Frédéric Ridouard
email: frederic.ridouard@ensma.fr

Pascal Richard
email: pascal.richard@ensma.fr

Francis Cottet Lisi-Ensma

Negative results for scheduling independent hard real-time tasks with self-suspensions

In most real-time systems, tasks use remote operations that are executed upon dedicated processors. External operations introduce selfsuspension delays in the behavior of tasks. This paper presents several negative results concerning scheduling independent hard real-time tasks with self-suspensions. Our main objective is to show that well-known scheduling policies such as fixed-priority or Earliest Deadline First are not efficient to schedule such task systems. We prove the scheduling problem to be NP-hard in the strong sense, even for synchronous task systems with implicit deadlines. We also show that scheduling anomalies can occur at run-time: reducing the execution requirement or the suspension delay of a task can lead the task system to be infeasible under EDF. Lastly, we present negative results on the worst-case performances of well-known scheduling algorithms (EDF, RM, DM, LLF, SRPTF) to maximize tasks completed by their deadlines.

Introduction

Efficient real-time systems exploit the power of dedicated processors. Tasks prepare specific com-putations such as signal processing (e.g., FFT) and then wait until these external operations complete. When a task invokes an external operation, that task is suspended by the real-time kernel and the scheduler chooses the next task ready to run according to an on-line scheduling policy. The execution requirement of a remote operation invoked by a task can be modeled as a self-suspension delay. Next, we consider realtime scheduling of independent tasks with selfsuspension allowed upon a uniprocessor system. Let τ i,1 and τ i,2 be two parts of a task τ i separated by a self-suspension delay. Self-suspensions are modeled differently according to the scheduling environment (time-driven or priority-driven scheduling policies). In a time-driven system, a self-suspension can be modeled as a time-lag between the end of a subtask τ i,1 and the start time of τ i, [START_REF] Baruah | On-line scheduling to maximize task completions[END_REF] . In this former approach, the maximum self-suspension delay is enforced as a hard timing constraint between the end of τ i,1 and the starting time of τ i,2 . Nevertheless, self-suspension delays change from one execution to another since they model execution requirements of external operations. As a consequence, time-lags modeling external operations cannot be assumed to be constant in a priority-driven system. At run-time, the pending task is resumed when an external operation completes. Thus, self-suspension delays can-not be modeled as time-lags associated to precedence constraints in the on-line setting. Several feasibility tests are known for analysing tasks allowed to self-suspend. In [START_REF] Devi | An improved schedulability tast for uniprocessor periodic task systems[END_REF] is presented a test based on the utilization factor of the processor. For fixed-priority task systems, tests are based on the computation of worst-case response time of tasks [START_REF] Kim | Real-time scheduling of tasks that contain the external blocking intervals[END_REF][START_REF] Palencia | Response time analysis of edf distributed real-time systems[END_REF][START_REF] Palencia | Schedulability analysis for tasks with static and dynamic offsets[END_REF]. Such an approach can also be used for EDF scheduling [START_REF] Palencia | Response time analysis of edf distributed real-time systems[END_REF]. But, to the best of our knowledge few have been published on the efficiency of classical scheduling prioritydriven policies for dealing with tasks allowed to self-suspend. We next show that well-known on-line scheduling algorithms are not efficient to schedule tasks with self-suspensions. Section 2 defines formally task systems with self-suspensions considered in the remainder. We first show in Section 3 that there exists neither optimal polynomial time, nor pseudo-polynomial time, scheduling algorithm. Furthermore, we show that if there exists an universal scheduling algorithm for tasks with at most one self-suspension per task then P = NP. We also present scheduling anomalies occurring while scheduling tasks with self-suspensions under EDF. To the best of our knowledge, this is the first time that such anomalies are exhibited for scheduling independent tasks upon an uniprocessor system. In Section 4, we show that classical scheduling algorithms fail to schedule task systems having arbitrary small utilization factors whereas there exist trivial off-line feasible schedules. Lastly, using resource augmentation technique (for instance see [START_REF] Philips | Optimal time-critical scheduling via resource augmentation[END_REF]), we show that there is no competitive on-line scheduling algorithm using a k-speed processor against an off-line scheduler run under a unit-speed processor.

Tasks with Self-Suspensions

Real-time softwares are usually based on a collection of recurring tasks. Every task τ i , 1 ≤ i ≤ n has an upper limit to its execution requirement C i (worst-case execution time), a relative deadline D i to its release date and a period T i . If D i = T i for a task τ i , then the task has an implicit deadline, if D i ≤ T i then it has a constrained deadline. Every occurrence of a task is called a job. We assume next that tasks can be preempted at any time and resumed later without any incurring costs (no overhead). The utilization factor of a periodic task τ i , is the ratio of its execution requirement to its period: U (τ i) = C i /T i . The utilization factor of a task system τ is the sum of the utilization factors of all tasks: U (τ) = n i=1 U (τ i). A task set is said feasible if there exists a schedule such that all tasks are completed by their deadlines at run-time. Classical on-line schedulers use priority rules such as Rate Monotonic -(RM) and Deadline Monotonic -(DM), Earliest Deadline First (EDF) and Least laxity First (LLF) policies. Tasks are scheduled on a single processor whereas external operations that they perform are executed on remote dedicated processors. We study the scheduling of periodic tasks having at most one self-suspension each. We limit ourselves to this simple case to simplify the presentation of our results. Definition 1 A task τ i with a self-suspension is a task defined by two subtasks (τ i,1 and τ i,2) separated by a maximum self-suspension delay between the completion of the first subtask and the start of the second subtask. A task τ i , 1 ≤ i ≤ n has the following sequence at run-time:

• an input subtask τ i,1 having an execution requirement of at most C i,1 ,

• a suspension delays modeling an external operation with a length of at most X i ≥ 0,

• an output subtask τ i,2 having an execution requirement of at most C i,2 .

If a task τ i has no self-suspension (i.e, X i = 0), then its subtasks are merged as a single one with an execution requirement C i = C i,1 + C i,2 . A task system is a collection of independent tasks with self-suspensions.

Complexity of the Run-Time Scheduling Problem

We next show that the feasibility problem of scheduling synchronously released tasks, with implicit deadlines having at most one selfsuspension each, is NP-hard in the strong sense. We also prove that scheduling anomalies can occur under EDF.

Computational Complexity

In [START_REF] Richard | On the complexity of scheduling tasks with self-suspensions on one processor[END_REF], we proved the feasibility problem of scheduling synchronous periodic task systems to be NP-hard in the strong sense when tasks are allowed to self-suspend and have constrained deadlines. In this previous paper, we left open the case of tasks having at most one self-suspension and implicit-deadlines (the deadline is equal to the period for every task). Please notice that in this particular case, the feasibility problem of scheduling tasks when self-suspensions are not allowed is solved in O(n) by checking that the utilization factor of the processor satisfies U ≤ 1. Theorem 1 establishes that the feasibility problem of scheduling tasks with self-suspensions is NP-hard in the strong sense, even in this restrictive case.

Theorem 1

The feasibility problem of scheduling periodic tasks with at most one self-suspension per task and implicit deadlines is NP-hard in the strong sense.

Proof: We shall transform from 3-Partition, known to be strongly NP-Complete. Instance: Set A of 3m elements, a bound B ∈ N , and a size s j ∈ N for each j = 1..3m such that B/4 < s j < B/2 and such that j=1..3m s j = mB.

Question: Can A be partitioned into m disjoint sets A 1 , A 2 , ..., A m such that, for 1 ≤ i ≤ m,
j∈A i s j = B (each A i must therefore contain exactly three elements from A)? For every 3-Partition instance we define an instance of the scheduling problem with 3m + 1 tasks:

• the tasks τ 1 , ..., τ 3m :

1 ≤ i ≤ 3m    C i,1 = C i,2 = s i X i = (2m -1)B D i = T i = 4mB
• a task τ 3m+1 with:

C 3m+1,1 = B 2 C 3m+1,2 = B 2 X 3m+1 = B D 3m+1 = T 3m+1 = 2B
We can now prove that we have a solution to the 3-Partition instance if, and only if, there is a feasible schedule for the previously defined task system with self-suspensions. The hyperperiod of the task set is H = lcm(T 1 , . . . , T 3m+1). It is easy to show that its utilization factor is exactly 1:

• the workload generated by the first set of tasks within the hyperperiod is:

3m i=1 (C i,1 + C i,2) = 2 3m i=1 s i = 2mB
• the workload generated by the task τ 3m+1 within the hyperperiod is:

4mB 2B B 2 + B 2 = 2mB
Hence, the workload of the task set is 4mB within the hyperperiod having exactly the same length. Thus, the utilization factor of the previously defined task set is exactly 1. As a consequence, there is no idle-time in any feasible schedule. The task τ 3m+1 has no laxity in every feasible schedule. Thus, its execution leaves idle-blocks of length B in the schedule that are separated by the execution of the last subtask of τ 3m+1 and the first subtask of the next job of τ 3m+1 . Except for the first job of τ 3m+1 , the execution of τ 3m+1 starts its execution for B units of times and then leaves an idle-block of length B in every feasible schedule (Figure 1 presents the pattern of every feasible schedule; ↑ is a release date and ↓ a deadline). A block is such an interval left idle by the execution of τ 3m+1 . In every feasible schedule, the k th block is defined as follows:

2(k -1)B + B 2 ; 2kB - B 2 ∀k ≥ 1 (If Part)
Consider a 3-Partition of A, then we can define a feasible schedule as follows. We first consider the subset A 1 , that contains exactly 3 elements and has a size B. We schedule the first subtask of the corresponding tasks in the first block and the second one into the block m + 1.

The end of the first subtask and the start of the second one are separated by an interval of time of length (2m -1)B. Thus, suspension delays are respected. The same principle is used to sequence tasks corresponding to elements in A 2 , in subsequent blocks (2, m + 2); and so on. This method leads to a feasible schedule.

(Only if Part) Assume that we have a feasible nonpreemptive schedule. We shall consider the case of preemptive schedules later. As a consequence, tasks having their first subtasks in the first block of the schedule cannot have their second subtasks in the subsequent m -1 blocks. Since the utilization factor of the task system is 1, then these second subtasks can only be scheduled in the block m + 1, otherwise we necessarily introduce an idle time in this block. Furthermore, every block has 3 subtasks since their execution requirements verify B/4 < C i,j < B/2, i = 1..3m, j = 1, 2.

According to these facts, we can set elements corresponding to tasks in the i th block into the subset

A i , 1 ≤ i ≤ m,

Proof:

To prove this theorem, we use a classical proof approach, such as presented in [START_REF] Jeffay | On non-preemptive scheduling of periodic and sporadic tasks[END_REF]. Precisely, we show that if a such an algorithm exists, and if it takes a polynomial amount of time (in the length of the input) to choose the next processed job, then P = NP. Because, one can find a pseudo-polynomial time algorithm to solve the 3-PARTITION problem. We assume that there exists a scheduling algorithm for scheduling independent periodic tasks with at most one self-suspension upon a uniprocessor system, we denote this algorithm A. From an instance of the 3-PARTITION problem, to define a set I of tasks, we use the same reduction technique as that in the proof of Theorem 1. Since the hyperperiod of the schedule is 4Bm and A is assumed to be a polynomial time scheduling algorithm, then the whole algorithm for checking deadline is at most pseudo-polynomial (i.e, it is clearly performed in time proportional to Bm). Thus, the solution delivered by the algorithm A gives a solution to solve the 3-PARTITION problem. Therefore we have found a pseudo-polynomial time algorithm to solve the 3-PARTITION problem. But 3-PARTITION problem is NP-complete in the strong sense. As a consequence, if the algorithm A exists then P = NP. This is a contradiction. We can then conclude that such an algorithm does not exist. ♦

Scheduling anomalies under EDF

The validation problem is difficult when the scheduling algorithm is priority-driven. Execution requirement of jobs can vary at run-time. An anomalous behavior occurs when reducing the execution requirement of a task can lead to miss a deadline whereas the same task system is feasible if all jobs are run with their worst-case execution requirements.

In uniprocessor system, scheduling independent tasks without self-suspension can never lead to scheduling anomalies under EDF [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-realtime environment[END_REF]. Thus, if all deadlines are met while considering the worstcase execution times for all tasks, then reducing the execution requirement of a task cannot lead EDF to miss a deadline at run-time. According to this result, considering the worst-case execution requirements of tasks in the feasibility analysis leads to a necessary and sufficient schedulability condition. We prove hereafter that the sufficient part of this result does not hold when tasks are allowed to self-suspend.

Theorem 3 EDF has anomalies to schedule independent tasks with self-suspensions upon one processor.

Proof: To prove this theorem, we define an instance of tasks I and we show that if an execution requirement of a task or a suspension delay are decreased, then a deadline will be missed. The instance I contains three tasks with the following characteristics :

τ 1 : r 1 = 0, D 1 = 6, T 1 = 10, C 1,1 = 2, X 1 = 2, C 1,2 = 2 τ 2 : r 2 = 5, D 2 = 4, T 2 = 10, C 2,1 = 1, X 2 = 1, C 2,2 = 1 τ 3 : r 3 = 7, D 3 = 3, T 3 = 10, C 3,1 = 1, X 3 = 1, C 3,2 = 1
EDF defines the following schedule when all tasks use their worst-case execution requirements and worst-case suspension delays: at time 0, τ 1 is scheduled and self-suspended at time 2. At time 4, τ 1 is released, immediately scheduled and completed at time 6. Then, at this instant, τ 2 is released, scheduled and self-suspended at time 7. τ 3 is released at time 7 and immediately scheduled. At time 8, τ 3 self-suspends and τ 2 is resumed after its self-suspension and completed by time 9. Lastly, τ 3 is resumed and completed by time 10. Figure 2.a presents the schedule obtained under EDF. Now, we show that C 1,1 , X 1 or C 1,2 are decreased of one unit of time, then τ 3 is not completed by its deadline. For instance, let us consider that C 1,1 = 1 and all other job requirements are still unchanged then τ 1 is completed by time 5. Then, τ 2 is released and immediately run. At time 7, τ 2 is resumed from its self-suspension and τ 3 is delayed since it has a larger deadline than τ 2 . τ 3 starts its execution at time 8 ans is completed by time 11, thus one unit of time after its deadline. The corresponding schedule is presented in It is easy to show that in all these cases there exist feasible schedules while EDF always fails. ♦ According to these results, if a processing time or a self-suspension delay decreases then scheduling anomalies can arise. The previous result can be easily extended to fixed-priority task systems.

Competitive Analysis

In this section, in order to simplify the result presentations, we assume that periods are larger enough so that exactly are job of each task belongs to the hyperperiod. We first recall known results on on-line scheduling to maximize tasks completions (maximizing the number of early tasks or equivalently minimizing the number of tardy tasks). We shall use the competitive analysis to compare these classical scheduling algorithms against an optimal clairvoyant algorithm (the adversary).

The competitive analysis allows to determine the performance guarantee of an on-line algorithm. This approach compares an on-line algorithm to an optimal clairvoyant algorithm: the adversary.

A good adversary defines instances of problems so that the on-line algorithm achieves its worstcase performance. An algorithm that minimizes a measure of performance is c-competitive if the value obtained by the on-line algorithm is less than or equal to c times the optimal value obtained by the adversary. We also say that c is the performance guarantee of the on-line algorithm. An algorithm is said to be competitive if there exists a constant c so that it is c-competitive. More formally, given an on-line algorithm A, let I be an instance, then, σ A (I) is the value obtained by A and σ * (I) is the value obtained by the optimal clairvoyant algorithm, then A is c-competitive if there exists a constant c so that σ A (I) ≤ cσ * (I).

The competitive ratio c A of the algorithm A is the worst-case ratio while considering any instance

I: c A = sup anyI σ A (I)
σ * (I) . The competitive ratio of an algorithm A is greater than or equal to 1. If c A = 1, then A is an optimal algorithm. There is no competitive algorithms for general preemptive task systems, but competitive algorithms are known for special cases [START_REF] Baruah | Online scheduling to maximize task completions[END_REF][START_REF] Baruah | On-line scheduling to maximize task completions[END_REF]. In the same context, we then prove that if tasks are allowed to self-suspend at most once, then classical on-line scheduling algorithms are not competitive. Note that our results are also valid from the feasibility point of view since we always consider task sets having an arbitrarily small utilization factor such that there exists a feasible schedule whereas classical on-line algorithms miss most of the deadlines. Lastly, we show that using a kspeed processor cannot help to achieve a feasible schedule against a clairvoyant scheduling algorithm using a unit-speed processor. So extra resources is not useful for scheduling tasks with self-suspensions.

Known results

Baruah et al. [START_REF] Baruah | Online scheduling to maximize task completions[END_REF][START_REF] Baruah | On-line scheduling to maximize task completions[END_REF] proved that there is no competitive on-line preemptive scheduling algorithm to maximize task completions for uniprocessor systems. But, to obtain such a result, the adversary defines a task set under overloaded conditions. But, these authors show that there are also positive results for special cases [START_REF] Baruah | Online scheduling to maximize task completions[END_REF][START_REF] Baruah | On-line scheduling to maximize task completions[END_REF]. We next present one of these special cases that will be used after:

Definition 2 Monotonic Absolute Deadlines (MAD):

A task system is said to be MAD if each newlyarrived task will not have a absolute deadline before that of any task that has previously arrived.

We also recall the definition of the SRPTF scheduling rule:

Definition 3 Shortest Remaining Processing Time First (SRPTF):

SRPTF is an on-line scheduling algorithm that allocates the processor at any time to the task having the shortest remaining processing time.

In [START_REF] Baruah | Online scheduling to maximize task completions[END_REF][START_REF] Baruah | On-line scheduling to maximize task completions[END_REF] is proved that if the task system has the MAD property, then the on-line scheduling algorithm SRPTF is 2-competitive to minimize the number of tardy tasks. Furthermore, this rule yields a best possible on-line algorithm.

Negative results for scheduling tasks with self suspensions

We first prove that SRPTF is no longer competitive to maximize task completions for MAD task sets and self-suspensions allowed.

Theorem 4 For task systems with arbitrarily small utilization factor, the on-line scheduling algorithm SRPTF is not competitive to maximize the number of early tasks allowed to self-suspend at most once.

Proof: To demonstrate this theorem, we study the instance I generated by the clairvoyant algorithm. I is an instance of n + 1 tasks: τ 0 arrives in the system at the time 0 with only one subtask (C 0,1 = 1, X 0 = C 0,2 = 0) and its deadline is at time K -1 (where K is an arbitrary large number). The other tasks have the following characteristics: for i ∈ {1, . . . , n}, r i = i -1, 3, we show the outcomes of the scheduling of I by SRPTF and by an optimal clairvoyant algorithm. At time 0, τ 0 and τ 1 are available, SRPTF schedules τ 0 because τ 0 has the shortest remaining processing time. After, the first subtask of task τ i is scheduled at time i (1 ≤ i ≤ n) and the second at time K + (i -1). The clairvoyant algorithm schedules τ 1 at time 0 and it schedules every task τ i (i ∈ {2, . . . , n}) at time i -1. To finish, the clairvoyant algorithm schedules τ 0 . Consequently, the competitive ratio of SRPTF is:

C i,1 = C i,2 = 1, X i = K -2 and D i = K. In Fig- ure

SRPTF

c SRP T F = σ SRP T F σ Opt = lim n→∞ 1 n + 1 = 0
The factor of utilization is:

U I = n i=0 C i,1 +C i,2 T i = 1 K-1 + n i=1 2 K = lim K→∞ 2n+1 K = 0
To conclude, we have an instance with an arbitrarily small utilization factor such as SRPTF is not competitive to maximize the number of early tasks. ♦ With the instance of the task system used in the proof of the Theorem 4, we can extend the previous result for EDF, DM and RM.

Corollary 1 For task systems with arbitrarily small utilization factor, the scheduling algorithms EDF, DM and RM are not competitive to maximize the number of early tasks when selfsuspensions are allowed.

Proof: We use the same instance I that in the proof of the Theorem 4. For this instance, EDF, DM and RM assign priorities to the tasks exactly as SRPTF do. Consequently, we obtain the same conclusions for all these scheduling algorithms.♦ We now consider the Least Laxity First scheduling algorithm (LLF) [START_REF] Mok | Fundamental design problems of distributed systems for hard real-time environment[END_REF].

Theorem 5 For task systems with arbitrarily small utilization factor, the scheduling algorithm LLF is not competitive to maximize the number of early tasks when self-suspensions are allowed.

Proof: To prove this theorem, we study an instance I with n identical tasks. Every task τ i (1 ≤ i ≤ n) is released at time r i = 0 and if K is a large integer then C i,1 = 3, X i = K -3(n + 1), C i,2 = 3; and its deadline is D i = K. Figure 4 presents the outcomes of the scheduling of I by LLF and by an optimal algorithm. At time 0, the first subtask of τ 1 is scheduled by LLF. But at time 1, the priorities of the tasks τ i (2 ≤ i ≤ n) are greater than the priority of τ 1 . Consequently, the task τ 2 is scheduled. But at time 2, the others tasks have a priority greater than the priority of τ 2 . Therefore, every task τ i with 1 ≤ i ≤ n always have the same laxity leading LLF to preempt the active job after one unit of its execution. The clairvoyant algorithm schedules in the order, the first subtask of τ 1 , τ 2 , . . . , τ n and in the same order the second subtask of these tasks. Figure 4 presents the outcomes of the scheduling of I by LLF and by an optimal algorithm. Consequently, the competitive ratio of LLF is:

c LLF = σ LLF σ Opt = 0 n = 0
The factor of utilization is:

U I = n i=1 C i,1 +C i,2 T i = n i=1 6 K = lim K→∞ 6n K = 0
To conclude, we have an instance with a processor utilization factor close to zero leading LLF to non-competitiveness. Consequently, for any processor utilization factor, LLF is not competitive to minimize the number of tardy tasks. ♦

Resource augmentation

In the competitive analysis, the on-line algorithm and the optimal one use the same processor having a unit speed. A simple way to improve the competitive ratio is to give a faster processor to the on-line algorithm whereas the off-line algorithm is still running on a unit speed processor. This technique is called resource augmentation. It has been proved in [START_REF] Philips | Optimal time-critical scheduling via resource augmentation[END_REF], that EDF is still optimal under overloaded conditions if it is run under a two-speed processor while the optimal algorithm is run under a unit speed processor. Thus, if a feasible schedule is determined by a clairvoyant algorithm with a 1-speed processor, then EDF will define a feasible schedule under a 2-speed processor. We next show that when tasks are allowed to self-suspend, then EDF cannot define a feasible schedule under a k-speed processor while there exists an off-line feasible schedule under a 1speed processor (determined by an optimal clairvoyant algorithm). As a consequence, allocating extra resources does not help to define a simple on-line scheduling policy. Theorem 6 EDF is not optimal even with a kspeed processor, for any poositive integer k.

Proof: We use a contradiction argument. Let k be an integer such that k > 1 and such that if there exists a feasible schedule under a 1-speed processor then there exists a feasible EDF schedule under k-speed processor. Let I be an instance with two tasks. These two tasks of I arrive in the system at time 0 with the following characteristics: • At time 0, τ 2 is scheduled and self-suspended at time 1. Then τ 1 is immediately scheduled and completed at time 2k +1. At time 4k -1, τ 2 is resumed after its self-suspension. τ 2 is completed by time 4k. Figure 5.a shows a feasible schedule of I under a 1-speed processor.

τ 1 : C 1,1 = 2k, X 1 = 0, C 1,2 = 0, D 1 = 4k -1 τ 2 : C 2,1 = 1, X 2 = 4k -2, C 2,2 = 1, D 2 = 4k
• At time 0, τ 1 is scheduled since its absolute deadline is before the deadline of τ 2 . Then, at time 2, τ 1 is completed and τ 2 is scheduled and is completed at time 4k + 2/k. So, the assumption that there is a feasible schedule under a k-speed processor is false and the theorem is demonstrated for any integer k > 1. ♦ This result is not so surprising since when a faster processor is used by the on-line algorithm then no extra resources are given to the processors running remote operations. Thus, the length of external operations are still unchanged (selfsuspension delays are not decreased since the modeled external operations are still running on unit speed remote processors).

Conclusion

We have presented some negative results to schedule tasks allowed to self-suspend when external operations are executed upon dedicated processors. We have firstly proved that scheduling synchronous tasks having at most one selfsuspension and implicit deadlines is a strongly NP-hard problem and there is no universal scheduling algorithm, unless P = NP. Then, we have shown that under the EDF scheduling policy, scheduling anomalies can occur at runtime. Using adversary arguments, we have shown that classical scheduling rules can miss deadlines, even if the utilization factor of the processor is arbitrarily small, whereas an off-line feasible schedule can be easily defined. Lastly, we also have proved that allocating extra resources does not help to schedule tasks with self-suspensions.

In further works, we will try to define practical solutions for scheduling such task systems. An other interesting issue will be to consider non independent tasks.

Figure 1 .

 1 Figure 1. A feasible schedule of the instance (Theorem 1).

 Figure 2.b. The same anomaly occurs if X 1 or C 1,2 are decreased (i.e., X 1 = 1 or C 1,2 = 1).

Figure 2 .

 2 Figure 2. Example of execution-time anomaly for EDF by decreasing C 1,1 of one unit of time

Figure 3 .

 3 Figure 3. SRPTF is not competitive

Figure 4 .

 4 Figure 4. LLF is not competitive

1 Figure 5 .

 15 Figure 5. The schedule of I under EDF

Figure 5 .

 5 b shows that EDF cannot schedule I under a k-speed system.

 leading to a feasible 3-Partition. We now have to consider preemptive schedules by showing that no subtask can be scheduled in more than one block. We use a contradiction argument. Assume there exists such a subtask that is started in the first block and completed in block 2, for instance. All the other subtasks are started and completed within this block. Then, due to the size of jobs, there is no more than two subtasks completed in block k. As a consequence, in block k + m, only two tasks having subtasks completed in block k can be scheduled while respecting the self-suspension delays. As a consequence, there is an idle-time in block k + m, that contradicts the fact that the utilization factor is equal to 1. ♦

	We next show that there is no universal schedul-
	ing algorithm to schedule tasks with self-
	suspensions, unless P = NP. Please notice that, a
	scheduling algorithm is said to be universal if the
	algorithm takes a polynomial amount of time (in
	the length of the input) to make each scheduling
	decision [4].
	Theorem 2 If there exists an universal schedul-
	ing algorithm for tasks with at most one self-
	suspension per task then

P = NP.

Acknowledgements

The authors wish to express their gratitude to the anonymous reviewers for their helpful comments. We also would like to thank Joël Goossens for his comments on an earlier version of this paper.