
HAL Id: hal-03777801
https://hal.science/hal-03777801

Submitted on 27 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An a Priori Approach for Automatic Integration of
Heterogeneous and Autonomous Databases

Ladjel Bellatreche, Guy Pierra, Dung Nguyen Xuan, Hondjack Dehainsala,
Yamine Aït-Ameur

To cite this version:
Ladjel Bellatreche, Guy Pierra, Dung Nguyen Xuan, Hondjack Dehainsala, Yamine Aït-Ameur. An a
Priori Approach for Automatic Integration of Heterogeneous and Autonomous Databases. Proc. 15th
International Conference on Database and Expert Systems Applications (DEXA 2004), Aug 2004,
Zaragoza, Spain. pp.475-485, �10.1007/978-3-540-30075-5_46�. �hal-03777801�

https://hal.science/hal-03777801
https://hal.archives-ouvertes.fr

An a Priori Approach for Automatic Integration
of Heterogeneous and Autonomous Databases

Ladjel Bellatreche Guy Pierra Dung Nguyen Xuan
Dehainsala Hondjack Yamine Ait-Ameur

LISI/ENSMA Téléport2 - 1, Avenue Clément Ader
86960 Futuroscope - FRANCE

E-mail : (bellatreche, pierra, nguyenx, hondjack, yamine)@ensma.fr

Abstract. Data integration is the process that gives users access to
multiple data sources though queries against a global schema. Semantic
heterogeneity has been identified as the most important and toughest
problem when integrating various data sources. Several approaches were
proposed to deal with this problem. These approaches can be classified
using three criteria: (1) data representation which means whether data of
sources will be materialized in a warehouse at the integrated system level
or accessed via a mediator, (2) the sense of the mapping between global
and local schemas (e.g., Global as View, Local as View) and (3) the nature
of the mapping (manual, semi automatic and automatic). Mapping is
manual each time when ontologies are not used to make explicit data
meaning. It is semi automatic when ontology and ontology mapping are
defined at integration level. In this paper, we propose a fully automatic
integration process based on ontologies. It supposes that each data source
contains a conceptual ontology that references a shared ontology. The
mappings between a local ontology and the shared ontology is defined at
database design time and also embedded in each source. This approach
is implemented using PLIB-based ontologies (officially ISO 13584). It is
assumed that there exists a domain ontology, but each data source may
extend it by adding new concepts and properties. Therefore the shared
ontology is referenced when ever it is possible. This integration approach
was developed for automatic integration of component databases. It is
currently prototyped in various environments including OODB, ORDB,
and RDB.

1 Introduction

The overwhelming amount of heterogeneous data stored in various data reposi-
tories emphasizes the relevance of data integration methodologies and techniques
to facilitate data sharing. Nowadays integrating heterogeneous and autonomous
data sources represents a significant challenge to the database community. The
availability of numerous sources increases the requirements for developing tools
and techniques to integrate these sources. Data integration is the process by
which several autonomous, distributed and heterogeneous information sources
(where each source is associated with a local schema) are integrated into a single
data source associated with a global schema. Data integration recently received

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

a great attention due to many data management applications : examples are
Peer-to-Peer data [1], Data Warehouse [2], and E-commerce [15].

Formally, a data integration system is a triple I :< G, S, M >, where G is
the global schema (over an alphabet AG) which provides a reconciled and an
integrated schema, S is a set of source schemas (over an alphabet AS) which
describes the structure of sources participating in the integration process, and
M is the mapping between G and S which establishes the connection between
the elements of the global schema and those of the sources. Queries to a data
integration system are posed in terms of the relations in G, and are intended
to provide the specification of which data to extract from the virtual database
represented by I.

Various integration systems have been proposed in the literature [3, 11, 5,
18, 13]. Their fundamental problem is their inability to integrate automatically
at the meaning level several heterogeneous and autonomous data sources. In the
first generation of integration systems (e.g., TSIMMIS [5]), data meaning was
not explicitly represented. Thus, concept meaning and mapping meaning were
manually encoded in a view definition. The major progress toward automatic
integration resulted from the explicit representation of data meaning through
ontologies [22]. Various kinds of ontologies were used, either linguistic [4] or
more formal [10]. All allowed some kind of partially automatic integration under
expert control. In a number of domains, including Web service, e-procurement,
synchronization of distributed databases, the new challenge is to perform fully
automatic integration of autonomous databases. We claim that: if we do not want
to perform human-controlled mapping at integration time, this mapping shall be
done a priori at the database design time. This means that some formal shared
ontologies must exist, and each local source shall embedded some ontological
data that references explicitly this shared ontology. Some systems are already
developed based on this hypothesis: Picsel2 [18] project for integrating Web
services, the COIN project for exchanging for instance financial data [7]. Their
weakness is that once the shared ontology is defined, each source shall used the
common vocabulary. The shared ontology is in fact a global ontology and each
source is less autonomous.

Our approach gives more autonomy to various data sources. To achieve this
goal:

1. each data source participating in the integration process shall contain its
own ontology. We call that source an ontology-based database (OBDB).

2. each local source references a shared ontology.
3. local ontology may extend the shared ontology as much as needed.

Consequently, the automatic integration process involves two steps: automatic
integration of ontologies and then an automatic integration of data.

The context of our work is the automatic integration of industrial component
databases [17]: we have already prototyped several implementation of the pro-
posed approaches in object oriented database, object-relational database, and
relational database environments.

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

Our approach requires that the target domain is already modeled by a shared
consensual (e.g., standard) ontology. We already contribute to the development
of such ontologies at the international standardization level (e.g., IEC61630-
4:1998). A number of other initiatives go to the same direction [18].

In this paper, we present a novel integration approach called conceptual
ontology-based database integration. Contrary to linguistic ontologies, ontologies
used in our integration process are formal (no synonymous), consensual, em-
bedded with each data source (consequently it can be exchangeable), extensible
using the subsumption relationship (each source may add whatever property or
class). Like COIN [7] (where the ontology represents a contextual information
of values), our ontology also represents the context of the ontology definition.

To the best of our knowledge, the proposed work is the first article that
addresses the integration problem supposing that a conceptual ontology is em-
bedded in each data source.

The rest of this paper is organized as follows: in section 2, we describe the
background of the integration problem in the context of heterogeneous sources,
in section 3 we propose a classification of integration approaches that facilitates
the position of our work from the previous work, in section 4 we present an
overview of the ontology model that will be used as a basic support for our
integration algorithms, in section 5, we present the concept of ontology-based
database and its structure, in section 6; integration algorithms are presented,
and section 7 concludes the paper.

The main contributions of this paper are:

1. A new classification of integration systems using three major criteria’s: data
representation, the sense of the mapping between global and local schemas,
and (3) the nature of the mapping.

2. An integration approach based on a priori approach ensuring a fully auto-
matic integration process and respecting the autonomy of each data source.

3. A new structure of storing data sources with their local ontology (ontology
based database).

4. A well suited formal ontology model called PLIB.

2 Background

Any integration system should consider both integration at schema level (schema
integration consists in consolidating all source schemas into a global or mediated
schema that will be used as a support of user queries) and at data level (global
population). Constructing a global schema from local sources is difficult because
sources store different types of data, in varying formats, with different meanings,
and reference them using different names. Consequently, the construction of
the global schema must handle different mechanisms for reconciling both data
structure (for example, a data source may represent in the same field first and
last name, when another splits it into two different fields), for data meaning (for
example synonymous, hynonymous).

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

Let S = {S1, S2, ..., Sn} be a set of heterogeneous data sources that partic-
ipate in the integration process. The main task of integrating these sources is
identifying the equivalent concepts (and properties). To do so, different categories
of conflicts should be solved. Goh et al. [7] suggest the following taxonomy: nam-
ing conflicts, scaling conflicts, confounding conflicts and representation conflicts.
These conflicts may be encountered at schema level and at data level.

– Naming conflicts : occur when naming schemes of concepts differ signifi-
cantly. The most frequently case is the presence of synonyms and homonyms.

– Scaling conflicts: occur when different reference systems are used to mea-
sure a value (for example price of a product can be given in dollar or in
Euro).

– Confounding conflicts : occur when concepts seem to have the same mean-
ing, but differ in reality due to different measuring contexts. For example,
the weight of a person depends on the date where it was measured. Among
properties describing a data source, we can distinguish two types of proper-
ties: context dependent properties (e.g., the weight of a person) and context
non-dependent properties (gender of a person).

– Representation conflicts: arise when two source schemas describe the
same concept in different ways. For example, in a source, student’s name is
represented by two elements FirstName and LastName and in another one
it is represented by only one element Name.

3 A Proposed Classification for Integration Systems

It is very difficult to classify the previous data integration techniques. Most of
the papers distinguish two major categories: Local as View (LaV) [6, 18, 13],
and Global as View (GaV) [5]. Other contribution distinguish single ontology,
multiple ontologies, and shared ontology [22]. Some other work focus on the place
of data and distinguish mediator approach and warehouse approach [20].

3.1 Data Representation

This criteria specifies whether data of local sources are duplicated in a data
warehouse or not. The data of the integrated system may be virtual (it remains
in the local source like in TSIMMIS [5] and accessed through a mediator, or it
may be materialized (duplicated).

3.2 The Sense of the Mapping between the Global and Local
schemas

In GaV systems, the global schema is expressed as a view (a function) over
data sources. This approach facilitates the query reformulation by reducing it to
simple execution of views in ordinary databases. However, changes in information
sources or adding a new information source requires a database administrator

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

(DBA) to revise the global schema and the mappings between the global schema
and source schemas. Thus, GaV is not scalable for large applications. In the
source-centric approach, each data source is expressed with one or more views
over the global schema. Therefore, LaV scales better, the global schema is defined
as an ontology [18], independently of source schemas. In order to evaluate a
query, a rewriting in terms of the data sources is needed. The rewriting queries
using views is a difficult problem in databases [12]. Thus, LaV has low query
performance when users frequently pose complex queries.

DB

Global

Ontology

DB

local

Ontology

local

Ontology

local

Ontology

DBDB DB

local

Ontology

local

Ontology

local

Ontology

DBDB

Shared

Ontology

DB DB

Single Ontology Multiple Ontologies Hybrid Ontologies

Fig. 1. Different Ontology Architectures

3.3 The Nature of the Mapping

This criteria specifies whether the mapping between the global schema and local
schemas is done manually, semi-automatic, or fully automatic. The manual
mapping is found in the first generation of integration systems that integrate
sources represented by a schema and a population (i.e., each source Si is defined
as : < Schi, Popi > as in classical databases) and without explicit meaning
representations.

The manual systems focus mainly on query support and processing at the
global level, by providing algorithms for identifying relevant sources and decom-
posing (and optimizing) a global query into sub queries for the involved sources.
The construction of the mediators and the wrappers used by these systems is
done manually because their main objective focus on global query processing [4].

To make the data integration process (partially) automatic, explicit repre-
sentation of data meaning is necessary. Thus most of the recent integration pro-
posed approaches using ontologies [10, 4, 4, 18]. Ontologies are consensual and
explicit representations of conceptualization [8]. Based on the way how ontolo-
gies are employed, we may distinguish three different architectures [22]: single
ontology methods, multiple ontologies methods, and hybrid methods (see figure
1). In the single ontology approach, each source is related to the same global
domain ontology (e.g., Lawrence et al. work [11] and Picsel [18] and [10]). As

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

a result, a new source cannot bring new or specific concepts without requiring
change in the global ontology. This violate the source autonomy requirement
(each source can operate independently). In the multiple ontologies approach
(e.g., Observer, [14]), each source has its own ontology developed without re-
spect of other sources. Then, inter-ontology meanings are defined. In this case
the definition of the inter-ontology mapping is very difficult as different ontolo-
gies may use different aggregation and granularity of the ontology concept [22].
Hybrid approach has been proposed to overcome the drawbacks of single and
multiple ontologies approaches, where each source has its own ontology, but all
ontologies are connected by some means to a common shared vocabulary (e.g.,
KRAFT project [21]).

Any way, in all these approaches, ontologies and ontology mappings are de-
fined at integration time. Therefore, they always request an human supervision,
and they are only partially automatic. To enable automatic integration, semantic
mapping shall be defined at database design time. This means that there shall
exist some shared ontology, and more ever, each local source contains ontological
data that refers to the shared ontology. Some systems have already been pro-
posed on that direction such as Picsel2 [18], COIN [7]. But to remain automatic,
these systems do not provide autonomy to each data source in adding concepts
and properties.

Our OBDB approach belongs to this category, but we also allow each data
source to make its own extension in the shared ontology.

Integrated Systems Data Representation Sense of mapping Nature of mapping

TSIMMIS Virtual GaV Manual

PICSEL Virtual LaV Semi Automatic

OBSERVER Virtual GaV Semi Automatic

MANIFOLD Virtual LaV Semi Automatic

MOMIS Virtual GaV Semi Automatic

COIN Virtual LaV Automatic

KFRAFT Virtual LaV Semi Automatic

ZURICH’Project [10] Warehouse LaV Semi Automatic

PICSEL2 Virtual LaV Automatic

OBDB Virtual/warehouse LaV Automatic

Table 1. Integrated Systems Classification

4 The PLIB ontology model

To describe the meaning and the context of each data source, we can use any
ontology language like OWL, PSL, DAML+OIL, Ontolingua, etc. In this paper

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

we use the PLIB ontology model because of number of domain ontologies based
on this model already exist or are emerging (e.g., IEC, JEMIMA, CNIS, etc. see
http://www.plib.ensma.fr) and also because it was precisely designed to promote
data integration [16]. In such a context, providing an approximate integration
(as it might be obtained using linguistic ontologies) is worse than providing no
answer at all.

A PLIB ontology model has the following characteristics:

– Conceptual: each entity and each property are unique concepts completely
defined. The terms (or words) used for describing them are only a part of
their formal definitions.

– Multilingual: a globally unique identifier (GUI) is assigned to each en-
tity and property of the ontology. Textual aspects of their descriptions can
be written in several languages (French, English, Japanese, etc.). The GUI
is used to identify exactly one concept (property or entity) and automatic
mapping.

– Modular: an ontology can reference another one for importing entities and
properties without duplicating them. Thus providing for autonomy of various
sources that do reference a shared ontology.

– Consensual : The conceptual model of PLIB ontology is based on an in-
ternational consensus and published as international standards (IEC61630-
4:1998, ISO13584-42:1998) (for more details see [16]).

– Unambiguous : Contrary to linguistic ontology models [16], where par-
tially identical concepts are gathered in the same ontology-thesaurus with a
similarity ratio (affinity) [4, 19], each concept in PLIB has with any other
concepts of the ontology well identified and explicit differences. Some of
these differences are computer-interpretable and may be used for processing
queries, e.g., difference of measure units, difference of evaluation context of
a value.

4.1 Automatic Resolution of Naming Conflicts in PLIB

One of the utilization of GUI is solving naming conflicts (due to synonymous
and hynonymous) as shown in the following example.

Example 1. Let S1 be a source referencing the PLIB ontology model describing
a Person (Figure 2). This source has the autonomy to use different names of its
attributes (for example, it may use Nom instead of name). For the integrated
system, these two attributes (properties) are similar because they have the same
GUI. More generally, if several sources use different names; we can identify easily
whether they are different or identical using the following procedure:

1. These two properties have the same GUI, for the integration system, these
properties are identical (they represent the same thing, i.e., the family name
of a person), even they have different names.

2. They have different GUIs, for the integration system, they are different, even
they have the same name.

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

Note that unlike other integration systems based on linguistic ontologies where
affinity measurements and thresholds are used to compute the similarity between
concepts [4, 19], the orthogonality of PLIB ontologies and the use of GUI make
the resolution of naming conflicts deterministic and fully automated.

4.2 PLIB Class Properties

The PLIB ontology model is represented by a tree of classes, where each class
has its own properties. Two types of properties are distinguished: rigid properties
(a rigid property is a property that is essential to all instances of a class [9]) and
role dependent properties that may or not hold or exist according to a role in
which an entity is involved (for example, salary property of a class Person is
a role dependent property because it exists if the person is an employee, and
it may exist several times if the person play several times the same role). In a
database schema, a Person may have a salary property but this is based on a
context that shall be explicit at the ontological level (e.g., the company where
the person is employed, the date and the currency of the salary).

Ontology

of a Person

Layer 1

Birth_Date2

Registration Number7

 Prepared diplomas8
University

9

 Family Name
1

Gender
3

Citizenship
4

Address
5

Phone number
6

is_a

Person

Student

Concept

Code

7 1 3 4 5 8 9

Property

Name

NO Nom Sexe Nationalité Adresse Diplôme_préparés Université

U n

Instance

Schema

Layer 2

NO Nom Sexe Nationalité Adresse Diplôm e_préparés Université

1 Marie F F rench Paris PhD Poitiers

… … … … … … …

10002 John M Germ an Munich M Phil Poitiers

Instance

Layer 3

Fig. 2. An Example of Specializing a Global Ontology

4.3 Extension Possibilities Offered by PLIB

When a PLIB ontology model is shared between various sources (because these
sources commit on the ontological definitions that were agreed and possibly
standardized (e.g., IEC, JEMIMA), each source remains autonomous and may
extend the shared ontology using subsumption relationship. Two relationships
are distinguished: specialization (is-a) and case-of.

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

Is-A Relationship A local source can extend the shared ontology by special-
izing class(es) of the shared ontology. Through this relationship, properties are
inherited. Figure 2 considers a shared ontology describing a Person with six
properties Family name, Birth date, Gender, Citizenship, Address and Phone
number. A local source may specialize this shared ontology in order to define its
own ontology describing Student with three other properties.

Case-Of Relationship In this case properties are not inherited but may be
explicitly (and partially) imported. Figure 4 shows an extension of the shared
ontology Person using the case-of relationship. The local ontology PhD Student
imports some properties of the shared (Family name, Religion, Citizenship, Ad-
dress). Note that this local ontology does not import some properties of the
shared ontology like Birth date, and Birth Citizenship. To respond to its need,
it adds other properties describing a PhD student like registration number, Ad-
visor and Thesis subject.

The PLIB ontology model is completely stable and several tools have been
already been developed to create, validate, manage or exchange ontologies (such
tools can be found at PLIB home site: www.plib.ensma.fr).

5 Ontology-based databases

Contrary the existing database structures (that contain two parts: data accord-
ing to a logical schema and a meta-base describing tables, attributes, Foreign
keys, etc), an ontology-based database contains four parts : two parts as in the
conventional databases plus the ontology definition and meta-model of that on-
tology. The relationship between the left and the right parts of this architecture
associates to each instance in the right part its corresponding meaning defined in
the left part. This architecture is validated by a prototype developed on Postgres.

DB content (data) (1)

Data structure
(meta-base) (2)

Data meaning (ontology)
(3)

Ontology structure (meta-
schema) (4)

Usual content of DB
2/4 structure

ODDB
4/4 structure

Fig. 3. The Ontology-based Database Architecture

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

5.1 Formal Definition of an Ontology-based Database

Formally, a PLIB ontology may be defined as the quadruplet : O :< C, P, Sub, Applic >,
where:

– C is the set of the classes used to describe the concepts of a given domain
(like travel service [18], equipment failure, etc);

– P is the set of properties used to describe the instances of the C classes.
Note that it is assumed that P defines a much greater number of properties
that are usually represented in a database. Only a subset of them might be
selected by any particular database 1.

– Sub is the subsumption (is-a and case-of) function (Figure 2, 4 defined as
Sub : C → 2C 2, where for a class ci of the ontology it associates its direct
subsumed classes 3. Sub defines a partial order over C.

– Applic is a function defined as Applic : C → 2P . It associates to each ontol-
ogy class those properties that are applicable (i.e.,rigid) for each instance of
this class. Applicable properties are inherited through is-a subsumption and
partially imported through case-of subsumption.
Note that as usual ontological definitions are intentional: the fact that a
property is rigid for a class does not mean that value will be explicitly
represented for each instance of the case. In our approach, this choice is
made among applicable properties at the schema level.

Concept

Code

7 1 3 4 5 8 2

Property

Name

RN Name Religion Citizenship Address Thesis_Subject Advisor

Un

Ontology

Layer 1
Religion

4

Birth_Nationality
6

is_case_of

Birth_Date
2

 Family Name
1

3

Citizenship

Address
5

Person

Instance

Schema:

Layer 2

RN Name Religion Citizenship Address Thesis_Subject Advisor

1 Linda C Canada Toronto Database Pr. Hassan

… … … … … … …

98 Peter B France Munich XML Pr. Rahm

Instances:

Layer 3

Registration Number

PhD Student

1

3
4

5

Advisor

Thesis Subject

Imported

properties from

Person

7

2

8

Fig. 4. An Example of Extending a Global Ontology

1 A particular database may also extend the P set
2 We use the symbol 2C to denote the power set of C.
3 C1 subsumes C2 iff ∀x ∈ C2, x ∈ C1.

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

Example 2. Figure 4 gives an example of an ontology with two classes C =
{Person and PhD Student}. Let P = {Family Name,Citizenship, Birth Date,
Religion, Address,Birth Citizenship, Registration Number,Advisor, Thesis Subject}
be set of properties that characterize these classes. Properties in P will be assigned
to classes of the ontology (therefore, each class will have its own rigid properties).
The subsumption function Sub defines a case-of relationship between classes (for
example, the class Person subsumes the class Phd Student).

An ontology-based database OBDB allows to record together within ontology a
set of instance of ontology classes. Thanks to the subsumption relationship, an
instance belongs to several classes. For the purpose of simplicity, we assume that
each instance belongs to exactly one leaf class (non-leaf classes are ”abstract”).
Formally, an OBDB is a quadruplet < O, I, Sch, Pop >, where:

– O is an ontology (O :< C, P, Sub, Applic >);
– I is the set of instances of the database;
– Sch : C → 2P associates to each ontology class ci of C the properties which

are effectively used to describe the instances of the class ci. Sch has two
definitions based on the nature of each class (a leaf or a no-leaf class).
• Schema of each leaf class ci is explicitly defined. It shall only ensure the

following:
∀ci ∈ C, Sch(ci) ⊂ Applic(ci) (1)

(Only applicable properties may be used for describing class instances of
ci).

• Schema of a no-leaf class cj is computed. It is defined by the intersection
between the applicable properties of cj and the intersection of properties
associated with values in all subclasses ci,j of cj .

Sch(cj) = Applic(cj)
⋂

(
⋂
i

Sch(ci,j) (2)

An alternative definition may also be used to create the schema of a no
leaf class where instances are completed with null values:

Sch′(cj) = Applic(cj)
⋂

(
⋃
i

Sch(ci,j) (3)

– Pop : C → 2I associates to each class (leaf class or not) its own instances.

Example 3. Let’s consider the class tree in Figure 5 where A is a no-leaf class
and B, C and D leaf-classes. We assume that each class has it own applicable
properties, and the DBA (database administrator) has chosen its schema for B,
C and D and a formula (2) or (3) for all non-leaf classes. To find the schema of
the class A using equation 2, we first perform the intersection operation among
all properties of the schema of the leaf-classes. We obtain a set U = {b, c}, then
we perform the intersection operation between U and the applicable properties
of A ({a, b, c, g}). As result the schema of A contains two properties b and c (see
figure 5).

By using Sch′ definition (equation 3), Sch′(A) would be (a, b, c). The in-
stances from C and D will be associated with NULL value for property a.

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

A

(a, b, c, g) (a, b, c, e, f, g)(a, b, c, d, g)

{a, b, c, g}

DCB

Sch(B) = (a, b, c) Sch(D) = (b, c, e)Sch(C) = (b, c)

Fig. 5. An Example of a no-leaf Class Schema

6 Algorithms for integrating ontology-based database
sources

In this section, we present algorithms to integrate various ontology-based database
sources that correspond to the same domain. A typical scenario is the one of Web-
services of a particular domain like traveling [18]. Each supplier references the
same domain ontology and adds its own extensions. Let S = {SB1, SB2, ..., SBn}
be the set of data sources participating in the data integration process. Each data
source SBi (1 ≤ i ≤ n) is defined as follows: SBOi =< Oi, Ii, Schi, Popi >. We
assume that all sources have been designed referencing as much possible a com-
mon shared ontology O. As much possible means that (1) each class of a local
ontology references explicitly (or implicitly through its parent class its lowest
subsumption class in the shared ontology and (2) only properties that do not
exist in the shared ontology may be defined on a local ontology, otherwise it
should be imported through the case-of relationship. This requirement is called
smallest subsuming class reference requirement (S2CR2). Each source is designed
following three steps:

1. The DBA of each source defines her own ontology Oi :< Ci, Pi, Subi, Applici >
2. The DBA of each source chooses for each leaf class properties that are asso-

ciated with values by defining Schi : Ci → 2Pi ;
3. The DBA choose an implementation of each leaf ci class (e.g., to ensure the

third normal form), and then she defines Sch(ci) as a view over ci imple-
mentation.

We may distinguish two different integration approaches associated with auto-
matic integration algorithms. These approaches are:

– Fragmentation: each local ontology of each class is a fragment of the shared
ontology (Figure 2).

– RealExtension: each local ontology may be an extension of the shared on-
tology O (to ensure the autonomy of a local source). This extension is
done through explicit subsumption using case-of relationship (Figure 4) and
should respect the S2CR2.

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

6.1 An Integration Algorithm for Fragmentation

4 This integration approach assumes that the shared ontology is completed
enough to cover the needs of all local sources. Such an assumption is done for
instance in the Picsel2 project [18] for integrating web service (travel agency) or
in COIN [7]. Source autonomy consists in selecting the pertinent subset of the
shared ontology (classes and properties), and (2) designing the local database
schema.

The ontology Oi (1 ≤ i ≤ n) of each source SBi is defined as a fragment of the
common ontology O. It is defined as quadruplet Oi :< Ci, Pi, Subi, Applici >,
where :

– Ci ⊆ C
– Pi ⊆ P
– ∀c ∈ Ci, Subi(c) ⊆ Sub(c)
– ∀c ∈ Ci, Applici(c) ⊆ Applic(c)

Integrating these n data sources, means finding an ontology, a schema and a
population of the integrated system. Therefore the integration process OInt is
defined as triplet OInt :< OOInt, SchOInt, PopOInt >. Now the question that
we should answer is how to find the structure of each element of OInt?

– The ontology of the integrated system is O (OOInt = O).
– The schema of the integrated system SchOInt is defined for each class c as

follows:
SchOInt(c) = (∩i∈ {1..n |Sch(cl) �=φ}Schi(c)) = (4)

This definition ensures that instances of the integrated system are not ex-
panded with null values to fit with the more precisely defined instances. In
place, only properties which are provided in all data sources are preserved.
In some data sources may incur empty classes. These classes are removed
from the set of classes used to compute the common provided properties.

– The population of each class of the integrated system PopOInt is defined as
follows:

PopOInt(c) =
⋃
i

projsch(c)Popi(c) (5)

where proj is the projection operation as defined in classical databases.

6.2 An Integration Algorithm for RealExtension

In a number of cases including the target application domains of the PLIB
approach, namely automatic integration of electronic catalogues/database of in-
dustrial components, more autonomy is requested by various sources:

– classification of each source needs to be completely different from the shared
ontology;

4 This approach corresponds to formula (2). An approach based on formula (3) is also
possible

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

– some classes and properties do not exist at all in the shared ontology and
need to be added in the local ontologies.

This case differs from the previous one by the fact that each data source has its
own ontology and the classes of each ontology are specific (no class of the shared
ontology are directly used in local ontology’s). But all the ontologies reference
”as much possible” (S2CR2) a shared ontology O :< C, P, Sub, Applic >.

Therefore, each source SBi maps the referenced ontology O to its ontology
Oi. This mapping can be defined as follows: Mi : C → 2Ci , where Mi(c) =
{greatest classes of Ci subsumed by c}. Contrary to the previous case, each data
source SBi is defined as quintuple: SBi =< Oi, Ii, Schi, Popi, Mi >. In such as
case also automatic integration is possible. To do so, we should find the structure
of the final integrated system IF :< OF , SchF , PopF >.
Note that the structure of OF is < CF , PF , SubF , ApplicF >, where element of
these structures is defined as follows:

– Integrated classes CF = C
⋃

(i | 1≤i≤n) Ci,
– PF = P

⋃
(i | 1≤i≤n) Pi,

– ∀c ∈ C, SubF (c) = Sub(c)
⋃

(i | 1≤i≤n) Mi(c)

– ApplicF (c) =
{

Applic(c), if c ∈ C
Applic(ci), if c ∈ Ci ∧ c /∈ C

– Then, the population PopF of each class (c) is computed recursively using a
post-order tree search. If c belongs to one Ci and does not belong to C, its
population is given by: PopF (c) = Popi(c).

Otherwise (i.e., c belongs to the shared ontology tree), PopF (c) is defined as
follows:

PopF (c) =
⋃

(cj∈SubF (c))

PopF (cj) (6)

– Finally, the schema of each class c of the integrated system is computed fol-
lowing the same principle as the population of c by considering leaf nodes and
non-leaf nodes. If c does not belong to C but to one Ci, sch(c) is computed
using the formula (2) (resp. 3).
Otherwise(if c belongs to the shared ontology), its schema is computed re-
cursively using a poster-order tree search by :

SchF (c) = Applic(c)
⋂

(
⋂

(cj |cj ∈ SubF (c)∧PopF �=φ)

SchF (cj)) (7)

This shows that it is possible to leave a large autonomy to each local source and
compute in a fully automatic, deterministic and exact way the corresponding
integrated system. To the best of our knowledge our ontology based database
approach is the first approach that reconciles these two requirements.

It is important to notice that when all data sources use independent ontologie
without referencing a shared ontology the task of mapping these ontologies onto a
receiver ontology may be done manually, by the DBA of the receiving system. But

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

then integration process will be performed automatically as in the RealExtension
case.

7 Conclusion

In this paper, we present a new classification of integrated systems based on three
critter’s : (1) data representation, (2) the sense of the mapping between a global
and local schemas, and (3) the nature of the mapping (manual, semi automatic
and automatic). We also proposed a fully automated technique for integrating
heterogeneous sources called ontology-based database integration approach. This
approach assumes the existence of a shared ontology and guarantees the auton-
omy of each source by extending the shared ontology to define its local ontology.
This extension is done by adding new concepts and properties. The ontologies
used by our approach are modeled according to a formal, multilingual, extensi-
ble, and standardized (ISO 13584) known as PLIB. The fact that the ontology is
embedded with each data source helps in capturing both the domain knowledge
and the knowledge about data, schema, and properties. Therefore it allows a
complete automation of the integration process contrary to the current exist-
ing techniques. Finally, two integration algorithms are presented: (1) when all
sources only use a fragment of a shared ontology, and (2) when sources extend
the shared ontology by specific classes and properties.

In addition to its capability for automating the integration process of hetero-
geneous databases (note that several prototypes of ontology-based databases are
currently in progress in our laboratory), there are many other future directions
that need to be explored. Some of the more pressing ones are: (1) extending
our ontology model to capture functional dependencies between properties, (2)
schema evolution, (3) considering the query optimization aspect to see how an
ontology can be used for indexing query (semantic indexing) and (4) providing
a cost model to evaluate queries on a global schema on the integrated system.
This cost model should take into account the ontology-based database structure
(four parts).

References

1. S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber. Active xml:
Peer-to-peer data and web services integration. Proceedings of the International
Conference on Very Large Databases, pages 1087–1090, 2002.

2. L. Bellatreche, K. Karlapalem, and M. Mohania. Some issues in design of data
warehousing systems. In in Developing Quality Complex Data Bases Systems:
Practices, Techniques, and Technologies, Edited by Dr. Shirley A. Becker. Idea
Group Publishing, 2001.

3. S. Castano and V. Antonellis. Semantic dictionary design for database interoper-
ability. Proceedings of the International Conference on Data Engineering (ICDE),
pages 43–54, April 1997.

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

4. S. Castano, V. Antonellis, and S. D. C. Vimercati. Global viewing of heteroge-
neous data sources. IEEE Transactions on Knowledge and Data Engineering,
13(2):277–297, 2001.

5. S. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,
J. D. Ullman, and J. Widom. The tsimmis project: Integration of heterogeneous
information sources. Proceedings of the 10th Meeting of the Information Processing
Society of Japan, pages 7–18, Marsh 1994.

6. F. Franois Goasdoué, V. Lattès, and M. C. Rousset. The use of carin language and
algorithms for information integration: The picsel system. International Journal
of Cooperative Information Systems (IJCIS), 9(4):383–401, December 2000.

7. C.H. Goh, S. Bressan, E. Madnick, and M. D. Siegel. Context interchange: New
features and formalisms for the intelligent integration of information. ACM Trans-
actions on Information Systems, 17(3):270–293, 1999.

8. T. Gruber. A translation approach to portable ontology specification. Knowledge
Acquisition, 5(2):199–220, 1995.

9. N. Guarino and C. A. Welty. Ontological analysis of taxonomic relationships. in
Proceedings of 19th International Conference on Conceptual Modeling (ER’00),
pages 210–224, October 2000.

10. F. Hakimpour and A. Geppert. Global schema generation using formal ontologies.
in Proceedings of 21th International Conference on Conceptual Modeling (ER’02),
pages 307–321, October 2002.

11. R. Lawrence and K. Barker. Integrating relational database schemas using a stan-
dardized dictionary. in Proceedings of the ACM Symposium on Applied Computing
(SAC), pages 225–230, Marsh 2001.

12. A. Levy. Answering queries using views: a survey. in the VLDB Journal,
10(4):270–294, 2001.

13. A. Y. Levy, A. Rajaraman, and J. J. Ordille. The world wide web as a col-
lection of views: Query processing in the information manifold. Proceedings of
the International Workshop on Materialized Views: Techniques and Applications
(VIEW’1996), pages 43–55, June 1996.

14. E. Mena, V. Vipul Kashyap, A. Illarramendi, and A. P. Sheth. Managing multiple
information sources through ontologies: Relationship between vocabulary hetero-
geneity and loss of information. in Proceedings of Third Workshop on Knowledge
Representation Meets Databases, August 1996.

15. B. Omelayenko and D. Fensel. A two-layered integration approach for product in-
formation in b2b e-commerce. Proceedings of the Second International Conference
on Electronic Commerce and Web Technologies, pages 226–239, September 2001.

16. G. Pierra. Context-explication in conceptual ontologies: The plib approach. To
appear in Proceedings of 10th ISPE International Conference on Concurrent En-
gineering: Research and Applications (ce’03) : Special Track on Data Integration
in Engineering, July 2003.

17. G. Pierra, J. C. Potier, and E. Sardet. From digital libraries to electronic cat-
alogues for engineering and manufacturing. International Journal of Computer
Applications in Technology (IJCAT), 18:27–42, 2003.

18. C. Reynaud and G. Giraldo. An application of the mediator approach to ser-
vices over the web. Special track ”Data Integration in Engineering, Concurrent
Engineering (CE’2003) - the vision for the Future Generation in Research and
Applications, July 2003.

19. G. Terracina and D. Ursino. A uniform methodology for extracting type conflicts
and & subscheme similarities from heterogeneous databases. Information Systems,

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

25(8):527–552, December 2000.
20. J. D. Ullman. Information integration using logical views. Proceedings of the

International Conference on Database Theory (ICDT), Lecture Notes in Computer
Science, 1186:19–40, January 1997.

21. P. R. S. Visser, M. Beer, T. Bench-Capon, B. M. Diaz, and M. J. R. Shave. Re-
solving ontological heterogeneity in the kraft project. 10th International Confer-
ence on Database and Expert Systems Applications (DEXA’99), pages 668–677,
September 1999.

22. H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann,
and S. Hübner. Ontology-based integration of information - a survey of existing
approaches. Proceedings of the International Workshop on Ontologies and Infor-
mation Sharing, pages 108–117, August 2001.

This article was processed using the LATEX macro package with LLNCS style

To appear in: Proc. of Database and Expert Systems Applications - DEXA '04

