic returns to maturity are distributed
according to a Gaussian distribution, i.e.

1Here, no skill model being the model assigning to all observations the positive label
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ln

(
St+dt
St

)
∼ N

((
µ− σ2

2

)
dt, σ2dt

)
, (15)

with µ ∈ R and σ > 0.
We assume the vector R of log-returns on our stocks to be joint-normal,

R =
(
R1, R2, . . . , Ri, . . . , RN

)> ∼ NN (µR,ΣR) ,

where Ri = log

(
Si
t+dt

Si
t

)
∼ N

(
µi,R, σ

2
i,R

)
and ΣR is the covariance matrix.

We consider a portfolio on N stocks, which return is given by RPortfolio = Q>R. Hence,
RPortfolio ∼ N

(
Q>µR,Q>ΣRQ

)
. The VaR quantile for the time horizon ∆t and at level α is

V aR1−α (µR,ΣR) = q1−α
√
Q>ΣRQ+Q>µR, (16)

where q1−α is the (1− α)-quantile of a standard normal distribution and the parameters µR and
ΣR are estimated from different types of time series to evaluate the impact of identifying and
removing anomalies following our approach.

Under the adopted framework, the true VaR1−α (µR,ΣR), VaRTheoretical is thus known and
can be computed using the diffusion parameters. An estimation VaR1−α

(
µ̂R, Σ̂R

)
can be

obtained by replacing the parameters in (16) by their estimates µ̂R and σ̂R computed from the
time series with anomalies, or after imputation of anomalies. Then, absolute errors and relative
errors are computed as

AbsoluteErrorVaR =
∣∣∣VaR1−α (µR,ΣR)−VaR1−α

(
µ̂R, Σ̂R

)∣∣∣

RelativeErrorVaR =

∣∣∣VaR1−α (µR,ΣR)−VaR1−α

(
µ̂R, Σ̂R

)∣∣∣
VaR1−α (µR,ΣR)

Table 15 summarizes the four VaR estimations we consider in the sequel:

VaR estimation Name µ̂R, Σ̂R estimated on
VaRClean Time series without anomalies
VaRAno Times series with anomalies

VaRLoc,True Time series after anomalies imputation knowing their true localization
VaRLoc,Pred Time series after anomalies imputation based on predicted localization

Table 15: Notations of VaR estimation based on the time series the VaR parameters have been
estimated from.

To conduct this analysis we generated new stocks paths samples that we assume to be clean,
fixing the diffusion parameters µR and ΣR, then we added the anomalies following the procedure
described in Section 3. We apply our model to locate the anomalies and replace the identified
anomalies using the backward fill (BF) approach (shown to be the more efficient imputation
technique in Section 4.7. For each stock and each run of simulation, we obtain four estimates of
the distribution parameters of the associated log-returns.
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Figure 16: Boxplot representation of parametric VaR estimations for RPortfolio. The green
square represents the mean of VaR estimation.

VaR VaRTheoretical VaRClean VaRLoc,True VaRLoc,Pred VaRAno

Mean 0.546851 0.546300 0.548392 0.548270 0.569015
Standard Deviation 0.0 0.010105 0.010739 0.010832 0.012268

Table 16: Summary of VaR estimations for RPortfolio.

Figure 16 and Table 16 summarize the distribution of the VaR estimates for α = 0.99 and
∆t = 1(day), over several simulation runs. The boxplots show the dispersion of the portfolio
VaR estimates on several diffusions. The green square represents the mean of VaR estimation.
For the four first boxplots, the means are approximately on the same level, which is confirmed
by the results of Table 16. The anomalies present among the time series observed values have
a non-negligible impact on the distribution parameters estimation, which ultimately causes a
wrong estimation of the VaR. Thanks to the localization of the anomalies by the suggested model
and their imputation, we are able to get a more accurate estimation of the VaR. VaRLoc,True and
VaRLoc,Pred are quite similar, which shows that the model accurately localizes the anomalies.

VaR VaRClean VaRLoc,True VaRLoc,Pred VaRAno

Absolute Error 0.007995 0.008596 0.008622 0.02235
Relative Error 0.014620 0.015720 0.015767 0.04087

Table 17: Mean Absolute and relative error on VaR estimations for RPortfolio.

We also evaluate the error on the VaR estimation using the mean absolute error and the
mean relative error, taking the VaRTheoretical as our benchmark VaR. As one can tell from Table
17, even when the distribution parameters are estimated from the clean time series, the VaR
computed with these parameters is not exactly the one computed with the theoretical parameters.
This can be explained by the historical size of the observed values used to estimate the parameters.
This table shows that by removing anomalies we can reduce by a factor two the error on VaR
estimation.

Additionally, we assess the impact on VaRTheoretical,VaRClean,VaRAno,VaRLoc,True and
VaRLoc,Pred of increasing nanomaly. To this end, we perform 50 simulation runs of stocks paths
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Figure 17: VaR estimation based on parameter estimation from time series with and without
anomalies (purple and light blue curves), time series after identification and imputation of
anomalies with the suggested approach (red curve) and time series imputed knowing the true
location of the anomalies (brown curve), with respect to nanomaly.

for nanomaly and for each of those scenarios we estimate the VaR on the portfolio. We summarize
the results on Figure 17, where each curve represents the mean VaR estimation with respect to
nanomaly along with a representation of the uncertainty around each evaluated point through a
confidence interval.

When we compute the VaR using the abnormal time series, we notice that the difference
between VaRAno and VaRTheoretical increases with nanomaly, which is natural to expect. However,
when the time series are cleaned prior to VaR estimation, the curve representing the VaR estimates
are much closer to the ones representing VaRTheoretical and VaRClean, showing an undeniable
improvement in the accuracy of the VaR estimation over the estimation based on abnormal
time series. Furthermore, VaR estimation after the imputation following the model prediction
or knowing the true location of the anomalies seem to be quite similar for low nanomaly, while
some discrepancies between the two become more significant as nanomaly increases. A natural
explanation could be that when the number of anomalies increases and the model suggests wrong
anomalies location, normal values are being replaced while true anomalies remain among the
observed values, which wrongly impacts the VaR estimation. However, the results of Tables
18 and 19 indicate that the anomalies localization suggested by the model are overall correct
and allow removing most of the anomalies, as the relative error of VaRLoc,Pred is, regardless
of nanomaly, always lower than the relative error of VaRAno (e.g a relative error of 0.0248 for
VaRLoc,Pred against 0.0658 for VaRAno when there is 76 anomalies among the 1, 500 observed
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values of the time series).

nanomaly VaRClean VaRLoc,True VaRLoc,Pred VaRAno

5 0.012194 0.013796 0.013341 0.037392
15 0.012194 0.012623 0.016676 0.059604
76 0.012194 0.014831 0.024807 0.065791
153 0.012194 0.014644 0.034361 0.073750
307 0.012194 0.020537 0.052244 0.074091

Table 18: Mean relative error of parametric VaR estimations with respect to nanomaly, for
parameters estimated from clean time series, time series with anomalies, imputed time series
following predicted location (VaRLoc,Pred) and true anomalies location (VaRLoc,True).

nanomaly VaRClean VaRLoc,True VaRLoc,Pred VaRAno

5 0.010356 0.011511 0.009678 0.020674
15 0.010356 0.010514 0.012723 0.020172
76 0.010356 0.011842 0.018696 0.019930
153 0.010356 0.013683 0.026117 0.024243
307 0.010356 0.022526 0.057903 0.019207

Table 19: Standard deviation of relative error of parametric VaR estimations with respect to
nanomaly, for parameters estimated from clean time series, time series with anomalies, imputed
time series following predicted location (VaRLoc,Pred) and true anomalies location (VaRLoc,True).

6 Conclusion

The suggested approach targets anomaly detection on panel of time series possibly reflecting
a wide variety of risk factors. We suggest a model able to detect anomalies in risk factor time
series suitable for all risk factors. Anomaly detection is achieved in two steps. The first step aims
at identifying the contaminated time series (time series with anomalies). The second step focuses
on the localization of the anomaly among the observed values of the identified contaminated
time series.

In addition, our methodology integrates feature extraction from the time series with PCA.
This part of the method is proved to be an essential part of the model, as it provides the models
with inputs on which the distinction between abnormal/contaminated and normal instances
is eased, and also ensures the stationnarity of the model (time series) inputs. Another main
focus of the approach is the calibration of the cut-off, the key parameter in the identification of
contaminated time series, by means of feedforward network with a customized loss function.

The proposed approach suggests an imputation value, however this value is strongly impacted
by the anomaly value. As a result, naive approaches with similar complexity are preferred.

Furthermore, our numerical experiments do not only show that our approach outperforms
baseline anomaly detection models, it also shows the true benefit one could draw from cleaning
time series with the suggested approach, as illustrated on the VaR computation task.
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A State of the Art Anomaly Detection Models

There are mainly two categories of machine learning anomaly detection models : density-based
models, where a distribution is used to fit the data and anomalies are defined relatively to this
distribution, and depth-based models, which, instead of modeling the normal behaviour, isolate
anomalies.

A.1 Density-Based Models

Density based spatial clustering with noise (DBSCAN) DBSCAN [Hinneburg, 1996]
[Schubert et al., 2017] is an unsupervised clustering methodology that groups together comparable
observations based on a similarity metric. Clusters are high density regions and are defined by
the ε-neighbourhood of observations and by MinPts, the minimum number of points required to
be in a radius of ε from an observation to form a dense region.

An anomaly is any observation which has not MinPts in its ε-neighbourhood nor appears in
the ε-neighbourhood of other observations.

K-nearest neighbours (KNN) Usually used for classification purposes, KNN [Hand, 2007]
is a supervised algorithm that can be used for anomaly detection as well.For each observation it
selects its closest k observations. Generally in terms of distance, but other similarity metrics can
be considered. The anomaly score of an observation is computed as function of its distances to
k-nearest neighbours, weighted average of the distances for instance. The points with the highest
anomaly scores are considered as anomalies.

Support Vector Machines (SVM) The ultimate aim of SVM [Cortes and Vapnik, 1995]
is to define a hyperplan that separates our data. The specificity of this hyperplan is that it
maximizes the distances to the set of features representing each class. When the data is not
linearly separable, a map φ is applied to the initial features vector so the data became linearly
separable in the new space in which it was projected.

A.2 Depth-Based Models

Isolation Forest (IF) IF [Hariri et al., 2019] applies a depth approach to detect anomalies. The
algorithm is based on the idea that anomalies are easier to isolate and thus will be isolated closer
to the root while normal observations are isolated much further from the root. The algorithm
uses random decision trees to separate the observations. The anomaly score is calculated as
the path length to isolate the observation. As it is defined in the algorithm, the anomaly score
will be closer to 1 for anomalies and << 1 for normal observations. This allows ranking the
observations, from the most abnormal observation the most regular one. However, the choice of
an explicit cut-off between this two type of instances is not obvious.

Local Outlier Factor (LOF) The LOF algorithm [Breunig et al., 2000], [Alghushairy et al.,
2020] tries to assess the isolation of one observation relatively to the rest of the Data set, before
flagging it as an anomaly. This model relies on the concept of local density. The anomaly score
of an observation x is its local outlier factor,which quantifies how dense is the location area of x
compared to the one of its neighbors. Hence, for each observation, LOFk(x) ≈ 1 means that the
density of observations around x is similar to the one of its neighbours, therefore x could not be
considered as an isolated observation. LOFk(x) >> 1, instead, shows that the density of x is
lower compared to its neighbours, hence x should be flagged as anomaly
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B Stationary time series

Assume that a process
(
εit
)
satisfies the following representation

∆εit = γεit−1 + θ1∆εit−1 + . . . + θp−1∆εit−p+1 + zt,

where p is the lag order, ∆ is the difference operator,i.e ∆εt = εt − εt−1 and zt a white noise.
The stationarity of (εit) is shown using the Augmented Dickey fuller test [Fuller, 2009]. Namely,
the process εi is stationary if there is a unit root, i.e. γ = 0. Therefore, for each εi the test is
carried under the null hypothesis

H0 : γ = 0 against H1 : γ < 0.

Set Mean Standard dev. Min 25% 50% 75% Max
Train 1.2578e-14 1.7389e-13 6.6310e-24 3.4635e-20 1.9166e-18 3.7363e-17 3.8829e-12
Test 1.5096e-14 4.8256e-13 6.2027e-30 4.2255e-19 8.4549e-18 1.6491e-16 4.3468e-11

Table 20: Descriptive statistics on p-values for train and test set time series ε

If the p-values are lower than the significance level, then the null hypothesis is rejected for all
the reconstruction errors and we conclude that the time series we work with do not suffer from
the non-stationarity issue.
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