N

HAL

open science

Repairing Real-Time Requirements

Reiya Noguchi, Ocan Sankur, Thierry Jéron, Nicolas Markey, David Mentré

» To cite this version:

Reiya Noguchi, Ocan Sankur, Thierry Jéron, Nicolas Markey, David Mentré. Repairing Real-Time
Requirements. ATVA 2022 - 20th International Symposium on Automated Technology for Verification
and Analysis, Oct 2022, Beijing, China. pp.1-16. hal-03777464

HAL Id: hal-03777464
https://hal.science/hal-03777464

Submitted on 14 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03777464
https://hal.archives-ouvertes.fr

Repairing Real-Time Requirements*

Reiya Noguchi'?, Ocan Sankur®
Thierry Jéron?, Nicolas Markey?, and David Mentré?

! Mitsubishi Electric Corporation, Tokyo (Japan)
lastname.firstname@ah.MitsubishiElectric.co. jp
2 Mitsubishi Electric R&D Centre Europe, Rennes (France)
initial-of-firstname.lastname@fr.merce.mee.com
3 Univ Rennes, Inria, CNRS, Rennes (France)
firstname.lastname@inria.fr

Abstract. We consider the problem of repairing inconsistent real-time
requirements with respect to two consistency notions: non-vacuity, which
means that each requirement can be realized without violating other ones,
and rt-consistency, which means that inevitable violations are detected
immediately. We provide an iterative algorithm, based on solving SMT
queries, to replace designated parameters of real-time requirements with
new Boolean expressions and time constraints, so that the resulting set
of requirements becomes consistent.

1 Introduction

Requirements play an important role in the design of real-time systems. These
allow one to specify desired properties for the system under development at
an early stage, and can be used to guide testing and formal verification [26].
While basic requirements focus on the relation between the inputs and outputs
of the system, extrafunctional properties such as timing constraints are crucial
for describing the behaviors of real-time systems.

It is thus important to design formal requirements that are consistent, that is,
that avoid contradictions and admit implementations. Several works have focused
on providing tools to define, combine, and study specifications [§]; others have
defined various notions of consistency, e.g. [14, 27, [28], which are used to detect
conflictual requirements that are impossible to satisfy in an implementation
according to given criteria.

While several works have focused on checking the consistency of requirement
sets, or applying formal verification on requirements, we are interested in repairing
a given requirement set that is inconsistent, in order to turn it into a consistent set.
Repairing an unsatisfactory model or program is an active research area. It consists
in building expressions that fit a given data set to fill unknown expressions in
programs. Various techniques such as constraint solving, decision tree learning,
or search algorithms are used for repairing programs [3, [16]. We believe that

* This work was partially funded by ANR project Ticktac (ANR-18-CE40-0015).

requirements are a good target for repair algorithms as they can assist the user
in correcting unsatisfactory requirement sets in an early stage. In this paper, we
provide repair algorithms tailored for the consistency of real-time requirements.

We consider two consistency notions from the literature. The first one is the
non-vacuity of a requirement set, studied in temporal logic model checking [22]
but also in requirement verification [28]. This line of work was inspired by the
observation that formulas of the form a — b might hold in a given model simply
because a never becomes true. Thus, such a formula is vacuously satisfied, which
indicates an error, either in the design of the model or in the specification.
Intuitively, when all requirements are such implications, a requirement set is
non-vacuous if the premise of each requirement is satisfied by some execution
which does not fail the other requirements.

We consider requirements expressed as Simplified Universal Patterns (SUPs
for short) [9, [29], which are patterns defining real-time temporal properties, and
are in the form of a logical implication with time constraints: in each requirement,
completing a given trigger phase implies the realization of a corresponding
action phase. Moreover, the action phase must start after a given time interval
following the trigger, and phases are given durations with time intervals. Due
to this form, non-vacuity is easy to define and to interpret: the trigger phase of
each requirement must be realized by some execution which does not fail other
requirements. SUPs can be expressed as timed automata, and our algorithms
can be easily extended to general timed automata [2] as in [I§]. We do focus on
SUPs here for their simplicity, and because non-vacuity can be defined naturally
due to their form. They are expressive enough to write complex specifications,
including the benchmarks we consider in Section

The second consistency notion we consider is rt-consistency [27]. This requires
that all finite executions that satisfy all requirements (i.e., do not violate any
of them) admit infinite extensions that still satisfy all the requirements. Put
differently, this means that if an implementation produces a finite execution
whose all continuations necessarily lead to the failure of some requirement, then
there must be a requirement that already fails at the said finite execution:
the inevitability of an error must be anticipated by the set of requirements. It
can be shown that rt-consistency is not a linear-time property; it was expressed
using a CTL formula in [I8]. It can be observed that adding a requirement to the
set can remove rt-inconsistencies, since, intuitively, the new requirement can be
made to imediately fail whenever the error is inevitable in the future. However,
this must be done with care since adding a requirement might also introduce new
rt-inconsistencies and render some other requirements vacuous.

Our main result is an algorithm that, given a requirement set and some
designated parameter set M (time constraints and/or Boolean expressions that
appear in requirements), attempts to compute new values for the parameters in M
such that the new requirement set is rt-consistent and non-vacuous. Our algorithm
is iterative: at each iteration, we solve an SMT query to compute candidate
values for the parameters, and check whether non-vacuity and rt-consistency
hold. When this is not the case, we derive a new constraint to add to the SMT

query and start again. The new constraint either forces one of the requirements
to be satisfied non-vacuously, or it excludes a counterexample to rt-consistency.
We apply our algorithm to several benchmarks including four case studies
that have appeared in the literature, and anonymized benchmarks from [23].
In each case, we considered manually-introduced rt-inconsistencies and focused
on two uses: repairing the requirement set by adding a fresh requirement; and
repairing the set by modifying the parameters of a designated requirement.

Related Works. Verification algorithms for non-vacuity and rt-consistency were
given in [23] based on a reduction of the problems to a safety verification problem,
and using a software model checker. Due to efficiency constraints, the presented
results are obtained using a partial check: the rt-consistency is checked only for
pairs of real-time requirements; nonetheless, the method can also be applied to
consider the whole set.

Our approach is similar to program repair [3], [16] where some techniques are
also based on using solvers to find expressions subject to given constraints. The
main difference of such lines of work with ours is that correctness is defined based
on non-vacuity and rt-consistency rather than on the acceptance of given test
cases, or on the model checking of the program w.r.t. a specification.

Repairing real-time systems has been considered recently. In [I9] [20], the au-
thors provide an iterative algorithm that finds a timed diagnostic trace in a timed
automaton using a model checker, and use an SMT solver to compute modifi-
cations in the guards of the automaton. To ensure that the new automaton is
satisfactory, they check for untimed language equivalence (which is EXPSPACE-
complete [I3]). Their tool enumerates all possible repairs until one passes this
equivalence test. In [4], the authors use parameter synthesis to find new values of
guards and validate with testing. Guard relaxation for ensuring a reachability
property is studied in [7].

Several algorithms for temporal logics rely on a given labeling of input signals:
the goal is to compute parameter values so as to reject some set of inputs signals,
and accept some others; see [211, [I1] [I5] for signal temporal logic. The problem
of synthesizing parameters for metric temporal logic formulas for a given hybrid
system was studied in [30]; see also [5] for a statistical learning procedure. In [25],
the goal is to compute a formula that accepts a given set of positive traces, and
rejects given negative traces. The algorithm also uses a SAT solver to guess the
formula as a DAG of size n, and increases n until a solution is found. In our case,
we restrict to requirements with propositional formulas in conjunctive form, which
simplifies their encodings.

2 Preliminaries

Traces. We fix a set AP of atomic propositions that represent Boolean inputs
and outputs of the system. A wvaluation of AP is a mapping vap: AP — {T, L}
(or equivalently an element of 2A7). We write B(AP) for the set of Boolean
combinations of atomic propositions in AP. That a valuation vap satisfies a
formula ¢ € B(AP), denoted by vap = ¢, is defined in the usual way.

A (finite) trace o is a sequence of valuations, and its length is denoted
by |o|. Traces are seen as elements of (2AP)*. The prefir of length i of the
trace 0 = 0103 ...0, is denoted by o1, ; = 0102 ...0;.

Timed automata. We use timed automata (here with a discrete-time semantics)
to model and reason about timed requirements.

Let X = {¢; | 1 < i < k} be a set of variables called clocks. We consider
integer-valued clocks. For a valuation vy: X — IN (equivalently an element
of N%), an integer d € IN, and a subset of clocks R C X, we define vy + d
as the valuation (vy + d)(¢) = vx(c) +d for all ¢ € X, and vy[R + 0] as
vy[R < 0](c) =0 if c € R, and vx[R < 0](c) = vx(c) otherwise. Let 0 be the
valuation mapping all variables to 0.

The set of clock constraints over X is defined by the grammar: g :=c ~n |
gAg, where c€ X, n € N, and ~ € {<,<,=,>,>}. Let C(X) denote the set of
all clock constraints over X'. The semantics of clock constraints is defined in the
expected way: given a clock valuation vy: X — N, a constraint g € C(X) is true
at vy, denoted vy = g, if the formula obtained by replacing each occurrence of ¢
in g by vy(c) holds.

We consider timed automata over the alphabet of valuations of AP,
thereby generating (discrete-time) traces. Transitions are labelled with Boolean
constraints on AP.

A timed automaton (TA) is a tuple A = (S, so, AP, X, T, F) where S is a finite
set of states, sop € S is the initial state, AP is a finite set of atomic propositions,
X is a finite set of clocks, T C S x B(AP) x C(X) x 2% x S is a finite set of
transitions, and F' C S is the set of accepting states.

We endow timed automata with a discrete-time semantics, as follows. With a
timed automaton A, we define the infinite-state automaton S(A) = (Q, qo,
D,Qr) over 27 where Q = S x NV, qo = (50,0), Qr = F x N is the set of
accepting configurations, and transitions in D are combinations of a transition
of the TA and a one-time-unit delay. Formally, given a valuation vap € 27 and
two configurations (s,vy) and (s, v%), there is a transition ((s,vx), vap, (8", V%))
in D if, and only if, there is a transition (s, ¢, g,r,s’) in T such that vap = ¢
and vy = g, and vy = (vx[r < 0]) + 1;

Our semantics thus makes it compulsory to take a transition of the TA
(possibly a self-loop) at each time unit. This can be used to emulate invariants in
states. The automaton S(A) can be rendered finite by bounding the clocks since
the exact values of clock variables above a threshold do not matter (see [2]).

A run of A is a run of its associated infinite-state automaton S(.A). It can
be represented as a sequence along which configurations and actions alter-
nate: (sg,v0) 01 (81,v1) 02+ (Sp,vpn) -+ A finite run is accepting if it ends
in Qp. A trace 0 = (0;)1<i<n is accepted by A if there is an accepting run
(so,v0) - 01 (51,v1) - 02+ -+ (Sn,vp) in A.

We only consider safety TAs, i.e., TAs in which there are no transitions
from S\ F to F. Under such a condition, a run is accepting if, and only if,
it never visits any non-accepting state. This simplifies the presentation but a
richer set of properties could be handled as in [18].

2AP

Simplified Universal Patterns. Simplified Universal Patterns (SUPs) [9], 29] are
a simple and convenient formalism for expressing requirements. They are more
intuitive, but less expressive, than TAs.

An SUP requirement has the following form:

[Lmin,Lmax]

(TSE, TC, TEE)[Tmin, Tmax] ———— (ASE, AC, AEE)[Amin, Amax],

where F;, = {TSE, TC, TEE, ASE, AC, AEE} is the set of Boolean parameters(See
Figure 1| for the meaning of acronyms), which are Boolean formulas on AP, and
Fi = {Lmin, Lmax, Amin, Amax, Tmin, Tmax} is the set of time parameters,
which are integer time bounds. Their union is F = F, U F;. We only consider
bounded intervals.

Figure [1| illustrates the intuitive semantics of SUPs. A trigger phase (left) is
realized, if TSE occurs and is confirmed within a duration in [Tmin, Tmax], that
is, if TC holds until TEE occurs; otherwise the trigger is aborted. For the SUP
instance to succeed, following each realized trigger phase, an action phase must
be realized: an action phase starts with ASE within [Lmin, Lmax] time units
after the end of the trigger phase, and AC must hold until AEE occurs within
[Amin, Amax] time units. Otherwise, the SUP is failed.

The semantics of (generic) SUPs can be encoded using timed automata [0].
These automata are defined over states Qgup = {init, trig, delay, act, err} with err
the only state not in F'. Intuitively, the execution starts at init, it is at trig if
the trigger phase is being checked; at delay if the trigger was realized but the
subsequent action has not started yet; at act if the action phase is being checked;
from delay or act, either err is reached and the SUP is failed, or init is reached
and the SUP succeeds. Note that similar automata definitions were previously
given [6].

An SUP instance can be defined as a valuation P of parameters in F, i.e.,
a valuation of each Boolean parameter of F;, by a formula in B(AP), and each
time parameter of F; by an integer. We then write SUP(P) for the SUP with
parameters defined by P, and Agyp(p) for the timed automaton corresponding
to SUP(P). Given such a P and f € F, Py refers to the value of the parameter f
in P.

The sets of SUP requirements we consider will always be assumed to be
indexed, and will be written in the form (SUP(P'))i<i<n. Thus P} will refer

Trigger Trigger Action Action
Start Event End Event Start Event End Event
(TSE) (TEE) (ASE) (AEE)

Trigger Condition (TC) delay in Action Condition (AC)

[duration in [Tmin, Tmax]| [Lmin, Lmax] duration in [Amin, Amax]

I Trigger phase ! ! Action phase !

I } } } }

Fig. 1. Intuitive semantics of SUPs

to the value of the parameter f in P?. We will also consider subsets of indezed
parameters {(f,i) | f € F,1 <1i < n} to refer to a subset of the parameters.

Ezample 1. Consider a flashing light which can blink with a period of 20 time
units. The variable blink determines whether the blinking mode is active, and
on indicates that the light is currently on.

Ry : (on, true, true)(0,0] 100, (true, on, —on)[10, 10]
Ro: (—on, —on, —on A blink)[9, 9] ﬂ) (true, true,on)0, 0]

R, means that when the light turns on, it will remain on for 10 time units,
and then turn off. Ry states that if the light has been off for 9 time units, and
the blinking mode is active, then it should turn on at the next time unit.

If we write Ry = SUP(P') and Ry = SUP(P?), then for instance, Piqp is
the formula —on, and P} . = 10.

In the rest of the paper, we only consider timed automata that correspond
to SUPs; and the term requirement interchangeably refers to an SUP or to its
timed-automaton representation.

A trace o is said to trigger an SUP requirement SUP(P), if the trigger phase
is realized by reading o, that is, if TSE is observed and, within a period in
[Tmin, Tmax], TC holds until a point where TEE is true.

A finite or infinite trace o satisfies the SUP if the state err is never reached
in Agyp(py by reading o; this is denoted by o = SUP(P). If err is reached,
then o fails SUP(P) and we write o = SUP(P). For a set of requirements R =
(SUP(P?))1<i<n, we write o = R if o satisfies all requirements in R. Symmetri-
cally, we write o £ R if o fails at least one of the requirements in R. Note that
since we consider bounded time intervals, when a trace triggers a requirement R,
all extensions will eventually either realize the action phase or fail R.

RT-Consistency. We recall rt-consistency, introduced in [27] and further studied
in [I8]. Put simply, a set R of requirements is rt-consistent if all finite traces that
do not fail R admit infinite continuations that satisfy R. In other terms, at any
finite trace where failure is inevitable, some requirement must already be failed.

For a requirement set R, and trace o, we write o I-fails R if for all infinite
traces o', o - o’ £ R. RT-consistency can then be expressed as follows:

Definition 1 (RT-consistency). A set R of requirements is rt-consistent if,
for any finite trace o, if o I-fails R, then o = R. A witness to rt-inconsistency
then is a finite trace o such that o I-fails R and o = R.

Thus a witness is a finite trace that satisfies all requirements but whose all infinite
continuations fail some of the requirements.
A simpler characterization of rt-inconsistency was proven in [I8]:

Theorem 1 ([18]). A set R of requirements is rt-inconsistent if, and only if
there exists a trace o such that o |= R, and for any valuation a € 2°F, ca [~ R.

Ezample 2. We consider the requirements R; and Ry from Example We
add an atomic proposition lowBattery, and consider the new requirement

R3: (LowBattery, true, true)|0, 0] 100, (true, —on, true)[50, 50],

which requires to switch off the lights for 50 time units if the battery is detected
to be low. The set R = {R1, Ra, R3} of requirements is rt-inconsistent. In fact,
the finite trace ¢ = {lowBattery} -0 -...- (- {blink} of length 9 does not fail
any of the requirements, so o = R. But all extensions of ¢ fail R. In fact, by Ra,
on must be true in the next state; while by R3, on must be false. Thus, o is
a witness to the rt-inconsistency of R. One could repair this rt-inconsistency

by forcing the value of blink to false for 50 time units whenever lowBattery

is true: Ry: (lowBattery, true, true)[0,0] M (true, —blink, true)[50, 50], so

that R U {R4} is rt-consistent.

Non-vacuity. We define the non-vacuity of a set of requirements, which states
that each requirement must be triggered by some trace without failing any
requirement. This notion is closely related to non-vacuity in temporal logic,
where an implication of the form a — b is said to be satisfied vacuously if
a is never satisfied in the given system [22]. SUP requirements are similar to
implications since the realization of a trigger phase implies the non-violation of
the action phase. Intuitively, a requirement that is impossible to trigger points
to a bug in the set of requirements, and a good set of requirements must be
non-vacuous.

For R € R, we say that R is non-vacuous in R if there exists a trace that
satisfies R and triggers R; otherwise R is vacuous in R.

Definition 2 (Non-vacuity). A set R of SUP requirements is non-vacuous if
for each R € R, there exists a trace that satisfies R and triggers R.

Ezxample 3. Consider again requirements Ry, Ry. Assume that the designer wants
to allow a user to maintain the light on manually by pushing a button, but wants
blinking to be deactivated if the user has been pushing the button for 20 time
units, expressed as

RY: (on,on, on)[20, 20] Eﬂ) (true, true, —-blink)[0,0].

However, the set { Ry, Ra, R;} is vacuous: in fact, R} can never be triggered since
according to R;, maintaining on for 10 time units switches the light off. Thus,
% is useless. To fix this issue, the designer can introduce a predicate button
determining whether the button is being pushed, require R;, Re under condi-
tion —button, and trigger R3 if button A on has been true for 20 time units.

Conjunctive Formulas and Substitutions. Although we allow the parameters of
SUP requirements to be arbitrary Boolean expressions, we will only synthesize
parameters that are conjunctive formulas when repairing requirements. We show
here how synthesizing a conjunctive formula can be seen as choosing an integer

valuation for a set of fresh variables. This will allow us to use an SMT solver for
finding repairs.

Let us fix a requirement set R = (SUP(P?))1<i<n, and a subset of modifiable
indexed parameters M C {(f,7) |1 <i <mn, f € F}. For (f,i) € M, define APy,
as the set of fresh integer variables x;; for x € AP as follows:

— For f € Fy, the value of z; encodes how x should appear in the conjunctive
formula for f in P': as a positive literal (1), as a negative literal (-1), or
absent (0). We define the template for (f,i) as

tmp(f, l) = /\weAP([-Tf,i = 1] = x) A\ ([.Z'f)i = —1] = —\(L‘).

A substitution £ : APy ; — {—1,0, 1} simplifies this formula into a conjunctive
formula over AP, so looking for such a conjunctive formula is reduced to
looking for a valuation over the variables in AP¢ ;. The conjunctive formula
thus obtained is denoted tmp(f,%)[¢]. Conversely, any conjunctive formula
over AP can be obtained from a template formula by such a substitution.

— For f € F,, we define tmp(f,i) = zs;, and consider substitutions which
replace variables z; with natural numbers.

Let us define APy, = U{(f’i)eM} AP ;. Given R and M, a substitution will refer
to a function that is the union of substitutions for all parameters in M (including
both timed and Boolean). We denote by tmp,,(R) the template requirement set
in which each parameter value P} with (f,4) € M is replaced with tmp(f,%);
and for a substitution &, tmp,,(R)[{] denotes the requirement set obtained by
applying the given subtitution to all templates.

Ezample 4. Consider the following requirements R = { Ry, Ro}.

Ry: (on, true, true)[0,] 100, (true, on, [1)[10, 10]
Ry: (—on, —on,)[9, 9] 1, (true, true,on)[0,0]

with AP = {on,blink}, and consider M = {(AEE, 1), (TEE, 2), (Tmax, 1)} (i.e.,
AEE and Tmax in R; and TEE in Rs). Placeholders for parameters in M are
shown as [J. We have, for instance,

tmp(AEE, 1) = ([onagg,1 = 1] = on) A ([onagg,1 = —1] = —on)
A ([blinkagg; = 1] = blink) A ([blinkagg,; = —1] = —blink)

The substitution defined by {(onagg1) = —1, {(blinkagg,1) = 0, {(onTEr2) =
—1, {(blinkrgg2) = 1, and {(tTmax,1) = 0, yields tmp(AEE, 1)[{] = —on and
tmp(TEE, 2)[¢{] = —on A blink and tmp(Tmax, 1)[¢] = 0. . Thus, tmp,,(R)[{] is
the following:

Ry : (on, true, true)[0,0] 100, (true, on, —on)[10, 10]
Ry: (—on, —on, —on A blink)[9, 9] ﬂ) (true, true,on)0, 0]

3 Repair Algorithm

Let R = (SUP(P"))1<i<n denote a set of SUP requirements and suppose that
it is either vacuous or rt-inconsistent. Given M C {(f,i) |1 <i<n, f € F} of
indexed parameters of R, we want to render R rt-consistent and non-vacuous by
replacing the parameters in M by fresh conjunctive formulas or time bounds.

Definition 3 (ReqFix). Given a set R = (SUP(P?))1<i<, of requirements, and
a subset M C {(f,i) | 1 < i < n,f € F}, find a substitution £ such that
R’ =tmpy, (R)[€] is non-vacuous and rt-consistent.

Thus, our goal is to repair the given requirements by modifying the allowed
set M of parameters. The most general use of the algorithm is to let the user
identify the set M. This can be based on their expertise, while we discuss
automatizing the choice of M using rt-inconsistency or vacuity proofs in Section 5}

We will also consider a particular use of the algorithm. Notice that some
rt-inconsistencies can be repaired by adding a new requirement as we saw in
Example [2l The ReqFix problem can be instantiated to add a new requirement
as follows. Let trivial denote the SUP requirement where all Boolean parameters
are T, and all time parameters are 0. This requirement is trivially satisfied.
We add the trivial requirement to R, and let M be the set of all parameters of
trivial. Note however that vacuity cannot be repaired by a new requirement, so
this only applies to rt-inconsistency.

3.1 Checking Non-Vacuity and rt-Consistency

For a finite trace o € (2A)*, let trig, (R) denote a propositional formula that
is true if, and only if, o has triggered R. This formula guesses the execution
of the SUP automaton on the trace o and constrains it to visit the state delay.
Similarly, a propositional formula can be built for o =R (as well as for o £ R)
by guessing an execution on the automata corresponding to each R € R and
constraining these to end outside of err (resp. at err).

We perform non-vacuity checking for a requirement R € R as a bounded
search for a trace that triggers R without failing R.

Definition 4. For a given set of requirements R, R € R, and bound o > 0,
define nonvac(R,R) as 3o € (2871 ... 2APa) trig (R) Ao = R.

Notice that each 2AP defines the valuation at the i-th step. This is thus a
partial check since the bound « needs to be fixed. Notice that even though o
triggers R and o = R, it might be that no infinite extensions of such a o satisfy R;
nonetheless, since we also ensure that R is rt-consistent, such an extension will
be guaranteed to exist. If nonvac(R,R) is true, then one can query the solver for
a witness trace o triggering R and satisfying R.

We will use template variants of the above formulas: trig, (tmp,,(R)), 0 =
tmpy (R), o = tmpy, (R), nonvac(tmpy, (R), tmp,,(R)). These simply consist in
replacing formulas corresponding to parameters in M by templates. The set of free

variables of the latter formulas is APj;. As in Section [2} applying a substitution
for APj; determines the truth value of each formula.

This allows us to constrain substitutions & we want to compute. For instance,
if we want £ to define a new requirement set tmp,,(R)[¢] that is satisfied by a
given trace o, and in which R € R is non-vacuous, we can check the satisfiability
of o = tmp,;(R) A nonvac(tmp,, (R),tmp,,(R)), and choose £ as a model of this
formula. We generalize this idea into an algorithm in the next section.

To check rt-consistency, one can use, as a black box, any algorithm given in
[27, 23, [18]. Here, we consider a bounded model checking approach and look for
an rt-inconsistency witness of bounded length using an SMT solver, following
the formulation of Theorem [I| This approach only gives partial guarantees, it
improves the performance while ruling out any counterexample of a given length.
A sound and complete algorithm from [23] [I8] can be used instead to make the
check complete.

3.2 Algorithm for ReqFix

Consider R = SUP(P;), «;«,, and a subset M of indexed parameters. Let Rys C R
be the subset of requirements with parameters in M, and Ry = R \ Ras. That
is, only Rj; has modifiable parameters.

The algorithm consists in guessing conjunctive formulas for parameters in M,
that is, a substitution £ that satisfies a set of constraints C that we iteratively
build. If the guessed substitution £ yields a non-vacuous and rt-consistent require-
ment set, then we return tmp,,(R)[{] as the new requirement set. Otherwise,
the algorithm derives new constraints to add to C and iterates.

Assume that R is vacuous, that is, there exists R € R which cannot be trig-
gered. Then, the substitution £ we are looking for must be such that tmp,,(R)[¢]
is non-vacuous in tmp,,(R)[¢], that is, we must add the following formula to C:
nonvac(tmpy, (R)[¢], tmpy, (R)[E])-

Assume that R is rt-inconsistent, ¢ is an rt-inconsistency witness.

1. If o is an rt-inconsistency witness for Rz, since we can only modify Ry,
then we need tmp,;(Rar)[€] to rule out o, that is, o must fail tmp,,(Rar)[£].
We thus add o [~ tmp,,(Rasr) to the constraint set C.

2. If o is not an rt-inconsistency witness for Ry, then o can be extended without
failing Rz, but these extensions lead to failure in Rjs. In order to rule out
the witness o, tmp,;(Rar)[¢] must be such that either o is rejected (i.e., o [~
tmp,s (Rar)[€]), or o admits a one-step extension that satisfies tmp,,(R)[¢].
This constraint on § is written as o = tmp,,(Rar) V ext, (tmpy,(R)), where
ext, (tmp,;(R)) = Ja € 2°P. 0 - a |= tmp, (R).

The following lemma shows that the constraints added in the two cases
described above are necessary in order to rule out the rt-inconsistency witness.

Lemma 1. Let o be an rt-inconsistency witness for R.

1. If 0 is an rt-inconsistency witness in Ry, then Jor all requirement sets R’
with o =R/, o is an rt-inconsistency witness in Ry UR'.

10

2. If o is mot an rt-inconsitency witness in Rz, then for all requirement sets R’
with o = R’ A —ext,(Ryp UR'), o is an rt-inconsistency witness in Ry UR'.

Algorithm. The full procedure is described in Algorithm [I] Its inputs are a
set R of requirements, and a subset M of indexed parameters of R. For any
propositional formula @, we denote by SAT(P) the satisfiability check which
returns either true and a model for @, or false.

The algorithm starts with a vacuity check inside the set Ry, on line |2} if
R itself is vacuous, then R cannot be repaired and the algorithm rejects.
We maintain a set of constraints C, which contains non-vacuity constraints of the
form nonvac(tmp,,(R),tmp;,(R)) and constraints of the forms o }= tmp,,(Rar),
o = tmpy (Rar) and o f= tmpy, (Ras) V exty (tmpy, (R)). Recall that the set of
free variables of these formulas is AP, so a model for the query on line [5| defines
a substitution &, and thus a new requirement set tmp,,(R)[¢].

On line |7} we check if Ry UR), is vacuous, and then identify a requirement R
that cannot be triggered without violating Ry U R’,;. We necessarily have R €
R, since all requirements in Ry, are non-vacuous as they satisfy C. We find
a trace o that triggers R while satisfying R;. Such a trace o exists by line
but necessarily violates R},. We add o = tmp,;(Ras) to C, which ensures that
subsequent iterations will make sure that o triggers R without violating R,.

If Ry U R, is non-vacuous, then we check its rt-consistency. If it is rt-
consistent, then the algorithm has succeeded, and we return R s UR},. Otherwise,
we consider a witness ¢ to rt-inconsistency. We distinguish two cases as above:
On line we check if ¢ is already a witness to the rt-inconsistency of Ry,
in which case we add the constraint o & (tmp,;(Rar)). Otherwise, we add
o = tmpy (Rar) Vexte (Rar Utmp,, (R)).

Observe that if the query on line [5|is unsatisfiable, then the algorithm returns
“Unknown”, in which case the result is inconclusive. In fact, since the choice
of the non-vacuity constraints on Line [§| is arbitrary, the unsatisfiability of the
query does not imply the absence of solution. The algorithm could be rendered
complete using backtracking although we have not explored this direction.

Minimizing Distance. It may be desirable to compute a solution tmp,,(R)[¢]
that is syntactically close to R, so as to make a minimal number of changes
during the repair. To formalize this, let us define a distance between conjunctive
formulas. Let

Ay Ao ANl O N AL = [Supp({la, .. Y ® {0)],

where @ denotes the symmetric difference, and Supp is the set of variables ap-
pearing in the given set of literals. For instance, d(—on,on) = 1, and d(on A
blink, on) = 1. For two time bounds T', 7", we extend this definition to d(T,T") =
|T—T"|. The distance between two SUPs with parameters P and P’ is the weighted
sum of the distances of their parameters: d(P, P') = wy - > 7, d(Pf, P}) +wy -
Zfe}‘t d(Py, Pj’c) for given weights wy, w; > 0. Furthermore, given two SUP re-
quirement sets of the same size, R = (SUP(P?))1<;<, and R’ = (SUP(P"%))1<i<n,
define d(R,R’) = Y i, d(P*, P").

11

Input: A set R of SUP requirements, and parameter set M
1 Let Ry C R the set of those requirements that contain parameters in M,
and Ry = R\ R
2 if 3R € Ry. —nonvac(R, Rar) then
3 ‘ return Reject
4 C 4 Ager,, nonvac(tmp,(R), tmp,,(R))
5 while SAT(/\¢(M)ec ¢(M)) do
6 Let £ be a model of this formula, and let Ry, = tmp,,(Rar)[€]
7
8
9

if Ry U R is vacuous then

Choose R € R which cannot be triggered

Let o be a trace that triggers R and satisfies R/
10 C+ CU{o Etmpy(Rm)}
11 else if Ry URY, is ri-inconsistent then
12 Let o be an rt-inconsistency witness
13 if o is an rt-inconsistency witness for R then
14 ‘ C+CU{o FEtmpy(Ru)}
15 else
16 ‘ C + CU{o [~ tmpy (Rum) Vexte (R Utmpy (Ra))}
17 else
18 ‘ return Ry U Ry,

19 return Unknown

Algorithm 1: Algorithm for ReqFix.

In order to find the substitution that minimizes the distance between the
original requirement set and the new one, we use MaxSMT [10]. The query on
line |5 is considered a hard formula (that must be satisfied), and the following
are soft formulas (that may be satisfied or violated):

wp - Z (if (zy; # Zs;) then 1 else 0) + w, - Z |z —Zpq| <k,
(fi)eM:feF, (fii)eEM:feF;

for all 0 < k < m, for an appropriately chosen m, and weights wy,w; > 0,
where zy; € APy and the Zy; are constant values defining the substitution that
yields the original requirement set R. The MaxSMT solver returns a model that
satisfies the hard formulas, and satisfies a maximal number of soft formulas;
which means minimizing d(R,tmp;;(R)[¢])-

4 Experiments

We implemented our techniques in Python and applied it to four case studies
from the literature [12, [I7, 24] as well as to a set of anonymized benchmarks
from [23]. We manually introduced rt-inconsistencies by removing a requirement,
or by modifying the parameters of a requirement. The summary of the results are
shown in Table [Il We considered two applications of our algorithm. In the first
case, starting from an rt-inconsistent set, we looked for a repair by generating a

12

new requirement with the minimal number of literals and the least time bounds.
We call this the generation variant of our program. Notice that this consists in
minimizing the distance of the generated requirement to the trivial requirement.
In the second case, we selected the parameters of a requirement as the set M
to be modified, and looked for a repair that minimizes the distance of the new
requirement with the old one. We call this the modification variant of our program.
While the generation variant allowed us to find very simple repairs, these were
not always satisfactory. The second one yields repairs that are syntactically very
similar to the initial requirement, and were closer to the intended behavior in
the considered case studies. We provide a focus on two case studies below.
Blinking system. This case study corresponds to the behaviour of the turning
light indicator in a car [I7]. The pitman arm can be moved up or down to a first
position (5 degrees) to turn the indicator on for only 3 cycles; in each direction
(up and down), it can also be moved to a second position (7 degrees) where
the indicator remains on until the arm is moved back. We analyzed a set of 7
requirements, including the following one.

R : (downb, down5, ~down5)|[0, 3] B3, (—downb A ~down7, true, true)[0, 0],

which states that if the pitman arm is maintained down for less than 3 time units,
then it will automatically be on neutral position 5 time units later. We modified
this, by introducing a typo, into the following requirement in order to introduce
an rt-inconsistency:

R’ : (downb, down5, ~down5)[0, 3] LN (—downb, true, true)|0, 0],

and ran the modification variant of the algorithm to find a repair by modifying
the parameters of R’. A solution was found after 3 iterations and 12 seconds:

Ry : (downb, down5, ~down5)[0, 3] @) (—down5, true, ~down7)[0, 0],

which is semantically equivalent to R.
When we ran the generation variant of the algorithm to find a repair to the
set obtained by removing R altogether, we obtained the following requirement:

R;, : (true, true, true)[0,0] % (true, down7, —blink)[0, 6].

This requirement enforces that the blinking must be disabled every 6 time units,
while in the meantime, the pitman arm kept down by 7 degrees. While this
intuitively does not correspond to a desirable requirement, it does ensure the
rt-consistency and non-vacuity. In practice, one would perhaps need to allow the
user to inspect the repair and accept or reject, add constraints and ask for a new
repair. This could yield more satisfactory repairs for the generation variant.

Carriage line control. This example from [24] Appendix 4.20] represents a carriage
in charge of bringing a piece of material from a container to a conveyor. When
the carriage receives the piece of material, it moves forward to a place where an

13

Case study Size|Modification| Generation

time { #iter. | time {#iter.
Carriage line[24] 12| 24s 4 38s 11
Landing gear[12] 10| 14s 2 21s 6
Car light blink.[17] 6| 13s 4/13m47s 44
Cruise ctrl.[I7] 7 9s 4 12s 6
part1-04 13| 29s 11 21s 9
part1-05 14] 19s 4 47s 17
part1-06 16 17s 4 21s 10
part2-06 18 32s 11 48s 16
part2-07 24 43s 5 58s 12
part2-08 27 51s 4/ 1m8s 13
part2-10 80(3m47s 2| 2m39s 1
part3-02 26| 45s 5/ 1m3s 13
part3-04 13| 24s 8 21s 8
part3-05 26| 1m6s 9| 1m7s 13
part3-08 27|1mbH2s 10| 1m32s 19
part3-14 24| 3m8s 3/10mb5s 18
part3-16 22| TO - TO -

Table 1. Results of the benchmarks for two variants of the algorithm: the generation
variant repairs requirement sets by adding a fresh requirement; the modification require-
ment repairs by modifying the parameters of a designated requirement. The former
minimizes the number of literals and the size of the time bounds introduced, while the
latter minimizes the distance between the designated requirement and the new one.
The size column shows the number of requirements; the time column is execution time,
and %iter. column shows the number of iterations. A bound of o = 30 was used for
non-vacuity and rt-consistency checks.

arm will push the piece onto the conveyor, and then moves back to its original
location.

We described the behaviour of this system using 12 SUP requirements, of
which 6 involved timing constraints. As an example, we have the following SUP:

R : (fwd, true, true)[0,0] 1, (—bckwd, -bckwd, “bckwd Aright)[0, 20), stating
that when the carriage is at its forward position, then at the next step, it should
not be at the backward position until it starts moving right. This requirement
is used to model the physical environment: the carriage cannot be both on the
forward and backward limits, and it must start moving right before it can reach
the backward limit.

Modifying this requirement by introducing a typo as follows leads to an

rt-inconsistency. R’ : (fwd, true, true)[0, 0] 1, (—bckwd, —bckwd, true)[0, 20),

The modification variant of our tool computed the following repair: R :

(fwd, true, true)|0, 0] 1, (—bckwd, ~bckwd, ~push)|0, 20), which says that the
carriage cannot be in the backward position until the arm stops pushing the
object. This is slightly different than the original requirement R but it does
constrain the environment in a similar way. In fact, the idea of the system is that

14

the carriage must move right when the arm stops pushing, and Rj, says that
only then can the carriage reach the backward limit.

5 Conclusion

We believe that the practical application of requirement repair would be a tool
that assists the designer by suggesting repairs. The designer should be able to
either pick a suggested repair, suggest additional constraints and request different
repairs. Our program is currently a proof of concept and many additional features
would be required to turn it into such a tool.

One of the possible directions is to be able to choose the set M automatically.
This is possible in some cases, for instance, if nonvac(R,R) is not true, then one
can determine the set of parameters involved in its unsatisfiability proof, which
can be included in M (we know that at least one such parameter must be in M).
The choice of M with a similar method is less obvious for rt-consistency and will
be the subject of future work.

Another important direction would be the computation of solutions that are
close to the original requirement set semantically, for instance, minimizing the
number of traces that are accepted by one but not the other set.

References

[1] B. K. Aichernig et al. Require, test, and trace it. Int. Journal Software Tools for
Technology Transfer, 19(4):409-426, Aug 2017.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994.

[3] R. Alur et al. Search-based program synthesis. Commun. ACM, 61(12):84-93,
Nov. 2018.

[4] E. André et al. Repairing timed automata clock guards through abstraction and
testing. In Tests and Proofs, p. 129-146. Springer, 2019.

[5] E. Bartocci, L. Bortolussi, and G. Sanguinetti. Data-driven statistical learning
of temporal logic properties. In Formal Modeling and Analysis of Timed Systems
(FORMATS), p. 23-37. Springer, 2014.

[6] J. S. Becker. Analyzing consistency of formal requirements. In Automated Verifi-
cation of Critical Systems (AVoCS), 2019.

[7] J.Bendik et al. Timed automata relaxation for reachability. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), LNCS 12651, p. 291-310.
Springer, 2021.

[8] A. Benveniste et al. Contracts for system design. Foundations and Trends in
Electronic Design Automation, 12(2-3):124-400, 2018.

[9] T. Bienmiiller et al. Modeling requirements for quantitative consistency analysis
and automatic test case generation. In Workshop on Formal and Model-Driven
Techniques for Developing Trustworthy Systems, 2016.

[10] A. Biere, M. Heule, and H. van Maaren. Handbook of satisfiability. 10S press,
2009.

[11] G. Bombara et al. A Decision Tree Approach to Data Classification using Signal
Temporal Logic. In Hybrid Systems: Computation and Control (HSCC), p. 1-10,
Vienna, Austria, April 2016.

15

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]
[20]

21]

22]
[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

F. Boniol and V. Wiels. Landing gear system, 2014. https://www.irit.fr/
ABZ2014/landing_system.pdf.

R. Brenguier, S. Goller, and O. Sankur. A comparison of succinctly represented
finite-state systems. In Int. Conf. Concurrency Theory (CONCUR), LNCS 7454,
p- 147-161, Newcastle, UK, Sept. 2012. Springer.

C. Ellen, S. Sieverding, and H. Hungar. Detecting consistencies and inconsistencies
of pattern-based functional requirements. In Formal Methods for Industrial Critical
Systems (FMICS), p. 155-169. Springer, 2014.

M. Ergurtuna, B. Yalcinkaya, and E. A. Gol. An automated system repair
framework with signal temporal logic. Acta Informatica, p. 1-27, 2021.

C. L. Goues, M. Pradel, and A. Roychoudhury. Automated program repair.
Commaun. ACM, 62(12):56-65, Nov. 2019.

F. Houdek and A. Raschke. Adaptive exterior light and speed control system, 2021.
https://abz2021.uni-ulm.de/resources/files/casestudyABZ2020v1.17.pdf.
T. Jéron et al. Incremental methods for checking real-time consistency. In Int.
Conf. Formal Modeling and Analysis of Timed Systems (FORMATS), LNCS 12288,
2020.

M. Kolbl, S. Leue, and T. Wies. Clock bound repair for timed systems. In Int.
Conf. Computer Aided Verification (CAV), p. 79-96. Springer, 2019.

M. Kolbl; S. Leue, and T. Wies. Tartar: A timed automata repair tool. In Int.
Conf. Computer Aided Verification (CAV), p. 529-540. Springer, 2020.

Z. Kong et al. Temporal logic inference for classification and prediction from data.
In 17th Int. Conf. Hybrid Systems: Computation and Control (HSCC), p. 273-282,
New York, NY, USA, 2014. ACM.

O. Kupferman and M. Y. Vardi. Vacuity detection in temporal model checking.
Int. J. Softw. Tools Technol. Transf., 4(2):224-233, 2003.

V. Langenfeld et al. Scalable analysis of real-time requirements. In Int. Require-
ments Engineering Conf (RE), p. 234-244. IEEE, 2019.

Mitsubishi Electric Corporation. Mitsubishi programmable controller — Training
manual, 2012. https://dl.mitsubishielectric.com/d1l/fa/document/manual/,
school_text/sh081123eng/sh081123enga.pdf.

D. Neider and I. Gavran. Learning linear temporal properties. In 2018 Formal
Methods in Computer Aided Design (FMCAD), p. 1-10. IEEE, 2018.

K. Pohl. Requirements engineering: fundamentals, principles, and techniques.
Springer, 2010.

A. Post, J. Hoenicke, and A. Podelski. rt-inconsistency: a new property for real-
time requirements. In Fundamental Approaches to Software Engineering (FASE),
LNCS 6603. Springer, 2011.

A. Post, J. Hoenicke, and A. Podelski. Vacuous real-time requirements. In /IEEFE
Int. Requirements Engineering Conf. (RE), p. 153-162, Aug 2011.

T. Teige, T. Bienmiiller, and H. J. Holberg. Universal pattern: Formalization,
testing, coverage, verification, and test case generation for safety-critical require-
ments. In 19th GI/ITG/GMM Workshop Methoden und Beschreibungssprachen
zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV’16),
p- 6-9. Albert-Ludwigs-Universitit Freiburg, 2016.

H. Yang, B. Hoxha, and G. Fainekos. Querying parametric temporal logic properties
on embedded systems. In Testing Software and Systems, p. 136—151. Springer,
2012.

16

https://www.irit.fr/ABZ2014/landing_system.pdf
https://www.irit.fr/ABZ2014/landing_system.pdf
https://abz2021.uni-ulm.de/resources/files/casestudyABZ2020v1.17.pdf
https://dl.mitsubishielectric.com/dl/fa/document/manual/school_text/sh081123eng/sh081123enga.pdf
https://dl.mitsubishielectric.com/dl/fa/document/manual/school_text/sh081123eng/sh081123enga.pdf

	Repairing Real-Time Requirements

