
HAL Id: hal-03777937
https://hal.science/hal-03777937v1

Submitted on 25 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new software architecture for the Wise Object
Framework: Multidimensional Separation of Concerns

Sylvain Lejamble, Ilham Alloui, Sébastien Monnet, Flavien Vernier

To cite this version:
Sylvain Lejamble, Ilham Alloui, Sébastien Monnet, Flavien Vernier. A new software architecture for
the Wise Object Framework: Multidimensional Separation of Concerns. 17th International Conference
on Software Technologies, Jul 2022, Lisbon, Portugal. �10.5220/0000163800003266�. �hal-03777937�

https://hal.science/hal-03777937v1
https://hal.archives-ouvertes.fr


New software architecture for the Wise Object Framework: A
multidimensional Separation of Concerns

Sylvain Lejamble12 a, Ilham Alloui2 b, Sébastien Monnet2 c and Flavien Vernier2 d

1SaGa Corp, Paris, France
2LISTIC, Université Savoie Mont Blanc, Annecy, France

{sylvain.lejamble, ilham.alloui, sebastien.monnet, flavien.vernier}@univ-smb.fr

Keywords: Self-adaptive systems, Separation of Concerns, modularization, wise object, event-driven architecture

Abstract: Adaptive systems represent an appropriate solution to the increasing complexity of software-intensive sys-
tems. We developed WOF, a Wise Object Framework to develop self-adaptive software systems we name
“Wise systems”. Those consist of distributed communicating software objects (Wise Objects: WOs) able to
autonomously learn on how they behave and how they are used while demanding little attention from their
users. A WO is either delivering a service (Awake state) or simulating its operation to learn behavior that
has not occurred yet (Dream state). In its first version, WO architecture has been designed on the basis of
a single component embedding built-in mechanisms for data monitoring and analysis. This architecture has
major drawbacks we encountered when using WOF to develop new applications: (1) data and built-in mech-
anisms embedded within the WO does not allow using data by other components such as new analyzers, (2)
raw data and data resulting from the analysis be them from Awake or Dream states are not distinguished, (3)
mandatory components to self-adaptation are missing especially those for plan construction and execution. In
this paper, we address those limitations through a MAPE-K compliant architecture, based on the Separation of
Concerns(SoC) and an event-driven publish/subscribe mechanism. This is related to the general issue of wise
systems maintenance, reuse and evolution. Separation of Concerns is done according to different dimensions
that are managed using hyperslicing techniques.

1 INTRODUCTION

Adaptive systems represent an appropriate solution to
the increasing complexity of software-intensive sys-
tems. An ideal system is able to adapt to users to re-
ducing the effort required for human-machine interac-
tions. It must also be able to detect unusual situations
(error, unexpected behavior...) and manage them (cor-
rect, alert a suitable person to its resolution...). Self-
adaptive systems are an open area of research that
address many of these issues with the goal to let IT
professionals focus on higher value-added tasks for
the business. For this purpose, we developed WOF,
a Wise Object Framework to develop self-adaptive
software systems we name “Wise systems”. A Wise
system consists of a set of distributed communicating
software objects (Wise Objects: WOs), each able to

a https://orcid.org/0000-0003-1043-4745
b https://orcid.org/0000-0002-3713-0592
c https://orcid.org/0000-0002-6036-3060
d https://orcid.org/0000-0001-7684-6502

autonomously learn on how it behaves and how it is
used while demanding little attention from their users.
A WO is able to monitor their functioning in order
to acquire experience on their operation and hence
on the use of the system (“Real logs”). Logs anal-
ysis guides the system towards an action plan (self-
correction, adaptation, optimization...). Each time a
WO is requested for service delivery, it collects data
on such operation using a monitoring built-in mecha-
nism. When a WO is not delivering a service, it can
disconnect from the rest of the system to learn on its
behavior by launching operations and analyzing their
effects and impacts. We respectively refer to those
super-states as “Awake state” and “Dream state”. The
WO ability to disconnect from the real world is a
strong feature that distinguishes wise systems from
other self-adaptive systems. WOs may execute some
parts of the system without impacting the real oper-
ation (Business domain). These “simulations” have
several goals: (i) learn more about rare (fewly used)
operations on the system, (ii) create state-transition
behavioral graphs of the system, and (iii) create cred-



ible/realistic data to help analyzing real functioning
of the system. During this state, the system produces
logs different from real ones, we call them “Dream
logs”. The existing WO architecture in the Wise Ob-
ject Framework (Alloui et al., 2018) does not meet the
requirements regarding the adaptation of the frame-
work to complex applications. Indeed, in its first ver-
sion, WO architecture has been designed on the ba-
sis of a single component embedding built-in mecha-
nisms for data monitoring and analysis. This architec-
ture has major drawbacks we encountered when us-
ing WOF to develop new applications: (1) data and
built-in mechanisms embedded within the WO does
not allow using data by other components such as
new analyzers, (2) raw data and data resulting from
the analysis be them from Awake or Dream states are
not distinguished, (3) mandatory components to self-
adaptation are missing especially those for plan con-
struction and execution. In this paper, we address
those limitations through a MAPE-K compliant ar-
chitecture, based on the Separation of Concerns and
an event-driven publish/subscribe mechanism. This
is related to the general issue of wise systems mainte-
nance, reuse and evolution. Separation of Concerns is
done according to different dimensions that are man-
aged using hyperslicing techniques. The knowledge
acquisition system is refactored to detangle the differ-
ent components involved in the self-adaptation loop
MAPE-K.

The paper is organized as follows. Section 2 in-
troduces related work and the methods we chose to
apply. Section 3 presents the precedent work on the
framework. Section 4 describes the limits of the cur-
rent architecture. Finally, Section 5 explains the solu-
tion we propose to sort out actual restrictions before.
Section 6 concludes the paper and opens some inter-
esting perspectives.

2 RELATED WORK

2.1 Self-Adaptive Systems

In order to cope with the growing demand for more
complex problems, IT professionals are struggling to
build even more complex systems. These high-value-
added systems are certainly very efficient but are be-
coming increasingly difficult and expensive to main-
tain (Crow, 1990). Furthermore, the maintenance
must be performed by professionals whose expertise
is close to the system.

An adaptive system can have several goals: adapt-
ing in response to its changing environment (Brun
et al., 2009), switching models in a multi-model sys-

tem (Ravindranathan and Leitch, 1998), modifying its
components without waiting for the next maintenance
periods to limit human interactions (Naqvi, 2012)
or even evaluating its performance and changing its
strategy when it is not performing enough (Cheng
et al., 2009).

Self-adaptive systems are an open area of research
that can address many of these issues. If the system
can solve a problem that affects itself, then IT pro-
fessionals can focus on higher value-added tasks for
the business. Even though a system is very dependent
on its application domain, every self-adaptive systems
have similar components. These blocks are defined by
IBM’s 4-state loop “Monitor-Analyze-Plan-Execute”
(MAPE-K) (Kephart and Chess, 2003). This loop has
a fifth component named “Knowledge” that commu-
nicates with the other 4 (see Figure 1).

Monitor Execute

Analyze

Knowledge

Managed Object

Plan

Figure 1: IBM MAPE-K Loop

Monitor: The system must produce comprehensive
operation logs and make them available to the other
components.
Analyze: The system must then analyze its past op-
erations in the manner of an expert and draw a con-
clusion: is the system functioning appropriately/as
usual?
Plan: The system then uses the analysis to produce a
strategy addressing the problem/unusual situation.
Execute: The execution block applies this plan to
make the system perform a corrective action/adapt to
a changing usage.
Knowledge: Knowledge is the link between all the
software blocks. It stores what the system knows
about itself: logs, analyzes, metrics, topological in-
formation, actions performed...

There are alternatives to MAPE where the compo-
nents of the loop are named differently (Hebig et al.,
2010) and (Dobsona et al., 2006), but they have simi-
lar functioning.

2.2 Separation of Concerns

Separation of Concerns (Dijkstra and Edsger, 1982)
becomes essential while developing very complex



software. In a system, each element should have an
exclusive purpose. Ideally, while doing the Separa-
tion of Concerns, no software element should share
responsibilities with another part of the system. We
must set boundaries that encompass the full range of
responsibilities along dimensions. They are a lot of
types of Separations of Concerns1: (i) horizontal sep-
aration (separation through functionalities), (ii) verti-
cal separation (dividing the application into modules),
(iii) aspect separation...

MAPE-K provides the ability, by defining distinct
blueprints, to separate priorities and thus to accelerate
and simplify software development (Parnas, 1972).
Model Driven Development (MDD) is a necessary
step while thinking about the Separation of Concerns
(Kulkarni and Reddy, 2003). Since MDD starts from
the development of a model, no low-level technical
constraints are felt. The multidimensional separation
of priorities is interesting when a system may have to
deal with new concerns (Ossher and Tarr, 2002). It
may also be necessary when several concerns over-
lap just a small part of another. The separation can
have a huge impact on maintenance when one part
of the software has many diverse dependencies (Mor-
eira et al., 2005). (Tarr et al., 1999) highlighted the
multidimensional Separation of Concerns while the
literature was focusing on an orthogonal separation.
They believe that the future of software development
requires a “simultaneous separation of overlapping
concerns in multiple dimensions”. They also show
that their work was already partially done in Subject-
Oriented Programming (Harrison et al., 1993)(sub-
jects are hyperslices), Aspect-Oriented Programming
(Kiczales et al., 1997)(aspects are hyperslices), Adap-
tive Programming (Gouda et al., 1991)(propagation
patterns are hyperslices)... Aspect Oriented Program-
ming (AOP) may also help a lot during the Separa-
tion of Concerns process because it highlights non-
functional concerns that might be separated. (Mak-
abee, 2012) use an Event-driven approach to spot
entangled concerns and separate them from other
functionalities. He also compares Event-driven and
Aspect-Oriented approaches and show that Event-
driven programming has several advantages over AOP
(more reusable, allowing inheritance and concurrent
execution...).

1http://aspiringcraftsman.com/2008/01/03/art-of-
separation-of-concerns/

3 PREVIOUS WISE OBJECT
ARCHITECTURE

Wise Object A Wise Object (WO) (Alloui et al.,
2015) is a software component that is given the ability
to learn by itself from its past experiences. It can also
learn about its environment through the interactions it
has with it.

The WO aims at proxifying an existing object
(physical or logical) from the system to add capabil-
ities (wisdom) to it (Figure 2). In the first version of
the concept, the proxy was implemented in an intru-
sive way (invoke() and invoked() inside function calls
in the business classes). The object also had to inherit
from the WiseObject class in order to expose these
monitoring functions. This caused several problems,
especially in terms of the inheritance chain. To fix this
problem we imagined a dynamic proxy that let pro-
cess the data upstream. This avoids unnecessary in-
trusions in the business code. The WO will therefore
intercept all the system requests related to the object
and create operation logs.

Switch

WoProxy:WSwitch

System call, ex: up() state: Down, action: up()1

2

45

state: Up, action: None

up()

Effect on the system

3
Log

Log

Figure 2: Example of a wise version of a switch. The switch
has two states Up and Down and two functions up() and
down() changing the business state of the object. WO Proxy
intercepts calls (up() or down()) from the system (1) and
monitors them (2). The proxy asks the object to act (3). As
the state changes, it monitors it again (4). It sends back the
response to the system according to the function call (5)

Wise Object Framework A framework has been
developed around the notion of Wise Object (Alloui
et al., 2018). This framework renders the use of the
concept of Wise Object in a classical computer appli-
cation. It allows the use of a simple @WiseObject an-
notation in the declaration of the target object to mon-
itor all its status changes. By doing so, a proxy is auto
generated wrapping the original object. It also con-
nects the proxy (logger) to the knowledge database.
This knowledge will gradually be filled with usage
logs.

The proxy grants complete control over the origi-
nal object. Since it intercepts the calls, it can modify
or cancel a call to avoid an unwanted behavior if the
analysis detects the system call is unusual and will
cause the object to fall into an unwanted state.

Within the framework, WOs are able to commu-
nicate with each other through a software bus (pub-



lish/subscribe). The communication is done through
event condition action rules (ECA) established by a
manager. By detaching components from this soft-
ware bus, it is possible to work with small parts of the
application without impacting the system.

Detaching WO The WO has two high-level states:
Awake/Dream. During the Awake state, the object acts
normally, and serves the system. When the object is
not busy with a system call, it enters the Dream state
(Figure 3).

WO State diagram

AWAKE

DREAM

service done
service request

stop

Figure 3: Original WO high-level states

In the Dream state, we disconnect the WO from
the bus in order to jump to a non-impacting phase.
In this state the object will simulate system calls to
explore its transition state graph. The goal is to dis-
cover as many as possible business states that have
not yet been discovered by the actual operation of the
system. For example, if our switch has never been
turned on, it is theoretically impossible to know that
the object has two states by analyzing the logs. As
the object knows itself, it knows that it has several
methods. So during the Dream it will randomly try
to use up() and down() from its Down state. When
using down(), the state keeps being Down, so a loop
is created in the state diagram. However, when using
up(), the object discovers that it can enter a different
state if it applies the procedure it just discovered. The
use of Dream state improves the overall system per-
spectives. By analyzing produced logs, we are able to
enrich the knowledge we have about the system. For
example, we can confront the theoretical model of the
system (designed initially by an expert) with the tran-
sition state graph discovered in the Dream state.

The framework makes possible the usage of inter-
changeable analyzers. These analyzers will scan the
object’s logs and draw a conclusion based on their ex-
pertise. For example, with a statistical analyzer, we
can compute temporal metrics on the functioning of
the object. By interpreting this analysis, it is possi-
ble to detect anomalies (e.g.: switch unusually Up on

16/03 from 6pm to 7am) and then warn the user.

4 CONSTRAINTS & LIMITS

The precedent framework architecture has several
drawbacks that led us to propose some changes.

WOs embeded too much responsibilities In the
precedent architecture (Alloui et al., 2018), the
knowledge is represented as a graph that is created
during the monitoring process. Furthermore that
knowledge was part of the WO. It shows that knowl-
edge, its acquisition (monitoring) and the WO were
mixed. The graph was also already an analysis since
the logs are linked together and interpreted (no du-
plication of states in the graph...). We want the raw
knowledge to be available in the memory so we can
process it afterward. It is the main motivation for the
horizontal Separation of Concerns.

Incoherent dreams & tangled logs In the previous
work, the discovery of the unseen business states (in
the dream) was done in a random way. We called
state-change methods randomly from different initial
states to see their impact on the states and we hoped at
the end of the Dream that all possible business states
and the transitions between them would be discov-
ered. Since we only had a few possible alterations,
the system never ends up in an incoherent state. If
we make the system dream with parameterized meth-
ods in a random way(random function with random
parameter), we risk finding impossible values when
using the system in a business context. Furthermore,
state change methods were hard-coded with restrict-
ing boundaries (we can call up when the object is
at 100%, but it has no effect). Now let’s consider
OpenWindow(normal: from 0 to 100%) as an exam-
ple. As humans we know it’s absurd to use it with
OpenWindow(-60%), except that the WO has no se-
mantic and it’s not intelligent, it does not know that -
60% is not possible in the business context. The prob-
lem is therefore the following: we want to discover as
many business states of the system as possible and at
the same time we want these findings to be relevant.
To overcome this problem, we have chosen to analyze
the parameters before asking the WiseObject to use
them (during Dream state). This allows to get closer
to the human, i.e. the human dreams about his past ex-
perience and not randomly. In order to analyze these
parameters, we need to be able to distinguish at the
software level what really happened (real logs) from
what we asked the system to do to discover its states
(dreamed logs). This is not possible with the current



architecture. This modification is the primary motiva-
tion for the Separation of Concerns in the WOF. By
externalizing some parts of the application the Sepa-
ration of Concerns grants a better adaptability and re-
usability. A multidimensional separation seems to be
necessary at the analysis level as would like to stack
non-vital part of the application. The parameter anal-
ysis will not be detailed in this paper but will surely
be the subject of a more detailed study.

Missing MAPE components Finally, the WO had
multiple roles but mandatory components of the
MAPE loop as plan construction and execution were
missing. It has been a huge problem while adapt-
ing to the framework to other business domain. As
we changed the rest of the architecture, we proposed
a basic architecture permitting the loop to be self-
regulating.

5 CONTRIBUTION

We propose an upgrade of the current WOF architec-
ture as well as an extension of the last elements of the
MAPE loop. We built the meta-model presented by
Figure 4 during a model-based design process. This
model represents only the interactions between a sin-
gle WO and its own feedback loop. We also con-
sidered an MDD based architecture but we did not
work toward it in the current work. We made the
decision not to represent the entire Wise Object Sys-
tem because we did not change the interactions be-
tween WOs. The meta-model is detailed component
by component in the next sections.

5.1 Introduction of the Idle status

In the previous works, we had 2 possible states of the
object: Dream and Awake. While the system is using
the WO, it is in the Awake state. When the object is
freed, it falls directly in the Dream state.

When it was not used, the object was therefore
necessarily in the Dream state (even if it had noth-
ing interesting to dream about). It has several dis-
advantages: consumption of unnecessary resources,
production of redundant logs, higher complexity of
the analysis. So we decided to add a third state Idle.
This state allows the object not to perform any action
when the system does not hold the object.

As shown in Figure 5, the Dream is now included
in the new Idle state. The WO is not allowed to dream
until it knows what it has to dream. The WO can
dream when it’s in the Idle state and it receives a

dream plan request. Once the dream is finished, the
WO falls directly into the Idle state.

5.2 MAPE-K compliance

The MAPE-K architecture has many advantages re-
garding the Separation of Concerns. Most of the
MAPE component were present in the precedent work
but we propose a new architecture to disentangle
them. This is a huge step forward in terms of mainte-
nance and re-usability.

5.2.1 Monitoring, Analysis & Knowledge

In the precedent architecture, the WO shared too
much responsibilities with other parts of the system.
The WO should only do his business job without
worrying about the other components of the MAPE
loop. As shown in Figure 6, we separate the Moni-
toring/Analysis/Knowledge steps because this would
help along interoperability of any modules.

This job is carried out by a knowledge genera-
tor that monitors the WiseObject. At each interaction
with the WO, the generator will log in the memory
the methods and their effects on the WO states. Anal-
ysis is not detailed in this paper since we only study
the separation of these modules. An example of logs
generated by a single call is shown in Figure 7. When
the object is not being used by a system call, it falls in
the Idle state. Idle state is described in Section 5.1.

We chose to use a WiseEventManager from Fig-
ure 4 inside the memory. This manager has the role to
store the data in the appropriate passive storage.

5.2.2 Planner

In the previous architecture, the planner did not ex-
ist. We want the planner to be standalone in order to
cope with the Separation of Concerns. In the Awake
state, the planner uses the result of the analysis in or-
der to decide if the original call for the object has to be
modified. If it notices an irregularity, it generates an
action plan to correct it. In the Dream state, the plan-
ner decides to use the parameter analysis to send an
action plan in order to discover new business states.
The planner is a mandatory for the WO to dream with
consistency close to the real use.

As explained in Figure 8, the planner listens to the
analysis results. After consulting the policy, it makes
a decision whether or not it should create an action
plan. Policies (Kephart and Chess, 2003) are defined
as a high-level configuration file used to configure the
system. It contains business objectives that can be
different if we want to use the same system in diverse
environments. For example, if the policy is set with



WO

Business Application

Memory

KnowledgeListenerAnalyser

GraphAnalyser StatsAnalyser ParameterAnalyser

dream

WEvent

Real Logs Dream Logs

0 1

GraphAnalyser 
Result

StatsAnalyser 
Result

ParameterAnalyser 
Result

WEvent 
Manager

WOEvent

AnalyserEvent

Graph
Stats

Parameter

PlannerListener

ExecutorEvent

publish

publish

AnalyserResultListener

ParameterPlannerStatsPlannerGraphPlanner

publish

Planner

WoListener/AnalyserListener

publish

Dream action

Real action

publish

Dreamer Reaction Executor

Executor

PlanEvent

Business Call

Figure 4: Meta-model of the new architecture



Figure 5: New WO high-level states

Graph

ConcreteAnalyseResult
...

+ addData(Data):

Memory

WEventManager
+ analysersResults: Object
+ planners: Planner[]

+ subscribe(KL)
+ unsubscribe(KL)

«interface» 
KnowledgeGenerator 

Listener

+ publish(WEvent)

WEvent
- state: String
- event: String
- eventData: Serializable[]

...

«interface» 
KnowledgeListener

+ newKnowledge(WEvent)

Analyse

«abstract» 
Analyser

ConcreteAnalyser
...

...

+ subscribe(KGL) 
+ unsubscribe(KGL)

WO

WO

+ subscribe(KGL)
+ unsubscribe(KGL)

kgl1

kgls

*

kls

*

logs

*

Figure 6: Static model of Monitor, Analysis & Knowledge

Figure 7: Logs generated by using the on() function on a
switch

max unusual uptime=2h, the planner consumes this
plan while looking for the analysis. Ex: the switch
unusually Up on 16/03 from 6am to 7am will not gen-
erate a plan.

In our architecture we have chosen to generate a
planner in parallel to an analyzer, because a generic
planner will not be able to make a decision concerning
the highly specific conclusions of the analyzer. Let us
note that our architecture is open enough to define a
specific planner that takes into account the results of
several analyzers.

Memory

«interface» 
KnowledgerListener

+ newKnowledge(WEvent)

knowledge: Object

Plan

ConcretePlanner

«abstract» 
Planner

+ subscribe(PL) 
+ unsubscribe(PL)

...

Use

«interface» 
PlannerListener

+ newPlan(PlanEvent)

pls

*

PlanEvent
...

...

Use

« abstract» 
Policy

+ takePlan():
+ getKnowledge(): ConcreteKn

...

1

Figure 8: Static model of Knowledge & Plan

5.2.3 Executor

The executor did not exist in the previous version.
It joins all the plans made by the planner so that
the object can understand what it has to do. Un-
like many auto-adaptive applications, the executor has
an additional responsibility. He has to call/modify
the calls made for the object according to the states
(Dream/Awake) of the WO (Executor Manager Fig-
ure 4). According to the Event Driven Architecture
of WOF, the executor is a listener of planner (see Fig-
ure 9). The executor block parse the planner gener-
ated plans in order to assign them to the appropriate
executor. The Reaction Executor has been introduced
to apply Awake plans. It has an impact on the real
system. Meanwhile, the Dreamer only applies Dream



plans. The Dreamer’s actions have no impact on the
system since in the Dream state the WO is discon-
nected from the bus.

Executor

ConcreteExecutor

«interface» 
ExecutorListener

+newEvent(ExecutorEvent)

ExecutorEvent

els

*

Use

«abstract» 
Executor

...

+ subscrible(EL) 
+ unsubscribe(EL)

+ takeExecution(): 
+ getPlan(): ConcretePlan

...
...
...

Plan

«interface» 
PlannerListener

+ newPlan(PlanEvent)

Figure 9: Static model of Plan & Execute

5.3 Multidimensional separation of
concerns

We introduced IAPE-K (Alloui and Vernier, 2017)
in our previous paper. IAPE-K is nothing else than
an adaptation of MAPE-K when the object is in the
Dream state. As we need to track the system states,
we must store them in a different place depending
on their high-level state. Dream logs and real logs
are very similar. It makes sense to store them in the
same data structure. The only difference will be a flag
containing the state of the object. Since the knowl-
edge generator monitors all the states of the object, it
knows where to store the usage logs.

A new manager is thus necessary within the
knowledge, he will have the role to allocate the logs
to the right place of the knowledge. It receives data
from diverse sources WO(Awake), WO(Dream), An-
alyzers and put them in their own storage. Note that
a manager is not mandatory in the Plan & Execute
steps. As opposed to Memory, Planner & Executor
are active elements. They can therefore dispatch the
data themselves.

5.3.1 Hyperslicing

In our framework, we need to separate the concerns
horizontally (with the MAPE components) but we
also need to separate the concerns of interchange-
able modules among a different dimension. (Tarr
et al., 1999) proposes to split the system into “hyper-
slices”. Hyperslices are hyper-planes that encapsu-
late concerns among multiple dimensions. We chose
to use the hyperslices as a representation for patterns.
For example, we encourage analyzer slices to have
the same entry point i.e. Figure 10 publish(WEvent).
By doing so we have all the benefits of an Event-
Driven system while keeping different functioning in
the boxes below. For example, Analyzers primitive
units (WEvent) are similar but how they update their
knowledge will be different. In Figure 10, we rep-
resent an example of some MAPE loop component
along the horizontal axis. Similar slices are also re-
grouped in hyper-modules where we can see feature
decomposition along the vertical axis. The knowledge
hyper-module can be seen as a data dimension. Even
if the methods have the same names, knowledge slices
store their WEvent at different places. It also pub-
lishes to different modules like Planners, Analyzers
according to the type of WEvent. Please note they are
no relations along the vertical axis between modules.

5.3.2 Analyzers

Analyzers are relatively similar in their operation. For
each generation of knowledge, they receive associated
data and then send back a conclusion. It therefore
makes sense to imagine them in the same dimension
of concerns. However, they must be modular so that
new ones can be easily inserted without redesigning
the whole knowledge block. The multidimensional
Separation of Concerns is very useful in our analysis
management. Each analysis will surely have different
dependencies (statistics, deep learning, set theory...).
Since they do not interact directly with each other,
this makes modularization easier by creating several
independent layers. We will use the notion of Hy-
per Slices from (Tarr et al., 1999) in order to increase
dimensions with each addition of analyzer. For the
moment the analyzers do not interact with each other
as the problem of knowledge fusion is a vast domain
on which we have not yet worked.



Knowledge HypermoduleMonitor Hypermodule Analyse Hypermodule

Graph Analyser Slice

publish(WEvent)

createGraph(WEvent) addEdge(WEvent)

publish(WEvent)

Log Monitoring Slice Stats Analyser Slice

publish(WEvent)

createStats(WEvent) recalculate(WEvent)

Logs knowledge slice

check(WEvent)

store(WEvent) publish(WEvent)

(Other style of knowledge slices)

Graph knowledge slice

check(WEvent)

store(WEvent) publish(WEvent)

Dream logs knowledge slice

check(WEvent)

store(WEvent) publish(WEvent)

Figure 10: Example of components of the MAPE-K loop using hyperslicing visualization

6 CONCLUSIONS & FUTURE
WORK

In this paper, we address the maintainability issue of
self-adaptive wise systems. To overcome the problem
of costly reuse and evolution of a monolithic archi-
tecture where a same entity (WO) embed several re-
sponsibilities, we propose a new architecture based on
the separation of concerns and on an even-driven pub-
lish/subscribe mechanism. Separation of concerns is
done according to several dimensions: MAPE-K loop
model, Real knowledge (Real logs and analysis re-
sults) vs. Dream knowledge (Dream logs and analysis
results), components with similar responsibilities (for
instance analyzers using different methods). To com-
plete the MAPE-K loop, we also implemented Plan
construction and Execution components that were ab-
sent in the previous version of WOF.

This results in many organized slices that enable
the system reuse, maintenance and evolution. At exe-
cution time, this architecture allows the system to eas-
ily swap among components with similar responsibil-
ity (e.g. analyzers) by stacking them in a same dimen-
sion. Furthermore, the publish/subscribe mechanism
enables components (e.g. analyzers) to interact only
with the relevant part of knowledge they need (e.g.
Dream logs or Real logs).

With this new architecture, we plan in the short
term to develop Markovian and deep learning analyz-
ers in addition to the existing graph and statistical an-

alyzers. Developing different analyzers is crucial to
the reliability of self-adaptive systems: analyzers may
either discover faster new states of the monitored ob-
ject or draw better conclusions about its functioning.
Moreover analyzers of operation’s parameters seems
essential for both the credibility of the system and re-
source saving: we can develop a statistical analyzer
that according to the parameter type generates new
values by sampling in the distribution generated in
past analyses.

As we completed the MAPE-K model, we nat-
urally will implement different Plan and Execute
components dedicated to both Dream (“dreamers”)
and Awake (“executors”) states of a WO. A first
“dreamer” will be a smart dreamer that takes into ac-
count the WO experience (real data) instead of ran-
domly simulating data. Regarding executors, the first
one will simply authorize or not execution of the
planned actions.

We also intend to study in future work how
to improve the new architecture, by introducing a
higher level where knowledge related to a WO can be
merged, aggregated or simply used at system level.



REFERENCES

Alloui, I., Benoit, E., Perrin, S., and Vernier, F. (2018).
Wiot: Interconnection between wise objects and
iot. 13th International Conference on Software
Technologies.

Alloui, I., Esale, D., and Vernier, F. (2015). Wise objects for
calm technology. 10th International Joint Conference
on Software Technologies.

Alloui, I. and Vernier, F. (2017). A wise object frame-
work for distributed intelligent adaptive systems. 12th
International Conference on Software Technologies.

Brun, Y., Serugendo, G. D. M., Gacek, C., Giese, H.,
Kienle, H., Litoiu, M., Muller, H., Pezze, M., and
Shaw, M. (2009). Engineering self-adaptive systems
through feedback loops. Software engineering for
self-adaptive systems.

Cheng, S.-W., Garlan, D., and Schmerl, B. (2009). Eval-
uating the effectiveness of the rainbow self-adaptive
system. ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems.

Crow, L. (1990). Evaluating the reliability of repairable
systems. Annual proceedings on reliability and
maintainability.

Dijkstra and Edsger, W. (1982). On the role of scien-
tific thought. In Selected writings on computing: a
personal perspective, pages 60–66. Springer.

Dobsona, S., Denazis, S., Fernández, A., Gaı̈ti, D., and
Gelenbe, E. (2006). A survey of autonomic com-
munications. ACM Transactions on Autonomous and
Adaptive Systems.

Gouda, G, M., Herman, and Ted (1991). Adaptive program-
ming. IEEE Transactions on Software Engineering,
17(9):911–921.

Harrison, William, Ossher, and Harold (1993). Subject-
oriented programming: a critique of pure objects.
In Proceedings of the eighth annual conference on
Object-oriented programming systems, languages,
and applications, pages 411–428.

Hebig, R., Giese, H., and Becker, B. (2010). Making
control loops explicit when architecting self-adaptive
systems. In International Conference on Autonomic
Computing and Communications.

Kephart, J. and Chess, D. (2003). The vision of autonomic
computing. Computer, 36(1):41–50.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda,
C., Lopes, C., Loingtier, J.-M., and Irwin, J.
(1997). Aspect-oriented programming. In European
conference on object-oriented programming, pages
220–242. Springer.

Kulkarni, V. and Reddy, S. (2003). Separation of concerns
in model-driven development. IEEE Software.

Makabee, H. (2012). An event-driven approach for the sep-
aration of concerns. In ENASE, pages 122–127.

Moreira, A., Rashid, A., and Araújo, J. (2005). Multi-
dimensional separation of concerns in requirements
engineering. In IEEE International Conference on
Requirements Engineering.

Naqvi, M. (2012). Claims and supporting evidence for
selfadaptive systems – a literature review. page 47.

Linnaeus University, School of Computer Science,
Physics and Mathematics.

Ossher, H. and Tarr, P. (2002). Multi-dimensional sep-
aration of concerns and the hyperspace approach.
Software Architectures and Component Technology.

Parnas, D. (1972). On the criteria to be used in decomposing
systems into modules. Software Pioneers.

Ravindranathan, M. and Leitch, R. (1998). Heterogeneous
intelligent control systems. IEE Proceedings-Control
Theory and Applications.

Tarr, P., Ossher, H., Harrison, W., and Sutton, S. (1999). N
degrees of separation: multi-dimensional separation
of concerns. In International Conference on Software
Engineering (ICSE).


