Ladjel Bellatreche
email: bellatreche@ensma.fr

Michel Schneider
email: michel.schneider@isima.fr

Hervé Lorinquer

Mukesh Mohania

Bringing Together Partitioning, Materialized Views and Indexes to Optimize Performance of Relational Data Warehouses

There has been a lot of work to optimize the performance of relational data warehouses. Three major techniques can be used for this objective : enhanced index schemes (join indexes, bitmap indexes), materialized views, and data partitioning. The existing research prototypes or products use materialized views alone or indexes alone or combination of them, but none of the prototypes use all three techniques together for optimizing the performance of the relational data warehouses. In this paper we show by a systematic experiment evaluation that the combination of these three techniques reduces the query processing cost and the maintenance overhead significantly. We conduct several experiments and analyse the situations where the data partitioning gives better performance than the materialized views and indexes. Based on rigorous experiments, we recommend the tuning parameters for better utilization of data partitioning, join indexes and materialized views to optimize the total cost.

Introduction

Data warehousing technology uses the relational data schema for modeling the underlying data in a warehouse. The warehouse data can be modeled either using the star schema or the snowflake schema. In this context, OLAP queries require extensive join operations between the fact table and dimension tables [START_REF]Informix-online extended parallel server and informix-universal server: A new generation of decision-support indexing for enterprise data warehouses[END_REF][START_REF] Systems | Star schema processing for complex queries[END_REF]. To improve the query performance, several optimization techniques were proposed; we can cite materialized views [START_REF] Agrawal | Automated selection of materialized views and indexes in SQL databases[END_REF][START_REF] Baralis | Materialized view selection in a multidimensional database[END_REF][START_REF] Bellatreche | Evaluation of indexing materialized views in data warehousing environments[END_REF][START_REF] Gupta | Selection of views to materialize under a maintenance cost constraint[END_REF][START_REF] Sanjay | Automated selection of materialized views and indexes in microsoft sql server[END_REF], advanced indexing techniques including bitmapped indexes, join indexes (for supporting star queries), bit-sliced indexes, projection indexes [START_REF] Chaudhuri | An efficient cost-driven index selection tool for microsoft sql server[END_REF][START_REF] Chee-Yong | Indexing techniques in decision support Systems[END_REF][START_REF] Gupta | Index selection for olap[END_REF][START_REF] Neil | Improved query performance with variant indexes[END_REF][START_REF] Sanjay | Automated selection of materialized views and indexes in microsoft sql server[END_REF] and data partitioning [START_REF] Bellatreche | What can partitioning do for your data warehouses and data marts[END_REF][START_REF] Bellatreche | Partjoin : an efficient storage and query execution design strategy for data warehousing[END_REF][START_REF] Nicola | Storage Layout and I/O Performance Tuning for IBM Red Brick Data Warehouse[END_REF]. The data table can be fragmented into three ways: vertically, horizontally or mixed. In the context of relational warehouses, the previous studies show that horizontal partitioning is more suitable. Commercial RDBMSs like Oracle9i offer various options to use horizontal partitioning: Range, Hash, and Hybrid. This type of horizontal partitioning is called primary horizontal partitioning and it can be applied to dimension tables. Another type of horizontal partitioning is called derived horizontal partitioning [START_REF] Bellatreche | What can partitioning do for your data warehouses and data marts[END_REF]. It consists in decomposing a table based on the fragmentation schema of another table. For example, let us consider a star schema with three dimension tables (Customer, Time and Product) and a fact table Sales. The former table can be decomposed into two fact fragments Sales 1 and Sales 2 that represent all sales activities for only the male customers and all sales ac-tivities for only the female customers, respectively. This means that the dimension table Customer is virtually partitioned using range partitioning on Gender column.

In this paper, we conduct experiments to show the effect of the combination of the three major optimization techniques by using the APB1 benchmark [START_REF]APB-1 olap benchmark, release II[END_REF] under Oracle 9i. Along this study, the effect of updates (append and delete operations) is considered. Since the derived horizontal partitioning is not directly supported by commercial RDBMSs like Oracle9i, we present an implementation to make it operational (in this paper, we use fragmentation and partitioning interchangeably).

The paper is organized as follows: in Section 2, we introduce the necessary background and we present our explicit solution to implement the derived horizontal partitioning in commercial systems; in Section 3, we present experiments for comparing joins indexes and partitioning and we summarize the main tuning recommendations when using the three techniques; in Section 4 we present experiments for exploring the combination of the three techniques; Section 5 concludes and points some perspective.

Background

Benchmark

For our study, we use the dataset from the APB1 benchmark [START_REF]APB-1 olap benchmark, release II[END_REF]. The star schema of this benchmark has one fact table Actvars and four dimension tables : Actvars(Product_level, Customer_level, Time_level, Channel_level, UnitsSold, DollarSales, DollarCost) (24 786 000 tuples) Prodlevel(Code_level, Class_level, Group_level, Family_level, Line_level, Division_level) (9 000 tuples) Custlevel(Store_level, Retailer_level) (900 tuples) Timelevel(Tid, Year_level, Quarter_level, Month_level, Week_level, Day_level) (24 tuples) Chanlevel (Base_level, All_level) (9 tuples) Two new attributes, week_level and day_level have been added to Timelevel table to facilitate an adequate management of updates (see section 2.3). This warehouse has been populated using the generation module of APB1. This warehouse has been installed under ORACLE 9i on a Pentium IV 1,5 Ghz microcomputer (with a memory of 256 Mo and two 7200 rps 60 Go disks) running under Windows 2000 Pro.

Workloads

The workloads used for our experiments focus on star queries. Each one has local restrictions defined in the involved dimension tables. We consider restrictions defined with predicates having only equality operator : A = value, where A is an attribute name of a dimension table and value ∈ domain(A). When a query Q i of a workload involves such a restriction, the workload that we consider will have n i potential queries, where n i represents the cardinality of domain(A). In other words, there is a potential query for each different value of domain(A). Q i is called a parameterized query, and Q i (n i) denotes its set of potential queries. For example, if we consider the parameterized query involving the predicate gender = "M", the workload will have 2 potential queries: one with the previous predicate and another with gender = "F".

Update Operations

Since the materialized views and indexes are redundant data structures, they should be maintained periodically to reflect the interactive nature of the data warehouse. The cost of maintaining materialized views, indexes and even fragments should be taken into account when combining these three techniques in order to reduce the maintenance overhead. In this study, we incorporate updates into the workload. We suppose that they occur at regular intervals and a certain number of queries are executed between two updates. Based on the periodicity of updates, we consider two scenarios (that keep the size of the data warehouse constant): For these scenarios, we measure the time that Oracle uses to execute all operations (updating the raw data, the materialized views, the indexes and the fragments).

Cost Models for Calculating the Total Execution Time

Let S be a set of parameterized queries {Q 1 , Q 2 , …, Q m }, where each Q i has a set of potential queries (Q i (n i)). To calculate the total time to execute S and one update, we use two simple cost models called Independent_Total_Time(TI) and Propor-tional_Total_Time(TP). In TI, we suppose that the frequencies of the queries are equal and independent of the number of potential queries Q i (n i). In the second one, the frequency of each Q i is proportional to its n i . Each model (TI and TP) will be used under the scenarios UD (where we consider TID and TPD) and UW (by considering TIW and TPW). Let t(O) be the execution time of an operation O (that can be a query, an UD or an UW). We define four cost models according to each models: TID, TIW, TPD, and TPW and defined as follows :

TID(α) = α*(Σ i=1 .. m t(Q i)) + t(UD) (1) TIW(α) = α*(Σ i=1 .. m t(Q i)) + t(UW), where α is a positive integer, (2) TPD(β%) = 0.01*β*(Σ i=1 .. m n i *t(Q i)) + t(UD) (3) TPW(β%) = 0.01*β*(Σ i=1 .. m n i * t(Q i)) + t(UW) (4
) where β is an integer taken in the interval [0, 100]. In other words, TID(α) and TIW(α) give the total time needed to execute α times each query plus an update. TPD(β%) and TPW(β%) give the total time required to execute β% of the potential queries plus an update.

An Implementation of the Derived Horizontal Partitioning

To partition dimension tables, Oracle provides several techniques: range, hash and hybrid partitioning. The attributes used for partitioning are called fragmentation attributes. Oracle and the existing commercial systems do not allow partitioning of the fact table using a fragmentation attributes belonging to a dimension table, as we will illustrate in the following example.

Suppose that we want to partition the fact table Actvars based on the virtual fragmentation schema of the dimension table ProdLevel (we assume that this former is partitioned into 4 disjoint segments using the attribute class_level). This will accelerate OLAP queries having restriction predicates on Class_Level. Based on this fragmentation, each tuple of a segment of the fact table will be connected to only one fragment of dimension ProdLevel. To achieve this goal (fragmenting the fact table based on the fragmentation schema of ProdLevel), we partition the fact table using one of the different partitioning modes (Range, Hash, Hybrid) available in the commercial systems based on the foreign key (Product_level) 1 . This fragmentation will generate 900 fact segments instead of 4 segments2 . This example motivates the need of a mechanism that implements the derived fragmentation of the fact table. To do so, we propose the following procedure: To take into account the effect of data partitioning, the queries must be rewritten using the attribute connect i . This implementation needs extra space (for storing the attribute(s) connect i). It requires also an extra time for the update operations.

1-Let A = {A 1 , ...,

Comparing Derived Partitioning and Join Indexes

Queries

For this comparison, we consider separately eight queries Q1 to Q8. The queries Q1 to Q5 have one join operation and one restriction predicate. The queries Q6 to Q8 have two joins operations and two restriction predicates. Each restriction predicate has a selectivity factor. The workload and the star schema used in our experiments are given in [START_REF] Bellatreche | Bringing Together Partitioning, Materialized Views and Indexes to Optimize Performance of Relational Data Warehouses[END_REF] (due to the space constraint).

Experimental Results

To identify the situations where the use of derived partitioning is interesting, we have conducted three series of experiments : (1) without optimization techniques; (2) only data partitioning is used (and depends on each query), and (3) only join indexes are used. When the data partitioning is used, we have considered for each query, a number of partitions equal the number of different values of its restriction attribute. Based on this number, we use the range mode (R) when it is small, otherwise, the hash mode (H) is used. The hybrid mode is used when queries have two join operations and two restriction predicates. When the join indexes are used, we select one index for the queries with one join and two indexes for those with two joins. For each query, we report the extra space used either by the partitioning or by the indexes, the query time, the update time for UD and UW, TID(α) and TIW(α) for two values of α (1 and 10), the values of TPD(β%) and TPW(β%)) for two values of β (5 and 25). The results are reported in the three tables Table 1, Table 2, Table 3 (one for each series).

Comments

Based on these results, the following comments are issued: Query Time: We observe that partitioning gives a profit even for a low selectivity. The profit is very important with a high selectivity (when the number of different values for a restriction attribute is greater than 50). Join indexes give also a profit as soon as the selectivity is sufficiently high (more than 10 different values for the selection attribute). But partitioning gives better results compared to join indexes. Update time: Join indexes are in general much more efficient than partitioning. Partitioning performs as well as indexes only for low selectivity and for daily updates. With partitioning, it is important to limit the number of partitions (less than 100 for our benchmark), otherwise the update time becomes very high. Therefore, we need to partition the fact table into a reasonable number of segments. TI and TP model: It appears that partitioning is in general much more interesting than join indexes. Join indexes give better results only for high selectivity and small values of α and β (this means that the query frequency is almost the same as the update frequency).

These series of experiments summarize the following tuning recommendations when optimizing a parameterized query: Rule 1: Data partitioning is recommended when (1) the selectivity factor of restriction predicate used in the query is low or (2) when the frequency of the update operation is low compare to the query frequency. Rule 2: Join indexes are recommended when (1) the selectivity is high or (2) when the frequency of the update is similar to the query frequency. In addition it is important to note that partitioning requires an additional space more significant than those required by indexes. But it remains acceptable (10% of the total space occupied by the warehouse if the number of partitions is limited to 100). This additional space is justified by the fact of adding a new column (connect) in the fact table (see Section 2.3). 4 Combining the Three Techniques

The queries and the cases

To evaluate the result of combining the three techniques, we conduct experiments using six SJA (Select, Join, Aggregation) queries noted Q9 to Q14. All queries are parameterized, except the query Q14. To capture the effect of the data partitioning, the number of restriction predicates in each query (except the query Q14) is equal the number of join operations. Since a fragment is a table, the three techniques can be combined in various ways : selecting indexes and/or views on a partitioning, installing indexes and/or partitions on views, selecting views and indexes separately. We consider the following cases: The three nested views of figure 1a; Case 3 (idem as the previous one with one view more) : The views of figure 1a and figure 1b; Case 4 (to show the interest of associating a star transformation with join indexes) :

The star transformation 3 with the four join indexes of case 1, plus the bitmap index incorporating the join with Timelevel, plus the view V4 of figure 1b; 3 The star transformation is a powerful optimization technique that relies upon implicitly rewriting (or transforming) the SQL of the original star query. The end user never needs to know any of the details about the star transformation. Oracle's cost-based optimizer automatically chooses the star transformation where appropriate.

Join operation

Experimental Results and Comments

The results obtained for these 12 cases are reported in table 4 (ES means extra space).

The execution times are given in seconds. In table 4 we found also the extra space which is needed to install the different objects (indexes, views, partitions), the values of TID(α) and TIW(α) for two values of α (1 and 10), the values of TPD(β%) and TPW(β%)) for two values of β (1 and 10). When partitioning is used, the number of partitions should be limited to a reasonable value (less than 100 for our benchmark). With a number of partitions greater than 100, the time used for the updates becomes very high. Moreover some partitioning can disadvantage queries (for example case 6 for Q9 and Q13). Update times are highest when materialized views are used. This limits seriously the interest of the views in this kind of situations. However some configurations can give good global results despite high update times and views can be profitable in association with others techniques. Materialized views are profitable for parameterized queries if we select a view for each value of the parameter. In general, this is not acceptable due to the huge storage and update time that we should allocated to them (materialized views). We observe also that the extra space needed to install the objects (indexes, views, partitions) remains less than 300 Mo (i.e. about 15% of the total space occupied by the warehouse). The important observation is that join indexes alone, or materialized views alone, or partitioning alone do not provide the best results for TI or for TP. Best results are obtained when two or three techniques are combined : case 4 which combines through a star transformation the join indexes, a bitmap index and a view; case 10 which combines partitioning and a join index; case 11 which at more associates a view. Case 4 is well suited for TI but not for TP. Case 10 and 11 give good results both for TI and for TP. Combinations involving partitioning are recommended when the database administrator wants to optimize parameterized queries first.

We observe also that some configurations are good for several situations. It would be very interesting to determine such robust configurations since they remain valid after some changes in the use of the data warehouse (changes in the frequencies of queries, changes of queries, …).

Conclusion

The objective of this paper was to explore the possibilities of combining materialized views, indexes and partitioning in order to optimize the performances of relational data warehouses. Firstly, we have proposed an implementation of derived horizontal partitioning that allows the use of different modes of partitioning available (like range, hash and hybrid). We have compared join indexes and horizontal derived partitioning. Our results show that partitioning offers better performance (for query processing time), especially when the selectivity of the restriction predicates is low. With regard to the updates, it is less interesting, primarily when the number of partitions is high. When updates and queries interleave, a partitioning on an attribute A with n different values is advantageous as soon as a parameterized query on A is executed more than 0.05*n times between two updates. This work shows that the two techniques are rather complementary. There is thus interest to use them jointly as it had been already underlined through a theoretical study [START_REF] Bellatreche | Partjoin : an efficient storage and query execution design strategy for data warehousing[END_REF].

We have further compared different configurations mixing the three techniques to optimize a given set of queries. It appears that each technique used alone is not able to give the best result. Materialized views contribute in optimizing parameterized queries, but they require huge amount of storage (but they remain a good candidate for optimizing non parameterized queries). Along these experiments, two performance scenarios are distinguished: the first one is based on a star transformation with join indexes with complementary structures such as bitmap indexes or views; another one based on partitioning with complementary structures such as join indexes or views. We have noticed that the second scenario is robust since it gives good results for different situations.

Our experiments do not cover all the various uses of a warehouse. Different points should be explored in the future such as: the consideration of other types of queries (those having restrictions with OR operations, nested queries, etc.); the influence of other kinds of updates. Nevertheless, these results allow us to list some recommendations for better tuning the warehouse: (1) the horizontal derived partitioning can play an important role in optimizing queries and the maintenance overhead, (2) incorporation of updates into the workloads may influence the selection of materialized views, indexes and data partitioning, (3) partition the fact table into a reasonable number of fragments rather having a huge segments. We think that these recommendations open the way for new algorithms for selecting simultaneously fragments, indexes and views in order to accelerate queries and optimize the maintenance overhead.

Fig. 1 .

 1 Fig. 1. The materialized views V1 to V4 used in case 2 and in case 3

Case 5 (

 5 to evaluate the partitioning) : The derived partitioning into 96 partitions using month_level (12R) + all_level (8H) (R and H mean Range and Hash, respectively); Case 6 (to test partitioning) : The derived partitioning into 72 partitions using all_level (9R) + family_level (8H); Case 7 (to test partitioning) : The derived partitioning into 144 partitions using all_level (9R) + family_level (16H); Case 8 (to test partitioning in association with indexes) : The derived partitioning into 72 partitions using all_level (9 R) + family_level (8H), plus the bitmap index on actvars(derived attribute of month_level), plus the join index JI3; Case 9 (to test partitioning) : The derived partitioning into 96 partitions using month_level (12R) + H(family_level (8H); Case 10 (to test partitioning in assocition with index): The derived partitioning into 96 partitions using month_level (12R) + H(family_level (8H) plus the join index JI3 Case 11 (to test partitioning in association with index): The derived partitioning into 96 partitions using month_level (12R) + H(family_level (8H), plus the join JI3, plus the view V4 of figure 5b.

 A p } be the set of fragmentation attributes. 2-For each A Specify the fragmentation of the fact table by using the attribute connect i with one of the partitioning modes (range, hash, hybrid, etc.).

i (1 ≤ i ≤ p) do 2.1-Add a new column (attribute) called connect i (whose domain is an integer) in the fact table. %This column gives the corresponding segment of each tuple of the fact table. For example, if the value of connect i of a given column is 1; this means that this tuple is connected (joined) to the segment 1 of the dimension table used to partition the fact table% 2.2-For each tuple of the fact table, instanciate the value of connect i . 3-

Table 1 .

 1 The results for the first serie (without optimization techniques)

		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
	Query time (s)	106	61	63	53	54	61	59	56
	UD (s)	68	68	68	68	68	68	68	68
	UW (s)	75	75	75	75	75	75	75	75
	TID(1)	174	129 131	121	122	129	127	124
	TID(10)	1128 678 698	598	608	678	658	628
	TPD(5%) (s)	89	105 118	269	878	214	493	2588
	TPD(25%) (s)	174	251 320 1075 4118 800 2192 12668
	TIW(1)	181	136 138	128	129	136	134	131
	TIW(10)	1135 685 705	605	615	685	665	635
	TPW(5%) (s)	96	112 125	276	885	221	500	2595
	TPW(25%) (s)	181	258 327 1082 4125 807 2199 12675

Table 2 .

 2 : Results for the second serie (data partitioning) (the best score for the three situations is represented in bold)

		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
	Number of	4	12	15	75	300	48	144	900
	partitions	(4R)	(12R)	(15R)	(75H)	(300H)	(4R*12H)	(12R*12H)	(12R*75H)
	Extra space (Mo)	74	90	123	170	194	156	174	431
	Query time (s)	53	9	13	4	1	11	2	1
	UD (s)	69	70	70	88	112	86	105	135
	UW (s)	105	92	121	154	199	144	164	220
	TID(1)	122	79	83	92	113	97	107	136
	TID(10)	599	160	200	128	122	196	125	145
	TPD(5%) (s)	80	75	80	103	127	112	119	180
	TPD(25%) (s)	122	97	122	164	187	218	177	360
	TIW(1)	158	101	134	158	200	155	166	221
	TIW(10)	635	182	251	194	209	254	184	230
	TPW(5%) (s)	116	97	131	169	214	170	178	265
	TPW(25%) (s)	158	119	173	230	274	276	236	445

Table 3 .

 3 Results for the third serie (join indexes) (the best score for the three situations is represented in bold)

		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
	Join indexes	JI1	JI2	JI3	JI4	JI5	JI1+JI2	JI2+JI3	JI2+JI4
	Extra space (Mo)	11	8	20	35	59	19	28	43
	Query time (s)	152	24	57	26	8	19	9	3
	U D (s)	69	69	71	69	68	68	71	69
	UW (s)	98	99	101	101	104	109	110	110
	TID(1)	221	93	128	95	76	87	80	72
	TID(10)	1589	309	641	329	148	258	161	99
	TPD(5%) (s)	99	83	117	168	188	114	136	204
	TPD(25%) (s)	221	141	299	563	668	296	395	744
	TIW(1)	250	123	158	127	112	128	119	113
	TIW(10)	1618	339	671	361	184	299	200	140
	TPW(5%) (s)	128	113	147	200	224	155	175	245
	TPW(25%) (s)	250	171	329	595	704	337	434	785

Table 4 .

 4 The results of the experiments for studying the combination of the three techniques (best score in bold, second score in grey)

The foreign key is the single attribute that connects the fact table and the dimension table.

The number of fragments of the fact table is equal the number of fragment of the dimension table.