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Abstract. In this paper, a comprehensive comparison of TFET simulations using two TCAD 

simulators, Sentaurus and Silvaco TCAD, is presented. The comparison is fully cover various 

types of TFETs, either from the structure geometry or the materials point of view, which 

proved a framework for TFET designs and simulations. For Sentaurus TCAD, a dynamic 

nonlocal BTBT model is used for all simulations as it is proved a good calibration for 

experimental data or full quantum data taken from the literature. The BTBT model’s 

parameters are determined for different material and hetero-junctions structures where they can 

be used directly for any design or structure calibration. For the Silvaco simulator, a nonlocal 

BTBT model is utilized for calibration and its parameters are also provided. The study offers 

quick parameters data to be used directly, utilizing various materials without being involved in 

calibration difficulties. 

1. Introduction 

Tunneling field-effect transistors (TFETs) has been innovated as an alternative to tackle some 

challenges of traditional MOSFET transistors [1, 2]. The current in TFET is mainly due to band-to-

band tunneling (BTBT) phenomena rather than thermionic emission in MOSFET [3, 4]. TFET can 

operate well at low supply voltage providing low OFF current [2, 5]. However, TFETs face a low ON 

current [2], am-bipolarity of current, and implementation difficulties [6]. 

Performance enhancement of TFETs is done to acquire mainly a higher ON current and to 

overcome other TFET obstacles [7]. In this regard, different structures are investigated, such as multi-

gate [1] or gate all around (GAA) [8] structures, which can be entirely fabricated by CMOS 

technology and reduce short-channel effects. Hetero structures may also be used to enhance the TFET 

characteristics where the source material is replaced by a smaller bandgap material i.e. Ge or Mg2Si [2, 

9]. Using such low bandgap materials results in a reduction of the tunneling resistance, so the ON 

current, in turn, is improved. Other III-V materials may completely replace Si to provide a good 
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tunneling probability like InAs [10], which has a direct bandgap instead of the indirect bandgap of 

Silicon.   

Many studies have been done on TFET fabrications [11, 12]. Others utilized the simulation results 

to predict, design, and optimize the TFETs performance [13, 14]. Many simulator tools are used such 

that Sentaurus [15] and Silvaco [16] TCAD simulators, which provide efficient BTBT models. 

Regarding TCAD environments, four models are equipped to track the BTBT phenomena [15]: Kane 

model, Hurkx model, Schenk model, and the nonlocal model. Among them, the nonlocal BTBT model 

is found to be the most accurate model to simulate tunneling in TFETs [15-17].  

In Silvaco, the nonlocal BTBT model has to be accompanied by a fine quantum meshing around 

the expected tunneling area. On the other hand, in Sentaurus, the nonlocal model gives a dynamic path 

of tunneling starting from the Valence band (VB) to the Conduction band (CB) or vice versa in the 

direction of the electric field [15], so it is called dynamic nonlocal BTBT model. Both models show 

the right way to calibrate the experimental and full quantum simulation results.  

In this work, extensive calibrations of different device structures with homo and heterojunctions 

using various materials are reported by using both Sentaurus and Silvaco TCAD Tools. The 

calibration results are compared to experimental and full quantum results available in the literature. 

The BTBT parameters for both simulators are given for the various TFET structures, which could 

facilitate the calibration process and expedite the TFET design utilizing different materials and 

structures. 

2. Device structures and materials 

Different TFET structures and materials are used in the following simulations. Fig. 1(a) shows a multi-

gate TFET [18], which is used to allow TFET’s implementation using standard FinFET processing 

techniques. Fig. 1(a) illustrates the actual 3D structure while Fig. 1(b) demonstrates the 2D 

representation used in the simulation. Fig. 1(c) shows a 3D Gate-all-around (GAA) silicon nanowire 

(NW) TFET [8] while Fig. 1(d) shows the 2D structure used for simulation where simulation is done 

by what is called cylindrical coordinates [16]. Further, Fig. 1(e) shows the third structure in which the 

source is formed of Ge instead of Silicon as a heterostructure to reduce the effective barrier height [6]. 

A hetero-dielectric-gate is also used in this structure with source overlap to confine tunneling inside 

Ge. Furthermore, Fig. 1(f) and (g) demonstrate the fourth structure used. The structure is a GAA TFET 

and the Silicon is wholly replaced by InAs material [19]. InAs is an III-V compound semiconductor 

that has a smaller bandgap than Silicon (having a bandgap of EgInAs = 0.37 eV). Finally, Fig. 1(h) 

shows the last structure used in simulations. In this structure, Mg2Si (having a bandgap of EgMg2Si = 

0.77 eV) is introduced as a new material for the source [20]. All the structures parameters and material 

properties used are summarized in Table 1. 

  

(a) (b) 

  
(c) (d) 
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(e) (f) 

 

 
(g) (h) 

Figure 1. TFET structures used for calibration: (a) Multi-gate based Fin-FET, (b) 2D representation of multi-

gate TFET, (c) GAA Si NW, (d) 2D representation of GAA SI NW, (e) Double gate Ge-source hetero-

dielectric, (f) 3D representation of All InAs GAA, (g) 2D representation of All InAs GAA and (h) Double 

gate Mg2Si-source. 

 

Table 1. Parameters and material properties used in the simulations (lengths in nm and doping in cm
-3

) 

 
Multi-gate 

Si 

GAA Si 

NW 
Ge source 

Mg2Si-

source  

All InAs GAA 

3D 2D 

Channel length 

(Lg)  
150  200  40  50  20  20  

Drain length (Ld)  50  70  30  25  20  20  

Source length (Ls)  50  70  30  25  20  20  

Oxide thickness 

(tox)  
2  4.5  2  2.5  1  1  

Channel width (W)  40  70   10  20  D = 6  6  

Dielectric constant 

(κ) 
22 22 

κSiO2 = 3.9 / κHfO2 = 

22 
22 12.7 12.7 

Source doping (Ns)  1×10
20

  1×10
19

  1×10
20

  1×10
20

  5×10
19

  5×10
19

  

Channel doping 

(Nc)  
1×10

15
  1×10

17
  1×10

16
  1×10

15
  1×10

15
  1×10

15
  

Drain doping (Nd)  1×10
20

  1×10
19

  1×10
18

  1×10
20

  5×10
19

  5×10
19

  

3. Results and discussion 

Firstly, the calibration is performed for a multi-gate TFET structure. Fig. 2 (a) shows the simulation 

results where the calibration is done vs experimental data available in [18]. To perform the calibration, 

the dynamic nonlocal BTBT model in Sentaurus is activated with the parameters’ values for phonon-

assisted of Apath = 2.2×10
17

 cm
-3

s
-1

 and Bpath = 8.2×10
6
 Vcm

-1
 and for direct of Apath = 4.8×10

17
 cm

-3
s

-1
 

and Bpath = 6.45×10
6
 Vcm

-1
 [21]. For the low voltage values of VGS, the Hurkx Trap-assisted 

Tunneling (TAT) model is used. The result in [18] is divided by 25×10
-3

 to account for the third gate. 

Regarding Silvaco TCAD, the effective tunneling masses of the nonlocal BTBT model are tuned to get 

the best fit. Electron and hole effective masses are found to be 0.11 and 0.17, respectively. These 

effective masses values are compatible with those found in the literature for a similar double gate n-

type TFET structure [22-24]. The BTBT parameters for both Sentaurus and Silvaco are found to be 

used in all simulations concerning Silicon material. So, the same parameters will be used for the next 

case study which involves Silicon material.  

Further, Fig. 2 (b) shows both experimental and simulation results of the Gate-all-around Silicon 

nanowire TFET structure [8]. To calibrate this structure in Sentaurus, the same model of multi-gate 

TFET is used. Also, Silvaco tunneling masses used in the previous structure are applied as stated 

above. To calibrate the OFF current when using Silvaco, the SRH (Shockley Read Hall) 

recombination and TAT (Trap Assisted Tunneling) models should be incorporated as the BTBT model 
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is not suitable to fit this region because the tunneling width is increased and thermionic current 

dominates. To get the best fit, the adjusted values of the lifetimes are found to be τn0 = τp0 = 5 ns [25]. 

The TAT model used is the default model of Silvaco. Regarding Sentuarus, Scharfetter relation [15] is 

enabled for recombination with τmin = 0 for both electron and holes and τmax = 1×10
-5

 s for electron and 

τmax = 3×10
-6

 s for holes, for TAT models, Electron and hole effective masses are found to be 0.11 and 

0.17, respectively. 

Furthermore, Fig. 2 (c) shows the simulation results of Ge-source hetero-dielectric TFET [6]. As 

can be seen from the results, the ON current has improved with a decline in the OFF current compared 

to silicon TFET. To calibrate the full quantum simulation results, the direct BTBT model is used with 

Apath = 1.465×10
20

 cm
-3

s
-1

 and Bpath = 6.03 ×10
6
 Vcm

-1
 [6] and the phonon-assisted model is used with 

Apath = 4×10
14

 cm
-3

s
-1

 and Bpath = 1.9×10
7
 Vcm

-1
. Regarding Silvaco, the electron and hole tunneling 

masses are adjusted as 0.12 and 0.18, respectively. It should be pointed out here that the adjustment of 

the tunneling masses is straightforward and needs little effort to reach the best fit. This is also valid for 

all materials, as will be shown hereafter.  

Moreover, Fig. 2 (d) and (e) shows the calibration results of all InAs GAA TFET. The results show 

an improvement in ON current compared to silicon TFET while the OFF current is degraded. The data 

used in calibration is based on a full quantum simulator. However, this simulator proved to be 

compatible with measurements [19, 26, 27]. To calibrate the results in Sentaurus, the pre-factor value 

is found to be Apath = 2×10
20

 and the exponential factor Bpath =2.24×10
6
 Vcm

-1
 as mentioned in [28]. 

The simulation shown in Fig. 2 (d) is done also with the same parameters in 3D using Sentaurus. 

Regarding Silvaco TCAD, the simulation is done for the 2D case only as the BTBT model used in 

Silvaco is not enabled in 3D structures, which is a disadvantage of this simulator. Silvaco nonlocal 

BTBT model is only constrained to modeling 1D and 2D TFET geometries. It can be used to model a 

3D TFET structure if the structure is cylindrical and can be divided into two symmetric parts. In this 

regard, half the device is considered and the meshing option of cylindrical is enabled as done in the 

case of GAA. Silvaco’s fitting parameters of electron and hole tunneling masses are adjusted to 0.15 

and 0.18, respectively, to get the best fit.  

Finally, Fig. 2 (f) shows the simulation results of Mg2Si-source TFET. Like Ge-source TFET, the 

Mg2Si-source TFET shows an enhancement in ON current, and the OFF current is reduced compared 

to all-silicon TFET. Comparing Mg2Si-source TFET with Ge-source TFET, the Mg2Si-source TFET 

shows better ON current. As there is no experimental or full quantum data are available for this new 

material, we used the same effective masses used in Silicon for Silvaco simulation while for Sentaurus 

simulation the parameters' values for phonon-assisted are adjusted to Apath = 9×10
17

 cm
-3

s
-1

 and Bpath = 

1.9×10
7
 Vcm

-1
 and for direct of Apath = 2×10

21
 cm

-3
s

-1
 and Bpath = 2.06×10

7
 Vcm

-1
. These results are 

compatible with the first published work for a TFET regarding this material [29]. 

 
Table 2. Calibrated parameters for Sentaurus and Silvaco Simulators (Apath and Bpath are in units of cm

-3
s

-1
 and 

Vcm
-1

, respectively) 

TFET Structure Sentaurus Parameters Silvaco Parameters  

Phonon-assisted Direct   

me 

 

mh Apath Bpath Apath Bpath 

Multi-gate Si  2.2×10
17

  8.2×10
6
 4.8×10

17
  6.45×10

6
 0.11  0.17 

GAA Si NW 2.2×10
17

  8.2×10
6
 4.8×10

17
  6.45×10

6
 0.11 0.17 

Ge-source hetero-dielectric  4×10
14

  1.9×10
7
 1.465×10

20 
 6.03×10

6
 0.12 0.18 

All InAs GAA  2×10
20

  2.24×10
6
 2×10

20
  2.24×10

6
 0.15 0.18 

Mg2Si-source  9×10
17

  1.9×10
7
 2×10

21
  2.06×10

7
 0.11 0.17 

 

Table 2 summarizes the calibrated parameters used in the nonlocal BTBT models of both Sentaurus 

and Silvaco simulators. As can be depicted from the previous simulations and the reported values 

given in Table 2, we can highlight the following. Although Sentaurus provides a wide range of 

parameters to be tuned when calibrating its dynamic BTBT model, which could be an advantage, it 
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may lead to different parameters used from research to another. Meanwhile, Silvaco limits the 

calibration of the nonlocal BTBT model only on two parameters, which are easier to be fitted even 

manually. 

 
 

(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 2. Calibration of (a) multi-gate Silicon TFET. (b) Gate-all-around Silicon nanowire TFET. (c) Ge-

source hetero-dielectric TFET. (d) All InAs GAA TFET (3D case) (e) All InAs GAA TFET (2D case) (f) 

Simulation results of Mg2Si-source TFET. 

 

4. Conclusion 
In this work, a brief flow of TFET calibration using Sentaurus and Silvaco TCAD tools is presented. 

The calibration is done using experimental and full quantum data. Different structures including multi-

gate Silicon, Gate-All-Around Si nanowire, Ge-source, Mg2Si-source, and all InAs TFETs are used in 

this calibration study to find the BTBT parameters, for both Sentaurus and Silvaco simulators, that 
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best fit the data. The simulation results could provide a good source in investigating numerous TFET 

structures with different materials either for Sentaurus or Silvaco TCAD environments.  
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