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Abstract 21 

Tensile creep, which is one of the most important deformation modes for high 22 

temperature applications, is rarely reported for refractory high entropy alloys 23 

(RHEAs). In the present study, the optical floating zone (OFZ) technique was used to 24 

fabricate HfNbTaTiZr with grain size larger than 1 mm on average; tensile creep tests 25 

under vacuum at 1100-1250℃ and stepwise loading of 5-30 MPa were conducted. The 26 

stress exponents and creep activation energies were determined to be 2.5-2.8 and 273 27 

± 15 kJ mol
-1

, respectively. The stress exponents determined have suggested solute 28 

drag creep behavior, and deformation was governed by a/2<111> type dislocations. To 29 

elucidate the effect of alloying constituents on solute drag creep, intrinsic diffusion 30 

coefficients of all elements were determined by simulation, and theoretical minimum 31 

creep strain rates were compared with those of experimental values. Analysis suggests 32 

that creep rate of HfNbTaTiZr appears to be controlled by Ta, which possesses the 33 

lowest intrinsic diffusivity and contributes the most to drag dislocations. To our 34 

knowledge, this work is the first to report tensile creep deformation mechanism of 35 

HfNbTaTiZr, especially up to 1250℃. 36 

 37 

Keywords: Refractory high entropy alloy, Creep, High-temperature deformation, 38 
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1. Introduction 40 

In the early 2000s, the notion of “high entropy alloys” (HEAs) was 41 

conceptualized by Yeh et al. [1] and Cantor et al. [2], and it emerged as a new strategy 42 

of alloy design. The composition space of alloys that can be explored is literally 43 

unlimited with this approach [3-5]. The microstructures of HEAs can also be 44 

customized to meet desired properties, including single phase solid solution HEAs [3, 45 

4, 6-8] and HEAs with hierarchical microstructures [9-12]. Furthermore, second 46 

phases can be introduced in systems, such as Co-Cr-Fe-Ni-Ti [13, 14], 47 

Al-Co-Cr-Fe-Ni [15-22], and high entropy superalloys [23-25]. To propose a potential 48 

solution with temperature capability beyond-superalloys, Senkov et al. [26, 27] 49 

reported refractory high entropy alloys (RHEAs) that constitute mainly refractory 50 

elements, and have since drawn lots of interests to study their mechanical properties, 51 

however, reported literatures were mainly based on studies of compression 52 

deformation [28-34]. Among all RHEAs, HfNbTaTiZr has attracted lots of attentions, 53 

because it possesses a fully disordered BCC solid solution structure with melting 54 

point around 1800℃ [29, 35]. HfNbTaTiZr exhibits a combination of high strength 55 

and ductility at room temperature [29, 30], and at cryogenic temperatures [36]. 56 

HfNbTaTiZr can also retain its compression strength at elevated temperatures, i.e. 57 

790 MPa at 400℃ and 675 MPa at 600℃ [30]; it has been reported that a/2<111> 58 
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screw dislocations movements dominate its compression deformation from room 59 

temperature to 800℃ [37, 38]. 60 

Tensile creep is one of the most important demands for high temperature 61 

applications. However, to the best of authors’ knowledge, there has been no literature 62 

reported for RHEAs in this subject to-date. Previous works have analyzed the creep 63 

behavior of some other refractory alloys. Lin et al. [39] reported creep of Ta-2.5 wt.% 64 

W (grain size ~ 70 μm) under 1250–1450℃ and a stress range of 35 to 210 MPa. It 65 

showed a transition from solute drag creep (stress exponent, n=3) to dislocation climb 66 

creep (n>3) at high-stress regions. Kellner et al. [40] investigated the creep of 67 

Mo-9Si-8B based alloys under vacuum at 1250°C with stresses from 50 to 250 MPa; 68 

the stress exponent was found to be 3.8, indicating dislocation climb controlled creep. 69 

And, C103, which is a Nb-based alloy was reported to creep by solute drag 70 

mechanism under high temperature and low stress conditions [41]. It appears that 71 

refractory alloys exhibit various creep mechanisms under different testing conditions. 72 

Despite a lack of thorough understanding regarding the creep deformation behavior of 73 

RHEAs so far, experiments of HEAs have been conducted to characterize their creep 74 

properties [42-50]. However, majority of these studies were based on 3d-transition 75 

metals based HEAs, only Kral et al. [46] reported the compression creep behavior of 76 

AlTiVNbZr0.25 RHEA (B2 matrix + Zr5Al3-precipitates) at 800℃ and stresses of 77 
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100-560 MPa; its creep mechanism was elucidated to be solute drag creep by 78 

analyzing the stress exponent (n=3) and an observation of sluggish subgrains 79 

formation. So far, there is no report about tensile creep of RHEAs, since RHEAs is a 80 

potential candidate for beyond-superalloys applications, it is important to understand 81 

the mechanism of tensile creep deformation of the intrinsic high entropy single phase 82 

solid solution. In this work, HfNbTaTiZr has been chosen for tensile creep studies at 83 

temperatures up to 1250
o
C, because of its stability as a single BCC solid solution 84 

phase at elevated temperatures, unlike the other RHEAs that exhibit complex phases 85 

[33, 34, 46, 51] or inversion between B2 and BCC phase [32, 52]. 86 

 87 

2. Experimental procedure 88 

 The HfNbTaTiZr refractory high entropy alloy was prepared from pure elements 89 

Hf, Nb, Ta, Ti, Zr with 99.95 wt.% purity. Ingots were produced by vacuum 90 

arc-melting on a copper water-cooled cavity. Before alloying, the arc-melting tank 91 

was evacuated to 2 Pa, then filled with argon with 99.99% purity, and evacuated again; 92 

this process was repeated three times in order to purge the residual atmosphere, and a 93 

pure argon atmosphere filled to 34.5 kPa was achieved. Pure Ti ingot was then 94 

re-melted inside the chamber to act as getter of residual oxygen and nitrogen. During 95 

the alloying and melting process, each ingot was flipped and melted five times to 96 



7 
 

improve the chemical homogeneity, and ingots with dimensions of 15 × 35 × 120 mm
3
 97 

were produced. Cylindrical rods with 12 mm in diameter and 100 mm in length were 98 

obtained from ingots by electrical discharge machining (EDM). Surfaces of the 99 

cylindrical rods were then grinded by SiC sandpapers to 800 grit and ultrasonic 100 

cleaned in alcohol to ensure no oxide layer remained. The cylindrical samples of 101 

HfNbTaTiZr were subjected to crystal growth process by using an optical floating 102 

zone (OFZ) furnace (model FZ-T-12000-X-VII-VPO-PC, Crystal Systems 103 

Corporation, Japan). OFZ technique was chosen in this work in order to fabricate 104 

coarse grains with homogeneous composition [53], and samples with large grains 105 

were used to minimize the effect of grain boundary softening in HfNbTaTiZr reported 106 

in previous works [30, 54, 55]. The schematic drawing of the four mirror OFZ furnace 107 

used in this work is presented in Fig. 1(a). High-purity argon (99.995%) was filled 108 

inside the chamber at 101.3 kPa with 3 liters/min flux throughout the process. The 109 

pulling rate of the crystal was 15 mm/h, and the rotation rates was 3 rpm to ensure the 110 

temperature homogeneity during crystal growth. 111 

 112 
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 113 

Fig. 1. (a) The schematic drawing of the optical floating zone furnace. (b) The tensile 114 

creep test specimen. 115 

 116 

 The tensile creep specimens were manufactured by EDM, and they had a 117 

dog-bone shape with the gage-section dimensions of 5 x 2.9 x 1.5 mm
3
 and four 118 

ridges marking the gage-section, Fig. 1(b). The flat sides of gage were grinded by 119 

1200 grit SiC sandpaper. The vacuum tensile creep test device was hand-built by 120 

Metals and Alloys, University of Bayreuth, details of the setup was described by 121 

earlier reports [40, 56]. The device contains a graphite-heating element inside the 122 

vacuum chamber and a type-S thermocouple close to the specimen. The tensile creep 123 

tests were conducted at 1100, 1150, 1200, and 1250℃ in vacuum of 2 x 10
-4

 Pa 124 

controlled by an oil diffusion pump. The diffusion pump ran over the whole duration 125 

of creep tests to guarantee a high vacuum level, which could prevent reaction with C, 126 

O2, or N2 and minimize contamination during high temperature creep tests. Two Al2O3 127 
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ceramic holders were used to grip the ends of the testpieces. A non-contacting video 128 

extensometer was used to record the strain evolution during creep [56]. In this work, 129 

creep tests were conducted with step-wise increase in stress; the change in load was 130 

determined by correlating the instantaneous cross-sectional area after the minimum 131 

creep rate was reached, this method was described in details by Gadelmeier et al. [49]. 132 

The tensile creep tests were conducted under stresses of 5, 10, 20, and 30 MPa, Table 133 

1. The samples were first tested at 1100℃ and 10 MPa; after the strain rate had 134 

reached the minimum creep rate, the stress was raised to 20 MPa, and then from 20 135 

MPa to 30 MPa. The other stress change tests were also conducted with the load 136 

increased stepwise from 5, 10 to 20 MPa at 1150℃, 1200℃, and 1250℃. The load 137 

change process took less than 2 minutes. After tests, all creep specimens were cooled 138 

freely to room temperature by furnace cooling. During the cooling process, from 139 

testing temperatures to 940℃, the cooling rates were about 260℃/min; from 940℃ to 140 

800℃, and 800℃ to 600℃, cooling rates were 85℃/min and 32℃/min, respectively, 141 

below 600℃, the cooling was around 5-12℃/min.  142 

  143 
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Table 1. Testing temperatures and corresponding stresses of tensile creep tests. 144 

Temperature (°C) Stress (MPa) 

1100 10, 20, 30 

1150 5, 10, 20 

1200 5, 10, 20 

1250 5, 10, 20 

 145 

To reveal the microstructures, specimen surfaces were grinded by SiC sandpaper 146 

to 4000 grit, followed by 0.05 μm Al2O3 and 0.02 μm silica suspension polishing steps. 147 

Etching was conducted with a hydrofluoric acid solution (20 ml hydrofluoric acid + 148 

15 ml nitric acid + 65 ml glycerol). For grain size analysis, an optical microscope was 149 

used, and an average grain size was determined by ImageJ 1.42q [57]. X-ray 150 

diffraction (XRD, D2 PHASER X-ray diffractometer, Bruker) with Cu Kα radiation 151 

was used to conduct phase analysis. Scanning electron microscopes (SEM, 152 

JSM-7610F, JEOL and Gemini 300, Zeiss) equipped with electron backscatter 153 

diffraction (EBSD) and energy-dispersive X-ray spectroscopy (EDS) were used to 154 

examine the microstructures in details. The backscatter Kikuchi patterns were 155 

recorded by AZtec EDS/EBSD software (Oxford Instruments plc, UK) to map the 156 

misorientaion profiles, and kernel average misorientaion (KAM) mapping was 157 
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conducted by calculating the arithmetic average of the scalar misorientation between 158 

groups of pixels [58]. Dual-beam focused ion beam (FIB, Helios Nanolab 600i, FEI, 159 

Oregon, USA) was used to prepare samples for transmission electron microscope 160 

analysis (TEM, FEI TECNAI G2 F20 TEM) operating at 200 kV. To elucidate the 161 

effects of alloying constituents in HfNbTaTiZr on creep rates, thermodynamic 162 

database TCHEA4 and mobility database MOBHEA2 were used to estimate the 163 

intrinsic diffusivities of each element in the system, so the theoretical creep rates 164 

could be determined to compare with those of experimental values for discussion. 165 

 166 

3. Results and analysis 167 

3.1 Microstructure prior creep 168 

 The sample of HfNbTaTiZr processed by OFZ furnace had an average grain size 169 

of 1.2 ± 0.4 mm, Fig. 2(a) and 2(b), and this was substantially coarser than the grain 170 

sizes of this RHEA reported in previous works fabricated by arc-melting (140 μm) 171 

[54], spark plasma sintering (20-190 μm) [59, 60], and hot isostatic pressing (100-200 172 

μm) [29, 30]. The microstructure of the sample exhibited a BCC single phase with a 173 

lattice parameter of 340 pm, Fig. 2(c). There was no dendritic segregation observed 174 

and the equi-atomic compositions of HfNbTaTiZr was confirmed by SEM-EDS. 175 

 176 
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 177 

Fig. 2. (a) Longitudinal section and (b) Inverse pole figure (IPF) image of the cross 178 

section of HfNbTaTiZr. (c) X-ray diffraction pattern of sample prior creep. 179 

  180 
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3.2 Creep behavior 181 

 Creep curves are shown in Fig. 3(a), and the evolutions of creep rates versus creep strain are shown in Fig. 3(b). All creep curves exhibit minimal primary creep strains, and creep deformations under all conditions were dominated by obvious steady state creep regions. The coarse grains structure fabricated by OFZ technique 182 

was to minimize the grain boundary softening, so the intrinsic creep mechanism of 183 

HfNbTaTiZr could be elucidated. Although the texture of coarse grains has been 184 

known to influence creep strains and creep lives [61], this study focused on 185 

elucidating creep mechanism based on the minimum creep strain rates. The minimum 186 

creep rates have been determined and summarized in Table 2. Creep tests under each 187 

condition were performed twice to ensure reproducibility, the minimum creep rates of 188 

two sets of tests were almost the same under the same stress and temperature. So, this 189 

indicates that the use of coarse grain structure of HfNbTaTiZr in this work could 190 

result consistent minimum creep strain rates under present testing conditions. 191 

 The minimum creep rate can be used to determine the stress exponent   and the creep activation energy   from the power-law equation [62]: 192 

              
 

  
  (3-1) 

where       is the minimum creep rate,   is a material specific constant,   is the 193 

applied stress,   is the gas constant, and   is the absolute temperature. 194 
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 195 

Fig. 3. (a) Tensile creep curves, (b) Creep rate versus strain. 196 

 197 
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Table 2. The minimum creep rates of HfNbTaTiZr at different loads and temperatures. 198 

 Log10 minimum creep rate (s
-1

) 

T (°C) 1100 1150 1200 1250 

Load (MPa) Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

5 - - -6.7 -6.7 -6.5 -6.5 -6.1 -6.1 

10 -6.4 -6.2 -6.1 -6.0 -5.6 -5.9 -5.4 -5.3 

20 -5.7 -5.6 -5.3 -5.1 -4.7 -5.0 -4.6 - 

30 -5.1 -5.1 - - - - - - 

  199 

By plotting the minimum creep rates against the applied stresses, Fig. 4(a), 200 

values of the stress exponent   can be determined from slopes of linear regression 201 

lines. The activation energy Q for creep can be determined by plotting the natural log 202 

of the minimum creep rate at a specific stress versus the reciprocal of temperature, Fig. 203 

4(b). The values of n and Q and their standard deviations are summarized in Table 3. 204 

The stress exponent values in this work vary in the range of 2.5 to 2.8, which suggests 205 

the solute drag creep mechanism [63, 64], and the activation energy is determined to 206 

be 273 ± 15 kJ mol
-1

. There was no transition between different creep mechanisms 207 

within the stresses and temperatures regime in this investigation. 208 
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 209 

Fig. 4. (a) Minimum creep rates versus applied stress from 1100 to 1250°C, (b) 210 

minimum creep rates versus the reciprocal of the absolute temperatures from 5 to 20 211 

MPa. 212 
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Table 3. Calculated power-law parameters, n, Q and coefficients of determination R
2
. 213 

T (
o
C) n R

2
 

1100 2.5 0.9747 

1150 2.5 0.9820 

1200 2.8 0.9600 

1250 2.5 0.9968 

Stress (MPa) Q (kJ mol
-1

) R
2
 

5 259 0.9147 

10 258 0.8979 

20 288 0.9380 

 214 

3.3 Microstructures after creep 215 

 The microstructure of crept HfNbTaTiZr evolved significantly after deformation, 216 

Fig. 5; grain morphology was distinctly different from the microstructure prior creep 217 

shown in Fig. 2. Fig. 5 shows that significant bulging of grain boundaries occurred 218 

during creep, and these bulging grain boundaries were associated with high levels of 219 

misorientation, which indicates concentration of deformation in the vicinity of grain 220 

boundaries. This type of deformed grain boundaries in HfNbTaTiZr was reported 221 

previously during the early stage of uniaxial compression testing at 1000℃ [55], and 222 

continuing deformation under compression to over 30% would lead to dynamic 223 

recrystallization in necklace form along initial grain boundaries [30, 54, 55]. However, 224 
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the necklace structure at boundaries was not identified after creep in this study, Fig. 5. 225 

Furthermore, subgrain boundaries were observed near bulging grain boundaries due to 226 

polygonization, Fig. 5 (c, f, i, l), this phenomena was observed in other metals 227 

deformed in the solute drag regime [65, 66]. Despite significant deformation of grain 228 

boundaries after creep, there was no crack or void observed at the intergranular 229 

regions. 230 

 231 
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 232 

Fig. 5. SEM-EBSD images of the specimens after creep under different temperatures: 233 

(a, b, c) 1100℃, (d, e, f) 1150℃, (g, h, i) 1200℃ and (j, k, l) 1250℃; (a, d, g, j) are 234 

inverse pole figure maps, (b, e, h, k) are kernel average misorientation maps and (c, f, 235 

i, l) are inverse pole figure maps under higher magnification. 236 

 237 

 To further examine the crept microstructures, TEM images were analyzed. Since 238 

all creep conditions from 1100 to 1250
o
C shared similar deformation behavior and 239 
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stress exponent values, the dislocation structures of HfNbTaTiZr after creep at 240 

1100°C/30 MPa with 46% strain are shown exemplarily in this work, Fig. 6. The 241 

dislocations were randomly distributed, and they were long and neatly arranged 242 

without entanglement. There were also dislocations accumulation along the grain 243 

boundaries, Fig. 6(b), the selected area diffraction patterns confirmed that deformed 244 

HfNbTaTiZr still retained its BCC structure, exemplified by the [011] zone axis. In 245 

addition, the Burger’s vector (b) of the gliding dislocations was determined by TEM 246 

analysis with the     invisibility criterion. The dislocations were visible with 247 

          in Fig. 6(d), while they were out of contrast with              in Fig. 6(e) 248 

and           in Fig. 6(f). This analysis has validated that dislocations in tensile 249 

creep deformed HfNbTaTiZr were a/2<111> type. 250 
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 251 

Fig. 6. TEM images of HfNbTaTiZr after creep at 1100
o
C. (a) dislocation structure 252 

within grain interior; (b, c) overview of dislocation and grain boundary structure after 253 

creep; (d, e, f) Weak-beam dark-field micrographs from the same area of (c) in zone 254 

axis near (d) [        , (e) [      and (f) [        . 255 
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4. Discussion 256 

 The stress exponent   can be used to elucidate the dominant creep mechanism. 257 

For HfNbTaTiZr tested at 1100-1250 ℃ and 5-30 MPa, the stress exponents were 258 

in-between 2.5-2.8, which is slightly lower than 3. The stress exponent about 3 is 259 

known to be related to solute drag creep (viscous glide creep or the Class I solid 260 

solution creep behavior), and solute drag creep is often observed for solid solution 261 

alloys [63, 64]. The solute drag creep effect can additionally be raised from 262 

dislocation interactions with solute atoms and retard dislocation glide movement [62, 263 

64, 67-69]. Furthermore, a transition from solute drag creep to climb-controlled creep 264 

would be observed with the breakaway of dislocations from the stress field of solute 265 

with higher stresses [63]. Since the stress exponents determined from all creep 266 

conditions were similar, the creep mechanism did not change within different 267 

temperatures and stresses in this study. This indicates that the stress level in this work 268 

was not high enough to overcome the solute drag effect.  269 

In addition to the stress exponent, the microstructures after creep in Fig. 6 also 270 

suggest solute drag creep in present study. Since the completion of creep tests were 271 

followed by sufficient cooling rate (~260°C/min from testing temperatures to 940°C), 272 

the dislocation structures would be retained after creep tests. The observed 273 

dislocations were slightly curved without entanglement; this observation is the 274 
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typically identified in samples deformed by solute drag creep mechanism [46, 63, 65]. 275 

 Bulging grain boundaries and vast levels of misorientation along grain 276 

boundaries after creep, Fig. 5, have been shown by KAM analysis. Based on the 277 

deduced creep mechanism, the grains were deformed by dislocations, Fig. 6, 278 

dislocations piling up at the grain boundaries were also observed, Fig. 6(b) and 6(c). 279 

The variation of dislocation densities at grain boundaries activated the bulging of 280 

grain boundaries at different segments, which is known as the strain induced grain 281 

boundary migration [55, 70]. The evolution of microstructure of HfNbTaTiZr after 282 

deformation in this work is different from those reported previously [30, 54, 55]. In 283 

the work conducted by Senkov et al. [30], dynamic recrystallization was observed 284 

after deformation; HfNbTaTiZr with initial grain size of 100-200 m was subjected to 285 

50% height reduction under compression at temperatures up to 1200℃, the strain rate 286 

was 10
-3

 s
-1 

and the stress could reach 92 MPa and above. Eleti et al. [54] also 287 

reported dynamic recrystallization of 50% height reduction hot-compressed 288 

HfNbTaTiZr with an average initial grain size of 140 m, the strain rate was 10
-4

 s
-1

 289 

and the stress could reach 44 MPa and above. The evolution of microstructure under 290 

compression was further clarified in another work by Eleti et al. [55]; with the strain 291 

rate of 10
-3

 s
-1

, bulging grain boundaries associated with strain induced grain 292 

boundary migration were observed during the early stage of compression deformation 293 
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under 10% strain at 1000℃, and there was no dynamic recrystallization reported until 294 

30% reduction. The dynamic recrystallization in those compression tests could evolve 295 

from around the initial grain boundaries in necklace form to fully recrystallization 296 

with reduction ratios greater than 30%. By contrast, the mode of deformation in this 297 

work was creep in tension under relatively lower stresses (5-30 MPa), with creep 298 

strains of 15 to 48 % and above, the stress build-up at the grain boundaries should be 299 

lower than those subjected to compression deformation [30, 54, 55], hence bulging 300 

grain boundaries were observed with no dynamic recrystallization, Fig. 5. 301 

Furthermore, the grain size in this work (1.2 ± 0.4 mm) was about 10 times larger 302 

than those of Senkov et al. [30] and Eleti et al. [54], so deformation attributed to 303 

diffusion along grain boundary can be less. Hence the tensile creep activation energy 304 

(273 ± 15 kJ mol
-1

) determined in the present work is higher than the activation 305 

energies of compression deformation reported by Senkov et al. [30] (226 ± 20 kJ 306 

mol
-1

) and Eleti et al. [54] (245 ± 13 kJ mol
-1

). 307 

All our observations highlight that the tensile creep mechanism of HfNbTaTiZr 308 

at elevated temperatures is glide-controlled creep by solute drag. This can also refer to 309 

the case in which dislocations encounter frictional stress acting on it by dragging the 310 

solute stress fields [63, 64, 71]. According to Mohamed et al. [64], the minimum 311 

creep rate can be modeled using the following equation: 312 
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     (4-1) 

where   is the Poisson’s ratio,   is the applied stress,   is shear modulus of the 313 

alloy, and   represents the interaction of dislocations with solute atoms which is 314 

expressed as Equation (4-2) according to Cottrell et al. [71]:  315 

 (4-2) 

where   is the solute-solvent size difference, c is the concentration of solute atoms, b 316 

is Burger’s vector,   is Boltzmann’s constant, T is the absolute temperature, and    317 

is the diffusion coefficient of solute atoms. Combining Equations. (4-1) and (4-2) can 318 

give the following expression to predict the minimum creep rate [63]: 319 

     (4-3) 

According to solute drag by the Cottrell-Jaswon mechanism (Equation (4-3)), the 320 

dislocation could drift under the action of stress acting on it by dragging behind it a 321 

solute atmosphere [71]. The solute atmosphere could travel by means of the diffusion 322 

of the solute atoms. If the dislocation was to move at a given velocity, then the solute 323 

atoms must diffuse at the same velocity [63]. Although Equation (4-3) has been 324 

commonly used in conventional alloys, Kim et al. [45] adopted this equation by 325 

considering each constituent as the solute atmosphere and made a direct comparison 326 

between the calculated values and the observed minimum creep rates. The results 327 

suggested that the solute drag of Ni controlled the viscous glide during creep of 328 
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CoCrFeMnNi. Therefore, this work has applied the same approach to determine the 329 

solute which would dominate the dragging mechanism during creep of HfNbTaTiZr. 330 

However, what should be the appropriate diffusion coefficients,   , of HfNbTaTiZr 331 

for Equation (4-3)? Even though a similar question was previously discussed in binary 332 

systems [64, 72-76], this has remained an issue of debate. In concentrated 333 

multicomponent solid solutions, the determination of the appropriate diffusion 334 

coefficient can be even more challenging. Heckl et al. [77] tackled the problem in 335 

Ni-based superalloys and considered the weighted harmonic mean of the diffusion 336 

coefficients of alloying constituents by referring to the treatments from Herring [72] 337 

and Reed et al [78]. However, these different authors considered three different 338 

diffusion coefficients, i.e., intrinsic, tracer, or chemical diffusion coefficients, which 339 

can be questionable in this approach. Besides, the invoked Herring’s equation [72] is 340 

valid for climb-controlled creep only, not glide. A diffusion coefficient is, by 341 

definition, the proportionality factor between the flux and the concentration gradient. 342 

In a 5-components system, the flux equations give a 4x5 intrinsic diffusivity matrix 343 

(in the lattice-fixed frame of reference) to describe the diffusion process. To simplify 344 

this complicated problem, cross terms can be neglected by postulating small 345 

concentration gradients between the segregation surrounding the dislocation and the 346 

concentrated solid solution matrix. Only five intrinsic (individual) diffusion 347 
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coefficients are then sufficient, so the observed minimum creep rates with those 348 

inferred from the individual diffusion coefficient of each constitutive element using 349 

Equation (4-3) can be compared and determine possible elemental effects. Table 4 350 

provides the parameters required to calculate the minimum creep rates by Equation 351 

(4-3). The composition and temperature dependencies of diffusivities for individual 352 

elements in HfNbTaTiZr have been computed using the thermodynamic TCHEA4 and 353 

mobility MOBHEA2 database. The calculated diffusion coefficient of Zr in 354 

HfNbTaTiZr at 1150°C in this work is similar to an experimental result reported 355 

recently by Zhang et al. [79]. 356 

 357 

Table 4. The values of intrinsic diffusion coefficients (  ) for individual elements in 358 

HfNbTaTiZr calculated at different temperatures using ThermoCalc and the TCHEA4 359 

and MOBHEA2 databases, atomic radius (r) [80, 81] and solute-solvent size 360 

difference (e). 361 

 Hf Nb Ta Ti Zr 

Intrinsic diffusion coefficients, log10(m
2
/s) 

1100 °C -12.3 -13.6 -16.0 -13.4 -13.7 

1150 °C -12.0 -13.3 -15.7 -13.1 -13.4 

1200 °C -11.7 -13.0 -15.3 -12.8 -13.1 

1250 °C -11.5 -12.7 -15.0 -12.5 -12.8 

Atomic radius 

r (pm) 157.8 142.9 143.0 146.2 160.3 

Solute-solvent size difference 

e (%) +5.2 -4.8 -4.7 -2.6 +6.8 
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 362 

The size difference of each element (  ) can be determined from the following 363 

equation [45]:  364 

  (4-4) 

where    is the radius of the element of i, and          is the average radius of the 365 

constituent atoms according to atomic fraction (Xi) of HfNbTaTiZr (     
 
   ).  366 

The shear modulus of HfNbTaTiZr has been estimated to vary from 30 to 28 GPa 367 

between 1100 and 1250°C according to                       [82]. The 368 

value of 0.26 for the Poisson’s ratio can be taken from previous work [82], and the 369 

Burger’s vector can be calculated from the lattice constant in Fig. 2(c), b = a/2<111> 370 

= 0.294 nm. The minimum creep rates can then be calculated at 1100, 1150, 1200 and 371 

1250°C by considering each intrinsic diffusion coefficient separately. The results are 372 

illustrated in Fig. 7. 373 

 374 
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 375 

Fig. 7. The minimum creep rates against applied stress for the experimental work and 376 

the calculated ones at (a) 1100°C, (b) 1150°C, (c) 1200°C and (d) 1250°C. 377 

 378 

The calculated minimum creep rates in Fig. 7 shows that                   379 

                          . Although the experimental results plotted in Fig. 7 are 380 

slightly slower than the         , it is very similar to the calculated results based on 381 

the intrinsic diffusion of Ta in HfNbTaTiZr, under all stresses and temperatures. Fig. 8 382 

shows that taking the harmonic average of the intrinsic diffusion coefficients in 383 

Equation (4-3) does not agree with the experimentally determined minimum creep 384 

rate. In contrast, the minimum creep rate is predicted with a good agreement with 385 
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experimental observations using the intrinsic diffusion coefficient of Ta, which 386 

indicates that Ta contributes the most to drag dislocations during creep in 387 

HfNbTaTiZr. 388 

 389 

 390 

Fig. 8. Predicted vs observed minimum creep rates at 1100, 1150, 1200 and 1250°C 391 

and for three different applied stresses between 5 and 30 MPa. 392 

 393 

The diffusion rate in alloy systems is generally believed to be lower when the 394 

solute-solvent size difference of individual elements is larger [83]. However, in Fig. 9, 395 

the diffusivity for individual elements in HfNbTaTiZr from calculation disproves this 396 
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traditional view. Table 4 shows that Zr and Hf have larger atomic radii, but the 397 

diffusivities are faster than Ta in several orders of magnitude. Instead, although Ta 398 

does not contribute to the highest size differences, the result implies that the solute 399 

drag effect is more dependent on the diffusivity, and Ta has the lowest diffusion 400 

coefficients in HfNbTaTiZr and therefore contributes the most to drag dislocations. A 401 

similar phenomenon was reported in nickel-base superalloy [84, 85]; Re and Ru have 402 

slower diffusion rates in Ni than Zr and Hf, albeit Zr and Hf possess greater atomic 403 

radii than Re and Ru, this behavior is thought to be related to the bonding 404 

characteristics of solute atoms. Furthermore, the diffusivity is affected by both the 405 

thermodynamic factor and the atomic mobility, and low mobility generally comes 406 

with a high melting point; the high melting point of Ta may play a role in the observed 407 

solute drag creep. Future experimental studies of interdiffusion, solute-vacancy 408 

exchange and bonding characteristics in HfNbTaTiZr can help to further understand 409 

its high temperature properties. And, single crystals of HfNbTaTiZr would help to 410 

further clarify the effect of crystal orientation on deformation behaviors. To our 411 

knowledge, this work is the first to unveil the creep deformation mechanism of 412 

HfNbTaTiZr in tension, especially up to 1250℃. 413 

 414 
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 415 

Fig. 9. Diffusivity and atomic radius [80, 81] for each element in HfNbTaTiZr RHEA. 416 
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5. Conclusion 417 

The current work investigated creep behaviors of HfNbTaTiZr with large grain size 418 

fabricated by the optical floating zone technique. Creep properties and microstructure 419 

were exanimated for samples tested at 1100-1250℃ and stress levels of 5-30 MPa 420 

under vacuum. The important findings are listed as follows. 421 

(1) The creep behavior was related to the solute drag mechanism, which is evidenced 422 

by the stress exponents of 2.5-2.8. The creep activation energies obtained in this 423 

work are in the range of 273 ± 15 kJ mol
-1

. 424 

(2) TEM characterization has verified that plasticity of creep was dominated by 425 

dislocations of b = a/2<111>. 426 

(3) Dislocations at grain boundaries have led to significant bulging of grain 427 

boundaries associated with strain-induced grain boundary migration. 428 

(4) According to the diffusivity calculation and solute drag creep model prediction, 429 

the creep rates were controlled by diffusivity of Ta, which is the element with the 430 

lowest diffusion coefficient in HfNbTaTiZr and suppresses dislocation movement 431 

during creep. 432 

These findings can be applied to design advanced RHEAs to improve the creep rate 433 

and related rapture. 434 
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