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Abstract: We report on the fabrication and electrical characterization of AlGaN/GaN normally
off transistors on silicon designed for high-voltage operation. The normally off configuration was
achieved with a p-gallium nitride (p-GaN) cap layer below the gate, enabling a positive threshold
voltage higher than +1 V. The buffer structure was based on AlN/GaN superlattices (SLs), delivering
a vertical breakdown voltage close to 1.5 kV with a low leakage current all the way to 1200 V. With the
grounded substrate, the hard breakdown voltage transistors at VGS = 0 V is 1.45 kV, corresponding to
an outstanding average vertical breakdown field higher than 2.4 MV/cm. High-voltage characteriza-
tions revealed a state-of-the-art combination of breakdown voltage at VGS = 0 V together with low
buffer electron trapping effects up to 1.4 kV, as assessed by means of substrate ramp measurements.

Keywords: high-electron-mobility transistor (HEMT); GaN; normally off

1. Introduction

Among the semiconductors, wide band gap (WBG) materials such as GaN and SiC
show more suitable properties than Si to operate at higher power and higher voltage [1–6].
In addition to being available up to 8 inches on Si substrates, allowing a cost-effective fabri-
cation, GaN material offers high electron mobility via the formation of a two-dimensional
electron gas (2DEG) at the hetero-interface between the AlGaN barrier and the GaN channel
layer. These devices are inherently normally on, delivering a negative threshold voltage.
In order to achieve a normally off behavior, several methods have been reported in the
literature [7–15]. All of them involve depleting the 2DEG below the gate electrode. One of
the most promising approach is the use of a p-GaN layer that is etched outside the gate
contact region [16–18]. In this case, the p-GaN layer raises the band diagram, causing the
depletion of the 2DEG even without external bias. On the other hand, although these types
of devices are commercially available, they are limited to 650 V voltage operation. Buffer
engineering is required to generate highly insulating transition layers grown on silicon
and further enhance the voltage operation. The use of graded AlGaN buffer layers is the
historical approach [19–21]. AlxGa1-xN layers (several micrometers thick with different
Al contents) allow the alleviation of lattice mismatch and thermal expansion between the
silicon substrate and the GaN layer. Moreover, the introduction of intentional doping can
significantly increase the resistivity of the buffer. Iron or carbon doping is generally used
to produce highly resistive buffers by compensating the residual n-type doping, such as
oxygen impurities, generally inducing parasitic leakage currents. However, it has been
shown that a high Fe or C doping concentration generates electron trapping effects [22–24].
To suppress the undesired trapping effects while maintaining an excellent carrier confine-
ment into the 2DEG under a high electric field, AlGaN back barrier [25] or superlattice
buffer concepts [26,27] can be combined with a moderate C doping concentration. The
desire to use AlN/GaN superlattices along with a carbon-doped buffer has been previously
demonstrated for high-voltage capabilities in normally on transistors [28,29]. This concept
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involves a series of thin layers such as Al(Ga)N and GaN to avoid the formation of internal
stresses while benefiting from highly resistive buffer layers.

In this paper, we experimentally fabricated normally off p-GaN cap AlGaN/GaN
HEMTs using a superlattice buffer with a total thickness of 6 µm, combining a high blocking
voltage at VGS = 0 V and low trapping effects above 1 kV.

2. Materials and Methods

Figure 1 shows a schematic cross-section of the p-GaN/AlGaN/GaN heterostruc-
tures grown by metal organic chemical vapor deposition (MOCVD) on a 1 mm-thick
6-inch Si substrate. Following the AlN nucleation layer, a 6 µm total buffer thickness
based on 140 periods of 25 nm AlN/GaN superlattice and a carbon-doped GaN layer of
5 × 1018 cm−3, an unintentionally doped GaN channel, a 12 nm Al0.18Ga0.82N barrier layer,
and an 80 nm p-type doped GaN layer. The Mg concentration was 2 × 1019 cm−3.

Figure 1. (a) Schematic cross section of the p-GaN/AlGaN/GaN HEMT on Si. (b) SEM top view of
the gate including the partially etched p-GaN layer and (c) a zoomed TEM image of the superlattices.

The 2DEG properties obtained through Van der Pauw pattern showed an electron sheet
concentration of 8 × 1012 cm−2 with an electron mobility of 1800 cm2/V·s. A Ti/Al/Ni/Au
metal stack was deposited and annealed at 750 ◦C to form the source and drain ohmic
contacts directly on top of the barrier layer by fully etching the p-GaN cap layer. Contact
resistances of about 1 Ω·mm were obtained, which can be reduced with further optimiza-
tion. The isolation between contacts was realized by mesa etching with a depth of 400 nm.
Outside the gate area, the entire remaining p-GaN area was etched and a Ni/Au gate metal
was deposited. Lastly, a 150 nm PECVD SiN layer was deposited as final passivation.

3. Results

Figure 2a shows the vertical breakdown voltage close to 1500 V corresponding to an
excellent breakdown field higher than 2.4 MV/cm. This reflects the high crystal quality of
the growth related to the superlattice concept. It can be pointed out that typical values for
a similar buffer thickness are below 2 MV/cm.

Figure 2. Vertical breakdown voltage (a) and lateral floating breakdown voltage as a function of the
contact distances (b) and the p-GaN/AlGaN/GaN HEMT on Si at room temperature.
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Lateral breakdown voltage measurements between isolated ohmics contacts on various
distances with the substrate floating confirm the high-voltage capabilities. In order to avoid
arcing in air between the probes, the sample is immersed in a liquid solution (Fluorinert).
As shown in Figure 2b, an expected linear evolution of the breakdown voltage as a function
of the contact distances followed by saturation is observed. A significant lateral breakdown
voltage up to 2500 V is measured for a contact distance of 16 µm and above. It can be
noticed that a blocking voltage of about 2000 V is reached at 1 µA/mm.

Moreover, a key parameter to assess GaN-based for power switch devices is the
trapping effects. Thus, buffer trapping has been studied by means of substrate ramp
measurements. [30,31]. This measurement is essentially sensitive to the traps into the buffer
and surface independent. Indeed, a low bias is applied within a TLM (ohmic contacts),
generating a current while the substrate is biased from 0 V down to a high negative
potential. Any charge redistribution into the buffer during the sweeps (back and forth) will
be detected as a current change (hysteresis). Indications on the time constant of the traps
can also be determined to a certain extent by varying the sweep rate.

Figure 3 shows different measurements down to 500 V, 1000 V, and 1400 V at various
sweep rates of 4 V/s in blue and 22 V/s in black. Extremely low hysteresis is evident in
all cases, reflecting the outstanding low trapping effects observed up to 1400 V, regardless
of the sweep speeds. This is attributed to the excellent material quality and the low
charge storage within the structure, enabling both a superior breakdown field and reduced
buffer trapping.

Figure 3. Substrate bias ramp measurements performed on the p-GaN/AlGaN/GaN HEMT on Si at
room temperature.

Electrical characterizations are carried out on 2 × 50 µm transistors with a gate-to-drain
spacing, ranging from 8 to 40 µm. Transfer characteristics ID-VGS, as shown in Figure 4
at VDS = 4 V, reveal a low leakage current around 20 nA/mm and an excellent pinch-off
behavior, showing the absence of parasitic punch-through effects or gate leakage current.
Moreover, from the transfer characteristics plotted in semi-log and linear, a threshold
voltage as high as +1.4 V is extracted, resulting in fully normally off transistors. Due to
non-optimized ohmic contacts and a rather low Al content into the barrier, a moderate
on-state current density of 150 mA/mm an on-state resistance (RON) of about 32 mΩ/cm2

is obtained, as seen from the output characteristics in Figure 4.
Figure 5a shows the three-terminal off-state breakdown voltage of transistors at

VGS = 0 V as a function of the gate–drain distances with a floating and grounded sub-
strate. The breakdown voltages of transistors with a grounded substrate are slightly higher
than 1400 V, in agreement with the high breakdown field of the buffer layers. Similarly,
as can also be seen in Figure 5b, the breakdown voltage with a floating substrate reaches
2500 V for large gate–drain distances higher than 20 µm. The leakage current remains
below 1 µA/mm above 1 kV. The specific on-state resistance versus breakdown voltage
with grounded substrate has been benchmarked against normally off GaN transistors in the
literature (Figure 6) [32–36]. These results highlight the benefits of superlattice-based buffer,
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enabling high-performance normally off devices with low RON and low buffer trapping at
a blocking voltage above 1200 V.

Figure 4. Transfer (left) and output (right) characteristics of a p-GaN/AlGaN/GaN HEMT with a
gate–drain distance of 8 µm at VDS = 4 V plotted in semi-log and linear scale.

Figure 5. Three-terminal breakdown voltage at VGS = 0 V of p-GaN/AlGaN/GaN HEMTs with
floating and grounded substrate: (a) as a function of the gate-to-drain distance and (b) for various
gate-to-drain distances.

Figure 6. Benchmarking of breakdown voltage vs. specific on-resistance of normally off transistors
with a grounded substrate. Solid lines in black and blue represent the theoretical limits of Si and
GaN, respectively.
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4. Conclusions

In summary, this paper demonstrated the fabrication and characterization of a state-
of-the-art normally off AlGaN/GaN heterostructure with a buffer based on superlattice
structure capped with a p-GaN layer. This resulted in normally off transistors with a
threshold voltage higher than +1 V. High vertical breakdown voltage close to 1500 V can be
reached with low trapping effects. The three-terminal breakdown voltage measurements
carried out on transistors show a breakdown field higher than 2.4 MV/cm with a grounded
substrate and a breakdown voltage of 2500 V with floating substrate. These results unveil
the excellent prospects of a superlattice-based buffer for 1200 V power applications, such as
fast chargers for electric vehicles, motor drives, solar inverters, or three-phase PFC systems.
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