
HAL Id: hal-03777700
https://hal.science/hal-03777700

Submitted on 15 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OMNI-DRL: Learning to Fly in Forests with
Omnidirectional Images

Charles-Olivier Artizzu, Guillaume Allibert, Cédric Demonceaux

To cite this version:
Charles-Olivier Artizzu, Guillaume Allibert, Cédric Demonceaux. OMNI-DRL: Learning to Fly in
Forests with Omnidirectional Images. Symposium on Robot Control (SYROCO), Oct 2022, Mat-
sumoto, Japan. �hal-03777700�

https://hal.science/hal-03777700
https://hal.archives-ouvertes.fr


OMNI-DRL: Learning to Fly in Forests

with Omnidirectional Images

Charles-Olivier Artizzu
∗
Guillaume Allibert

∗

Cédric Demonceaux
∗∗

∗ Université Côte d’Azur, CNRS, I3S, France. Emails:
artizzu,allibert@i3s.unice.fr

∗∗ ImViA, Université Bourgogne Franche-Comté, France. Email:
cedric.demonceaux@u-bourgogne.fr

Abstract:

Perception is crucial for drone obstacle avoidance in complex, static, and unstructured outdoor
environments. However, most navigation solutions based on Deep Reinforcement Learning
(DRL) use limited Field-Of-View (FOV) images as input. In this paper, we demonstrate that
omnidirectional images improve these methods. Thus, we provide a comparative benchmark
of several visual modalities for navigation: ground truth depth, ground truth semantic seg-
mentation, and RGB images. These exhaustive comparisons reveal that it is superior to use
an omnidirectional camera to navigate with classical DRL methods. Finally, we show in two
different virtual forest environments that adapting the convolution to take into account spherical
distortions improves the results even more.

Keywords: Omnidirectional sensors, Perception and sensing, Mobile robots and vehicles,
Learning robot control, Deep Reinforcement Learning.

1 Introduction

In recent years, goal-driven drone navigation in complex,
unstructured outdoor environments has been the subject
of many studies. Most state-of-the-art solutions (Loquercio
et al., 2021; Guastella and Muscato, 2020; Kastner et al.,
2021) combine two planners operating at different scales:
a global planner to optimize the long-term navigation
by creating high-level waypoints and a local planner to
navigate from one waypoint to the next while avoiding
obstacles.

This local planner is often based on machine learning,
directly linking perception and motion commands. Typical
methods (Osa et al., 2018) are Behavioral Cloning and
Deep Reinforcement Learning (DRL). The first approach
attempts to mimic an expert policy learned through su-
pervised learning (Ross et al., 2013; Kim and Chen, 2015;
Giusti et al., 2016). This strategy provides reasonable
control over the agent’s learned policy. However, it suffers
from generalization capabilities to scenarios not included
in the training data set, including critical failures.

Meanwhile, DRL proposes to learn the navigation policy
through trial-and-error experiments (He et al., 2021; Kahn
et al., 2021). The agent interacts with the environment
based on its perception and state. It receives a reward
for promoting or preventing a specific behavior and thus
adapts its policy. The DRL method offers excellent gen-
eralization capabilities but requires a very long learning
process, usually performed in virtual environments to al-
low thousands of trials and explore failure cases.

Perception is crucial for these DRL algorithms: the agent
selects its next action only using its perception. Unfor-

tunately, most state-of-the-art methods rely on capturing
depth (He et al., 2021; Loquercio et al., 2021; Zhang et al.,
2022), or RGB (Kahn et al., 2021) from sensors with a
limited Field-Of-View (FOV). Therefore, we propose to
extend these groundbreaking works by breaking the FOV
limitation with omnidirectional sensors.

The contributions are threefold:

• First, 360° images are used as input to a DRL-based
drone navigation algorithm. This solution is com-
pared to its baseline using only FOV images limited
to 90°. To our knowledge, this is the first comparison
of omnidirectional and conventional images for DRL.
That comparison confirms the advantage of omnidi-
rectional systems.

• Second, a performance benchmark using two FOVs
(90° and 360°) and three different visual modalities
(ground truth (GT) depth, RGB, GT semantic seg-
mentation) is performed in two virtual forest environ-
ments.

• Third, we propose an additional adaptation of the
network to take into account the spherical distortions
of equirectangular images used in the drone naviga-
tion algorithm.

The structure of this paper is the following. Section 2
describes the goal-driven navigation solution adopted here.
Next, Section 3 presents the FOV and modality perfor-
mance benchmark. Finally, Section 4 presents the pro-
posed adaptation for spherical images and the associated
results.



2 DRL-based navigation solution

Point-goal navigation and collision avoidance for Un-
manned Aerial Vehicles (UAVs) are a decision-making
problem with uncertainties. This problem can be modeled
by a Markov decision process (MDP). In this MDP, the
agent interacts with the environment by performing ac-
tions following a specific policy in a given state. From this
same environment, the agent receives a reward, positive
or negative, to promote or prevent certain behaviors. In
our specific case, the drone is rewarded positively when
it reaches its goal and negatively when it collides with
obstacles, gets stuck in a loop, or moves too far away from
its objective.

E
q
u
ir
ec
ta
n
g
u
la
r

P
er
sp
ec
ti
ve

Fig. 1. RDMAP environment
(Left: RGB, Middle: depth, Right: segmentation).

2.1 State

In DRL, the agent uses its current state to determine
its following action. Therefore, the observation of this
state must be accurate and complete enough to provide
sufficient information to make an exact decision. But in
return, a too exhaustive state will overload the agent with
redundant parameters. Thus, in this study, we propose
to use a state containing strictly critical information to
achieve the two main objectives: point-goal navigation and
obstacle avoidance.

For the navigation task, only the relative distance and
direction of the goal are provided. At each time-step
tk = k∆t, where ∆t is the control sampling time, we define
the distance dk and the angle θk to goal:

dk = ∥Pk − P ⋆∥2,

θk = arctan2 (y⋆ − yk, x
⋆ − xk)− ψk.

(1)

with a drone at position Pk = (xk, yk, zk) heading towards
a fixed goal at position P ⋆ = (x⋆, y⋆, z⋆) with a yaw angle
ψk. At the same time, the drone captures its surroundings
with its perception sensor and transforms it into an image
noted Ik. Finally the state of the drone is defined at each
time-step tk by:

Sk = [dk, θk, Ik]. (2)

First, we investigate the impact of the capture FOV by
comparing two different set for each modality: a limited
one and an omnidirectional one. Second, we propose to
compare the pros and cons of several visual modalities
for navigation: GT depth, RGB images, and GT semantic
segmentation. Fig. 1 presents some observation examples
used as input for the DRL solution.

2.2 Action

In our test case, the drone must navigate between tree
trunks without collision. Due to the structure of the trees,
we propose to realize obstacle avoidance in an iso-altitude
plane. Therefore, the drone controller keeps the drone’s
altitude constant during its flight while the pilot focuses
on rotational movements. The agent moves by selecting a
discrete action ak that corresponds to a desired rotation
angle among Nb directions ∈ [−π, π] :

ak = −π +
2i

Nb − 1
π i ∈ {0, .., Nb − 1}. (3)

This rotation is then sent to the low-level controller (Shah
et al., 2018).

2.3 Network and Reward

In this paper, we focus on the perception of the DRL
algorithm using different FOV and modalities as input.
Therefore, we first select an actor-critic network and a
reward function from published and proven contributions
to build our solution. Then, we adapt these bricks to our
specific case.

The PPO algorithm (Schulman et al., 2017) processes its
state using an actor-critic network to predict the next
best action. The architecture proposed in this paper is
based on contributions that have already proven effective
for UAV navigation (Mnih et al., 2015; He et al., 2021;
Loquercio et al., 2021). First, the visual part I of the
state S is preprocessed using a succession of convolu-
tions (CONV) and fully connected networks (FC). The
resulting 32-dimensional vector is then combined with the
goal information (dk, θk) to determine the next action ak
using another fully connected network (RFC). The global
network is shown in Fig. 2 and requires 60k parameters
(more details in Appendix A).

Fig. 2. Left: At each time-step tk the agent chooses an
action ak based on its state Sk and its policy. This in-
teraction with the environment results in a new state
Sk+1 and a reward Rk+1 to evaluate the previously
followed policy. Right: The visual observation Ik is
encoded into a 32-dimensional vector using convolu-
tional operations (CNN) and a fully connected net-
work (FC). Then, combining this output vector and
the goal information (dk, θk), another fully connected
network (RFC) predicts the agent’s next action ak.

The reward function is crucial in DRL. It describes how
the agent achieves its goal. In (Zhang et al., 2022), the
authors propose a solution that shows promising results in
goal-driven navigation and obstacle avoidance. The reward
function is ideally suited for our problem. However, they
use depth sensors in their model for flying at a safe distance
to the obstacles. In our paper, in order to be independent



to the visual modality used, we have removed this depth
part of our final reward function.

At each time-step tk, the reward is computed using the
relative goal state (dk, θk), a penalization term each time-
step (−0.02), and an additional reward if the agent reached
termination Rend. The resulting function is :

Rk = −0.1dk − 0.05∥θk∥ − 0.02 +Rend. (4)

There are three different terminal states possible for an
episode

• the drone collides with an obstacle, so it receives a
large negative reward of Rend = −5;

• the drone reaches its goal (dk < 1m), so it receives a
great positive reward of Rend = 5;

• the drone is stuck in a loop (more than 200 time-
steps) or going too far away from its goal (dk >
100m), so it receives a small negative reward of
Rend = −2.

3 Results

In this section, we present the performance of our proposed
solution with different visual inputs in two different forest
environments: a simplified one with only tree trunks and a
photorealistic one with complex tree shapes, foliage, rocks,
water reflections, and elaborate lighting. In both cases, the
agent is trained only in the simplified environment.

3.1 Metrics

To compare the performance of each solution, we used two
standard metrics in navigational agent evaluation:

• Success Rate SR (the percentage of successful runs
divided by the total number of runs) to directly assess
the drone’s abilities to reach its goal (dk < 1m);

• Success weighted by path length (Anderson et al.,
2018):

SPL =
1

N

N∑

i=1

Si

ℓi

pi
, (5)

where Si is 0 or 1 depending on the success of the
episode, pi is the length of the drone’s trajectory and
ℓi is the shortest distance between the initial and goal
points. Thus, the closer the drone trajectory is to the
shortest path, the closer the SPL is to 100%. At the
same time, failed tests are strongly penalized by the
boolean value Si.

3.2 Simplified evaluation environment

Unreal Engine (Games, 2020) was chosen as rendering
software for its wide range of available scene complex-
ity, from very simplified scenes to photo-realistic envi-
ronments. Connected to Airsim (Shah et al., 2018), an
open-source robotics simulation platform, the simulator
can provide high-fidelity modality captures and a low-level
controller to stabilize a drone.

With these softwares, we have built a simplified forest
environment named RDMAP. This 200 × 200 meters ter-
rain consists of many vertical cylinders randomly placed
schematizing a dense forest of tree trunks. Fig. 3 shows an
overview of this simplified environment.

3.3 Training

The proposed DRL solution is trained in RDMAP using
several visual modalities: GT depth, RGB images, and GT
semantic segmentation. In addition, for each modality, two

Fig. 3. Overview of the RDMAP environment.

different FOVs are tested: perspective images of 90° FOV
and equirectangular images (360° FOV). Each training
takes 100k time-steps and uses the same schedule and pa-
rameters for a fair comparison. We use the standard PPO
parameterization as tunning (list of hyper-parameters in
Appendix B). During training, the distance between the
initial position of the drone and its target is always 20
meters.

The training is performed on Nvidia Tesla-V100 graphic
cards and takes about 8 to 10 hours. Inference on 300 drone
trajectories takes between 120 and 180 minutes.

3.4 Inference in RDMAP

After training, the resulting policies are tested similarly:
point-goal navigation is proven on the same 600 randomly
selected drone-goal pairs on the map. However, unlike
training, the goal distances are not only 20m: we also used
distances of 40m and 60m to test our solution and prove
its robustness to new situations during training.

The objectives of the inference are twofold. First, we inves-
tigate the impact of the observation Field-Of-View (FOV)
for each modality. Second, we compare the advantages and
disadvantages of all the proposed modalities.

3.4.1 Ground truth depth This study compares two dif-
ferent FOVs for the observation used by the DRL algo-
rithm: one limited (90°) and the other omnidirectional
(360°).

Depth is the most commonly used observation in drone
navigation. So we choose first to investigate the impact
of the FOV on this modality. The depth value is cropped
to the [0, 5] meter range to remain representative of the
capabilities of a small LIDAR mounted on a UAV. The
image resolutions are identical for both perspective and
equirectangular images (100×100 pixels) to keep the same
network architecture and compare them fairly. Table 1
shows the comparison between the FOV depth captures
of 90° and 360°.

RUN SR (%) SPL (%)

90° FOV GT depth 76.0 54.0

360° FOV GT depth 88.8 68.6

Table 1. Comparing 90° and 360° FOV depth.

As expected, the omnidirectional case presents signifi-
cantly better performance than the perspective case. The
larger FOV optimizes both the navigation and obstacle
avoidance tasks. It allows the detection of more objects,
usually unseen in the perspective FOV (larger SR). Fur-
thermore, it optimizes the UAV trajectory according to its
whole surroundings (larger SPL).



3.4.2 RGB and ground truth semantic segmentation
The previous paragraph was limited to the study of ground
truth depth, which is the usual observation for UAV nav-
igation. Here, we propose to compare the performance of
depth against two other visual modalities: RGB images
and ground truth semantic segmentation (three classes of
objects are present in RDMAP: ground, trees, and sky). As
above, each visual modality was tested with two different
FOVs. Table 2 shows the inference results.

RUN SR (%) SPL (%)

90° FOV RGB 68.3 52.8

360° FOV RGB 85.7 62.6

90° FOV GT SEG 72.7 52.4

360° FOV GT SEG 88.7 60.0

Table 2. Comparing 90° and 360° modalities.

First, FOV has the same impact on all modalities tested:
the omnidirectional model always performs better than
the limited model. The RGB solution shows a really great
improvement in success rate using omnidirectional images.

Second, the ground truth depth is the best performing
modality overall (best SR and SPL). This comforts the
fact that depth is the most crucial modality to detect
and avoid obstacles and is the commonly used modality in
navigation. Nevertheless, RGB based DRL-solution shows
very promising performances especially when using 360°
images. This particular case shows a great improvement
in SR and SPL against the 90° FOV ground truth depth.

3.5 Inference in RWFOREST

To reduce the gap with reality, we build RWFOREST
using the best rendering capabilities of Unreal Engine
and forest textures from its marketplace. Fig. 4 shows
some observations of the RWFOREST environment. This
photo-realistic environment features complex lighting and
trees of different diameters with branches and dense foliage
instead of the simple cylinders used in RDMAP. As a
result, RWFOREST is a significantly more challenging
environment with much more complex observations to
analyze and translate into action.

E
q
u
ir
ec
ta
n
gu

la
r

P
er
sp
ec
ti
ve

Fig. 4. RWFOREST environment
(Left: RGB, Middle: depth, Right: segmentation).

No additional training was performed in this new envi-
ronment to test the robustness of our proposed solution.
Instead, the pre-trained models of the section 3.3 were
directly tested on 600 objectives of 20m, 40m, and 60m.
The Table 3 presents the result of these inferences.

Although tested on significantly more complex observa-
tions than those observed in training, our proposed solu-

RUN SR (%) SPL (%)

90° FOV GT depth 81.0 69.1

360° FOV GT depth 82.2 75.7

90° FOV RGB 71.7 57.8

360° FOV RGB 80.2 58.9

Table 3. Models trained in RDMAP environ-
ment and tested in RWFOREST.

tion still performs well in terms of success rate: over 80%
SR when using 360° FOV ground truth depth images or
RGB images. We also find that similar to the findings in
Section 3.4, 360° FOV images perform better than 90° FOV
images. Even though the information in the equirectangu-
lar images is denser than in the perspective images (they
both have the same resolution here), the model can still
detect more obstacles and better optimizes its trajectory
with a wider FOV.

For 360° FOV images, the performances of ground truth
depth and RGB images are very close in terms of success
rate. But depth outperforms RGB in SPL. Therefore, both
modalities can detect the same obstacles, but depth gives
additional information allowing faster (better optimized)
trajectories to fly to the same goal.

4 Spherical Adaptation

The proposed DRL-based navigation solution shows promis-
ing results using 360° FOV observations as inputs. How-
ever, all spherical projections come with distortions. In
particular, equirectangular images show significant distor-
tions near the polar regions. Therefore, these distortions
must be considered when using these images to maintain
local consistency between the convolved pixels.

4.1 Distortion-aware convolution

Several methods deal with spherical distortions in convo-
lutional neural networks (CNNs). A first approach con-
sists in modifying the entire feature maps using Fourier
transforms (Cohen et al., 2018) or spherical polyhedra
(Lee et al., 2019). A second technique directly changes
the shape of the convolutional kernels. The new kernels
shapes can either be learned (Su and Grauman, 2019)
or specifically adapted to the equirectangular projection
(Fernandez-Labrador et al., 2020; Artizzu et al., 2021).
This latter method does not require new variables or addi-
tional learning, nor a complete modification of the network
architecture. For these reasons, we choose to implement
this distortion-aware convolution using a pre-computed
offsets table.

The four convolutional layers of the proposed feature
extraction architecture are modified. Prior to training, the

Fig. 5. Kernels with different latitude and longitude. (Blue:
the kernel center, Green: the perspective kernel, Red:
the adapted equirectangular kernel).



offsets tables are computed based on the resolution of
the observation used and the different parameters of each
adapted convolutional layer. Fig. 2 shows the additional
plugin applied on the CNN part of the network.

Then, during training and inference, these offsets are
applied to change the position of each kernel to project
the spherical image locally onto its perspective equivalent.
For example, Fig. 5 shows different distortion-aware kernel
shapes in function of their position in the equirectangular
image.

The proposed navigation solution is trained in the RDMAP
environment in a process similar to that presented in
Section 3.3.

4.2 Results in RDMAP

The equirectangular adapted DRL solution is tested in
the RDMAP environment and compared to its baseline
from Section 3.4. Table 4 shows the performances of 360°
FOV navigation based on ground truth depth or RGB.
The baseline results are directly reused from Table 2.

RUN SR (%) SPL (%)

360° FOV GT depth (baseline) 88.8 68.6

360° FOV GT depth (DRL adapted) 94.8 78.3

360° FOV RGB (baseline) 84.5 62.6

360° FOV RGB (DRL adapted) 85.7 67.4

Table 4. Performances in RDMAP.

The baseline and distortion-aware (adapted) solutions
show slightly similar performances in terms of success
rate, but the SPL is greatly improved by the distortion-
aware convolutions. Thus, maintaining a better local pixel
coherence during convolutions helps the proposed navi-
gation solution to optimize the drone trajectory between
obstacles.

Fig. 6. Drone trajectory between its initial position and
goal for three different DRL-solutions in the RDMAP
environment: the 90° FOV GT depth, the 360° FOV
GT depth (baseline) and the 360° FOV GT depth
adapted solution.

A sample trajectory of the test set is provided in Fig. 6
to illustrate this difference in trajectory optimization. The
drone must avoid numerous obstacles before reaching its
goal, located at 60 meters. Three different navigation
solutions are compared: 90° FOV ground truth depth, 360°
FOV GT depth baseline and 360° FOV GT depth adapted.
The latter solution has the shortest and most optimized
trajectory. On the other hand, the solution using 90° FOV
images reaches the goal but makes a considerable detour.

4.3 Results in RWFOREST

The same comparison is also performed between the
distortion-aware solution and its baseline in the RWFOR-
EST environment. Only ground truth depth is tested here

as it showed the best performances in the last section.
Table 5 shows the differences between the adapted 360°
FOV solution and its baseline solution from Section 3.5.

RUN SR (%) SPL (%)

360° FOV GT depth (baseline) 82.2 75.7

360° FOV GT depth (DRL adapted) 89.7 76.9

Table 5. Performances in RWFOREST.

As in the previous section, the performance of the adapted
solution is better than the baseline. However, the trends
are different than those in Table 4. When tested in the
training environment, the distortion-aware and baseline
solutions detect the same obstacles (same level of SR in
Table 4). On the contrary, the adapted solution detects
the obstacles much better when the test takes place in
a new and more complex environment (much higher SR
in Table 5). On the other hand, the trajectories are
relatively identical in length (close SPL), so the trajectory
optimization is similar (contrary to the previous case).

Fig. 7. Drone trajectory between its initial position (blue
square) and goal (red square) for different DRL-
solutions in the RWFOREST environment: 90° FOV
GT depth, 360° FOV GT depth (baseline) and 360°
FOV GT depth (DRL adapted). Front and lateral
views in RWFOREST are provided below: the squares
are not used in simulation only visualisation.

An example trajectory of the test set is provided in Fig. 7.
The front and lateral views of the environment reveal the
scene’s complexity with several trees of different shapes
and foliage. Only the distortion-aware solution adapted for
the 360° ground truth depth reaches the goal, showing this
solution’s better overall performance than the perspective
solution and the 360° FOV baseline.

5 CONCLUSION

Thanks to its wide FOV, an omnidirectional sensor allows
a drone to capture its entire surroundings. In (Rituerto
et al., 2010), the authors demonstrated that this type
of sensor significantly improves SLAM compared to a
conventional perspective camera. Similarly, our paper has
shown that it also greatly enhances DRL-based navigation:
more obstacles detection results in higher success rates
and faster trajectories towards a fixed goal. We have
also confirmed that depth is the best visual modality to
navigate without collision. Finally, we have proposed an
adaptation of the convolution layers to take into account



the spherical distortions. It significantly improves the
performance of our proposed solution even when tested
in a new environment.

Our code implementation and RDMAP environment will
be open-source and available on GitHub at
https://github.com/COATZ/OMNI-DRL.

Acknowledgements

This work was supported by the ANR CLARA project,
grant ANR-18-CE33-0004 of the French Agence Nationale
de la Recherche. This work was granted access to the HPC
resources of IDRIS under the allocation AD011013128
made by GENCI.

References

Anderson, P., Chang, A., Chaplot, D.S., Dosovitskiy, A.,
Gupta, S., Koltun, V., Kosecka, J., Malik, J., Mottaghi,
R., Savva, M., and Zamir, A.R. (2018). On evaluation
of embodied navigation agents. arXiv, abs/1807.06757.

Artizzu, C.O., Zhang, H., Allibert, G., and Demonceaux,
C. (2021). Omniflownet: a perspective neural network
adaptation for optical flow estimation in omnidirectional
images. In 2020 25th International Conference on
Pattern Recognition (ICPR), 2657–2662. IEEE.

Cohen, T.S., Geiger, M., Koehler, J., and Welling, M.
(2018). Spherical cnns. 2018 International Conference
on Learning Representations (ICLR), abs/1801.10130.

Fernandez-Labrador, C., Facil, J.M., Perez-Yus, A., De-
monceaux, C., Civera, J., and Guerrero, J.J. (2020).
Corners for layout: End-to-end layout recovery from
360 images. IEEE Robotics and Automation Letters,
5, 1255–1262.

Games, E. (2020). Unreal engine. Epic Games.
Giusti, A., Guzzi, J., Ciresan, D.C., He, F.L., Rodriguez,
J.P., Fontana, F., Faessler, M., Forster, C., Schmidhu-
ber, J., Caro, G.D., Scaramuzza, D., and Gambardella,
L.M. (2016). A machine learning approach to visual
perception of forest trails for mobile robots. IEEE
Robotics and Automation Letters, 1, 661–667.

Guastella, D.C. and Muscato, G. (2020). Learning-based
methods of perception and navigation for ground vehi-
cles in unstructured environments. Sensors, 21, 73.

He, L., Aouf, N., and Song, B. (2021). Explainable deep
reinforcement learning for uav autonomous path plan-
ning. Aerospace Science and Technology, 118, 107052.

Kahn, G., Abbeel, P., and Levine, S. (2021). BADGR: An
autonomous self-supervised learning-based navigation
system. Robotics and Automation Letters, 6, 1312–1319.

Kastner, L., Zhao, X., Buiyan, T., Li, J., Shen, Z., Lam-
brecht, J., and Marx, C. (2021). Connecting deep-
reinforcement-learning-based obstacle avoidance with
conventional global planners using waypoint generators.
In 2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 1213–1220. IEEE.

Kim, D.K. and Chen, T. (2015). Deep neural network
for real-time autonomous indoor navigation. arXiv,
abs/1511.04668.

Lee, Y., Jeong, J., Yun, J., Cho, W., and Yoon, K.J.
(2019). Spherephd: Applying cnns on a spherical polyhe-
dron representation of 360° images. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), volume 2019-June, 9173–9181. IEEE.

Loquercio, A., Kaufmann, E., Ranftl, R., Müller, M.,
Koltun, V., and Scaramuzza, D. (2021). Learning high-

speed flight in the wild. Science Robotics, 6.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Ve-

ness, J., Bellemare, M.G., Graves, A., Riedmiller, M.,
Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. (2015). Human-level
control through deep reinforcement learning. Nature,
518, 529–533.

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J.A.,
Abbeel, P., and Peters, J. (2018). An algorithmic per-
spective on imitation learning. Foundations and Trends
in Robotics, 7, 1–179.

Rituerto, A., Puig, L., and Guerrero, J. (2010). Com-
parison of omnidirectional and conventional monocular
systems for visual slam. 10th OMNIVIS with Robotics:
Science and Systems.

Ross, S., Melik-Barkhudarov, N., Shankar, K.S., Wendel,
A., Dey, D., Bagnell, J.A., and Hebert, M. (2013).
Learning monocular reactive uav control in cluttered
natural environments. In 2013 IEEE International
Conference on Robotics and Automation, 1765–1772.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization algo-
rithms. arXiv, abs/1707.06347.

Shah, S., Dey, D., Lovett, C., and Kapoor, A. (2018).
Airsim: High-fidelity visual and physical simulation for
autonomous vehicles. arXiv, 621–635.

Su, Y.C. and Grauman, K. (2019). Kernel transformer
networks for compact spherical convolution. In 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 9434–9443.

Zhang, S., Li, Y., and Dong, Q. (2022). Autonomous
navigation of uav in multi-obstacle environments based
on a deep reinforcement learning approach. Applied Soft
Computing, 115, 108194.

A Features extractor architectures

LAYER TYPE NB PARAMS

Visual capture (Ik)

C1 CONV2D(8, K=3, S=2, P=1) 80

C2 CONV2D(8, K=3, S=2, P=1) 584

C3 CONV2D(8, K=3, S=2, P=1) 584

C4 CONV2D(8, K=3, S=2, P=1) 584

FC1 FC(8*7*7, 64) 25152

FC2 FC(64, 32) 2080

+ Goal state (dk, θk)

RFC1 FC(34,64) 2172

RFC2 FC(64,128) 8320

RFC3 FC(128,128) 16512

RFC4 FC(128,37) 4773

Table A.1. CustomCNN
Total: 60814 parameters.

B PPO hyperparameters

Hyperparameter Value

learning rate 0.0003

number of steps 2048

batch size 64

number of epochs 10

gamma 0.99

∆t 200 ms

Nb 37 actions

Table B.1. Simulation Hyperparameters


