Ridouard Frédéric
email: frederic.ridouard@ensma.fr

Richard Pascal
email: pascal.richard@ensma.fr

Martineau Patrick
email: pmartineau@univ-tours.fr

On-line minimization of makespan for single batching machine scheduling problems

Keywords: single parallel batching machines, on-line scheduling, makespan, competitive analysis

Introduction

A batching machine (or batch processing machine) is a machine that can process up to b jobs simultaneously. The jobs that are processed together form a batch. Two kinds of batching machines can be defined: in a serial batching machine the processing time of a batch is equal to the sum of processing times of jobs belonging to it; in a parallel batching machine, the processing time of a batch is the maximum of the processing times of jobs belonging to it. Next, we only focus on a parallel batching machine. In particular, such machines are used in semi-conductor and pharmaceutical industries. Each instance has n jobs and each job J i (i ∈ {1, . . . n}) has a processing time p i and a release date r i . A job cannot start before its release date and the completion time C i of each job J i in a batch is equals to the completion time of the batch itself. Preemption is not allowed. A scheduling algorithm is said to be conservative if it is not allowed to postpone the start of an available job. We consider the scheduling problem in the on-line setting where jobs are released over time: characteristics of a job is known when it arrives in the system and the number of jobs is known when the last one arrives. Finally, it can be established that b ≥ n, we deal with unbounded batch sizes; the batch size is said bounded otherwise. The objective is to minimize the makespan of the schedule, that is the completion time of the last scheduled batch. To study on-line algorithms, we shall use competitive analysis. This approach compares on-line algorithms to an optimal clairvoyant algorithm: the adversary. A good adversary defines instances of problems so that the on-line algorithm achieves its worst-case performance. An algorithm that minimizes a measure of performance is c-competitive if the value obtained by the on-line algorithm is less than or equal to c times the optimal value obtained by the adversary. We also say that c is the performance guarantee of the on-line algorithm. An algorithm is said competitive if there exists a constant c so that it is c-competitive. More formally, given an on-line algorithm A. Let I be an instance. Then, σ A (I) is the makespan obtained by A and σ * (I) is the makespan obtained by the optimal clairvoyant algorithm, then A is c-competitive if there exists a constant c so that σ A (I) ≤ cσ * (I). The competitive ratio c A of the algorithm A is the worst-case ratio while considering any instance

I: c A = sup anyI σ A (I)
σ * (I) . The competitive ratio of an algorithm A is greater than or equal to 1. If c A = 1, then A is an optimal algorithm. The scheduling of batch processing machines has not been studied until recently by researchers in deterministic scheduling. For the off-line problem, [START_REF] Lee | Minimizing makespan on a single batch processing machine with dynamic job arrivals[END_REF] provide an polynomial algorithm to minimize the makespan for unbounded batch sizes. When b < n, then the problem has been proved NP-hard by [START_REF] Liu | Scheduling one batch processor subject to job release dates[END_REF]. In the on-line setting, these authors also proposed a simple greedy algorithm leading to a performance guarantee of 2 for the general bounded problem. But for non-conservative algorithms, [START_REF] Zhang | On-line algorithms for minimizing makespan on batch processing machines[END_REF] establish a general lower bound of 1 + α. In the remainder, we note α = -1+ √ 5 2

. This result holds for bounded and unbounded batch sizes. Furthermore, when the size of the batch is unbounded, [START_REF] Zhang | On-line algorithms for minimizing makespan on batch processing machines[END_REF] establish the algorithm H ∞ with a tight performance guarantee of 1 + α. In the following section, we present the results when the processing times of any task are equals. Section 3 contains outcomes in the general unbounded case.

2 The problem 1|p -batch, r i , p i = p, b = ∞|C max We now consider the special case where the processing of tasks are equals. In [START_REF] Richard | On-line scheduling on a single batching machine to minimize the makespan[END_REF], we presented the αH algorithm defined as follows: at any time, let U (t) be the set of available unscheduled jobs at time t; when the machine is idle and some unscheduled jobs are available, let J i be an available job, then the next batch is not scheduled before r i + αp i and then schedule available unscheduled jobs as many as possible as a batch. [START_REF] Richard | On-line scheduling on a single batching machine to minimize the makespan[END_REF] prove that αH is a best possible deterministic algorithm ((1 + α)-competitive). We next propose another best possible algorithm called αH2, that is a slight modification of αH: at any time t when the machine is idle and some unscheduled jobs are available, let J i be the available job such as r i + αp i = min Jj ∈U (t) (r j + αp j), then the next batch schedules jobs as many as possible at a time t after r i + αp i . A slightly modification of the proof presented for αH in [START_REF] Richard | On-line scheduling on a single batching machine to minimize the makespan[END_REF] allows to prove that αH2 is (1 + α)-competitive. To summarize, at any time, αH waits the time max Jj ∈U (t) (r j + αp j) and schedules the set of available unscheduled jobs as many as possible. αH2 waits min Jj ∈U (t) (r j + αp j) and schedules the jobs of U (t) as a batch as many as possible at a time t. Now if at any time, an on-line algorithm A waits a time a such that a ∈ [min Jj ∈U (t) (r j + αp j), max Jj ∈U (t) (r j + αp j)] then A is still a best possible algorithm for the problem 1|p -batch, r i , p i = p, b = ∞|C max .

3 The problem 1|p -batch, r i , b = ∞|C max In this section, we deal with the case where the capacity of the machines b is sufficiently large to process all jobs simultaneously in a single batch. But, jobs have non-equal processing times. Firstly, we prove that αH and αH2 are 2-competitive. Secondly, we present a best possible algorithm, called αH ∞ that inserts less idle times than H ∞ [START_REF] Zhang | On-line algorithms for minimizing makespan on batch processing machines[END_REF]).

The competitive ratio of αH and αH2

The competitive ratios of αH and αH2 are not better than 2. We use an adversary argument:

• For αH, we just need to study the instance I such that J 1 = (r 1 = 0, p 1 = p), J 2 = (r 2 = αp, p 2 = 1), J 3 = (r 3 = αp + α, p 3 = 1), . . . , J αp -1 = (r αp -1 = αp + (αp -1)α, p αp -1 = 1) and J αp = (r αp = p, p αp = 1), where p is a very large integer. αH schedules J 1 as the first batch and {J 2 , . . . , J αp } as second batch. The optimal algorithm of Lee and Uzsoy (1999) schedules {J 1 , . . . , J αp -1 } as the first batch and J αp as second batch. Consequently, after some arithmetical calculations, σ * = 1 + p and σ αH = αp + αp α + p + 1 and c αH ≥ 2. • For αH2, if we study the instance, J 1 = (r 1 = 0, p 1 = 1), J 2 = (r 2 = 0, 2 = p), J 3 = (r 3 = α + , p 3 = p), where p is still a very large integer, then σ * = α + + p, σ αH2 = α + 2p and c αH2 ≥ 2. To conclude, αH and αH2 are no better than 2-competitive for the problem 1|pbatch, r i , b = ∞|C max .

The αH ∞ algorithm

We will give a description of the algorithm αH ∞ . Note that U (t) is the set of available unscheduled jobs at the time t.

Algorithm αH ∞ : STEP 0. Set t = 0. STEP 1. Find job J k ∈ U (t) such that p k = max{p j | J j ∈ U (t)}.
Let γ = r k + αp k and s = max{t, γ}. STEP 2. In the time interval [t,s], whenever a new job J h arrives, at the time t' and if p h > p k then k = h, γ = r h + αp h , t = t , s = max{t, γ}.

To conclude in any case, U (t) = U (t) ∪ {J h }. STEP 3. At time s, we schedule in a single batch, the set of available unscheduled jobs, U (s). If some new jobs arrive during the execution of the batch then let t = s + p k else let t be the arrival time of such a job. Go to STEP 1.

Given an instance, we assume that αH ∞ generates m batches in total. We index these batches in non-decreasing order of their completion times. The k th batch is noted B k and let s k its starting time. For convenience, in batch k, J (k) denotes the longest job of B k (determinated by Step 1). Let p (k) and r (k) be the processing time and the arrival time of J (k) . Note that a batch B k starts execution either at time r (k) + αp (k) or immediately after the execution of the batch B k-1 is finished. If it starts at time r (k) + αp (k) , it is a regular batch else a delayed batch. Furthermore, by definition of αH ∞ , p (k) is the processing time of batch B k . Now, we present the principle of the proof for the (1 + α)-competitivity of αH ∞ . In [START_REF] Ridouard | Real-Time scheduling: a single batching machine[END_REF], a whole demonstration is established.

Theorem αH ∞ is (1 + α)-competitive. Proof:
• For σ * , we just consider that J (m) must be processed by the optimal algorithm; therefore σ * ≥ r (m) + p (m) . Futhermore, we can prove that r (m) occurs between the start and the completion of B m-1 . • To calculate σ αH ∞ , we must determine the makespan achieved by αH ∞ . We recall that the makespan is the completion time of B m . We have only consider in the schedule, the last sequence of batches without idle-time. Let B k , . . , B m be such a sequence. B k is regular, thus its starting time is

s k = r (k) + αp (k) .
Therefore we conclude calculating σ αH ∞ adding the processing times of B k and of the batches after B k (because there are delayed). Hence we have

σ αH ∞ = r (k) + αp (k) + m i=k p (i) .
• We can study all possible inequalities between p (k) , p (m-1) and p (m) to obtain the expected competitive ratio.

To conclude, αH ∞ is a best possible algorithm for the problem 1|p -batch, r i , b = ∞|C max and it is easy to show to αH ∞ introduce less idle-times than H ∞ .

Conclusion and perspectives

An optimal polynomial off-line algorithm is known for the 1|p -batch, r i , b = ∞|C max problem. We have studied the on-line scheduling problem of a single batching machine to minimize the makespan. For this problem, with bounded or unbounded batch sizes, the lower bound of the competitive ratio of on-line deterministic algorithm is 1 + α. But conservative algorithms cannot be better than 2-competitive. Now, for the problem 1|p -batch, r i , b = ∞|C max , if for each instance we have equal processing times then we propose several best possible on-line algorithms such as αH or αH2. For non-equal processing times, we have proposed an on-line algorithm αH ∞ that inserts less idle-time than H ∞ but with the same performance guarantee. Works are remaining for the general bounded problem since the best known algorithm is 2-competitive whereas the best known lower bound is equal to 1 + α. In [START_REF] Zhang | On-line algorithms for minimizing makespan on batch processing machines[END_REF] is proposed an algorithm and they only conjecture that it is 1+α competitive.