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MID Property for Delay Systems: Insights on Spectral Values with
Intermediate Multiplicity

Islam Boussaada∗† Guilherme Mazanti∗ Silviu-Iulian Niculescu∗ Amina Benarab∗†

Abstract— This paper focuses on the problem of multi-
plicity induced dominancy (MID) for a class of linear time-
invariant systems represented by delay-differential equations.
If the problem of generic MID was characterized in terms of
properties of the roots of Kummer hypergeometric functions,
the case of intermediate MID is still an open problem. The
aim of this paper is to address such a problem by using the
Green–Hille transformation for characterizing the distribution
of the nonasymptotic zeros of linear combinations of Kummer
functions. An illustrative example completes the presentation
and shows the effectiveness of the proposed methodology.

I. INTRODUCTION

A common feature in modeling transport and propagation
phenomena, signal transmission in communication networks,
or age structure in population dynamics is their time het-
erogeneity, and one of the simplest way to represent such
processes and/or phenomena is by using delays in their
mathematical models. For further examples, we refer to [1]–
[6] and the references therein. As pointed out in [7], the
presence of delay in the system’s dynamics may have a
dichotomic effect and a lot of methods and techniques have
been proposed in the open literature to address these stability
issues (see, e.g., [3], [8]–[16]).

In the linear time-invariant (LTI) systems whose dynamics
are represented by delay-differential equations (DDEs), we
have a particular interesting property, called multiplicity
induced dominancy (MID) that, to the best of the authors’
knowledge, was not sufficiently addressed in the open litera-
ture. More precisely, the MID property simply says that the
characteristic root of maximal multiplicity is the rightmost
root of the spectrum, i.e., all other roots are located to its
left in the complex plane. In other words, this characteristic
root of maximal multiplicity is nothing else than the spec-
tral abscissa1 of the dynamical system. As pointed out in
[17], [18], this property opens an interesting perspective in
control through the so-called partial pole placement method
with guarantees on the spectrum location of the remaining
characteristic roots. Further discussions on existing methods
for characterizing multiple roots can be found in [19].

The case of the maximal allowable multiplicity2 of a
characteristic root, called generic MID property, was ad-
dressed and completely characterized in [17] (retarded case)
and in [18] (unifying retarded and neutral cases) for LTI
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Corresponding author: guilherme.mazanti@inria.fr

†IB & AB are also with IPSA Paris, 94200 Ivry sur Seine, France.
1A deeper discussion on spectral abscissa can be found in [3].
2i.e., the quasipolynomial degree

DDEs including a single delay in their models. The proposed
arguments to prove such a property are based on some
analytical properties of Kummer and Whittaker confluent
hypergeometric functions, which turn out to be essential for
the factorization of the corresponding characteristic func-
tions. It should be noted that such a method cannot be
extended straightforwardly to the case of spectral values with
intermediate multiplicity, a fact that represents a drawback
of the method. However, as shown in [20] by using different
arguments that exploit the structure of the system, the MID
property holds also in some non-generic cases, i.e., for
spectral values with intermediate multiplicities. In tuning PID
controllers, a different argument was proposed in [21] for
some class of unstable systems. Unfortunately, extending the
methods in [20], [21] to a more general setting is not a trivial
task. Finally, for similar problems, different parameter-based
methods have been discussed in [22], [23] when using the
delays as control parameters. To summarize, to the best of
the authors’ knowledge, there does not exist any systematic
approach to prove dominancy of the characteristic roots with
intermediate multiplicity.

The aim of this paper is to address such a problem and to
outline the ideas of a new method that could also encompass
intermediate multiplicities. More precisely, the contribution
of the paper is threefold. First, we provide conditions under
which spectral values with intermediate multiplicity are
dominant. Second, the method used to obtain such conditions
also has an interest on itself: we make use of the Green–Hille
(integral) transformation introduced by Hille one century ago
[24] for characterizing the location of the nonasymptotic
zeros of Whittaker hypergeometric functions. It should be
noted that these ideas complete the previous approaches
based on the properties of Kummer hypergeometric functions
to handle generic MID in the retarded and neutral cases (see,
e.g., [17], [18]). To the best of the authors’ knowledge, such
a method represents a novelty in the open literature. Finally,
as a byproduct of the analysis, new insights in MID control
of the dynamics of a pendulum are proposed. In fact, we
explore some of the existing links between the intermediate
MID and the spectral abscisa optimization problem.

The remaining of the paper is organized as follows.
Spectral bounds for retarded systems, a motivating example,
prerequisites, and the formulation of the problem considered
in the paper are presented in Section II. The main results are
derived in Section III, where we first establish second-order
equations for a linear combination of two Kummer functions
and for a corresponding Whittaker-type function, before
proving the MID property for an intermediate multiplicity



and providing discussions on frequency bounds in the right-
half plane for the spectra of dynamical systems represented
by DDEs. An illustrative example is discussed in Section IV,
and some concluding remarks in Section V end the paper.

Notations. Throughout the paper, the following notations
are used: N∗, R, C denote the sets of positive integers, real
numbers, and complex numbers, respectively, and we set
N = N∗∪{0}. The set of all integers is denoted by Z and, for
a, b ∈ R, we denote Ja, bK = [a, b] ∩ Z, with the convention
that [a, b] = ∅ if a > b. For a complex number λ, ℜ(λ) and
ℑ(λ) denote its real and imaginary parts, respectively. The
open left and right complex half-planes are the sets C− and
C+, respectively, defined by C− = {λ ∈ C | ℜ(λ) < 0} and
C+ = {λ ∈ C | ℜ(λ) > 0}. For α ∈ C and k ∈ N, (α)k is
the Pochhammer symbol for the ascending factorial, defined
inductively as (α)0 = 1 and (α)k+1 = (α+ k)(α)k.

II. PREREQUISITES AND PROBLEM FORMULATION

Consider the LTI dynamical system described by the DDE

y(n)(t) +

n−1∑
k=0

aky
(k)(t) +

m∑
k=0

αky
(k)(t− τ) = 0, (1)

under appropriate initial conditions, where y(·) is the real-
valued unknown function, τ > 0 is the delay, and a0, . . . ,
an−1, α0, . . . , αm are real coefficients. The DDE (1) is said
to be of retarded type3 if m < n, or of neutral type if m = n.
We refer to [3], [12] for a deeper discussions on DDEs and
related results and properties.

Notice that (1) is a particular case of the time-delay system

ξ̇(t) +Bτ ξ̇(t− τ) = A0ξ(t) +Aτξ(t− τ), (2)

where ξ(t) = (y(t), y′(t), . . . , y(n−1)(t))T ∈ Rn is the state
vector and A0, Aτ , Bτ ∈ Mn(R) are real-valued matrices
which can be easily constructed from (1).

Consider a positive integer np ∈ N∗, and an open set
O ∈ Rnp . For a set of parameters p⃗ ∈ O, assume that the
coefficients of the DDEs (1) ak (k ∈ J0, n − 1K) and αk

(k ∈ J0,mK) are sufficiently smooth functions depending on
the parameters p⃗. Assume further that the delay τ : O → R+

is a sufficiently smooth, nonnegative, and bounded function
for all the parameters p⃗ ∈ O. Then the characteristic function
associated with (1) is the quasipolynomial ∆ : C×O → C
defined by

∆(λ, p⃗) = P0(λ, p⃗) + Pτ (λ, p⃗)e−λτ(p⃗), (3)

where P0 and Pτ are the polynomials with real coefficients
given by

P0(λ, p⃗) = λn+

n−1∑
k=0

ak(p⃗)λ
k, Pτ (λ) =

m∑
k=0

αk(p⃗)λ
k. (4)

Such a parameter vector p⃗ may collect the delay τ and all
n+m+1 coefficients of the DDE (1) or it may define some
particular structure of the coefficients of the polynomials P0

3in the case when the highest order of derivation appears only in the
non-delayed term y(n)(t).

and Pτ , some particular dependence between the coefficients
of the polynomials and the delay, or it may reflect the way
the controller’s gains appear in the characteristic function of
the closed-loop system. For the sake of simplicity, in most of
the cases, if no ambiguity, we will simply use ∆(λ), P0(λ),
and Pτ (λ).

It is well-known that the exponential stability of the trivial
solution of (1) can be described by the location of the
(infinitely many) characteristic roots of ∆ (see, e.g., [3],
[25]).

The degree of the quasipolynomial ∆ from (3) is the
integer deg(∆) = n + m + 1. As discussed in [26], this
integer, which is larger than the degrees of the polynomials
P0 (deg(P0) = n) and Pτ (deg(Pτ ) = m), is nothing else
than the integer appearing in the Pólya–Szegő bound from
[27, Part Three, Problem 206.2], and also corresponds to the
maximal allowable multiplicity that a characteristic root of
(3)–(4) may have. In addition, a characteristic root reaching
such a bound is necessarily real.

Remark 1: On the imaginary axis, the characteristic roots
of the quasipolynomial ∆ defined by (3) admit a bounded
frequency, i.e., a bounded imaginary part. Indeed, any imag-
inary root λ0 = ι̇ ω0 of ∆ necessarily satisfies

|P0(ι̇ ω0)|2 = |Pτ (ι̇ ω0)|2.

The function F defined by F(ω) = |P0(ι̇ ω)|2 − |Pτ (ι̇ ω)|2
is a polynomial on ω with real coefficients, and thus all its
positive roots can be bounded in terms of its coefficients
(see, for instance, [28]). However, such an observation does
not provide insights on frequency bounds for other roots, in
particular roots on C+.

A. Spectrum Distribution for Retarded Delay Systems

Despite the fact that the characteristic function of some
DDE has an infinite number of characteristic roots, retarded
systems, that is (1) with m < n or, equivalently, (2) with
Bτ = 0, admit finitely many roots on any vertical strip in
the complex plane [12, Chapter 1, Lemma 4.1].

Several general results on the location of roots of (3) can
be found in the literature and, in particular, we refer the
interested reader to [29] for generic result on the location of
associated spectral values for arbitrary n. The next proposi-
tion collects two interesting properties, whose proofs can be
found, respectively, in [3] and [30].

Proposition 2: Consider the LTI system (1), the corre-
sponding system (2), and their characteristic quasipolynomial
∆ given by (3)–(4).

1) If m < n and λ is a characteristic root of system (2)
with Bτ = 0, then it satisfies

|λ| ≤ ∥A0 +Aτ e−τλ∥2. (5)

2) If m = n and lim
|λ|→∞

|Pτ (λ)/P0(λ)| < 1, then the

characteristic equation ∆ defined by (4) has a finite
number of unstable roots in the right half-plane.

Remark 3: Inequality (5), combined with the triangular
inequality, provides a generic envelope curve around the



characteristic roots corresponding to system (2). In other
words, the equality case in (5) defines a curve in the complex
plane such that all characteristic roots of ∆ are located to
the left of that curve. We refer to [31] for further insights
on spectral envelopes for retarded time-delay systems with
a single delay.

B. Motivating Example: Controlling the Inverted Pendulum
Consider now a dynamical system modeling a friction-free

inverted pendulum on a cart. The model adopted here was
discussed in [32]–[34] and, in the sequel, we keep the same
notations. In the dimensionless form, the dynamics of the

M
u

θ

m

Fig. 1. Inverted pendulum on a cart.

inverted pendulum on a cart in Fig. 1 is governed by the
second-order differential equation(

1− 3ϵ

4
cos2(θ)

)
θ̈ +

3ϵ

8
θ̇2 sin(2θ)− sin θ + u cos θ = 0,

(6)
where ϵ = m/(m+M), M is the mass of the cart, m is
the mass of the pendulum, and u represents the control law,
which is the horizontal driving force. If ϵ ̸= 4

3 , then the
linearized system around the equilibrium point θ = θ̇ = u =
0 is θ̈ + u−θ

1− 3ϵ
4

= 0.
We assume that the system is controlled by using a

standard delayed PD controller of the form u(t) = kp θ(t−
τ) + kd θ̇(t − τ), with (kp, kd) ∈ R2. The local stability
of the closed-loop system is then reduced to the study
of the location of the spectrum of the quasipolynomial
∆(λ, kp, kd, τ) = λ2 − 1

1− 3ϵ
4

+ e−λτ

1− 3ϵ
4

(kdλ+ kp) as a
function of the system’s parameters (kp, kd, τ). A general-
ized Bogdanov–Takens singularity with codimension three
is identified in [32]. It should be mentioned that deg(∆) =
4 and that the system free of delay is of second-order.
In this case, the multiplicity 3 represents an intermediate
multiplicity larger than the degree of the system free of
delays.

C. Whittaker Functions and Hille Oscillation Theorem
We shall use in this paper some classical hypergoemetric

functions, which we present now. The first such function we
introduce is the Kummer confluent hypergeometric function,
which, for a, b ∈ C such that −b /∈ N, is the entire function
Φ(a, b, ·) : C → C defined by the series

Φ(a, b, z) =

∞∑
k=0

(a)k
(b)k

zk

k!
. (7)

The series in (7) converges for every z ∈ C and, as presented
in [35]–[37], it satisfies the Kummer differential equation

z
∂2Φ

∂z2
(a, b, z) + (b− z)

∂Φ

∂z
(a, b, z)− aΦ(a, b, z) = 0. (8)

As discussed in [35]–[37], for every a, b, z ∈ C such that
ℜ(b) > ℜ(a) > 0, Kummer functions also admit the integral
representation

Φ(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

eztta−1(1− t)b−a−1 dt, (9)

where Γ denotes the Gamma function. This integral represen-
tation has been exploited in [17] to characterize the spectrum
of some DDEs.

Kummer functions satisfy some recurrence relations, often
called contiguous relations, see for instance [37]. In partic-
ular, the following relations are of interest.

Lemma 4 ([37, p. 325]): Let a, b, z ∈ C with a ̸= b, z ̸=
0, and −b /∈ N. The following relations hold:

Φ(a, b+ 1, z) =
−b (a+ z) Φ(a, b, z) + abΦ(a+ 1, b, z)

z (a− b)
,

Φ(a+ 1, b+ 1, z) = −−bΦ(a+ 1, b, z) + bΦ(a, b, z)

z
.

(10)
Kummer confluent hypergeometric functions have close

links with Whittaker functions. For k, l ∈ C with −2l /∈ N∗,
the Whittaker function Mk,l is the function defined for z ∈ C
by

Mk,l(z) = e−
z
2 z

1
2+lΦ( 12 + l − k, 1 + 2l, z), (11)

(see, e.g., [37]). Note that, if 1
2 + l is not an integer,

the function Mk,l is a multi-valued complex function with
branch point at z = 0. The nontrivial roots of Mk,l coincide
with those of Φ( 12 + l − k, 1 + 2l, ·) and Mk,l satisfies the
Whittaker differential equation

φ′′(z) =

(
1

4
− k

z
+

l2 − 1
4

z2

)
φ(z). (12)

Since Mk,l is a nontrivial solution of the second-order linear
differential equation (12), any nontrivial root of Mk,l is
necessarily simple.

In [24], Hille studies the distribution of zeros of functions
of a complex variable satisfying linear second-order homo-
geneous differential equations with variable coefficients, as
is the case for the degenerate Whittaker function Mk,l,
which satisfies (12). Thanks to an integral transformation
defined there and called Green–Hille transformation, and
some further conditions on the behavior of the function, Hille
showed how to discard regions in the complex plane from
including complex roots.

Consider, for instance, the general homogeneous second-
order differential equation

d

dz

[
K(z)

dφ

dz
(z)

]
+G(z)φ(z) = 0, (13)

where z is complex and the functions G and K are assumed
analytic in some region Θ such that K does not vanish in



that region. Equation (13) can be written in Θ as a second-
order system on the unknown functions φ1(z) = φ(z) and
φ2(z) = K(z) dφ

dz (z), and the Green–Hille transformation
consists on multiplying the equation on φ1 by φ2(z), that
on φ2 by φ1(z), and integrating on z along a path in Θ,
which yields[

φ1(z)φ2(z)
]z2
z1

−
∫ z2

z1

|φ2(z)|2
dz

K(z)

+

∫ z2

z1

|φ1(z)|2G(z) dz = 0, (14)

where z1, z2 ∈ Θ and both integrals are taken along the same
arbitrary smooth path in Θ connecting z1 to z2.

The following result, which is proved in [38] using the
Green–Hille transformation from [24], gives insights on the
distribution of the nonasymptotic zeros of Kummer hyper-
geometric functions with real arguments a and b.

Proposition 5 ([38]): Let a, b ∈ R be such that b ≥ 2.
1) If b = 2a, then all nontrivial roots z of Φ(a, b, ·) are

purely imaginary.
2) If b > 2a (resp., b < 2a), then all nontrivial roots z of

Φ(a, b, ·) satisfy ℜ(z) > 0 (resp., ℜ(z) < 0).
3) If b ̸= 2a, then all nontrivial roots z of Φ(a, b, ·) satisfy

(b− 2a)2ℑ(z)2 − (4a(b− a)− 2b)ℜ(z)2 > 0.
Remark 6: In feedback control theory, one of the major

interests of Proposition 5 is the fact that a quasipolynomial
admitting a characteristic root of maximal multiplicity, equal
to its degree, can be factorized in terms of a Kummer
function. As discussed in the sequel, a quasipolynomial
with a root with intermediate multiplicity also shares its
remaining roots with an appropriate linear combination of
Kummer functions. Unfortunately, to the best of the authors’
knowledge, there does not exist any result in the open
literature describing the distribution of the nonasymptotic
zeros of such function combinations.

D. Problem Formulation

Consider now the DDE (1) and its characteristic function
∆ given by (3)–(4). As indicated in [26], deg(∆) = n+m+
1.

We say that a characteristic root λ0 of ∆ satisfies the
MID property if (i) its algebraic multiplicity (denoted by
M(λ0)) is larger than one, and (ii) it is dominant in the
sense that all the characteristic roots λσ of the spectrum
satisfy the condition ℜ(λσ) ≤ ℜ(λ0). In other words, λ0 is
the rightmost root of the spectrum and defines the spectral
abscissa of the quasipolynomial ∆. In the case M(λ0) =
deg(∆), it was shown in [17] (case m = n − 1) and [18]
(general case m ≤ n) that λ0 satisfies the MID property.
This “limit” case is also called generic MID.

The problem addressed in this paper can be formulated
as follows: finding conditions on the parameters of the
dynamical system (1) such that a characteristic root λ0

with intermediate algebraic multiplicity M(λ0) verifying
n+ 1 ≤ M(λ0) ≤ n+m satisfies the MID property. More
precisely, and for the sake of brevity, our focus will be to

derive appropriate conditions guaranteeing that M(λ0) =
n + m. Such an intermediate MID leaves one degree of
freedom in terms of system’s parameters4. In control, such
a parameter may be used to improve the performances
of the corresponding closed-loop system. The general case
n + 1 ≤ M(λ0) ≤ n + m can still be addressed by
similar arguments, but Lemma 7 below will involve linear
combination of more Kummer functions, the expression (22)
for ∆(λ) in Theorem 9 will involve an integral containing a
more general polynomial in t than 1−At, and the parameter
vector p⃗ in Theorem 10 will depend on the coefficients of
such a polynomial.

The PD control of the inverted pendulum in the case of
delay in the input/output channel considered as a motivating
example corresponds to such a situation. More precisely, in
that case, we have deg(∆) = 4, n = 2, and hence the only
possible intermediate multiplicity is M(λ0) = 3.

III. MAIN RESULTS

A. Some Insights on Linear Combinations of Two Kummer
Functions

As discussed in Remark 6, beyond the standard contiguous
relation, to the best of the authors’ knowledge, there does not
exist any result describing the distribution of the nonasymp-
totic zeros of linear combinations of Kummer functions.

The next lemma provides a partial step towards that goal,
by providing a non-autonomous second-order differential
equation having a given linear combination of Kummer
functions as a solution.

Lemma 7: Let a, b be two complex numbers and α and
β two real numbers and define the parameter vector p⃗ =
(a, b, α, β). Then the complex function F defined by

F (z, p⃗) = αΦ(a, b, z) + β Φ(a, b+ 1, z), (15)

with z /∈ {0, β(β+α)b2

((a−b)α−βb)α}, satisfies the second-order dif-
ferential equation

∂2F

∂z2
(z, p⃗) +Q(z, p⃗)

∂F

∂z
(z, p⃗) +R(z, p⃗)F (z, p⃗) = 0, (16)

where

Q(z, p⃗) = −1 +
b+ 1

z
− α (aα− αb− βb)

D(z, p⃗)
, (17)

R(z, p⃗) = −N(z, p⃗)

D(z, p⃗)
, (18)

with

N(z, p⃗) = a
((
(a− b)α2 − αbβ

)
z − βb (b+ 1)α

)
− a b2β2,

D(z, p⃗) =
(
(a− b)α2 − αbβ

)
z − α b2β − b2β2.

Lemma 7 can be proved by using that ∂Φ
∂z (a, b, z) =

a
bΦ(a + 1, b + 1, z), which follows immediately from (7),
and exploiting the contiguous relations from Lemma 4. In
the sequel, we shall refer to functions F of the form (15) as
Kummer-type functions.

4For instance, the delay or a feedback gain may appear as being
appropriate.



Note that Whittaker functions are defined in terms of
Kummer functions in (11) by using the multiplicative factor
e−

z
2 z

1
2+l, thanks to which the Whittaker differential equation

(12) has no first-order term. We now proceed similarly from
Kummer-type functions in order to define Whittaker-type
functions. The next lemma can be shown by straightforward
computations.

Lemma 8: Let a, b be two complex numbers, α, β be two
real numbers, F be the function defined in (15), and Q and
R be given by (17) and (18), respectively.

Let Q be a primitive of Q
2 and define the function W by

W (z, p⃗) = eQ(z,p⃗)F (z, p⃗). (19)

Then W satisfies the second-order differential equation

∂2W

∂z2
(z, p⃗) +G(z, p⃗)W (z, p⃗) = 0, (20)

where

G(z, p⃗) = R(z, p⃗)− (Q(z, p⃗))2

4
− 1

2

∂Q

∂z
(z, p⃗). (21)

In the sequel, we refer to functions W of the form (19)
as Whittaker-type functions.

B. Necessary and Sufficient Conditions for the Intermediate
Multiplicity M(λ0) = n+m

Thanks to the preliminary results of Section III-A, we are
now in position to prove the following result, providing a
necessary and sufficient condition for a given real number
λ0 to be a root of a quasipolynomial ∆ with multiplicity
n+m.

Theorem 9: Let τ > 0, λ0 ∈ R, and consider the
quasipolynomial ∆ from (3)–(4). The number λ0 is a root
of multiplicity at least n+m of ∆ if and only if there exists
A ∈ R such that

∆(λ) =
τm(λ− λ0)

n+m

(m− 1)!

·
∫ 1

0

tm−1(1− t)n−1(1−At)e−tτ(λ−λ0) dt. (22)

Proof: Let V be the set of all functions ∆ of the form
∆(λ) = P0(λ) + e−λτPτ (λ) with P0 and Pτ given by (4).
Note that V is an affine subspace of the space of all entire
complex functions with dimV = n+m+ 1. Let us denote
by Vn+m

λ0
the subset of V of those functions ∆ admitting λ0

as a root of multiplicity at least n+m, i.e.,

Vn+m
λ0

= {∆ ∈ V | ∆(k)(λ0) = 0 for all

k ∈ {0, . . . , n+m− 1}}.

All equations ∆(k)(λ0) = 0, k ∈ {0, . . . , n + m − 1}, are
linearly independent, and thus Vn+m

λ0
is a subspace of V of

codimension n+m, i.e., dimVn+m
λ0

= 1.
Introduce now Wn,m

λ0
as the space of all functions ∆ of

the form (22) for some A ∈ R. Clearly, Wn,m
λ0

is an affine
subspace of the space of all entire complex functions with
dimWn,m

λ0
= 1.

As a first step, we will prove that Wn,m
λ0

⊂ V , i.e., that
every function ∆ of the form (22) is indeed a quasipolyno-
mial of the form (3)–(4). To do so, we first notice that, by an
immediate inductive integration by parts, we have (see also
[17, Proposition 2.1])∫ 1

0

p(t)e−zt dt =

d∑
k=0

p(k)(0)− p(k)(1)e−z

zk+1
(23)

for every z ∈ C \ {0}, d ∈ N, and p a polynomial of degree
d. Now, let ∆ ∈ Wn,m

λ0
and A ∈ R be such that ∆ is given

by (22). By using (23), we deduce that

∆(λ) =

n+m−1∑
k=0

τk−n(λ− λ0)
kp(n+m−k−1)(0)

− e−τ(λ−λ0)
n+m−1∑
k=0

τk−n(λ− λ0)
kp(n+m−k−1)(1),

where p is the polynomial p(t) = tm−1(1− t)n−1(1−At).
In particular, we have p(0) = p′(0) = · · · = p(m−2)(0) = 0,
p(1) = p′(1) = · · · = p(n−2)(1) = 0. In addition, we have
p(m−1)(0) = 1. Hence

∆(λ) = (λ− λ0)
n +

n−1∑
k=0

τk−n(λ− λ0)
kp(n+m−k−1)(0)

− e−τ(λ−λ0)
m∑

k=0

τk−n(λ− λ0)
kp(n+m−k−1)(1),

and thus, as required, ∆ ∈ V .
We now notice that Wn,m

λ0
⊂ Vn+m

λ0
, since, for any ∆

given by (22), λ0 is clearly a root of multiplicity at least
n+m of ∆. Since Wn,m

λ0
and Vn+m

λ0
are both affine spaces

of dimension 1, we conclude that Wn,m
λ0

= Vn+m
λ0

, yielding
the conclusion.

C. MID Validity for the Intermediate Multiplicity M(λ0) =
n+m

Finally, from Theorem 9, we are able to provide some
(appropriate) sufficient conditions under which we have the
MID property for characteristic roots of multiplicity n+m
of ∆.

Theorem 10: Let τ > 0, λ0 and A be real numbers, and
∆ be given by (22). Consider the parameter vector

p⃗ =

(
m,n+m,

(1−A)(n− 1)!

(n+m− 1)!
,

An!

(n+m)!

)
and let F and G be defined respectively as in (15) and (21).
Assume that, for every t ∈ (0, 1) and every root z of F (·, p⃗)
in C−, we have ℜ[zG(tz, p⃗)] ≥ 0. Then λ0 is a dominant
root of ∆, i.e., λ0 satisfies the MID property.

Proof: By using the trivial identity 1−At = 1−A+
A(1− t), one obtains from (9), (15), and (22) that

∆(λ) = τm(λ− λ0)
n+mF (−τ(λ− λ0), p⃗). (24)

In particular, all roots of ∆ different from λ0 are roots of
λ 7→ F (−τ(λ− λ0), p⃗), and the result is thus proved if one



shows that all roots of the Kummer-type function F (·, p⃗)
have nonnegative real part.

To do so, we consider the Whittaker-type function W (·, p⃗)
from (19). Applying Hille’s method to (20), by taking in (13)
z1 = 0 and z2 equal to a root z∗ of F (·, p⃗), we obtain:∫ z∗

0

|W ′(z)|2dz =

∫ z∗

0

|W (z)|2G(z) dz,

where, for the sake of simplicity, we omit the dependence
of W and G on p⃗. We choose as integration path the line
segment from 0 to z∗. Hence

z∗

∫ 1

0

|W ′(tz∗)|
2
dt = z∗

∫ 1

0

|W (tz∗)|2G(tz∗) dt.

Taking the real part, we get

x∗

∫ 1

0

|W ′(tz∗)|
2
dt =

∫ 1

0

|W (tz∗)|2ℜ [z∗G(tz∗)] dt, (25)

where x∗ = ℜ(z∗) and y∗ = ℑ(z∗).
Assume now, by contradiction, that F (·, p⃗) admits a root

with negative real part, and take z∗ in (25) as equal to this
root. The left-hand side of (25) is negative, however its right-
hand side is nonnegative by assumption, yielding the desired
contradiction. Hence all roots of F (·, p⃗) have nonnegative
real parts, yielding the conclusion.

D. DDEs Frequency Bound in the Right Half-Plane

The main difficulty when applying Theorem 10 is to verify
the technical assumption ℜ[zG(tz, p⃗)] ≥ 0 for every t ∈
(0, 1) and every root z of F (·, p⃗) in C− or, equivalently, to
verify that ℜ[zG(−tz, p⃗)] ≤ 0 for every t ∈ (0, 1) and every
root z of z 7→ ∆(λ0 +

z
τ ) in C+. For that purpose, a useful

technique is to establish a priori information on the location
of roots of ∆ with real part greater than λ0, and in particular
bounds on their imaginary parts.

To do so, a standard first step is to introduce the nor-
malized quasipolynomial ∆̃(z) = τn∆(λ0 +

z
τ ), which can

be written as ∆̃(z) = P̃0(z) + e−zP̃τ (z) for some suitable
polynomials P̃0 and P̃τ of degrees n and m, respectively.
Hence, the problem of studying eventual roots of ∆ with
real part greater than λ0 reduces to the study of eventual
roots of ∆̃ with positive real part.

A possible strategy to do so is to follow ideas similar to
those of Remark 1, i.e., to notice that any root z of ∆̃ satisfies

|P̃0(x+ ι̇ω)|2e2x = |P̃τ (x+ ι̇ω)|2,

where x = ℜ(z) and ω = ℑ(z). In particular, if z has
nonnegative real part, then e2x ≥ Tℓ(x), where, for ℓ ∈ N,
the polynomial Tℓ is the truncation of the Taylor expansion
of e2x at order ℓ, i.e., Tℓ(x) =

∑ℓ
k=0

(2x)ℓ

ℓ! . Hence, any root
z = x+ ι̇ω of ∆̃ with nonnegative real part satisfies

F(x, ω) ≥ 0,

where F is the polynomial given by

F(x, ω) = |P̃τ (x+ ι̇ω)|2 − |P̃0(x+ ι̇ω)|2Tℓ(x).

In addition, F only depends on ω through ω2 (which is a
consequence of the fact that P̃0 and P̃τ are polynomials with
real coefficients), and one may thus introduce the variable
Ω = ω2 and define the polynomial H by setting H(x,Ω) =
F (x,

√
Ω) for Ω ≥ 0. Hence, any root z = x+ ι̇ω of ∆̃ with

nonnegative real part satisfies

H(x,Ω) ≥ 0, (26)

where Ω = ω2. One can thus establish a bound on the
imaginary parts of roots of ∆̃ by exploiting the polynomial
inequality (26). This has been done for some low-order cases
in [39], [40]. In particular, all these works have shown that
it is sufficient to bound the absolute value of the imaginary
parts of the roots in the right half-plane by π, as one can
in general easily exclude by other arguments, such as those
from Theorem 10, the possibility of having roots in the right-
half plane with imaginary part at most π, thus concluding the
proof of dominance of λ0.

The procedure described in this subsection is synthetized
in Algorithm 1 (see [39]), in which one increases the order of
the Taylor expansion of e2x until a suitable bound is found.

Algorithm 1: Estimation of a frequency bound for
time-delay differential equations with a single delay

Input: ∆̃(z) = P̃0(z) + P̃τ (z) e−z; // Normalized

quasipolynomial

Input: maxOrd; // Maximal order

// Initialization

1 ord = 0; // ord: order of truncation of the

Taylor expansion of e2 x;

2 dominance = false;
3 while (not dominance) and (ord ≤ maxOrd) do
4 Set

F(x, ω) = |P̃τ (x+ ι̇ω)|2−|P̃0(x+ ι̇ω)|2Tord(x);
// Tord(x): Taylor expansion of e2x of

order = ord

5 Set H(x,Ω) = F(x,
√
Ω); // H is a

polynomial

6 Set Ωk(x) as the k-th real root of H(x, ·);
7 if sup

x≥0
max

k
Ωk(x) ≤ π2 then

8 dominance = true;

9 ord = ord+ 1;
Output: Frequency bound: If dominance is true,

then |ω| ≤ π for every root of ∆̃ with
positive real part;

IV. AN ILLUSTRATIVE EXAMPLE: GMID,
INTERMEDIATE MID, AND PENDULUM STABILIZATION

Consider the dynamical system modeling a friction-free
classical pendulum [41], whose dynamics are are governed
by the following second-order differential equation:

θ̈(t) +
g

L
sin(θ(t)) = u(t), (27)



where θ(t) denotes the angular displacement of the pendulum
at time t with respect to the stable equilibrium position, L
is the pendulum length, g is the gravitational acceleration,
and u(t) is the control input, which stems from an applied
external torque. Assume that the control law is a standard
delayed PD controller of the form

u(t) = −kp θ(t− τ)− kd θ̇(t− τ), (28)

with (kp, kd) ∈ R2. The local stability of the closed-loop
system is reduced to the study of the location of the roots
of the quasipolynomial

∆(λ) = λ2 +
g

L
+ (kdλ+ kp) e

−λτ . (29)

It is easy to see that deg(∆) = 4. By applying the GMID
property, it follows that the only admissible quadruple root
is λ0 = −

√
2g/L and it is achieved if the system’s

parameters (kp, kd, τ) verify kd = −e−2
√

2g/L, kp =
−5 e−2g/L, τ =

√
2L/g.

As precised in [18], the GMID does not allow any degree
of freedom in assigning λ0. In order to allow for some
additional freedom when assigning λ0, one can relax such a
constraint by forcing the root λ0 to have a multiplicity lower
than the maximal, and consider, for instance, the delay as a
free tuning parameter. This motivates the study of a (non-
generic) MID property, which was carried out, for instance,
in [42] for second-order systems, see also [18].
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Fig. 2. The behavior of the triple root (spectral abscissa) of (29) at λ = λ0

given by (30) as a function of the free delay parameter 0 < τ <
√

2L/g
for g/L ∈ {1, . . . , 7}. Clearly, increasing the ratio g/L decreases the
assignment region as well as the delay margin.

Proposition 11: For any 0 < τ <
√

2L/g, let

λ0 =
−2 +

√
− g τ2

L + 2

τ
. (30)

The delayed PD controller (28) with

kd =
2 (τλ0 + 1) eτλ0

τ
, kp =

2
(
5Lτλ0 + g τ2 + 3L

)
eτλ0

τ2L
(31)

and λ0 τ ≥ −1, locally exponentially stabilizes the system
(27). Furthermore, the intermediate MID property holds with
an exponential decay rate λ0 for the closed-loop system.

Proof: The normalization ∆̃(z) = τ2∆(λ0 +
z
τ ) of ∆

from (29) with (30)–(31) is

∆̃(z) = ((2µ+ 2) z + 4µ+ 2) e−z + z2 + 2µ z − 4µ− 2,

where µ = τ λ0. The integral representation (22) of ∆̃ is

∆̃(z) = z3
∫ 1

0

qµ(t) e
−zt dt,

where qµ(t) = (−1− 2µ) t2+2µ t+1, and it can be further
written as a combination of two Kummer functions as

∆̃(z) = z3 [2 (1 + µ) Φ (1, 3, −z)−(1 + 2µ) Φ (1, 4, −z)].

Note that qµ keeps a constant sign for t ∈ (0, 1) if and
only if µ ∈ [−1, 0). Following the steps of Algorithm 1 and
considering a truncation of order 1 of the Taylor series of
e2x, the corresponding polynomial H , denoted here by Hµ,
is

Hµ(x,Ω) = − (1 + 2x) Ω2 − 2x
(
2x2 + (4µ+ 1)x+ 4µ2

+ 10µ+ 4
)
Ω− 2x5 + (−8µ− 1)x4

− 4 (2µ+ 1) (µ− 2)x3 + 8 (2µ+ 1)
2
x2. (32)

The discriminant of Hµ with respect to the variable Ω is
D̃µ(x) = x2 Dµ(x), where

Dµ(x) =
(
64µ2 + 256µ+ 128

)
x2 +

(
128µ3 + 576µ2

+512µ+ 128)x+ 64µ4 + 320µ3 + 656µ2 + 448µ+ 96.

One easily checks that Dµ is positive only under the con-
dition µ ∈ [−2 −

√
2,−2 +

√
2] for x > 0. In such a

case, the polynomial function Hµ admits two real roots,
denoted by Ω±

µ , where Ω+
µ denotes the greater solution. We

consider from now on µ ∈ [−1,−2+
√
2], which guarantees

simultaneously that qµ has a constant sign and Dµ is positive.
In this case, the solution Ω+

µ is upper-bounded by

Ω+(x) =
x

1 + 2x

(
−2x2 + 3x+ 2 + 2

√
4x+ 3

)
which depends only on x and reaches its maximum at
x∗ ≈ 1.446. Thus, ω2 = Ω+

µ (x) < Ω+(x∗) ≈ 3.003 <
π2, i.e., ω < π. Finally, reasoning by contradiction, one
assumes that there exists an unstable root z0 = x + ι̇ ω ∈
R+ + ι̇R+ of ∆̃. Then, the integral representation yields∫ 1

0
qµ(t) e−t z0 dt = 0 and, taking the imaginary part, we

get
∫ 1

0
qµ(t) e−t x sin(ω t) dt = 0. Now, the frequency bound

0 < ω ≤ π of the previous step entails that the function
t 7→ qµ(t) is strictly positive in (0, 1), thereby contradicting
the last equality. This ends the proof.

It should be mentioned that Proposition 11 can be proven
by using the argument principle as done in [42]. However,
the proof we propose is shorter and constructive.

Remark 12: By Proposition 11, the triple root at λ = λ0 is
the rightmost root of (29). Thus the delay, if seen as a tuning
parameter, allows to assign the rightmost root at λ = λ0

arbitrarily large (in absolute value) for small delay.
Remark 13: A careful reading of the proof of the above

result leads to the following interesting observation: the
increase of the truncation order of the exponential term
(see Algorithm 1) allows to enlarge the validity domain on
the parameter µ, and as a result this allows to enlarge the
rightmost root assignability region.



V. CONCLUSION

This paper discusses the spectral abscissa of linear time-
invariant dynamical systems represented by delay-differential
equations. It exploits the existing links between spectral val-
ues of intermediate admissible multiplicity for a quasipoly-
nomials and the distribution of zeros of linear combinations
of Kummer confluent hypergeometric functions. It proposes
a delayed control design methodology allowing the closed-
loop system’s solution to obey a prescribed decay rate, open-
ing perspectives in concrete applications including, among
others, vibration control (see, e.g., [43]). In particular, the
proposed methodology is illustrated through the stabilization
problem of both the classical and the inverted pendulums.
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belsi, “Multiplicity-induced-dominancy in parametric second-order de-
lay differential equations: analysis and application in control design,”
ESAIM Control Optim. Calc. Var., vol. 26, pp. Paper No. 57, 34, 2020.

[43] I. Boussaada, S. Tliba, S.-I. Niculescu, H. U. Ünal, and T. Vyhlı́dal,
“Further remarks on the effect of multiple spectral values on the
dynamics of time-delay systems. Application to the control of a
mechanical system,” Linear Algebra Appl., vol. 542, pp. 589–604,
2018.


