

Rate Constant and Branching Ratio for the Reactions of the Ethyl Peroxy Radical with Itself and with the Ethoxy Radical

Mirna Shamas, Mohamed Assali, Cuihong Zhang, Xiaofeng Tang, Weijun

Zhang, Laure Pillier, Coralie Schoemaecker, Christa Fittschen

To cite this version:

Mirna Shamas, Mohamed Assali, Cuihong Zhang, Xiaofeng Tang, Weijun Zhang, et al.. Rate Constant and Branching Ratio for the Reactions of the Ethyl Peroxy Radical with Itself and with the Ethoxy Radical. ACS Earth and Space Chemistry, 2022, 6 (1), pp.181-188. $10.1021/ac$ $searchspacechem.1c00343$. hal-03777730

HAL Id: hal-03777730 <https://hal.science/hal-03777730v1>

Submitted on 4 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Rate Constant and Branching Ratio for the Reactions of Ethyl Peroxy Radical with Itself and with Ethoxy Radical

5

Mirna Shamas¹, Mohamed Assali¹, Cuihong Zhang^{1,2}, Xiaofeng Tang², Weijun Zhang², Laure Pillier¹, Coralie Schoemaecker¹ and Christa Fittschen^{1,*}

¹ Université Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France

² Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine 10 Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China

*Corresponding author: Christa Fittschen [\(christa.fittschen@univ-lille.fr\)](mailto:christa.fittschen@univ-lille.fr)

¹⁵ Submitted to

Earth and Space Chemistry

ABSTRACT

- 20 The self-reaction of the ethyl peroxy radical $(C_2H_5O_2)$ (R1) has been studied using laser photolysis coupled to a selective time resolved detection of two different radicals by continuous wave cavity ring-down spectroscopy (cw-CRDS) in the near-infrared range: $C_2H_5O_2$ was detected in the $\tilde{A}-\tilde{X}$ electronic transition at 7596 cm⁻¹, and HO₂ was detected in the 2_{V1} vibrational overtone transition at 6638.21 cm^{-1} . Radicals were generated from pulsed 351 nm photolysis of
- 25 C₂H₆ / Cl₂ mixture in presence of O₂. The reaction can proceed via a radical maintain channel leading to two C_2H_5O radicals (R1a) or to stable products (R1b/1c). Because C_2H_5O radicals react subsequently with O_2 leading to HO_2 , which in term reacts rapidly with $C_2H_5O_2$, knowledge of the branching ratio is indispensable for retrieving the rate constant. A strong disagreement exists about the rate constant and the branching ratio between the IUPAC recommendation
- 30 (Atkinson *et al*., ACP, 3525, 2006) and a recent, more direct measurement (Noell *et al*., JPC A, 6983, 2010). The rate constant for the self-reaction has been found at $k_1 = (1.0 \pm 0.2) \times 10^{-13} \text{ cm}^3 \text{s}^{-1}$ with the branching fraction of the C₂H₅O radical channel being $\alpha = (0.31 \pm 0.06)$, being in contradiction with the IUPAC recommendation, but confirms the most recent measurement and indicates that the current recommendation for this reaction should be revised. The reaction of
- 35 C₂H₅O₂ with the ethoxy radical (C₂H₅O) can also been involved in the reaction mechanism, and its rate constant is also extracted from modelling. It is found to be $k_9 = (7 \pm 1.5) \times 10^{-12} \text{ cm}^3 \text{s}^{-1}$, two times slower than the only available measurement from Noell *et al*. JPC A, 6983, 2010.

40 **INTRODUCTION**

The oxidation of volatile organic compounds (VOCs) in the troposphere is mainly driven by hydroxyl radicals (OH) and leads, after addition of $O₂$, to the formation of organic peroxy radicals $(RO₂)$. The fate of these $RO₂$ radicals depends on the chemical composition of the environment. In polluted atmospheres they mainly react with nitric oxide (NO) to form alkoxy 45 radicals or react with nitrogen dioxide $(NO₂)$ to form peroxynitrates $(RO₂NO₂)$. Subsequent to the reaction with NO, alkoxy radicals react with O_2 to form hydroperoxy radicals (HO₂). HO₂ further oxidises NO into $NO₂$ and thus regenerates OH , closing the quasi-catalytic cycle. The photolysis of the produced NO_2 leads subsequently to the formation of ozone (O_3) and is the only relevant formation path of tropospheric ozone. In clean environments with low $NO_x (NO_x = NO + NO_2)$

- 50 concentrations, the fate of RO_2 change and their dominant loss becomes the reaction with HO_2 forming hydroperoxides ROOH and terminating the radical reaction chain. Other reaction pathways under low NOx conditions for $RO₂$ radicals are either reaction with other $RO₂$ as self- $(RO₂ + RO₂)$ or cross-reaction $(RO₂ + R'O₂)$ or with OH radicals $(RO₂ + OH)¹⁻³$.
- Ethane is one of the most abundant non-methane hydrocarbons, and its atmospheric oxidation 55 leads to the formation of the ethyl peroxy radical, $C_2H_5O_2$. Under low NO_x conditions the following reactions can occur for $C_2H_5O_2$:
	- its self-reaction $4-14$

$$
2 C_2 H_5 O_2 \longrightarrow 2 C_2 H_5 O + O_2 \tag{R1a}
$$

$$
\rightarrow C_2H_5OH + CH_3CHO + O_2 \tag{R1b}
$$

$$
O \longrightarrow C_2H_5O_2C_2H_5 + O_2 \qquad (R1c)
$$

- its reaction with $HO_2^{4-5, 11, 15-18}$

$$
C_2H_5O_2 + HO_2 \longrightarrow C_2H_5OOH + O_2 \tag{R2}
$$

- its cross-reaction with other peroxy radicals, mainly $CH_3O_2^{19}$

$$
C_2H_5O_2 + CH_3O_2 \longrightarrow 2 C_2H_5O + CH_3O + O_2 \tag{R3a}
$$

 $\rightarrow C_2H_5OH/CH_3OH + CH_3CHO/CH_2O + O_2$ (R3b)

$$
\rightarrow C_2H_5O_2CH_3 + O_2 \tag{R3c}
$$

- its reaction with OH radicals²⁰⁻²¹

 $C_2H_5O_2 + OH \longrightarrow C_2H_5O + HO_2$ (R4a)

$$
\rightarrow C_2H_5OOOH \tag{R4b}
$$

70

While (R2) has only one reaction path, the self- and cross reactions with other peroxy radicals can either lead to stable products (R1b and R1c, whereby R1c is thought to be minor) or maintain the radical pool (R1a). A reliable determination of the branching fraction is therefore important. However, the investigation of such reactions is not straight forward, because secondary chemistry 75 cannot be avoided: the C₂H₅O product of the C₂H₅O₂ self-reaction (R1a) leads to formation of the $HO₂$ radicals, after rapid reaction with $O₂$

$$
C_2H_5O + O_2 \longrightarrow CH_3CHO + HO_2 \tag{R5}
$$

whereby the HO₂ radicals will subsequently react with $C_2H_5O_2$ (R2). The rate constant of (R2) is faster than the rate constant of (R1), and thus the $C_2H_5O_2$ decay is accelerated by (R2). Therefore, 80 determining the rate constant k_I from observed $C_2H_5O_2$ decays depends on the branching ratio α

 $= k_{Ia}$ / k_I used in the data treatment: for a given experimental C₂H₅O₂ decay the retrieved rate

constant k_l will decrease with increasing branching ratio.

Earlier studies of peroxy chemistry have either used time resolved UV absorption spectroscopy for the determination of the overall rate constant⁴⁻¹² or, for the determination of the branching 85 ratio, end-product studies by $FTIR^{13-14}$ or by gas chromatography⁷. Direct observations of the HO² yield and thus measurement of the branching ratio is not possible in UV absorption studies because the steady-state HO_2 concentration, that builds-up from the (R1a) / (R5) reaction sequence, is rather low due to the fast consumption of $HO₂$ through (R2). So, even if a relative selectivity between $C_2H_5O_2$ and HO_2 can principally be obtained by UV absorption spectroscopy 90 (the absorption cross section at 250 nm is ~8 times higher for $C_2H_5O_2$ than for HO₂, at 210 nm the ratio is \sim 2 in favour of HO₂), "clean" C₂H₅O₂ decays can be observed when studying (R1), however the corresponding HO₂ profiles cannot be extracted, because even at short wavelengths the much higher $C_2H_5O_2$ concentration compared to HO_2 always makes up the major fraction of the absorption signal, and a correction of the $HO₂$ profile for contribution of $C₂H₅O₂$ would 95 induce very large error bars. Therefore, time-resolved UV absorption studies used the branching ratio, obtained from end-product studies, to extract the rate constant from the measured $C_2H_5O_2$ decays. This way, UV absorption measurements came to a relatively good agreement for the absolute value of the overall rate constant and end-product studies also came to a fairly good agreement on the branching ratio. Thus, it was agreed in almost all studies that the radical

- 100 channel (R1a) is the major path, and a branching fraction of $\alpha = 0.63$ for (R1a) and a total rate constant of $k_1 = 7.6 \times 10^{-14}$ cm³s⁻¹ is currently recommended by the IUPAC committee²². More recently, Noell *et al.*⁵ have carried out in 2010 for the first time a more selective measurement of this reaction: UV absorption was still used to monitor $C_2H_5O_2$, but HO_2 was directly measured in a selective way using wavelength modulation spectroscopy in the near IR.
- 105 Interestingly, this work is in large disagreement with the earlier recommendations: while the observed C₂H₅O₂ decays were in agreement with the older data, a branching fraction of only α = 0.28 was found for the radical path. This leads to an overall rate constant of $k_1 = 1.19 \times 10^{-13}$ cm^3s^{-1} , around 56% higher than the value currently recommended by IUPAC.

To our knowledge, no new measurements have been carried out on the $C_2H_5O_2$ self-reaction since 110 this interesting finding of the important disagreement between the recommended IUPAC values and the results from Noell *et al*. It seems therefore important to reinvestigate this reaction with yet another selective detection method. Here, we present results of experiments that have been carried out using laser photolysis coupled to cw-CRDS absorption spectroscopy in the near infrared region for a selective and sensitive detection of both radicals: the $C_2H_5O_2$ radical is

115 quantified in the $\tilde{A}-\tilde{X}$ electronic transition at 7596.47 cm⁻¹ (1316.4 nm), and the HO₂ radical is followed in the $2v_1$ overtone vibration band at 6638.2 cm⁻¹ (1506.4 nm).

EXPERIMENTAL

120 **Experimental setup**

The setup has been described in detail before 23-26 and is only briefly discussed here (**Figure 1)**.

125 **Figure 1.** Schematic view of the experimental setup: AOM, Acousto-Optic Modulator; APD, Avalanche Photo Diode; M, Mirror; L, Lens. Both cw-CRDS systems are equipped with identical trigger circuits and data acquisition systems.

The setup consisted of a 0.79 m long flow reactor made of stainless steel. The beam of a pulsed 130 excimer laser (Lambda Physik LPX 202i, XeF at 351 nm) passed the reactor longitudinally. The flow reactor contained two identical continuous wave cavity ring-down spectroscopy (cw-CRDS) absorption paths, which were installed in a small angle with respect to the photolysis path. An overlap with the photolysis beam of 0.28 m is achieved with an excimer beam width delimited to 2 cm. Both beam paths were tested for a uniform overlap with the photolysis beam before 135 experiments were done. For this purpose, both cw-CRDS instruments were operated to simultaneously measure HO_2 concentrations. Deviations between HO_2 concentrations were less than 5 % demonstrating that the photolysis laser was very well aligned, *i.e*. both light paths probed a very similar photolysed volume in the reactor. A small helium purge flow prevented the mirrors from being contaminated. Two different DFB lasers are used for the detection of the two

140 species $(C_2H_5O_2, HO_2)$. They are coupled into one of the cavities by systems of lenses and

mirrors. Each probe beam passed an acousto-optic modulator (AOM, AAoptoelectronic) to rapidly turn off the 1st order beam once a threshold for light intensity in the cavity was reached, in order to measure the ring-down event. Then, the decay of light intensity was recorded and an exponential fit is applied to retrieve the ring-down time. The absorption coefficient α is derived 145 from Equation (1).

$$
\alpha = [A] * \sigma_A = \frac{R_L}{c} \left(\frac{1}{\tau} - \frac{1}{\tau_0} \right) \tag{Eq. 1}
$$

where τ is the ring-down time with an absorber present; τ_0 is the ring-down time with no absorber present; σ_A is the absorption cross section of the absorbing species A; R_L is the ratio between cavity length (79 cm) and effective absorption path (28.8 cm); c is the speed of light.

150 Ethylperoxy radicals were generated by pulsed 351 nm photolysis of $C_2H_6/Cl_2/O_2$ mixtures:

$$
Cl2 + hv351 nm \to 2 Cl
$$
 (R6)

$$
C_2H_6 + Cl \to C_2H_5 + HCl \tag{R7}
$$

$$
C_2H_5 + O_2 + M \rightarrow C_2H_5O_2 + M \tag{R8a}
$$

$$
C_2H_5 + O_2 \rightarrow C_2H_4 + HO_2 \tag{R8b}
$$

155 In order to rapidly convert C_2H_5O into HO_2 through reaction (R5), most experiments have been carried out in 100 Torr O_2 (Air Liquide, Alphagaz 2). In order to investigate the possible secondary reaction

$$
C_2H_5O_2 + C_2H_5O \to products \tag{R9}
$$

some experiments have been carried out in 90 Torr N_2 / 10 Torr O_2 .

160

Ethane (Mitry-Mory, N35) was used directly from the cylinder: a small flow was added to the mixture through a calibrated flow meter (Bronkhorst, Tylan). All experiments were carried out at 298 K.

165 **RESULTS AND DISCUSSION**

The reliability of the measurement depends on the selective and sensitive detection of $HO₂$ and $C_2H_5O_2$ radicals: these two aspects will be presented at first. When studying the self-reaction of $C_2H_5O_2$, several secondary reactions can be important and will need to be taken into account: the reaction of $C_2H_5O_2$ with HO_2 (R2) and with C_2H_5O (R9). Because data for these reactions are

170 sparse, we have studied them separately and the results will be presented individually thereafter.

Detection of HO² radicals

The reliability of the measurements presented in this work depends on the selective quantification of the two radicals, HO_2 and $C_2H_5O_2$. HO_2 has been detected on the strongest line of the $2v_1$ band at 6638.2 cm⁻¹. Pressure dependent absorption cross sections in helium ($\sigma_{50 \text{ Torr He}} = 2.72 \times 10^{-19}$ 175 cm²)²⁷⁻²⁸ and in synthetic air²⁹⁻³¹ ($\sigma_{100 \text{ Torr air}} = 1.44 \times 10^{-19} \text{ cm}^2$) have been measured several times, but the cross section in pure O_2 had only been measured once for a rather small absorption line³². Recently, we have determined the absorption cross section for the strong line at 6638.2 cm⁻¹ at

- 100 Torr O_2^{33} , and the value of $\sigma_{100 \text{ Torr } O2} = 2.0 \times 10^{-19} \text{ cm}^2$ is used in this work to convert absorption-time profiles of HO_2 into concentration time profiles. The absorption spectrum of HO_2 180 in this wavelength range is very structured with sharp peaks, thus it is easy to verify the
- selectivity of the measurement towards $HO₂$ by taking absorption measurements on top of the line, and at a wavelength just next to it, where the $HO₂$ absorption is virtually zero. No absorption signal was observed off the $HO₂$ line in any of the current experiments, and therefore we can conclude that absorption measurements at 6638.2 cm⁻¹ are highly selective for HO_2 radicals in

185 this reaction system.

Detection of C2H5O² radicals

The detection of $C_2H_5O_2$ in the near IR is less clear-cut: there was neither good agreement on the absorption cross section³⁴⁻³⁶ nor is the spectrum as structured as HO_2 , which makes it less 190 straightforward to verify the selectivity of the measurement. Recently, we have determined the absorption cross section of $C_2H_5O_2$ in $\tilde{A}\tilde{X}$ electronic transition³³ and have obtained a pressure independent absorption cross section of $\sigma = 1.0 \times 10^{-20}$ cm² on the peak at 7596.47 cm⁻¹. This cross section is used in the current work to convert $C_2H_5O_2$ absorption time profiles into concentration time profiles.

- 195 To assure that the decays measured at the peak wavelength of $C_2H_5O_2$ are selective for this radical, it is not possible to measure, as for HO_2 , decays at a wavelength where $C_2H_5O_2$ does not absorb, as the transition is too broad. Therefore, kinetic decays have been measured at several different wavelengths that are accessible with our DFB laser: in the case of an underlying absorption of another species, for example a reaction product, one can expect that the shape of
- 200 the absorption spectrum for any other species would be different from the shape of the spectrum

of $C_2H_5O_2$. Indeed, it has been shown³³ that the absorption cross section of $C_2H_5O_2$ varies over a factor of 5 in the range between 7596 and 7630 cm^{-1} and an underlaying absorption of another species with a less or differently varying spectrum should lead to different shapes of kinetic decays at different wavelengths: the influence of the co-absorbing species on the shape of the 205 decay should be highest at wavelengths where the $C_2H_5O_2$ absorption is lowest. In **Figure 2** are shown examples of five decays measured at wavelengths between the peak (open red dots) and the wavelength with the lowest $C_2H_5O_2$ cross section (black dots), all obtained under the same conditions following the 351 nm photolysis of Cl_2 / C_2H_6 mixtures. A very high initial radical concentration has deliberately been used to force formation of high concentrations of reaction 210 products. Even under these conditions no change in the shape of the decays can be observed for the different wavelengths, and therefore we conclude that measurements at 7596.47 cm^{-1} are selective measurements of $C_2H_5O_2$ in this reaction system.

Figure 2: Examples of C₂H₅O₂ decays following the 351 nm photolysis $\text{[Cl}_2\text{]} = 3 \times 10^{16} \text{ cm}^{-3}$ in 215 presence of $[C_2H_6] = 2.6 \times 10^{16}$ cm⁻³, obtained at 5 different wavelengths: the absorption cross section of $C_2H_5O_2$ (given in the legend of the figure) varies over a factor of 5 for the different wavelengths

220

Rate constant of the reaction of $C_2H_5O_2$ **with** HO_2

As explained in the introduction, the reaction of HO_2 with $C_2H_5O_2$ (R2) plays a major role during the self-reaction of $C_2H_5O_2$ and knowing its rate constant is therefore essential for extracting the branching ratio of $(R1)$. Despite several measurements^{4-5, 11, 15-18}, there was no good agreement

- 225 for this rate constant, and even the two most recent and considered being the most reliable determinations varied by about a factor of 1.5 $(8.14 \times 10^{-12} \text{ cm}^3 \text{s}^{-1}$ for Boyd *et al.*¹⁷ from UV absorption and 5.57×10^{-12} cm⁻³s⁻¹ for Noell *et al.*⁵ from UV / near IR absorption), with the IUPAC recommended value being the average of both rate constants $(6.9\times10^{-12} \text{ cm}^{-3} \text{s}^{-1})$. For this reason, we have recently determined this rate constant again³³, and have found with $k_2 = 6.2 \times 10^{-12}$ cm⁻³s⁻¹
- 230 a rate constant that rather confirms the lower value such as obtained by Noell *et al*. This rate constant is used in this work for the evaluation of the experimental data on the self-reaction of $C₂H₅O₂$.

Rate constant of the reaction of $C_2H_5O_2$ **with** C_2H_5O

- 235 In the work of Noell *et al.*⁵ it turned out, that the reaction of $C_2H_5O_2$ with C_2H_5O (R9) played some role under their conditions, and in experiments using different $O₂$ concentrations they extracted a fast rate constant of $k_9 = 1.5 \times 10^{-11}$ cm⁻³s⁻¹ for this reaction. Even though experiments in this work were carried out in 100 Torr O_2 (compared to 50 Torr O_2 in Noell *et al.*) making (R5) very rapid (k_5 ['] \approx 24.000 s⁻¹) and thus the stationary concentration of C₂H₅O very low, it 240 turned out during data evaluation of the self-reaction experiments, that (R9) would still have a small impact on the $HO₂$ profiles (decreasing $HO₂$ with increasing initial radical concentration) when using the fast rate constant from Noell *et al*. 5 For this reason, we have carried out some experiments with low O_2 concentration in order to re-determine k_9 under our conditions. In **Figure 3** are shown experiments using 4 different initial Cl-concentrations: in the left graph are 245 shown experiments carried out under low O_2 (90 Torr N₂ and 10 Torr O_2 : [O₂] ~ 3×10¹⁷ cm⁻³), experiments in the right graph were carried out under high O_2 (100 Torr O_2 : [O_2] ~ 3×10¹⁸ cm⁻³). It can be seen that the $C_2H_5O_2$ profiles (lower graphs) are very similar between the two conditions, however the $HO₂$ profiles (upper graphs) present strong differences:
-

the $HO₂$ concentrations just after the photolysis pulse are higher in the case of 100 Torr 250 O_2 compared to 90 Torr N₂ / 10 Torr O_2 . This is in line with the hypotheses that this initial $HO₂$ is formed in collision between hot $C₂H₅$ and $O₂$: with increasing N₂ and decreasing O_2 , collisions with N₂ will cool down excited C_2H_5 and (R8b) will get less important.

 $HO₂$ signals initially rise in the case of high $O₂$ while they decay from the beginning in the case of low O_2 . At high O_2 , HO₂ formation from the reaction sequence (R1 / R5) is 255 initially faster (due to the fast conversion of C_2H_5O ($k_5' = 24.000 s^{-1}$)) than its consumption through (R2), until after 2-3 ms steady-state is reached and $HO₂$ decays at

the same pace as $C_2H_5O_2$. Under low O_2 , conversion of C_2H_5O into HO_2 (R5) is 10 times slower and the reaction with $C_2H_5O_2$ becomes competitive for C_2H_5O , the formation of $HO₂$ through the reaction sequence (R1 / R5) is slower than (R2).

260 An initial model using the rate constant for $(R9)$ such as recommended by Noell *et al.* $(k_9 =$ 1.5×10^{-11} cm⁻³s⁻¹) did not allow to reproduce the HO₂ profiles under low O₂ condition: using this rate constant, the modelled $HO₂$ profiles decreased much faster than the experimental profiles (dashed lines in the upper graph of **Figure 3**). The $HO₂$ profiles were best reproduced when using a rate constant of $k_9 = 7 \times 10^{-12}$ cm⁻³s⁻¹, nearly 2 times slower (full lines in the upper graphs of 265 **Figure 3**). The rising profiles in the upper graphs of **Figure 3** show the product of the reaction of $C_2H_5O_2 + C_2H_5O$: the right y-axis applies, and it should be noted that the axis ends at 3×10^{13} cm⁻³, to be compared with the left scale for the HO₂ profile which ends at 2×10^{12} cm⁻³. It can be seen that even with the lower rate constant, this reaction plays some role, especially under low O_2 conditions. Ignoring this reaction does not allow reproducing our $HO₂$ profiles under low $O₂$ 270 neither: the modelled profile without (R9) is shown as the dashed-dotted line, only for the highest radical concentration.

Figure 3: Experiments for determination of the rate constant between $C_2H_5O_2$ and C_2H_5O : upper graphs show HO_2 profiles, lower graphs show simultaneously measured $C_2H_5O_2$ profiles. Left 275 graphs: 90 Torr N₂ / 10 Torr O₂, right graphs: 100 Torr O₂. Initial Cl-concentration was 2.26,

2.08, 1.85 and 1.6×10^{14} cm⁻³ for the experiments marked with black, red, green and blue dots, respectively. Full lines: model with $k_9 = 7 \times 10^{-12}$ cm³s⁻¹, dotted coloured lines $k_9 = 1.5 \times 10^{-11}$ cm^3s^{-1} , dashed-dotted black line $k_9 = 0$, for highest radical concentration only. Rising profiles in the upper graph show the product of (R9: $C_2H_5O_2 + C_2H_5O$) right y-axis applies.

280

Not many detail are given in the earlier work of Noell *et al*. on how the rate constant was determined, therefore it is difficult to understand the differences and no good explanation can be given for the disagreement of our results with the result from Noell *et al.*⁵. From these experiments we have chosen to use $k_9 = 7 \times 10^{-12}$ cm⁻³s⁻¹ for the evaluation of the C₂H₅O₂ 285 self-reaction experiments. It should however be noted that this reaction has a smaller impact on the retrieved rate constant and branching ratio of the self-reaction experiments due to the 2 times higher O₂ concentration used in our experiments, compared to Noell *et al.*

Rate constant and branching ratio of the self-reaction of $C_2H_5O_2$

290 The rate constant of the self-reaction of $C_2H_5O_2$ has been measured in this work by following simultaneously $C_2H_5O_2$ and HO_2 . **Figure 4** shows an example of profiles obtained from the photolysis of varying concentrations of Cl₂ in presence of $[C_2H_6] = 2 \times 10^{16}$ cm⁻³ and $[O_2] =$ 3×10^{18} cm⁻³. The HO₂ profiles do not start at zero just after the laser pulse: this is due to (R8b), leading to the formation of around 1% or less of HO_2 next to the major product $C_2H_5O_2$ in the 295 reaction of $C_2H_5 + O_2$. This has already been observed in earlier works^{5, 37}.

Figure 4: $C_2H_5O_2$ (left graph) and HO_2 (right graph) profiles obtained from the 351 nm 300 photolysis of $[Cl_2] = 0.6, 1.3, 1.9, 2.5,$ and 3×10^{16} cm⁻³, from bottom to top (for clarity, green and purple HO₂ data are not shown). Full lines model from **Table 1,** dotted lines model using values from Noell *et al*., dashed lines model with IUPAC recommended values for *k1a* and *k1b* (see **Table 2**).

- 305 High C₂H₆ concentrations (2-3×10¹⁶ cm⁻³) have always been used in order to minimize the impact of the fast reaction of Cl-atoms with $C_2H_5O_2$. Also, most experiments have been carried out at 100 Torr O_2 in order to make (R5) as fast as possible and minimize the impact of (R9) (see above paragraph). The rate constant k_l and the branching fraction α have then been extracted by fitting both HO_2 and $C_2H_5O_2$ profiles simultaneously for an entire series of experiments with varying
- 310 Cl-concentrations. In the example in **Figure 4**, the initial radical concentration has been changed by around a factor of 6, making the reactivity of $C_2H_5O_2$ varying on our typical time scale of 20 ms from near stable for the lowest concentration (black symbols) to a loss of more than 50% of $C_2H_5O_2$ for the highest concentration (red symbols). The loss due to diffusion is nearly negligible in this time window as can be seen from the black line. The rate constant *k8b*, *i.e*. the fraction of 315 C₂H₅ radicals that leads in the reaction with O_2 to direct formation of HO₂ radicals, has been adjusted such as to best reproduce the non-zero $HO₂$ concentration immediately after the

photolysis pulse. This fraction was always around 1%, in good agreement with earlier findings.

	Reaction	k/cm^3s^{-1}	Reference
1a	$2 C_2H_5O_2 \rightarrow 2 C_2H_5O + O_2$	3.2×10^{-14}	This work
1 _b	$2 C_2H_5O_2 \rightarrow C_2H_5OH + CH_3CHO + O_2$	7.0×10^{-14}	This work
2	$C_2H_5O_2 + HO_2 \rightarrow C_2H_5OOH + O_2$	6.2×10^{-12}	Ref^{33}
$5\overline{)}$	$C_2H_5O + O_2 \rightarrow CH_3CHO + HO_2$	8×10^{-15}	Ref^{38}
$\overline{7}$	$Cl + C_2H_6 \rightarrow C_2H_5 + HCl$	5.9×10^{-11}	Ref^{22}
8a	$C_2H_5+O_2+M\rightarrow C_2H_5O_2+M$	4.8×10^{-12}	Ref^{39}
8b	$C_2H_5 + O_2 \rightarrow C_2H_4 + HO_2$	$3-4 \times 10^{-14}$	This work
9	$C_2H_5O_2 + C_2H_5O \rightarrow$ products	7×10^{-12}	This work
10	$2 \text{ HO}_2 \rightarrow H_2O_2 + O_2$	1.7×10^{-12}	$\overline{\text{Ref}^{40}}$
11	$C_2H_5O + HO_2 \rightarrow products$	1×10^{-10}	$\overline{\text{Ref}}^{41}$
12	$C_2H_5O_2 \rightarrow$ diffusion	$2 s^{-1}$	This work
13	$HO_2 \rightarrow diffusion$	$3s^{-1}$	This work

Table 1: Reaction mechanism used to fit all experiments in this work

320

The full lines in **Figure 4** show the result of the model such as given in **Table 1**. Both radical profiles are very well reproduced over the full range of initial radical concentrations. **Figure 4** also includes the results of two other models with the rate constants of (R1), (R2) and (R9) varied to match either the results from Noell *et al*. 5 , (dotted lines) or the current IUPAC 325 recommendations²² (dashed lines): the rate constants used for these models are summarized in **Table 2**.

	Reaction	This work	Noell <i>et al.</i> 5	$IUPAC^{22}$
1a	$2 C_2H_5O_2 \rightarrow 2 C_2H_5O + O_2$	3.2×10^{-14}	3.33×10^{-14}	4.79×10^{-14}
1 _b	$2 C_2H_5O_2 \rightarrow C_2H_5OH + CH_3CHO$	7.0×10^{-14}	8.57×10^{-14}	2.81×10^{-14}
	$+O2$			
$\overline{1}$	$k/10^{-13}$ cm ³ s ⁻¹	$1.0 \pm 0.2*$	1.19 ± 0.04	0.76 ± 0.4
$\mathbf{1}$	$k_{obs}/10^{-13}$ cm ³ s ⁻¹	1.34	1.52	1.24
$\overline{1}$	α	$0.31 \pm 0.06*$	0.28 ± 0.06	0.63
2	$C_2H_5O_2 + HO_2 \rightarrow C_2H_5OOH + O_2$	$(6.2\pm1.5)\times10^{-12}$	$(5.6\pm0.4)\times10^{-12}$	6.9×10^{-12}
10	$C_2H_5O_2 + C_2H_5O \rightarrow$ products	$(7\pm1.5)^{*} \times 10^{-12}$	$(15\pm7) \times 10^{-12}$	

Table 2: Values used for models in **Figure 4**, all rate constants are in units $\text{cm}^3 \text{ s}^{-1}$.

*Error bars of 20% are estimated, mostly due to uncertainties in the absolute absorption cross 330 sections of HO_2 and $C_2H_5O_2$

Using the IUPAC recommended values²², the deviation of the model from our $C_2H_5O_2$ measurements is very minor (the model decays too slowly), however the disagreement of the model with our HO_2 profiles is huge: the model predicts too much HO_2 , far beyond any experimental uncertainty. This is due to the much higher radical yield in (R1), which is not 335 counterbalanced by the overall slower rate constant k_l or the faster rate constant of (R2). The agreement with the model using the rate constants from Noell *et al*.⁵ is very good for the HO_2 profiles (the model slightly overpredicts the $HO₂$ concentration by around 10%, within the experimental uncertainty), but for $C_2H_5O_2$ the model predicts too fast decays, especially at longer reaction times. This slight disagreement is due to a combination of different rate constants 340 used in both models for the three major radical-radical reactions: the higher rate constant of (R9), a lower rate constant of (R2) and a slightly faster (R1) with a lower radical yield from the work of Noell *et al*. Again, this slight disagreement is within the experimental uncertainty, especially

given that several radical-radical reactions are involved, and therefore, even though the agreement of our measurements with the data from Noell *et al*. 5 is not perfect, it confirms their 345 finding of an overall faster rate constant for (R1) together with a lower branching ratio for the radical channel, compared to current recommendations.

An extensive discussion on the comparison with earlier determination of the rate constant and

branching ratio for (R1), together with possible reasons for the important disagreement for the branching ratio, obtained by either end-product analysis or by direct detection of $HO₂$, has been 350 given by Noell *et al*. and will not be repeated here.

CONCLUSION

The rate constant and branching ratio of the self-reaction of $C_2H_5O_2$ radicals has been measured 355 using a selective cw-CRDS detection of HO₂ and C₂H₅O₂ in the $\tilde{A}-\tilde{X}$ electronic transition located in the near-IR region. Large discrepancy existed for the rate constant and branching ratio of this reaction: a high C_2H_5O radical yield was generally admitted, based on stable end product measurements of experiments carried out in the $1990^{\circ} s^{4-14}$, while a more recent work using selective detection of HO_2 radicals found the radical channel to be the minor one⁵. In this work 360 we have also directly measured the radical yield and confirmed that it should take a low value (α) $= 0.31 \pm 0.06$), together with a faster overall rate constant ($k_l = (1.0 \pm 0.2) \times 10^{-13}$ cm³ s⁻¹). This is therefore the second report of a low radical yield, based on direct measurement of radicals rather than end-products. Therefore, it is proposed that the IUPAC committee should revise their recommendation and that these lower branching fraction and faster rate constant are implemented 365 in atmospheric chemical models. Because the reaction of $C_2H_5O_2$ with the alkoxy radical C_2H_5O plays some role under our experimental conditions, presently its rate constant has also been measured and found to be $k_9 = (7 \pm 1.5) \times 10^{-12}$ cm³ s⁻¹.

ACKNOWLEDGEMENT

- 370 This project was supported by the French ANR agency under contract No. ANR-11-Labx-0005-01 CaPPA (Chemical and Physical Properties of the Atmosphere), the Région Hauts-de-France, the Ministère de l'Enseignement Supérieur et de la Recherche (CPER Climibio) and the European Fund for Regional Economic Development. X.T. would like to thank the National Natural Science Foundation of China (No. 21773249) and C.Z. thanks the Chinese
- 375 Scholarship Council for financial support (No. 202006340125).

REFERENCES

Radicals and HO2. *J. Phys. Chem.* **1994**, *98*, 2078-2082. 17. Boyd, A. A.; Flaud, P.-M.; Daugey, N.; Lesclaux, R., Rate Constants for $R_2 + H_2$ Reactions Measured under a Large Excess of HO₂. *J. Phys. Chem. A* **2003**, 107, 818-821. 425 18. Raventós-Duran, M. T.; Percival, C. J.; McGillen, M. R.; Hamer, P. D.; Shallcross, D. E., Kinetics and branching ratio studies of the reaction of $C_2H_5O_2$ + HO₂ using chemical ionisation mass spectrometry. *Phys. Chem. Chem. Phys.* **2007**, *9*, 4338 - 4348. 19. Villenave, E.; Lesclaux, R., Kinetics of the Cross Reactions of CH_3O_2 and $C_2H_5O_2$ Radicals with Selected Peroxy Radicals. *J. Phys. Chem.* **1996**, *100*, 14372-14382. 430 20. Faragó, E. P.; Schoemaecker, C.; Viskolcz, B.; Fittschen, C., Experimental Determination of the Rate Constant of the Reaction between C2H5O² and OH Radicals. *Chem. Phys. Lett.* **2015**, *619*, 196-200. 21. Assaf, E.; Schoemaecker, C.; Vereecken, L.; Fittschen, C., Experimental and Theoretical Investigation of the Reaction of RO₂ Radicals with OH Radicals: Dependence of the HO₂ Yield on 435 the Size of the Alkyl Group. *Int. J. Chem. Kinet.* **2018**, *50*, 670–680. 22. Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; M. J. Rossi; Troe, J., Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Volume II - Gas Phase Reactions of Organic Species. *Atmos. Chem. Phys.* **2006**, *6*, 3625-4055. 440 23. Thiebaud, J.; Fittschen, C., Near Infrared cw-CRDS Coupled to Laser Photolysis: Spectroscopy and Kinetics of the HO² Radical. *Appl. Phys. B* **2006**, *85*, 383-389. 24. Parker, A. E.; Jain, C.; Schoemaecker, C.; Szriftgiser, P.; Votava, O.; Fittschen, C., Simultaneous, time-resolved measurements of OH and $HO₂$ radicals by coupling of high repetition rate LIF and cw-CRDS techniques to a laser photolysis reactor and its application 445 to the photolysis of H2O2. *Appl. Phys. B.* **2011**, *103*, 725-733. 25. Votava, O.; Mašát, M.; Parker, A. E.; Jain, C.; Fittschen, C., Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements. *Rev. Sci. Instrum.* **2012**, *83*, 043110. 26. Assaf, E.; Asvany, O.; Votava, O.; Batut, S.; Schoemaecker, C.; Fittschen, C., Measurement 450 of line strengths in the $\tilde{A}^2 A' \leftarrow X^2 A''$ transition of HO₂ and DO₂. *J. Quant. Spectrosc. Radiat. Transfer* **2017**, *201*, 161-170. 27. Thiebaud, J.; Crunaire, S.; Fittschen, C., Measurement of Line Strengths in the $2v_1$ Band of the HO₂ Radical using Laser Photolysis / Continous wave Cavity Ring Down Spectroscopy (cw-CRDS). *J. Phys. Chem. A* **2007**, *111*, 6959-6966. 455 28. Tang, Y.; Tyndall, G. S.; Orlando, J. J., Spectroscopic and Kinetic Properties of HO₂ Radicals and the Enhancement of the HO₂ Self Reaction by CH₃OH and H₂O. *J. Phys. Chem. A* **2010**, *114*, 369-378. 29. Ibrahim, N.; Thiebaud, J.; Orphal, J.; Fittschen, C., Air-Broadening Coefficients of the HO₂ Radical in the 2v₁ Band Measured Using cw-CRDS. *J. Mol. Spectrosc.* **2007**, 242, 64-69. 460 30. Assaf, E.; Liu, L.; Schoemaecker, C.; Fittschen, C., Absorption spectrum and absorption cross sections of the $2v_1$ band of HO₂ between 20 and 760 Torr air in the range 6636 and 6639 cm-1 . *Journal of Quantitative Spectroscopy & Radiative Transfer* **2018**, *211*, 107-114. 31. Onel, L.; Brennan, A.; Gianella, M.; Ronnie, G.; Lawry Aguila, A.; Hancock, G.; Whalley, L.; Seakins, P. W.; Ritchie, G. A. D.; Heard, D. E., An intercomparison of HO2 measurements by 465 fluorescence assay by gas expansion and cavity ring-down spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry). *Atmos. Meas. Tech.* **2017**, *10*, 4877-4894.

32. Assali, M.; Rakovsky, J.; Votava, O.; Fittschen, C., Experimental determination of the rate constants of the reactions of HO2 + DO2 and DO2 + DO2. *International Journal of Chemical Kinetics* **2020**, *52*, 197-206.

- 470 33. Zhang, C.; Shamas, M.; Assali, M.; Tang, X.; Zhang, W.; Pillier, L.; Schoemaecker, C.; Fittschen, C., Absolute Absorption Cross-Section of the $\tilde{A} \leftarrow X^{\tilde{}}$ Electronic Transition of the Ethyl Peroxy Radical and Rate Constant of Its Cross Reaction with HO2. *Photonics* **2021**, *8*, 296. 34. Atkinson, D. B.; Spillman, J. L., Alkyl Peroxy Radical Kinetics Measured Using Near-infrared CW-Cavity Ring-down Spectroscopy. *J. Phys. Chem. A* **2002**, *106*, 8891-8902.
- 475 35. Rupper, P.; Sharp, E. N.; Tarczay, G.; Miller, T. A., Investigation of Ethyl Peroxy Radical Conformers via Cavity Ringdown Spectroscopy of the Ã- X Electronic Transition. *J. Phys. Chem. A* **2007**, *111*, 832–840.
- 36. Melnik, D.; Chhantyal-Pun, R.; Miller, T. A., Measurements of the Absolute Absorption Cross Sections of the A-X Transition in Organic Peroxy Radicals by Dual-Wavelength Cavity 480 Ring-Down Spectroscopy. *J. Phys. Chem. A* **2010**, *114*, 11583-11594.
	- 37. Clifford, E. P.; Farrell, J. T.; DeSain, J. D.; Taatjes, C. A., Infrared Frequency-Modulation Probing of Product Formation in Alkyl + O2 Reactions:  I. The Reaction of C2H5 with O2 between 295 and 698 K. *J. Phys. Chem. A* **2000**, *104*, 11549-11560.
- 38. Fittschen, C.; Frenzel, A.; Imrik, K.; Devolder, P., Rate Constants for the Reactions of 485 C2H5O, i-C3H7O, and n-C3H7O with NO and O² as a Function of Temperature. *Int. J. Chem. Kinet.* **1999**, *31*, 860-866.
	- 39. Fernandes, R. X.; Luther, K.; Marowsky, G.; Rissanen, M. P.; Timonen, R.; Troe, J., Experimental and Modeling Study of the Temperature and Pressure Dependence of the Reaction C₂H₅ + O₂ (+ M) → C₂H₅O₂ (+ M). *J. Phys. Chem. A* **2015**, 119, 7263-7269.
- 490 40. Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; Troe, J., Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Volume 1 – Gas Phase Reactions of O_x, HO_x, NO_x, and SO_x, Species. Atmos. Chem. *Phys.* **2004**, *4*, 1461-1738.

41. Assaf, E.; Schoemaecker, C.; Vereecken, L.; Fittschen, C., The reaction of fluorine atoms 495 with methanol: yield of CH_3O/CH_2OH and rate constant of the reactions $CH_3O + CH_3O$ and CH_3O + HO2. *Phys. Chem. Chem. Phys.* **2018**, *20*, 8707.