Nathalie Bertrand

Nicolas Markey

Ocan Sankur

Nicolas Waldburger

Parameterized safety verification of round-based shared-memory systems

Keywords: 2012 ACM Subject Classification Theory of computation → Verification Keywords and phrases Verification, Parameterized models, Distributed algorithms Digital Object Identifier 10.4230/LIPIcs

We consider the parameterized verification problem for distributed algorithms where the goal is to develop techniques to prove the correctness of a given algorithm regardless of the number of participating processes. Motivated by an asynchronous binary consensus algorithm [3], we consider round-based distributed algorithms communicating with shared memory. A particular challenge in these systems is that 1) the number of processes is unbounded, and, more importantly, 2) there is a fresh set of registers at each round. A verification algorithm thus needs to manage both sources of infinity. In this setting, we prove that the safety verification problem, which consists in deciding whether all possible executions avoid a given error state, is PSPACE-complete. For negative instances of the safety verification problem, we also provide exponential lower and upper bounds on the minimal number of processes needed for an error execution and on the minimal round on which the error state can be covered.

Introduction

Distributed algorithms received in the last decade a lot of attention from the automated verification community. Parameterized verification emerged as a subfield that specifically addresses the verification of distributed algorithms. The main challenge is that distributed algorithms should be proven correct for any number or participating processes. Parameterized models are thus infinite by nature and parameterized verification is in general unfeasible [START_REF] Apt | Limits for automatic verification of finite-state concurrent systems[END_REF]. However, one can recover decidability by considering specific classes of parameterized models, as in the seminal work by German and Sistla where identical finite state machines interact via rendezvous communications [START_REF] German | Reasoning about systems with many processes[END_REF]. Since then, various models have been proposed to handle various communication means (see [START_REF] Esparza | Keeping a crowd safe: On the complexity of parameterized verification (invited talk)[END_REF][START_REF] Bloem | Decidability of Parameterized Verification[END_REF] for surveys).

Shared memory is one possible communication means. This paper makes first steps towards the parameterized verification of round-based distributed algorithms in the sharedmemory model; examples of such algorithms can be found in [START_REF] Aspnes | Randomized protocols for asynchronous consensus[END_REF][START_REF] Aspnes | Fast deterministic consensus in a noisy environment[END_REF][START_REF] Raynal | A Simple Asynchronous Shared Memory Consensus Algorithm Based on Omega and Closing Sets[END_REF]. In particular, our approach covers Aspnes' consensus algorithm [START_REF] Aspnes | Fast deterministic consensus in a noisy environment[END_REF] which we take as a motivating example. Shared-memory models without rounds have been considered in the literature: the verification of safety properties for systems with a leader and many anonymous contributors interacting via a single shared register is coNP-complete [START_REF] Esparza | Parameterized verification of asynchronous shared-memory systems[END_REF][START_REF] Esparza | Parameterized verification of asynchronous shared-memory systems[END_REF]; and for Büchi properties, it is NPcomplete [START_REF] Durand-Gasselin | Model checking parameterized asynchronous shared-memory systems[END_REF]. Randomized schedulers have also been considered for shared-memory models agreement properties hold unconditionally. Our objective is to develop automated verification techniques for safety properties, which include validity and agreement.

For a single round -corresponding to one iteration of the while loop-safety properties can be proved applying techniques from [START_REF] Esparza | Parameterized verification of asynchronous shared-memory systems[END_REF][START_REF] Esparza | Parameterized verification of asynchronous shared-memory systems[END_REF]. The additional difficulty here lies in the presence of unboundedly many rounds and thus of unboundedly many shared registers. Other settings of parameterized verification exist for round-based distributed algorithms, but none of them apply to asynchronous shared-memory distributed algorithms: they either concern fault-tolerant threshold-based algorithms [START_REF] Bertrand | Verification of randomized consensus algorithms under round-rigid adversaries[END_REF][START_REF] Bertrand | Guard automata for the verification of safety and liveness of distributed algorithms[END_REF], or synchronous distributed algorithms [START_REF] Lengál | Fair termination for parameterized probabilistic concurrent systems[END_REF][START_REF] Aiswarya | An automata-theoretic approach to the verification of distributed algorithms[END_REF].

Contributions

In this paper, we introduce round-based register protocols, a formalism that models roundbased algorithms in which processes communicate via shared memory. Figure 1

k = 0 ∨ read -1 b1 (⊤) k = 0 ∨ read -1 b0 (⊤) Inc Inc k > 0 ∧ read -1 b1 (⊥) k > 0 ∧ read -1 b0 (⊥) p = 0 p = 1
Figure 1 A round-based register protocol for Aspnes' noisy consensus algorithm. Since the first round (k = 0) slightly differs from the others, to avoid duplication of the state space, we allow for guards on round number k in the transition labels.

Round-based register protocols form a class of models inspired by register protocols [START_REF] Esparza | Parameterized verification of asynchronous shared-memory systems[END_REF][START_REF] Bouyer | Reachability in networks of register protocols under stochastic schedulers[END_REF][START_REF] Esparza | Parameterized verification of asynchronous shared-memory systems[END_REF], which were introduced to represent shared-memory distributed algorithms without rounds. In register protocols, states typically represent the control point of each process as well as the value of its private variables. For instance, the preference p of the process is encoded in the state space: in the top part, p = 0 and in the bottom part p = 1, as reflected by the states indices. To allow for multiple rounds and round increments, as in Line 10, we extend register protocols with a new action Inc that labels the transitions from state E p to state A p , for each preference p ∈ {0, 1}. The processes may read from the registers of the current round but also from those of previous rounds, so reads must specify not only the register identifier but also the lookback distance to the current round: for a process in round k, read -d bp (x) represents reading value x from register rg bp [k-d]. The validity and agreement properties translate as follows on the register protocols. For validity, one needs to check two properties, one for each common preference p ∈ {0, 1}. Namely, if all processes start in state A 0 (resp. A 1), then no processes can enter state R 0 (resp. R 1). Agreement requires that, independently from the initial state of each process

XX:4

Parameterized safety verification of round-based shared-memory systems in {A 0 , A 1 }, no executions reach a configuration with at least one process in R 0 and at least one process in R 1 . Both validity and agreement are safety properties.

After introducing round-based register protocols, we study the parameterized verification of safety properties, with the objective of automatically checking whether a configuration involving an error state can be covered for arbitrarily many processes. Our main result is the PSPACE-completeness of this verification problem. We develop an algorithm exploiting the fact that the processes may only read the values of registers within a bounded window on rounds. However, a naive algorithm focusing on the v latest rounds only is hopeless: perhaps surprisingly, we show that the number of active rounds (i.e., rounds where a non-idle process is in) may need to be as large as exponential to find an execution covering an error state. The cutoff i.e., the minimal number of processes needed to cover an error state, may also be exponential. The design of our polynomial space algorithm addresses these difficulties by carefully tracking first-write orders, that is, the order in which registers are written to for the first time. One of the main technical difficulties of the algorithm is making sure that enough information is stored in this way, allowing the algorithm to solve the verification problem, while also staying in polynomial space.

The rest of the paper is structured as follows. To address the verification of safety properties for round-based register protocols, after introducing their syntax and semantics (Section 2.1), we first observe that they enjoy a monotonicity property (Section 2.2), which justifies the definition of a sound and complete abstract semantics (Section 2.3). We then highlight difficulties of coming up with a polynomial space decision procedure (Section 3.1). Namely, we provide exponential lower bounds on (1) the minimal round number, (2) the minimal number of processes, and (3) the minimal number of active rounds in error executions.

We then introduce the central notion of first-write orders and its properties (Section 3.2). Section 3.3 details our polynomial-space algorithm, and Section 3.4 presents the complexitymatching lower bound. Due to space constraints, detailed proofs are in the appendix.

2

Round-based shared-memory systems

Register protocols with rounds

▶ Definition 1 (Round-based register protocols). A round-based register protocol is a tuple P = ⟨Q, q 0 , d, D, v, ∆⟩ where Q is a finite set of states with a distinguished initial state q 0 ; d ∈ N is the number of shared registers per round; D is a finite data alphabet containing d 0 the initial value and D \ {d 0 } the values that can be written to the registers; v is the visibility range (a process on round k may read only from rounds in

[k -v, k]); ∆ ⊆ Q × A × Q is the set of transitions, where A = {Inc} ∪ {read -i α (x) | i ∈ [0, v], α ∈ [1, d], x ∈ D} ∪ {write α (x) | α ∈ [1, d], x ∈ D \ {d 0 }} is the set of actions.
Intuitively, in a round-based register protocol, the behavior of a process is described by a finite-state machine with a local variable k representing its current round number; note that each process has its own round number, as processes are asynchronous and can be on different rounds. Moreover, there are d registers per round, and the transitions can read and modify these registers. Transitions in round-based register protocols can be labeled with three different types of actions: the Inc action simply increments the current round number of the process; action read -i α (x) can be performed by a process at round k when the value of register α of round k-i is x; finally, with the action write α (x), a process at round k writes value x to the register α of round k. Note that all actions read -i α (x) must satisfy i ≤ v; in other words, processes of round k can only read values of registers of rounds k -v to k.

For complexity purposes, we define the size of the protocol P = ⟨Q, q 0 , d, D, v, ∆⟩ as

|P| = |Q| + |D| + |∆| + v + d (thus implicitly assuming that v is given in unary).
Before defining the semantics of round-based register protocols, let us introduce some useful notations. For round number k, we write rg α [k] the register α of round k, we let Round-based register protocols execute on several processes asynchronously. The processes communicate via the shared registers, and they progress in a fully asynchronous way through the rounds. A location (q, k) ∈ Q × N describes the current state q and round number k of a process, and Loc = Q × N is the set of all locations. A configuration intuitively describes the location of each process, as well as the value of each register. Since processes are anonymous and indistinguishable, the locations of all processes can be represented by maps Loc → N describing how many processes populate each location. Formally, a concrete configuration is a pair γ = (µ, d) ∈ N Loc × D Reg such that (q,k)∈Loc µ(q, k) < ∞. We write Γ = N Loc × D Reg for the set of all concrete configurations. For a concrete configuration γ = (µ, d), the location multiset µ is denoted loc(γ) and the value d(k)(α) of register α at round k in γ is written data rg α [k] (γ). The size of γ corresponds to the number of involved processes: |γ| = (q,k)∈Loc µ(q, k). Configuration γ is initial if for every (q, k) ̸ = (q 0 , 0), loc(γ)(q, k) = 0, and for every register ξ, data ξ (γ) = d 0 . The set of initial concrete configurations therefore consists of all init n = ((q 0 , 0

Reg k = {rg α [k] | α ∈ [1, d]} denote
) n , d Reg 0). A register is blank when it still has initial value d 0 . The support of the multiset loc(γ) is supp(γ) = {(q, k) | loc(γ)(q, k) > 0}. Finally, for γ, γ ′ ∈ Γ, we write data(γ) = data(γ ′) whenever for all ξ ∈ Reg, data ξ (γ) = data ξ (γ ′).
The evolution from a concrete configuration to another reflects the effect of a process taking a transition in the register protocol. A move is thus an element θ = (δ, k) consisting of a transition δ ∈ ∆ and a round number k; Moves = ∆ × N is the set of all moves. For two concrete configurations γ, γ ′ , we say that γ ′ is a successor of γ if there is a move ((q, a, q ′), k) ∈ Moves satisfying one of the following conditions, depending on the action type:

(i) a = Inc, loc(γ)(q, k) > 0, loc(γ ′) = loc(γ) ⊖ (q, k) ⊕ (q ′ , k+1), and data(γ ′) = data(γ); (ii) a = read -i α (x) with x ∈ D, data rg α [k-i] (γ) = x, loc(γ)(q, k) > 0, loc(γ ′) = loc(γ) ⊖ (q, k) ⊕ (q ′ , k) and data(γ ′) = data(γ); (iii) a = write α (x) with x ∈ D \ {d 0 }, data rg α [k] (γ ′) = x, loc(γ)(q, k) > 0, loc(γ ′) = loc(γ) ⊖ (q, k) ⊕ (q ′ , k) and for all ξ ∈ Reg \ {rg α [k]}, data ξ (γ ′) = data ξ (γ).
Here, ⊕ and ⊖ are operations on multisets, respectively adding and removing elements. The first case represents round increment for a process and the register values are unchanged. The second case represents a read: it requires that the correct value is stored in the corresponding register, that the involved process moves, and that the register values are unchanged. By convention, here, if k -i < 0, i.e., for registers with negative round numbers, we let data rg α [k-i] (γ) = d 0 . Finally, the last case represents a write action; it only affects the corresponding register, and the state of the involved process. Note that in all cases, |γ| = |γ ′ |: the number of processes is constant. If γ ′ is a successor of γ by move θ, we write γ θ -→ γ ′ . A concrete execution is an alternating sequence γ 0 , θ 1 , γ 1 , . . . , γ ℓ-1 , θ ℓ , γ ℓ of concrete configurations and moves such that for all i, γ i θi+1 ---→ γ i+1 . In such a case, we write γ 0 * -→ γ ℓ , and we say that γ ℓ is reachable from γ 0 . A location (q, k) is coverable from γ 0 when there exists γ ∈ Reach(γ 0) such that (q, k) ∈ loc(γ 0), and similarly a state q is coverable from γ 0 when there exist k ∈ N such that (q, k) is coverable from γ 0 . Given a concrete configuration γ ∈ Γ, Reach c (γ) denotes the set of all configurations that can be reached from γ:

Reach c (γ) = {γ ′ | γ * -→ γ ′ }.
We are now in a position to define our problem of interest:

Safety problem for round-based register protocols Input: A round-based register protocol P = ⟨Q, q 0 , d, D, v, ∆⟩ and a state q err ∈ Q Question: Is it the case that for every n ∈ N, for every γ ∈ Reach c (init n) and for every round number k, loc(γ)(q err , k) = 0?

The state q err is referred to as an error state that all executions should avoid. An error configuration is a configuration in which the error state q err appears, and an error execution is an execution containing an error configuration. Given a protocol P and a state q err , in order to check whether (P, q err) is a positive instance of the safety problem, we will look for an error execution, and therefore check the dual problem: whether there exist a size n and a configuration γ ∈ Reach c (init n) such that for some round number k, loc(γ)(q err , k) > 0.

▶ Example 2. We illustrate round-based register protocols and their safety problem on the model depicted in Figure 2. This protocol has a single register per round (d = 1, and the register identifier is thus omitted), and set of symbols D = {d 0 , a, b}. Let us give two examples of concrete executions. State q 4 is coverable from init 1 with the sequence of moves:

π 1 = ⟨(q 0 , 0)⟩, rg[0]=d0 rg[1]=d0 ⟨q0,Inc,q2⟩,0 -------→ ⟨(q 2 , 1)⟩, rg[0]=d0 rg[1]=d0 ⟨q2,write(a),q3⟩,1 -----------→ ⟨(q 3 , 1)⟩, rg[0]=d0 rg[1]=a) ⟨q3,read -1 (d0),q4⟩,1 ------------→ ⟨(q 4 , 1)⟩, rg[0]=d0 rg[1]=a .
State q 6 is coverable from init 2 as witnessed by the concrete execution:

π 2 = ⟨(q 0 , 0), (q 0 , 0)⟩, rg[0]=d0 rg[1]=d0 ⟨q0,write(a),q1⟩,0 -----------→ ⟨(q 0 , 0), (q 1 , 0)⟩, rg[0]=a rg[1]=d0 ⟨q0,Inc,q2⟩,0 -------→ ⟨(q 2 , 1), (q 1 , 0)⟩, rg[0]=a rg[1]=d0 ⟨q2,read -1 (a),q5⟩,1 ------------→ ⟨(q 5 , 1), (q 1 , 0)⟩, rg[0]=a rg[1]=d0 ⟨q5,read 0 (d0),q6⟩,1 -----------→ ⟨(q 6 , 1), (q 1 , 0)⟩, rg[0]=a rg[1]=d0 .
However, it can be observed that no concrete execution can cover both states at the same round whatever the number of processes, thus preventing from covering q err . We justify this observation in Subsection 3.2. This example is a positive instance of the safety problem. ◀ ▶ Example 3. The validity of Aspnes' algorithm can be expressed as two safety properties, with A 0 (resp. A 1) as initial state, and R 1 (resp. R 0) as error state. Let us argue that the protocol of Figure 1 is safe for q 0 = A 0 and q err = R 1 ; the other case is symmetric. Towards a contradiction, suppose there exists an execution π :

init n * -→ γ 1 θ -→ γ 2 θ = ((B 0 , read 0 b1 (⊤), C 1), k) for some k, thus implying that data rg b 1 [k] (γ 1) = ⊤.
However, b 1 can only be written to rg b1 [k] by a process already in the bottom part, which contradicts the minimality of γ 2 .

To formally encode agreement of Aspnes' algorithm as a safety property, we make two slight modifications to the protocol from Figure 1. We add an extra initial state q 0 with silent outgoing transitions to A 0 and to A 1 ; we also add an error state q err that can be covered only if R 0 and R 1 are covered in a same execution. To do so, one can mimick the gadget at q 4 and q 6 in Figure 2, using an extra letter b ∈ D and adding Inc loops on both R 0 and R 1 , allowing processes to synchronize on the same round, before writing and reading b.

Checking validity and agreement automatically for Aspnes' algorithm requires the machinery that we develop in the rest of the paper. ◀

Monotonicity

Similarly to other parameterized models, and specifically shared-memory systems [START_REF] Esparza | Parameterized verification of asynchronous shared-memory systems[END_REF][START_REF] Bouyer | Reachability in networks of register protocols under stochastic schedulers[END_REF], round-based register protocols enjoy a monotonicity property called the copycat property.

Intuitively, this property states that if a location can be populated with one process, then, increasing the size of the initial configuration, it can be populated by an arbitrary number of them without affecting the behaviour of the other processes. Formally:

▶ Lemma 4 (Copycat property). Let q ∈ Q, k, n, N ∈ N and γ i , γ f ∈ Γ such that γ f ∈ Reach c (γ i) and (q, k) ∈ supp(γ f). Then there exist γ ′ i , γ ′ f ∈ Γ such that γ ′ f ∈ Reach c (γ ′ i) and: |γ ′ i | = |γ i | + N , supp(γ ′ i) = supp(γ i), and data(γ ′ i) = data(γ i); loc(γ ′ f) = loc(γ f) ⊕ (q, k) N and data(γ ′ f) = data(γ f).
The copycat property strongly relies on the fact that operations on the registers are non-atomic. In particular it is crucial that processes cannot atomically read and write to a given register, since that could prevent another process from copycating its behaviour.

By the copycat property, the existence of an execution covering the error state q err implies the existence of similar executions for any larger number of processes, which motivates the notion of cutoff. Formally, given (P, q err) a negative instance of the safety problem, the cutoff is the least n 0 ∈ N such that for every n ≥ n 0 there exist

γ n ∈ Reach c (init n) and k n ∈ N with loc(γ n)(q err , k n) > 0.
Another consequence is that any value that has been written to a register can be rewritten, at the cost of increasing the number of involved processes.

▶ Corollary 5. Let n ∈ N, π : init n * -→ γ 1 *
-→ γ a concrete execution and ξ ∈ Reg a register such that data ξ (γ 1) ̸ = d 0 . There exist n ′ ≥ n and a concrete execution π ′ : init n ′

Abstract semantics

The copycat property suggests that, for existential coverability properties, the precise number of processes populating a location is not relevant, only the support of the location multiset matters. As for registers, the only important information to remember is whether they still contain the initial value, or they have been written to (the support then suffices to deduce which values can be written and read). In this section, we therefore define an abstract semantics for round-based register protocols, and we prove it to be sound and complete for the safety problem.

Formally, an abstract configuration, or simply a configuration, is a pair σ ∈ 2 Loc ×2 Reg , with location support loc(σ) ∈ 2 Loc and set of written registers FW(σ) ∈ 2 Reg . We write Σ for the set 2 Loc × 2 Reg of all configurations. The (unique) initial configuration is σ init = ({(q 0 , 0)}, ∅). Configuration σ ′ is a successor of configuration σ if there exists a move θ = ((q, a, q ′), k) ∈ Moves such that one of the following conditions holds:

(i) a = Inc, (q, k) ∈ loc(σ), loc(σ ′) = loc(σ) ∪ {(q ′ , k+1)}, and FW(σ ′) = FW(σ); (ii) a = read -i α (x) with x ̸ = d 0 , (q, k) ∈ loc(σ), rg α [k-i] ∈ FW(σ), loc(σ ′) = loc(σ) ∪ {(q ′ , k)}, FW(σ ′) = FW(σ), and there is a transition (q 1 , write α (x), q 2) ∈ ∆ with (q 1 , k-i), (q 2 , k-i) ∈ loc(σ); (iii) a = read -i α (d 0), (q, k) ∈ loc(σ), rg α [k-i] / ∈ FW(σ), loc(σ ′) = loc(σ) ∪ {(q ′ , k)} and FW(σ ′) = FW(σ); (iv) a = write α (x) with x ̸ = d 0 , (q, k) ∈ loc(σ), loc(σ ′) = loc(σ) ∪ {(q ′ , k)} and FW(σ ′) = FW(σ) ∪ {rg α [k]}.
In this case, we write σ θ -→ σ ′ . An (abstract) execution is an alternating sequence of configurations and moves ρ = σ 0 , θ 1 , σ 1 , . . . , σ ℓ-1 , θ ℓ , σ ℓ such that for all i, σ i θi+1 ---→ σ i+1 , and we write σ * -→ σ ℓ . Similarly to the concrete semantics, Reach(σ) = {σ ′ | σ * -→ σ ′ } denotes the set of reachable configurations from σ. Again, a location (q, k) is coverable from σ when there exists σ ′ ∈ Reach(σ) such that (q, k) ∈ loc(σ ′), and similarly a state q is coverable from σ when there exist σ ′ ∈ Reach(σ) and k ∈ N such that (q, k) ∈ loc(σ ′). We simply say that a configuration is reachable if it is reachable from the initial configuration σ init , and that a location (resp. a state) is coverable if it is coverable from the initial configuration σ init .

▶ Example 6. Consider again the protocol of Example 2. The (abstract) execution associated with the concrete execution π 1 in this example is

ρ 1 = {(q 0 , 0)}, ∅ ⟨q0,Inc,q2⟩,0 -------→ {(q 0 , 0), (q 2 , 1)}, ∅ ⟨q2,write(a),q3⟩,1 -----------→ {(q 0 , 0), (q 2 , 1), (q 3 , 1)}, {rg[1]} ⟨q3,read -1 (d0),q4⟩,1 ------------→ {(q 0 , 0), (q 2 , 1), (q 3 , 1), (q 4 , 1)}, {rg[1]} .
Similarly, the execution associated with π 2 is

ρ 2 = {(q 0 , 0)}, ∅ ⟨q0,write(a),q1⟩,0 -----------→ {(q 0 , 0), (q 1 , 0)}, {rg[0]} ⟨q0,Inc,q2⟩,0 -------→ {(q 0 , 0), (q 1 , 0), (q 2 , 1)}, {rg[0]} ⟨q2,read -1 (a),q5⟩,1
------------→ ⟨(q 0 , 0), (q 1 , 0), (q 2 , 1), (q 5 , 1)⟩, {rg[0]} ⟨q5,read 0 (d0),q6⟩,1 -----------→ ⟨(q 0 , 0), (q 1 , 0), (q 2 , 1), (q 5 , 1), (q 6 , 1)⟩, {rg[0]} .

◀

Note that, in contrast to the concrete semantics, the location support of configurations cannot decrease along an abstract execution. One can easily be convinced that any concrete execution can be lifted to an abstract one, by possibly increasing the support, which is not a problem as long as one is interested in the verification of safety properties. Conversely, from an abstract execution, for a large enough number of processes, using the copycat property one can build a concrete execution with the same final location support. Altogether, the abstract semantics is therefore sound and complete to decide the safety problem on round-based register protocols. ▶ Theorem 7. Let P be a round-based register protocol, q err a state and k ∈ N. Then:

∃n ∈ N, ∃γ ∈ Reach c (init n) : (q err , k) ∈ loc(γ) ⇐⇒ ∃σ ∈ Reach(σ init) : (q err , k) ∈ loc(σ) .
Moreover, for negative instances of the safety problem, the proof of Theorem 7 yields an upper bound on the cutoff, which is linear in the round number at which q err is covered.

▶ Corollary 8. If there exists k ∈ N such that (q err , k) is coverable, then, letting N = 2|Q|(k+1)+1, there exists π : init N 3
Decidability and complexity of the safety problem

Exponential lower bounds everywhere!

To highlight the challenges in coming up with a polynomial space algorithm, we first state three exponential lower bounds when considering safety verification of round-based register protocols. Namely, we prove that (1) the minimal round are which the error state is covered, (2) the minimal number of processes needed for an error execution, and (3) the minimal number of simultaneously active rounds within an error execution, all may need to be exponential in the size of the protocol.

Exponential minimal round

▶ Proposition 9. There exists a family (BC m) m≥1 of round-based register protocols with q err an error state, visibility range v = 0 and number of registers per round d = 1, such that |BC m | = O(m) and the minimum round at which q err can be covered is in Ω(2 m).

q0 q tick q1,0 q1,1
. . .

q i,0 q i,1 . . . qm,0 qerr read(wait i) write(wait i+1) Inc read(waitm) Inc read(movem) read(move1) write(wait2) Inc read(move1) write(move2) Inc read(move i) write(wait i+1) Inc read(move i) write(move i+1) Inc read(wait i) write(wait i+1) Inc write(move1) Inc Figure 3
Protocol BCm for which an exponential number of rounds is needed to cover qerr. For the sake of readability, transitions may be labelled by a sequence of actions: e.g., the transition from qi,0 to qi,1 is labelled by read(move1), write(wait2), Inc. Such sequences of actions are not performed atomically: one should in principle add intermediate states to split the transition into several consecutive transitions, with one action each. We also use silent transitions (with no action label) that do not perform any action. The tick gadget in grey will be modified in subsequent figures.

The protocol BC m , depicted in Figure 3, encodes a binary counter on m bits. The high-level idea of this protocol is that the counter value starts with 0 and is incremented at each round; setting the most significant bit to 1 puts a process in q err . In order to cover q err , any concrete execution needs at least m+1 processes: one in q tick ticking every round, and one per bit, in states {q i,0 , q i,1 } to represent the value of the counter's i-th bit. At round k, the value of the i-th least significant bit is 0 if at least one process is at (q i,0 , k), and 1 if at least one process is at (q i,1 , k). Finally, at round 2 m-1 , setting the m-th least significant bit -of weight 2 m-1 -to 1 corresponds to (q err , 2 m-1) being covered.

The following proposition is useful for the analysis of BC m . It states that, in register protocols where v = 0 and d = 1, coverable locations can be covered with a common execution. ▶ Proposition 10. In a register protocol P with v = 0 and d = 1, for any finite set L of coverable locations, there exists n ∈ N and an execution ρ : σ init * -→ σ such that, for all (q, k) ∈ L, (q, k) ∈ loc(σ).

Our protocol BC m satisfies the following property, that entails Proposition 9.

▶ Proposition 11. Let k ∈ [0, 2 m-1]. Location (q err , k) is coverable in BC m iff k = 2 m-1 . q0 q tick q sink write(move1)
Inc (a) An exponential number of processes is needed to cover qerr.

q0 q tick q B q C q D q A Inc w r i t e (a)
Inc r e a d -1

(d 0) r e a d - 1 (m o v e 1) w r i t e (m o v e 1)
w r i t e (m o v e 1) (b) An exponential number of active rounds is needed to cover qerr.

Figure 4

Two modifications of the tick mechanism of (BCm) m≥1 yielding protocols that need respectively an exponential number of processes and an exponential number of active rounds.

Exponential cutoff

▶ Proposition 12. There exists a family (P m) m≥1 of round-based register protocols with q err an error state, v = 0 and d = 1, such that |P m | = O(m) and the minimal number of processes to cover an error configuration is in Ω(2 m).

The protocol P m is easily obtained from BC m by modifying the tick mechanism so that each tick must be performed by a different process, as illustrated in Figure 4a. Since exponentially many ticks are needed to cover q err , the cutoff is also exponential.

Exponential number of simultaneously active rounds

We have seen that the minimal round at which the error state can be covered may be exponential. Perhaps more surprisingly, we now show that the processes may need to spread over exponentially many different rounds. We formalise this with the notion of active rounds. At a configuration along a given execution, round k is active when some process is at round k and not idle, i.e., it performs a move later in the execution. The number of active rounds of an execution is the maximum number of active rounds at each configuration along the execution.

Towards a polynomial space algorithm for the safety problem, a polynomial bound on the number of active rounds would allow one to guess on-the-fly an error execution by storing only non-idle processes for the current configuration. However, such a polynomial bound does not exist: ▶ Proposition 13. There exists a family (P ′ m) m≥1 of round-based register protocols with q err an error state, v = 1 and d = 1, such that |P ′ m | = O(m) and the minimal number of active rounds for any error execution is in Ω(2 m).

The protocol P ′ m is again obtained from BC m by modifying the tick mechanism, as illustrated in Figure 4b. The transitions from q tick to q B and from q B to q C ensure that, for all k ∈ [0, 2 m-1], a must be written to rg[k] before it is written to rg[k-1]. The transitions from q C to q D and from q D to q tick , on the contrary, ensure that, for all k ∈ [1, 2 m-1], move 1 must be written to rg[k-1] before it is written to rg[k]. Hence, in an error execution, when move 1 is first written to rg[0], all rounds from 1 to 2 m-1 must be active, and the number of active rounds is at least 2 m-1 .

Note that Proposition 13 requires v > 0. Generally for round-based register protocols with v = 0, processes in different rounds do not interact and an error execution can be reordered: all moves on round 0 first, then all moves on round 1, and so on, so that the number of active rounds is at most 2. Therefore, when v = 0, a naive polynomial-space algorithm for the safety problem consists in computing all coverable states round after round.

Compatibility and first-write orders

The compatibility of coverable locations expresses that they can be covered in a common execution. Formally, two locations (q 1 , k 1) and (q 2 , k 2) are compatible when there exists ρ : σ init * -→ σ such that (q 1 , k 1), (q 2 , k 2) ∈ loc(σ). In contrast to several other classes of parameterized models (such as broadcast protocols for instance), for round-based register protocols, not all coverable locations are compatible, which makes the safety problem trickier.

▶ Example 14. The importance of compatibility can be illustrated on the protocol of Figure 2, whose safety relies on the fact that, for all k ≥ 1, locations (q 4 , k) and (q 6 , k) -although both coverable-are not compatible. Intuitively, in order to cover (q 4 , k), one must write a to rg[k] and then read d 0 from rg[k-1], while in order to cover (q 6 , k), one must read a from rg[k-1] and then read d 0 from rg[k]. Since d 0 cannot be written, covering (q 4 , k) requires a write to rg[k] while rg[k-1] is still blank, and covering (q 6 , k) requires the opposite. ◀

More generally, the order in which registers are first written to appears to be crucial for compatibility. We thus define in the sequel the first-write order associated with an execution, and use it to give sufficient conditions for compatibility of locations, that we express as being able to combine executions covering these locations.

▶ Definition 15. For ρ = σ 0 , θ 1 , • • • θ ℓ , σ ℓ an execution, move θ i is a first write (to rg α [k]) if θ i = ((q, write α (x), q ′), k) and rg α [k] / ∈ FW(σ i-1
). The first-write order of ρ is the sequence of registers fwo(ρ) = ξ 1 : . . . : ξ m such that the j-th first write along ρ writes to ξ j .

Following Example 6, fwo(ρ 1) = rg [START_REF] Aiswarya | An automata-theoretic approach to the verification of distributed algorithms[END_REF] and fwo(ρ 2) = rg[0]. Two executions with same first-write order can be combined into a "larger" one with same first-write order.

▶ Lemma 16. Let ρ 1 : σ init * -→ σ 1 and ρ 2 : σ init * -→ σ 2 be two executions such that fwo(ρ 1) = fwo(ρ 2). Then, there exists ρ : σ init * -→ σ such that loc(σ) = loc(σ 1) ∪ loc(σ 2), FW(σ) = FW(σ 1) = FW(σ 2), and fwo(ρ) = fwo(ρ 1) = fwo(ρ 2).
It follows that, for any fixed first-write order, there is a maximal support that can be covered by executions having that first-write order.

To extend the previous result, we exploit the fact that executions do not read registers arbitrarily far back. It is sufficient to require the first-write orders to have the same projections on all round windows of size v. Formally, for a first-write order f, and two round numbers

k, k ′ ∈ N with k ≤ k ′ , proj [k,k ′] (f)
∈ N, proj [k-v,k] (fwo(ρ 1)) = proj [k-v,k] (fwo(ρ 2)).
Then, there exists ρ :

σ init * -→ σ such that loc(σ) = loc(σ 1) ∪ loc(σ 2), FW(σ) = FW(σ 1) = FW(σ 2), and, for all k ∈ N, proj [k-v,k] (fwo(ρ)) = proj [k-v,k] (fwo(ρ 1)) = proj [k-v,k] (fwo(ρ 2)).
▶ Example 18. Agreement of Aspnes' algorithm is closely related to the notion of location (in)compatibility. Intuitively, one requires that no pair of locations (R 0 , k 0) and (R 1 , k 1) are compatible. Their incompatibility is a consequence of a difference between the firstwrite orders of the executions that respectively cover them. First, for every k ≥ 1 and every execution ρ :

σ init * -→ σ * -→ σ ′ , if rg bi [k] ∈ FW(σ) and rg b1-i [k -1] / ∈ FW(σ), then rg b1-i [k] / ∈ FW(σ ′); indeed, since rg b1-i [k] / ∈ FW(σ)
, all locations in loc(σ) whose states correspond to p = 1 -i are either on round ≤ k -1 or on round k not on state E 1-i , and ⊥ can no longer be read from rg b1-i [k]; by induction, for all

k ′ ≥ k, rg b1-i [k ′] / ∈ FW(σ ′). Let ρ 0 : σ init * -→ σ 0 and ρ 1 : σ init * -→ σ 1 such that, for all i ∈ {0, 1}, (R i , k i) ∈ loc(σ i). For all i ∈ {0, 1}, moves θ i := ((C i , write bi (⊤), D i), k i) and θ ′ i := ((D i , read -1 b1-i (⊥), R i), k i) are in ρ i , and θ i appears before θ ′ i in ρ i . Therefore, by letting i such that k i ≤ k 1-i , ρ i requires that rg bi [k i] is first-written while rg b1-i [k i -1]
is still blank, and therefore that rg bi [k 1-i] is left blank, while ρ 1-i requires a first write on rg bi [k 1-i], which proves that (R 0 , k 0) and (R 1 , k 1) are incompatible. Note that fwo(ρ 0) and fwo(ρ 1) do not have the same projection on [k 1-i -1, k 1-i], which justifies that Lemma 17 does not apply. ◀

Polynomial-space algorithm

We now present the main contribution of this paper.

▶ Theorem 19. The safety problem for round-based register protocols is in PSPACE.

To establish Theorem 19, because PSPACE is closed under complement and thanks to Savitch's theorem, it suffices to provide a nondeterministic procedure that finds an error execution (if one exists) within polynomial space. We do this in two steps: first, we give a nondeterministic procedure that iteratively guesses projections of a first-write order and computes the set of coverable locations under those projections, but does not terminate; second, we justify how to run this procedure in polynomial space and that it can be stopped after an exponential number of iterations (thus encodable by a polynomial space binary counter).

The high-level idea of the nondeterministic procedure is to iteratively guess a first-write order f, and to simultaneously compute the set of coverable locations under f. Thanks to Lemma 17, rather than considering a precise first-write order, the algorithm guesses its projections on windows of size v. Concretely, at iteration k, the algorithm guesses

F k = proj [k-v,k] (f)
and computes the set S k (F k) of states that can be covered at round k under f. These sets are computed incrementally along the prefixes of F k , called progressions, which are considered in increasing order. For each prefix, we check whether a first write to the last register is feasible, that is, whether some coverable location is the source of such a write; we reject the computation otherwise.

Algorithm 2 provides the skeleton of this procedure. In Line 3 of Algorithm 2, the sequence of registers F k is constructed from F k-1 by removing the registers at round (k-v-1) and non-deterministically inserting some registers at round k. By convention, in the special case where k = 0, F 0 is set to a sequence of registers of round 0. From Line 4 on, one considers the successive progressions of F k , i.e., prefixes of increasing length, Line 5 setting f to the prefix of F k of length i. At Line 7, the set of coverable states at round k for progression f = g : ξ is inherited from the one for progression g.

Variables computed : F = (F k) k∈N , (S k (f)) k∈N,f ∈Prefixes(F k) 1 Initialisation: S 0 (ε) := {q 0 }; ∀(k, f) ̸ = (0, ε), S k (f) := ∅; ; 2 for k from 0 to +∞ do 3 non-deterministically choose F k from F k-1 ;
The next line requires an extra definition. For every k ∈ N and every prefix

f of F k , the synchronisation ϕ k k-1 (f) is the longest prefix of F k-1 that coincides with f on rounds k-v to k-1, i.e. such that proj [k-v,k-1] (ϕ k k-1 (f)) = proj [k-v,k-1] (f)
. This is always well defined since F k is obtained from F k-1 by removing registers of round k-v-1, and inserting registers of round k. So ϕ k k-1 (f) can be obtained from f by removing registers of round k, and inserting back those of round k-v-1 that, in F k-1 , are before the first register of round in [kv, k -1] that is not in f . Similarly, we define the prefixes of f corresponding to previous rounds. For every r < k-1 and every prefix f of F k , the synchronisation ϕ k r (f) is defined inductively by ϕ k r (f

) := ϕ r+1 r (ϕ k r+1 (f)), so that ϕ k r (f) := ϕ r+1 r (ϕ r+2 r+1 (. . . (ϕ k-1 k-2 (ϕ k k-1 (f))) . . .)). Last, by convention, ϕ k k (f) := f .
▶ Example 20. We illustrate the notion of synchronisation function on a toy example. Consider the sequence of registers F 1 = α 1 : β 1 : γ 0 : δ 0 : ϵ 1 : ζ 0 , where the subscripts denote the rounds, and assume that v = 1. The sequence F 2 is obtained from F 1 by removing the round 0 registers γ 0 , δ 0 , ζ 0 , and by inserting some registers of round 2. For instance, one nondeterministically construct F 2 = α 1 : η 2 : β 1 : θ 2 : ϵ 1 . In that case, for instance ϕ 2 1 (α 1 : η 2 : β 1) = α 1 : β 1 : γ 0 : δ 0 ; in words, when we are at iteration 2 with progression α 1 : η 2 : β 1 , the corresponding progression at iteration 1 is α 1 :

β 1 : γ 0 : δ 0 . Also, ϕ 2 1 (α 1 : η 2) = α 1 and ϕ 2 1 (α 1 : η 2 : β 1 : θ 2) = α 1 : β 1 : γ 0 : δ 0 : ϵ 1 : ζ 0 . On iteration further, one could have F 3 = η 2 : κ 3 : θ 2 and thus ϕ 3 1 (η 2 : κ 3) = ϕ 2 1 (ϕ 3 2 (η 2 : κ 3)) = ϕ 2 1 (α 1 : η 2 : β 1) = α 1 : β 1 : γ 0 : δ 0 . ◀ Now, S k (f)
is defined in two steps. First, Line 8 adds to S k (f) the states that can be immediately obtained by an Inc move from states coverable at round k-1. Formally,

S k (f) := S k (f) ∪ {q ′ ∈ Q | ∃q ∈ S k-1 (ϕ k k-1 (f))
, (q, Inc, q ′) ∈ ∆}. Line 9 then checks that a first write to the last register in f is feasible; that is, if f = g : rg α [k], then, one checks whether there exists a write transition (q, write α (x), q ′) ∈ ∆ with x ̸ = d 0 and q ∈ S k (g). Second, in Line 10, we saturate S k (f) by all possible moves at round k. Formally, we add every state q ′ ∈ Q \ S k (f) such that there exist q ∈ S k (f) and (q, a, q ′) ∈ ∆ where action a satisfies one of the following conditions: a = read -j α (d 0) and rg α [k-j] does not appear in f ;

XX:14 Parameterized safety verification of round-based shared-memory systems a = read -j α (x) with x ̸ = d 0 , rg α [k-j] appears in f and there exist q 1 , q 2 ∈ S k-j (ϕ k k-j (f)) such that (q 1 , write α (x), q 2) ∈ ∆; a = write α (x) and rg α [k] appears in f . In Line 12, the computation is rejected since the guessed first-write order is not feasible.

Characterisation of the sets S k (F k) computed in Algorithm 2

For a family of first-write order projections F = (F k) k∈N and a round k, we define

Qcover(F, k) = {q | ∃ρ : σ init * -→ σ s.t. (q, k) ∈ loc(σ) and ∀r ≤ k, proj [r-v,r] (fwo(ρ)) = F r }.
In words, Qcover(F, k) is the set of states that can be covered at round k by an execution whose first-write order projects to the family F on windows of size v.

Observe that the only non-deterministic choice in Algorithm 2 is the choice of the sequences F k ; hence, for a given F = (F k) k∈N , there is at most one non-rejecting computation whose first-write order projections agrees with family F. In that case, we say that the Fcomputation of Algorithm 2 is non-rejecting.

▶ Theorem 21. For F = (F k) k∈N a family of projections, if the F-computation of Algorithm 2 is non-rejecting, then the computed sets (S k (F k)) k∈N satisfy, for all k ∈ N, S k (F k) = Qcover(F, k). Also, for any execution ρ from σ init , letting

F = (proj [k-v,k] (fwo(ρ))) k≥0 , the F-computation of Algorithm 2 is non-rejecting.
Building on Algorithm 2, our objective it to design a polynomial space algorithm to decide the safety problem for round-based register protocols. Theorem 21 shows the correctness of the nondeterministic procedure in the following sense: a non-rejecting computation computes all coverable states for the guessed first-write order, and any possible first-write order admits a corresponding non-rejecting computation. To conclude however, the space complexity should be polynomial in the size of the protocol, and termination must be guaranteed by some stopping criterion. Staying within space budget. As presented, Algorithm 2 needs unbounded space to execute since it stores all sequences of first-write orders F k and all sets S k (f). To justify that polynomial space is sufficient, we first observe that some computed values can be ignored after each iteration. Precisely, iteration k only uses variables of iteration k-1 for increments and of iterations k-v to k-1 for read/write moves. Thus, at the end of iteration k, all variables indexed with round k-v can be forgotten. It is thus sufficient to store the variables of v+1 consecutive rounds.

To conclude, observe also that the maximum length of any sequence F k is d(v+1). Therefore each F k has at most d(v+1)+1 prefixes, and there are at most (d(v+1)+1)(v+1) sets S r (f) with r ∈ [k-v, k] for a fixed round number k. We also do not need to store the value of k. All in all, the algorithm can be implemented in space complexity O(Q

• d • v 2).
Ensuring termination. To exhibit a stopping criterion, we apply the pigeonhole principle to conclude that after a number of iterations at most exponential in Q • d • v 2 , the elements stored in memory repeat from a previous iteration, so that the algorithm starts looping. If q err was not covered at that point, it cannot be covered in further iterations. One can thus use an iteration counter, encoded in polynomial space in the size of the protocol, to count iterations and return a decision when the counter reaches its largest value.

Note that, for negative instances of the safety problem, this gives an exponential upper bound on the round number at which q err is covered. Combined with Corollary 8, it yields an exponential upper bound on the cutoff too. Both match the lower bounds established in Propositions 9 and 12.

▶ Corollary 22. Let P be a round-based register protocol, and q err an error state. If (P, q err) is a negative instance of the safety problem, then there exist K, N ∈ N both exponential in |P| such that there exist k ≤ K and a concrete execution π : init N * -→ γ such that (q err , k) ∈ loc(γ).

With the space constraints and stopping criterion discussed above, the nondeterministic algorithm decides the safety problem for round-based register protocols. Indeed, it suffices to execute Algorithm 2 up until iteration K and check whether q err appears in one the sets S k (F k). If q err is found in some S k (F k) with k ≤ K, then q err ∈ Qcover(F, k), where (F r) r≤k is the family of projections picked by the computation of the algorithm. Thus, the protocol is unsafe. Conversely, if the protocol is unsafe, then there exist k ≤ K and ρ : σ init * -→ σ such that (q err , k) ∈ loc(σ). Letting F = (proj [r-v,r] (fwo(ρ))) r∈N , the F-computation of the algorithm is non-rejecting, and since q err ∈ Qcover(F, k), one has q err ∈ S k (F k).

PSPACE lower bound

▶ Theorem 23. The safety problem for round-based register protocols is PSPACE-hard, even for fixed v = 0 and fixed d = 1.

Proof. The proof is by reduction from the validity of QBF.

From a 3-QBF instance, we define a round-based register protocol P QBF with an error state q err so that the answer to the safety problem is no if and only if the answer to QBF-validity is yes, i.e., state q err is coverable if, and only if, the QBF instance is valid. This proves that the safety problem is coPSPACE-hard, and therefore that it is PSPACE-hard since PSPACE = coPSPACE.

The protocol P QBF that we construct from a QBF instance is partly inspired by the binary counter from Figure 3. Recall that in BC m , each bit is represented by a subprotocol, and every round corresponds to an increment of the counter value. In P QBF , each variable is represented by a subprotocol, and every round corresponds to considering a different valuation and evaluating whether it makes the inner SAT formula true. P QBF uses a single register per round (d = 1), and the subprotocol corresponding to variable x writes at each round the truth value of x in the considered valuation. The protocol is designed to enumerate all relevant valuations, and take the appropriate decision about the validity.

We fix an instance ϕ of 3-QBF over the 2m variables {x 0 ,

• • • , x 2m-1 } ϕ = ∀x 2m-1 ∃x 2m-2 ∀x 2m-3 ∃x 2m-4 . . . ∀x 1 ∃x 0 1≤j≤p a j ∨ b j ∨ c j , with for every j ∈ [1, p], a j , b j , c j ∈ {x i , ¬x i | i ∈ [0, 2m-1]
} are the literals and write ψ for the inner 3-SAT formula.

From ϕ we construct a round-based register protocol on the data alphabet

D := {wait i , yes i , no i | i ∈ [0, 2m]} ∪ {x i , ¬x i | i ∈ [0, 2m-1]} ∪ {d 0 } ,
that in particular contains two symbols x i and ¬x i for each variable x i . Moreover, we let v = 0 and d = 1. Thanks to Proposition 10, when v = 0 and d = 1, all coverable locations are compatible, for every finite number of coverable locations, there exists an execution that covers all these locations. We therefore do not have to worry about with which execution a location is coverable, and we will simply write that a location is coverable or is not coverable and that a symbol can be written or cannot be written to a given register.

The protocol we construct is represented in Figure 5; it contains several gadgets that we detail in the sequel. Before that we provide a high-level view of P QBF . In P QBF , each variable x i is represented by a subprotocol G i , and every round corresponds to considering a different valuation and evaluating whether it makes the inner SAT formula true with the gadget P check (ψ). The gadget G i writes at each round the truth value of x i in the considered evaluation. The protocol enumerates all valuations: a given round k will correspond to one valuation of the variables of ψ, in which variable x is true if x can be written to rg[k], and false if ¬x can be written to rg [k]. The enumeration of the valuations and corresponding evaluations of ψ are performed so as to take the appropriate decision about the validity of the global formula ϕ.

We start by describing the gadget P check (ψ), depicted in Figure 6, that checks whether ψ is satisfied by the valuation under consideration. State q yes corresponds to ψ evaluated to q ψ q 1 q 2 ...

q yes q no read (a1) read(b1) read(c1) read(a2) read(b2) read(c2) read(¬a1) read(¬b1) read(¬c1) read(¬a2) read(¬b2) read(¬c2) read(¬a3) read(¬b3) read(¬c3)
Figure 6 Gadget P check (ψ) that checks whether ψ is satisfied by the current valuation.

true and q no corresponding to ψ evaluated to false. Note that we allow transitions labelled by sequences of actions; for instance the transition from state q ψ to state q no consists of three consecutive reads. The following lemma proves that the gadget P check (ψ) indeed checks how ψ evaluates for the current valuation.

▶ Lemma 24. Let k ∈ N. Suppose that (q ψ , k) is coverable and that we have a valuation ν of the variables of ψ such that, for every i ∈ [0, 2m-1]: if ν(x i) = 1, then x i can be written to rg[k], and ¬x i cannot, if ν(x i) = 0, then ¬x i can be written to rg[k], and x i cannot. Then (q yes , k) is coverable if and only if ν |= ψ, and (q no , k) is coverable if and only if ν |= ¬ψ.

We now explain how valuations are enumerated, and how the different quantifiers are handled. The procedure next, given valuation ν, computes the next valuation next(ν) that needs to be checked. Eventually, the validity of the formula will be determined by checking whether ν 0 |= ψ (where ν 0 assigns 0 to all variables) and next k (ν 0) |= ψ for increasing values of k ≥ 1.

Let ν a valuation of all variables, and define the valuation next(ν). Let ϕ i denote the subformula Qx i . . . ∀x 1 ∃x 0 ψ where Q = ∃ if i is even, and Q = ∀ otherwise. We write ν |= ϕ i when ϕ i is true when its free variables x 2m-1 , . . . , x i+1 are set to their values in ν. The procedure next uses variables b i ∈ {yes, no, wait} for each i ∈ [0, 2m], whose role is the following. We will set b 0 = yes if ν |= ψ, and b 0 = no otherwise. For any 1

≤ i ≤ 2m-1, b i = yes means ν |= ϕ i ; b i = no means ν ̸ |= ϕ i ; while b i =
wait means that more valuations need to be checked to determine whether ν |= ϕ i or not. Given a valuation ν, the procedure next computes, at each iteration i, the truth value of x i in valuation next(ν) and the value of b i+1 . After 2m iterations, this provides the new valuation next(ν) against which ψ must be checked. Formally, b 0 = yes if ν |= ψ, and b 0 = no otherwise, and for all i ∈ [0, 2m -1]:

If b i = wait, then next(ν)(x i) := ν(x i) and b i+1 := wait. Otherwise If i is even (existential quantifier). * if b i = yes, then next(ν)(x i) := 0 and b i+1 := yes, * if b i = no and ν(x i) = 0, then next(ν)(x i) := 1 and b i+1 := wait, * if b i = no and ν(x i) = 1, then next(ν)(x i) := 0 and b i+1 := no. if i is odd (universal quantifier), * if b i = no, then next(ν)(x i) := 0 and b i+1 := no, * if b i = yes and ν(x i) = 0, then next(ν)(x i) := 1 and b i+1 := wait, * if b i = yes and ν(x i) = 1
, then next(ν)(x i) := 0 and b i+1 := yes. Note that variable b 2m is computed but not used in the computation. Its value will play the role of a result, e.g., in Lemma 25.

The following lemma formalizes how validity can be checked using next. It is easily proven by induction on m. ▶ Lemma 25. ϕ is valid if and only if, when iterating next from valuation ν 0 , one eventually obtains a computation of next that sets b 2m to yes. Otherwise, one eventually obtains a computation of next that sets b 2m to no. ▶ Example 26. Let us illustrate the next operator and Lemma 25 on a small example. Assume

ϕ = ∃x 2 ∀x 1 ∃x 0 ¬x 2 ∧ ¬x 1 ∧ (x 1 ∨ ¬x 0),
which is not a valid formula. To determine that ϕ is not valid, we start by checking the valuation ν 0 = (0, 0, 0), writing ν 0 as the tuple (ν 0 (x 0), ν 0 (x 1), ν 0 (x 2)). Let ν = next(ν 0). ν 0 satisfies the inner formula, hence we set b 0 = yes. By following the procedure of next, we obtain ν(x 0) = 0, b 1 = yes in the first iteration (in fact, ν 0 |= ϕ 0); and ν(x 1) = 1, b 2 = wait in the second iteration. In fact, even though ν 0 |= ψ, because x 1 is quantified universally, we cannot yet conclude: we must also check whether ψ holds by setting x 1 to 1. This is what b 2 = wait means, and this is why ν(x 1) is set to 1. Lastly, we obtain ν(x 2) = 0 and b 3 = wait, therefore ν = (0, 1, 0).

Let ν ′ = next(ν) = next 2 (ν 0). We observe that ν ̸ |= ψ and set b 0 = no. We then have ν ′ (x 0) = 1, b 1 = wait, and therefore ν ′ (x 1) = 1 and ν ′ (x 2) = 0. In the end, ν ′ = (0, 1, 1).

XX:18 Parameterized safety verification of round-based shared-memory systems

The computation of next 3 (ν 0) then sets x 2 to 1 because no valuation with x 2 = 0 satisfied the formula. We obtain next 3 (ν 0) = (1, 0, 0) and next 4 (ν 0) = (1, 0, 1). The computation of next 5 (ν 0) sets b 2m to no, establishing that ϕ is not valid. ◀ Now, we define, for all i ∈ [0, 2m-1], a gadget G i that will play the role of variable x i . At each round, gadget G i receives from gadget G i-1 a value in {wait i , yes i , no i } (except for gadget G 0 which receives this value from P check (ψ)). It transmits a value in {wait i+1 , yes i+1 , no i+1 } to G i+1 , and modifies the value of variable x i accordingly, writing either x i or ¬x i to the register. These gadgets G i are given in Figure 7a and Figure 7b if x i is universally quantified (i.e., i odd). Using those gadgets G i and P check (ψ) together with the earlier described gadget P check (ψ), we define the protocol P QBF represented in Figure 5.

Finally, the following lemma justifies the correctness of our construction by formalising the relation between next and P QBF .

▶ Lemma 27. Let k ∈ N and ν k := next k (ν 0), the valuation obtained by applying next k times from ν 0 := 0 2m . For all i ∈ [0, 2m-1]:

(q false,i , k) is coverable if and only if Combining Lemma 27 with Lemma 25 proves that there exists a register to which yes 2m can be written if and only if ϕ is valid. Also, q err is coverable in P QBF if and only if there exists a register to which yes 2m can be written, concluding the proof of Theorem 23. ◀

ν k (x i) = 0, (q true,i , k) is coverable if and only if ν k (x i) =
It may seem surprising that the safety problem is PSPACE-hard already for d = 1 and v = 0, i.e., with a single register and no visibility on previous rounds. For single register protocols without rounds, safety properties can be verified in polynomial time with a simple saturation algorithm. This complexity blowup highlights the expressive power of rounds, independently of the visibility on previous rounds.

Theorems 19 and 23 yield the precise complexity of the safety problem.

▶ Corollary 28. The safety problem for round-based register protocols is PSPACE-complete.

Conclusion

This paper makes a first step towards the automated verification of round-based sharedmemory distributed algorithms. We introduce the model of round-based register protocols and solves its parameterized safety verification problem. Precisely, we prove that this problem is PSPACE-complete, providing in particular a non-trivial polynomial space decision algorithm. We also establish exponential lower and upper bounds on the cutoff and on the minimal round at which an error is reached. Many interesting extensions could be considered, such as assuming the presence of a leader as in [START_REF] Esparza | Parameterized verification of asynchronous shared-memory systems[END_REF], or considering other properties than safety. In particular, for algorithms such as Aspnes', beyond validity and agreement that are safety properties, one would need to be able to handle liveness properties (possibly under a fairness assumption) to prove termination.

Technical appendix

This appendix contains details and full proofs that were ommitted in the paper due to space constraints. New statements are numbered with the appendix section letter where they appear followed by a number. Statements that appear in the paper are restated here with their original number.

Additional notions and notations

We start by defining several notions used in several proofs.

A schedule is a finite sequence of moves θ 1 • . . . • θ ℓ . The schedule sched(ρ) associated with an execution ρ = σ 0 , θ 1 , σ 1 , . . . , σ ℓ-1 , θ ℓ , σ ℓ , is the sequence θ 1 • . . . • θ ℓ . We similarly define the schedule sched(π) associated with a concrete execution π.

A schedule s is applicable from a configuration σ if there exist an execution ρ and a configuration σ ′ such that ρ : σ * -→ σ ′ . We then write ρ :

σ s - → σ ′ or simply σ s - → σ ′ .
Applicability of a schedule from a concrete configuration is defined analogously. Since single moves are particular case of schedules, this also defines applicability of a move to a concrete or abstract configuration. Given a schedule s and k ≤ k ′ , proj [k,k ′] (s) is the schedule obtained by removing from s on moves whose rounds are not in [k, k ′], i.e., all moves of the form ((q, a, q ′), r) with r /

∈ [k, k ′]. Given ρ : σ * -→ σ ′ and k ∈ N, proj [0,k] (sched(ρ)) is applicable from σ; write proj [0,k] (ρ) the execution from σ of schedule proj [0,k] (sched(ρ)). Given two executions ρ : σ * -→ σ ′ and ρ ′ : σ ′ * -→ σ ′′ , we write ρ • ρ ′ : σ * -→ σ ′′ the execution of schedule sched(ρ) • sched(ρ ′).

A

Proofs and details for Section 2

A.1 Copycat property

▶ Lemma 4 (Copycat property). Let q ∈ Q, k, n, N ∈ N and γ i , γ f ∈ Γ such that γ f ∈ Reach c (γ i) and (q, k) ∈ supp(γ f). Then there exist

γ ′ i , γ ′ f ∈ Γ such that γ ′ f ∈ Reach c (γ ′ i) and: |γ ′ i | = |γ i | + N , supp(γ ′ i) = supp(γ i), and data(γ ′ i) = data(γ i); loc(γ ′ f) = loc(γ f) ⊕ (q, k) N and data(γ ′ f) = data(γ f).
Proof. The key observation is that if a process at location (q, k) takes a move, it can be mimicked right away by any other process also at location (q, k).

Since γ f ∈ Reach c (γ i), there exists a schedule s such that γ i s -→ γ f . The proof is by induction on the length (i.e., the number of moves) of s. For the base case where |s|=0, we have γ i = γ f , and it suffices to let loc(γ

′ i) = loc(γ i) ⊕ (q, k) N and data(γ ′ i) = data(γ i).
Suppose now that γ i s -→ γ f with |s| ≥ 1, and that the property holds for schedules of length at most |s|-1.

If loc(γ i)(q, k) > 0, then it suffices to define γ ′ i such that loc(γ ′ i) = loc(γ i) ⊕ (q, k) N and data(γ ′ i) = data(γ i), and to define γ ′ f as the result of applying schedule s from γ ′ i , i.e., such that γ ′ i s -→ γ ′ f , keeping the N fresh copies of (q, k) unchanged all along the new execution. Otherwise, there must exist a move θ in the schedule s such that θ = ((q ′ , a, q), k) for some state q ′ ∈ Q and some action a. We let k ′ be k unless a = Inc, in which case k ′ = k+1. We decompose s into s = s p • θ • s s , and consider the prefix execution ρ p : γ i

(γ ′ p) = loc(γ p) ⊕ (q, k ′) N and data(γ ′ p) = data(γ p). Moreover, |γ ′ i | = |γ i |+N , supp(γ ′ i) = supp(γ i) and data(γ ′ i) = data(γ i). Since move θ is applicable to γ p , θ N +1 is applicable to γ ′ p . Letting s ′ = s ′ p • θ N +1 • s s , we obtain that γ ′ i s ′ -→ γ ′ f with loc(γ ′ f) = loc(γ f) ⊕ (q, k) N and data(γ ′ f) = data(γ f
), which concludes the proof. ◀

A.2 Soundness and completeness of the abstraction ▶ Theorem 7. Let P be a round-based register protocol, q err a state and k ∈ N. Then:

∃n ∈ N, ∃γ ∈ Reach c (init n) : (q err , k) ∈ loc(γ) ⇐⇒ ∃σ ∈ Reach(σ init) : (q err , k) ∈ loc(σ) .
Proof. The direct implication is simpler to prove: one can easily mimick a concrete execution in the abstraction. The right-to-left implication relies on the copycat property, Lemma 4, and Corollary 5, to accomodate the differences between the concrete and abstract semantics.

In the following, for every concrete configuration γ ∈ Γ, we write abst(γ) ∈ Σ for the corresponding (abstract) configuration defined by loc(abst(γ)) = supp(γ) and FW(abst(γ)) = {ξ ∈ Reg | data ξ (γ) ̸ = d 0 }. We start with the direct implication, proving that a concrete execution from init n can be directly converted into an abstract execution that covers more locations.

▶ Lemma A.1. Let n ∈ N and π : init n * -→ γ. Writing π = γ 0 , θ 1 , γ 1 , . . . , γ ℓ-1 , θ ℓ , γ ℓ with γ 0 = init n and γ ℓ = γ, there exists ρ : σ init * -→ σ such that FW(abst(γ)) = FW(σ) and, for every i ∈ [0, ℓ], loc(abst(γ i)) ⊆ loc(σ).
Proof of Lemma A.1. We construct an abstract execution that mimicks each move of the concrete execution π. We proceed by induction on the length of π, that is on the number of moves in its schedule sched(π). The base case, where π contains no moves, is trivial, letting σ := σ init .

Assume now that |π| > 0, and that the lemma holds for any concrete execution with at most |π| moves. We isolate the last move of π to decompose π as init n sp -→ γ p θ -→ γ, with θ ∈ Moves, and write π p : init n sp -→ γ p . By induction hypothesis on π p , there exists ρ p : σ init * -→ σ p satisfying the property. Let us write θ = ((q, a, q ′), k). We now claim that there exists σ ∈ Σ such that σ p θ -→ σ, i.e., θ is applicable from σ p . Indeed, θ is applicable from γ p , hence loc(γ p)(q, k) > 0 and by induction hypothesis (q, k) ∈ loc(σ p); moreover:

if a = write α (x), then rg α [k] ∈ FW(abst(γ p)) = FW(σ p), if a = read -i α (d 0), then rg α [k-i] / ∈ FW(abst(γ p)) = FW(σ p), if a = read -i α (x) with x ̸ = d 0 , then rg α [k-i] ∈ FW(abst(γ p)) = FW(σ p) and data rg α [k-i] (γ p) = x hence there exist q 1 , q 2 ∈ Q such that sched(ρ p) contains move ((q 1 , write α (x), q 2), k-i),
and by induction hypothesis, (q 1 , k-i), (q 2 , k-i) ∈ loc(σ p).

Therefore, there exists σ such that σ p θ -→ σ. Finally, σ satisfies the conditions of the lemma. First, since FW(abst(γ p)) = FW(σ p), we have FW(abst(γ)) = FW(σ). Second, loc(σ p) ⊆ loc(σ). Last, loc(abst(γ p)) ⊆ loc(σ p), and if a process goes to location (q, k) with move γ p θ -→ γ, then (q, k) ∈ loc(σ) thanks to the abstract step σ p θ -→ σ, and hence loc(abst(γ)) ⊆ loc(σ). ◀ Proof of Lemma A.2. Similarly to the previous proof, we would like to construct a concrete execution that mimicks each move of the (abstract) execution. To do so however, we need to handle two difficulties. First, in the concrete semantics and in contrast to the abstract one, a step can remove a location from the current configuration; we overcome this problem by adding a extra process in the given location, using the copycat property (Lemma 4). Second, in the concrete semantics, reading x ∈ D \ {d 0 } from register ξ requires x to actually be the value stored in ξ, while the abstract semantics only requires a move writing x to ξ to be available; here again, we overcome this using Lemma 4 and Corollary 5 to add in the concrete execution a process that writes x to ξ.

Let ρ : σ init -→ σ. We proceed by induction on the number of moves of ρ. If ρ contains no moves, then σ = σ init , and it suffices to take γ = init 1 .

Suppose now that |sched(ρ)| > 0, and that the lemma holds for every execution of schedule of length at most |sched(ρ)|-1, and write sched(ρ) = s p •θ. By induction hypothesis, there exist n ∈ N and ρ p : init n sp -→ γ p such that FW(abst(γ p)) = FW(σ p) and loc(σ p) ⊆ loc(abst(γ p)). Write θ = ((q, a, q ′), k); we know that loc(γ p)(q, k) > 0. By Lemma 4, we can modify γ p so that loc(γ p)(q, k) > 1 (this may require to increase the number of processes n by 1). It remains to prove that there exists γ such that γ p -→ γ, FW(σ) = FW(abst(γ)) and loc(σ) = loc(abst(γ)). We split cases, depending on the action a of θ:

If a = Inc, consider γ such that γ p θ -→ γ (this is possible because (q, k) ∈ loc(γ p)); we then have (q ′ , k+1) ∈ supp(γ) but also (q, k) ∈ supp(γ) (because loc(γ p)(q, k) > 1) hence loc(σ) = loc(abst(γ)) and FW(abst(γ)) = FW(abst(γ p)) = FW(σ p) = FW(σ).
If a = write α (x), as above consider γ such that γ p θ -→ γ; we then have that data If a = read -i α (x), because σ p θ -→ σ, there exists (q 1 , write α (x), q 2) ∈ ∆ such that (q 1 , k-i), (q 2 , k-i) ∈ loc(σ p). Since loc(σ p) = loc(abst(γ p)), loc(γ p)(q 1 , k-i) > 0 and thanks to Lemma 4 we can change γ p in order to have loc(γ p)(q 1 , k-i) > 1. By writing θ ′ := ((q 1 , write α (x), q 2), k-i), consider γ such that γ p θ ′ •θ --→ γ. Since loc(γ p)(q 1 , k-i) > 1, we have (q 1 , k-i), (q 2 , k-i) ∈ supp(γ). Therefore, loc(abst(γ)) = loc(abst(γ p))∪{(q, k)} = loc(abst(γ p)) ∪ {(q, k)} = loc(σ p) ∪ {(q, k)} = loc(σ). Moreover, since σ p θ -→ σ, we have rg α [k-i] ∈ FW(σ) hence FW(abst(γ)) = FW(abst(γ p)) ∪ {rg α [k-i]} = FW(σ p) ∪ {rg α [k-i]} = FW(σ). This ends the proof of the right-to-left implication of Theorem 7 and of the theorem itself. ◀

rg α [k] (γ) = x hence rg α [k] ∈ FW(abst(γ)), allowing to prove that FW(abst(γ)) = FW(abst(γ p)) ∪ {rg α [k]} = FW(σ p) ∪ {rg α [k]} = FW(σ).

A.3 Upper bound on cutoff

▶ Corollary 8. If there exists k ∈ N such that (q err , k) is coverable, then, letting N = 2|Q|(k+1)+1, there exists π : init N * -→ γ such that (q err , k) ∈ loc(γ).

Proof. If q err is coverable at round k in the concrete semantics, then thanks to Theorem 7, there exist σ ∈ Σ and ρ : σ init * -→ σ such that (q err , k) ∈ loc(σ). Let s ′ = proj [0,k] (sched(ρ)) be the schedule obtained from sched(ρ) by removing all moves on rounds after round k. We have σ init s ′ -→ σ ′ with (q err , k) ∈ loc(σ ′). Let now s ′′ be the schedule obtained from s ′ restricting to moves that cover a new location, i.e. a location that was not covered by previous moves.

We have that σ init s ′′ -→ σ ′′ with loc(σ ′′) = loc(σ ′), and |s ′′ | ≤ |Q|(k+1).

▶ Lemma 16. Let ρ 1 : σ init * -→ σ 1 and ρ 2 : σ init * -→ σ 2 be two executions such that fwo(ρ 1) = fwo(ρ 2). Then, there exists ρ : σ init * -→ σ such that loc(σ) = loc(σ 1) ∪ loc(σ 2), FW(σ) = FW(σ 1) = FW(σ 2), and fwo(ρ) = fwo(ρ 1) = fwo(ρ 2). Proof. To establish the result, the only problematic moves are reads from blank registers and first writes; indeed, if ρ, ρ ′ leave all registers blank, one can simply concatenate their schedules into sched(ρ) • sched(ρ ′). To overcome the difficulty of first writes, we explain below how to interleave ρ and ρ ′ , considering parts of ρ and ρ ′ where the sets of blank registers agree.

In this proof, for two configurations σ, σ ′ ∈ Σ such that FW(σ) = FW(σ ′), we write σ ∪ σ ′ for the configuration τ defined by loc(τ) = loc(σ) ∪ loc(σ ′) and FW(τ) = FW(σ) = FW(σ ′).

Consider ρ 1 and ρ 2 as in the statement. We let f = ξ 1 : . . . : ξ ℓ with ξ 1 , . . . , ξ ℓ ∈ Reg be the first-write order of both ρ 1 and ρ 2 . The two executions are then "decomposed" according to their first-write order: ρ 1 = ρ 1,0 • . . . • ρ 1,ℓ and ρ 2 = ρ 2,0 • . . . • ρ 2,ℓ . Formally, for every i ∈ [0, ℓ], ρ 1,i and ρ 2,i do not write to registers ξ i+1 to ξ ℓ , and do not read d 0 from registers ξ 1 to ξ i . Also, for every i ∈ [1, ℓ], ρ 1,i and ρ 2,i start with a write to register ξ i .

For every i ∈ [1, ℓ], we consider the following prefix executions, ρ 1,0 • . . . • ρ 1,i : σ init * -→ σ 1,i and ρ 2,0 • . . . • ρ 2,i : σ init * -→ σ 2,i . More precisely, ρ 1,0 • . . . • ρ 1,i (resp. ρ 2,0 • . . . • ρ 2,i) is the prefix execution of ρ 1 (resp. of ρ 2) stopping just before the first write to ξ i+1 . Note that, for every i ∈ [0, ℓ], fwo(ρ 1,0 • . . . • ρ 1,i) = fwo(ρ 2,0 • . . . • ρ 2,i) hence FW(σ 1,i) = FW(σ 2,i) and σ 1,i ∪ σ 2,i is defined.

We now prove the following property by induction on i: there exists an execution ρ i : σ init -→ σ 1,i ∪ σ 2,i such that fwo(ρ i) = fwo(ρ 1,0 • . . . • ρ 1,i) = fwo(ρ 2,0 • . . . • ρ 2,i). Assume the property holds for i < ℓ and let us prove it for i+1. By induction hypothesis, there exists ρ i : σ init -→ σ 1,i ∪ σ 2,i . Letting s 1 := sched(ρ 1,i+1) and s 2 := sched(ρ 2,i+1), we claim that σ 1,i ∪ σ 2,i s1•s2 ---→ σ 1,i+1 ∪ σ 2,i+1 . First, σ 1,i s1 -→ σ 1,i+1 . Since FW(σ 1,i ∪ σ 2,i) = FW(σ i) = {ξ 1 , . . . , ξ i }, σ 1,i ∪ σ 2,i s1 -→ σ 1,i+1 ∪ σ 2,i . Moreover, FW(σ 1,i+1 ∪ σ 2,i) = {ξ 1 , . . . , ξ i , ξ i+1 } and since s 2 starts with a write to register ξ i+1 , it never reads d 0 from ξ i+1 hence σ 1,i+1 ∪ σ 2,i s2 -→ σ 1,i+1 ∪ σ 2,i+1 . In the end, letting s i = sched(ρ i), we have Proof. To prove Lemma 17, we first prove that ρ 1 and ρ 2 can be replaced with executions whose first-write order is swap-proof, while preserving their last configuration. This relies on the following lemma: Proof of Lemma B.4. Write k := round(ξ) and k ′ := round(ξ ′) for the rounds of registers ξ and ξ ′ ; by assumption, k > k ′ +v. The prefix of ρ before the first write to ξ and the suffix of ρ after the first write to ξ ′ will be preserved in ρ. Therefore, we focus on the middle part, and suppose that fwo(ρ) = ξ : ξ ′ and that sched(ρ) ends with a first write to ξ ′ . Decompose sched(ρ) = θ • s • θ ′ where θ is the first write to ξ and θ ′ is the first write to ξ ′ . Let s := s <k • θ ′ • θ • s ≥k , where s <k := proj [0,k-1] (s) and s ≥k := proj [k+1,+∞[(s). We claim that s is applicable from σ. Indeed:

 depicts a representation of Aspnes' algorithm in this formalism.

 the set of registers of round k, and Reg = k∈N Reg k the set of all registers.

Figure 2 A

 2 Figure 2 A simple round-based register protocol.

 denotes the restriction of f to registers from rounds k to k ′ . XX:12 Parameterized safety verification of round-based shared-memory systems ▶ Lemma 17. Let ρ 1 : σ init * -→ σ 1 and ρ 2 : σ init * -→ σ 2 be two executions of a register protocol with visibility range v, such that, for all k

4 for i from 0 5 f 6 if f ̸ = ϵ then 7 9 ifAlgorithm 2

 4056792 to length(F k) do := prefix i (F k) ; Let f = g : ξ, and set S k (f) := S k (f) ∪ S k (g); 8 add to S k (f) the states that can be covered from round k-1 by Inc moves; first write to last(f) is feasible then 10 saturate S k (f) by read and write moves; Non-deterministic polynomial space algorithm to compute the set of coverable states round by round.

XX: 16 Figure 5

 165 Figure 5Overview of the protocol P QBF . All transitions to gadgets go to their initial states.

Figure 7

 7 Figure 7 Illustration of the gadgets Gi.

 sp -→ γ p . Then |s p | ≤ |s|-1, and by induction hypothesis, there exist γ ′ i , γ ′ p and s ′ p with γ ′ i s ′ p -→ γ ′ p , XX:22 Parameterized safety verification of round-based shared-memory systems loc

Lemma A. 1

 1 directly entails the left-to-right implication of Theorem 7. The following lemma states the converse implication:▶ Lemma A.2. Let σ ∈ Σ and ρ : σ init -→ σ.There exist n ∈ N, γ ∈ Γ and π : init n -→ γ such that FW(abst(γ)) = FW(σ) and loc(abst(γ)) = loc(σ ′).

 If a = read -i α (d 0), thanks to σ p θ -→ σ, we have rg α [k-i] / ∈ FW(σ p) hence data rg α [k-i] (γ p) =d 0 , hence it is again possible to consider γ such that γ p θ -→ γ.

ρ▶

 i+1 : σ init si•s1•s2----→ σ 1,i+1 ∪ σ 2,i+1 ; we also have fwo(ρ i+1) = fwo(ρ 1,0 • . . . • ρ 1,i+1) = fwo(ρ 2,0 • . . . • ρ 2,i+1) concluding the proof. ◀ Lemma 17. Let ρ 1 : σ init * -→ σ 1 and ρ 2 : σ init * -→ σ 2 betwo executions of a register protocol with visibility range v, such that, for allk ∈ N, proj [k-v,k] (fwo(ρ 1)) = proj [k-v,k] (fwo(ρ 2)).Then, there exists ρ :σ init * -→ σ such that loc(σ) = loc(σ 1) ∪ loc(σ 2), FW(σ) = FW(σ 1) = FW(σ 2), and, for all k ∈ N, proj [k-v,k] (fwo(ρ)) = proj [k-v,k] (fwo(ρ 1)) = proj [k-v,k] (fwo(ρ 2)).

▶ Lemma B. 4 .

 4 If ρ : σ * -→ τ satisfies fwo(ρ) = p : ξ : ξ ′ : s with p, s sequences of registers, ξ, ξ ′ ∈ Reg and round(ξ) > round(ξ ′)+v, then there exists ρ : σ * -→ τ with fwo(ρ) = p : ξ ′ : ξ : s.

 if x i is existentially quantified (i.e., i even), Gadget G i for existentially quantified variable x i (i.e., i even). Gadget G i for universally quantified variablex i (i.e., i odd).

		write(¬xi)			write(xi)	
	write(¬xi)	Inc	write(xi)	write(xi)	Inc	write(¬xi)
	Inc read(waiti)	read(noi) write(waiti+1)	Inc read(waiti)	Inc read(waiti)	read(yes i) write(waiti+1)	Inc read(waiti)
	write(waiti+1)		write(waiti+1)	write(waiti+1)		write(waiti+1)
		write(xi)			write(¬xi)	
	q false,i write(¬xi) Inc read(yes i) write(yes i+1) (a) q false,i qtrue,i Inc read(yes i) write(yes i+1) write(xi) Inc read(noi) write(noi+1) write(xi) Inc read(noi) write(noi+1) (b)	Inc read(yes i) write(yes i+1) write(¬xi) Inc read(noi) write(noi+1)	qtrue,i

 1, ¬x i can be written to rg[k] if and only if νk (x i) = 0, x i can be written to rg[k] if and only if ν k (x i) = 1. Moreover, if k > 0, then for all j ∈ [0,2m]: yes j can be written to rg[k] if and only if computation ν k = next(ν k-1) sets b j to yes, no j can be written to rg[k] if and only if computation ν k = next(ν k-1) sets b j to no, wait j can be written to rg[k] if and only if computation ν k = next(ν k-1) sets b j to wait.

To conclude, observe that in the proof of Lemma A.2, for |sched(ρ)| = 0 we let n = 1 (a single process suffices) and we later increased the value of n by at most 2 per move in sched(ρ) (we applied Lemma 4 at most twice). Applying this observation to ρ ′′ : σ init s ′′ -→ σ ′′ implies that, for N := 2|Q|(k+1)+1, there exists γ ∈ Reach c (init N) such that (q err , k) ∈ loc(γ). ◀

B

Proofs and details for Section 3

B.1 Proof of Proposition 10

▶ Proposition 10. In a register protocol P with v = 0 and d = 1, for any finite set L of coverable locations, there exists n ∈ N and an execution ρ : σ init *

-→ σ such that, for all (q, k) ∈ L, (q, k) ∈ loc(σ).

Proof. It suffices to prove the following statement: for all ρ 1 : σ init * -→ σ 1 and ρ 2 : σ init * -→ σ 2 , there exists ρ : σ init * -→ σ such that loc(σ 1) ∪ loc(σ 2) ⊆ loc(σ). Thanks to v = 0, moves on round k can only read the register of round k, hence all executions can be reorganised with their moves on round 0 first, then their moves on round 1, and so on. Let K the maximum round of moves in ρ 1 and ρ 2 , and proceed by induction on K.

Suppose first K = 0: ρ 1 and ρ 2 only contain moves on round 0. If neither ρ 1 nor ρ 2 write on rg[0], one can simply concatenate the schedules. Otherwise, suppose that ρ 1 writes on rg[0], and write sched(ρ 1) = s 1 • θ 1 • s ′ 1 where θ 1 is the first write in sched(ρ 1). Consider the following schedule:

We have that: s 1 is a prefix of sched(ρ 1) which is valid from σ init ; s 1 does not write and sched(ρ 2) is valid from σ init hence s 1 • sched(ρ 2) is valid from σ init ; s 1 • sched(ρ 1) only writes on register 0, which is overwritten by θ 1 , hence s is valid from σ init . Suppose that ρ 1 and ρ 2 have moves on rounds 0 to K + 1, and that the property is true for K. Reorganize ρ 1 and ρ 2 so that they start with moves on round 0, followed by moves on round 1 and so on. Decompose ρ 1 into ρ 1,≤K : σ init * -→ σ ′ 1 and ρ 1,K+1 : σ ′ 1 * -→ σ 1 , where ρ 1,≤K only has moves on rounds ≤ K and ρ 1,K+1 only has moves on round K + 1, and similarly for ρ 2 . By induction hypothesis, there exists ρ ≤K : σ init * -→ σ ′ with only moves on rounds ≤ K such that loc(σ ′ 1) ∪ loc(σ ′ 2) ⊆ loc(σ ′). Since σ ′ has register rg[K + 1] blank, sched(ρ 1,K+1) and sched(ρ 2,K+1) are both applicable from σ ′ . By reapplying the reasoning of K = 0 onto ρ 1,K+1 and ρ 2,K+1 , which may only write on rg[k + 1], we obtain an execution ρ K+1 : σ ′ * -→ σ with loc(σ 1) ∪ loc(σ 2) ⊆ loc(σ). Combining ρ ≤K with ρ K+1 gives the desired execution, concluding the proof.

Note that it is also possible to see Proposition 10 as a consequence of Lemma 17; indeed, with v = 0 and d = 1, the condition of equality of first-write order projections becomes that ρ 1 and ρ 2 have to write to the same set of registers, which we can always enforce by adding dummy writes to our protocol. ◀

B.2 Binary counter

Recall the protocol BC m from Figure 3 that encodes a binary counter over m bits. We now prove that 2 m-1 rounds are needed and sufficient to cover q err .

Proof. Thanks to Proposition 10, when v = 0 and d = 1, all coverable locations are compatible, for every finite number of coverable locations, there exists an execution that N. Bertrand, N. Markey, O. Sankur, N. Waldburger

XX:25

covers all these locations. We therefore do not have to worry about with which execution a location is coverable, and we will simply write that a location is coverable or is not coverable and that a symbol can be written or cannot be written to a given register.

The set of coverable locations can be characterised as follows:

] and r the remainder of the Euclidean division of k by 2 i . In BC m , one has the following equivalences:

Proof of Lemma B.3. The proof is by induction on pairs (k, i), ordered lexicographically. Observe first that, for all i ∈ [1, m], (q i,0 , 0) is coverable and (q i,1 , 0) is not. Moreover, for all k ∈ [0, 2 m], (q 1,0 , k) is coverable exactly for even k, and (q 1,1 , k) is coverable exactly for odd k.

Let k > 0, i ∈ [2, m] and suppose that the lemma holds for all pairs (k ′ , i ′) with k ′ < k or k ′ = k and i ′ < i. The only way to write move i to rg[k] is when a process moves from (q i-1,1 , k-1) to (q i-1,0 , k). By induction hypothesis, this means that the remainder of the Euclidean division of k-1 by 2 i-1 is in [2 i-2 , 2 i-1 -1] and the remainder of the Euclidean division of k by 2 i-1 is in [0, 2 i-2], which is equivalent to k being divisible by 2 i-1 . To sum up, move i can be written to rg[k] exactly when k is a multiple of 2 i-1 . Similarly, wait i can be written to rg[k] exactly when k is not divisible by 2 i-1 . Let r be the remainder of the Euclidean division of k by 2 i . We distinguish cases according to the value of r:

if r = 0, then the remainder of k-1 by 2 i is in [2 i-1 , 2 i -1] hence (q i,1 , k-1) can be covered and (q i,0 , k-1) cannot; since k is divisible by 2 i-1 , move i can be written to rg[k] but wait i cannot, so that (q i,0 , k) can be covered and (q i,1 , k) cannot; if 1 ≤ r ≤ 2 i-1 -1, then the remainder of k-1 by 2 i is in [0, 2 i-1 -1] hence (q i,0 , k-1) can be covered and (q i,1 , k-1) cannot; since k is not divisible by 2 i-1 , wait i can be written to rg[k] but move i cannot, so that (q i,0 , k) can be covered and (q i,1 , k) cannot; if r = 2 i-1 , then the remainder of k-1 by 2 i is in [0, 2 i-1 -1] hence (q i,0 , k-1) can be covered and (q i,1 , k-1) cannot; since k is divisible by 2 i-1 , move i can be written to rg[k] but wait i cannot, so that (q i,1 , k) can be covered and (q i,0 , k) cannot;

) can be covered and (q i,0 , k-1) cannot; since k is divisible by 2 i-1 , wait i can be written to rg[k] but move i cannot, (q i,1 , k) can be covered and (q i,0 , k) cannot. ◀

Applied with i = m, Lemma B.3 implies Proposition 9: indeed the only value k in [0, 2 m-1] such that the Euclidian division of k by 2 m yields a remainder of at least 2 m-1 is 2 m-1 . ◀

B.3 Compatibility and first-write orders

Let us introduce a few more notions related to first-write orders. Given a sequence of registers f = ξ 1 : . . . : ξ ℓ , a swap of f is any sequence ξ 1 : . . . : ξ i-1 : ξ i+1 : ξ i : ξ i+2 : . . . ξ ℓ with round(ξ i) > round(ξ i+1) + v; in words, a swap is obtained from f by swapping two registers more than v rounds apart to put the one with earliest round first. A finite sequence of registers f is swap-proof when no swap is possible from f. We first prove that executions with same first-write orders are compatible. -→ τ . Since s contains the same moves as sched(ρ), τ = τ . Finally, fwo(ρ) = ξ ′ : ξ, which concludes the proof. ◀ Lemma B.4 states that one can perform swaps in the first-write order of an execution while preserving the final configuration. To prove Lemma 17, we iteratively apply Lemma B.4 on ρ 1 and ρ 2 until obtaining a swap-proof first-write order. The following lemma states that this iterative process yields a unique swap-proof first-write order when starting with ρ 1 or ρ 2 .

▶ Lemma B.5. Let f and g be two finite sequences of registers such that, for all k ∈ N,

There exists a swap-proof sequence of registers h that can be obtained by iteratively applying swaps from f and also by iteratively applying swaps from g.

Proof of Lemma B.5. Swaps decrease the number of inversions, i.e., of pairs of registers (ξ, ξ ′) with round(ξ) > round(ξ ′)-v and ξ precedes ξ ′ . Therefore, iteratively applying swaps from f one obtains a swap-proof sequence of registers h f after finitely many swaps. Similarly, iteratively applying swaps from g on obtains a swap-proof sequence of registers h g . Let us prove that h f = h g .

Observe first that swaps preserve the projection of windows of size v. Therefore, for all

We now prove by induction on the maximum round K present in h f and h g that h f = h g . The degenerate case h f = h g = ε is trivial. Now, suppose that h f and h g are not empty, and write K the maximum round of registers in h f and h g . Write h ′ f := proj [0,K-1] (h f) and h ′ g := proj [0,K-1] (h g); as observed above, we have

We claim that h ′ f and h ′ g are swap-proof. Indeed, if h ′ f contained a factor ξ : ξ ′ with round(ξ) > round(ξ ′)+v, then h f has a factor ξ : p : ξ ′ where p is a non-empty sequence of registers of round K. Moreover, since K is the maximum round in h f , round(ξ ′) < K-v hence ξ ′ and the last register of p contradict h f being swap-proof. The proof for h ′ g is identical. Applying the induction hypothesis to h ′ f and h ′ g , we obtain h ′ f = h ′ g . Towards a contradiction, suppose there exist ξ, ξ ′ ∈ Reg such that ξ appears before ξ ′ in h f and after ξ ′ in h g . Then either round(ξ) = K or round(ξ ′) = K; wlog, suppose round(ξ) = K and round(ξ ′) < K-v. Letting ξ : p : ξ ′ the factor of f between ξ and ξ ′ , we can suppose that all registers in p are on rounds strictly less than K, otherwise replace ξ by the last register in p on round K. Since h ′ f = h ′ g , all registers in p are before ξ ′ in h ′ g , hence before ξ; therefore the first register in p is on a round stricly less than K-v. This is a contradiction, since it would imply the existence of a possible swap in h f . ◀

Thanks to Lemma B.5, when applying iteratively swaps on fwo(ρ 1) and fwo(ρ 2), we obtain the same swap-proof sequence of registers h. Let us denote by fwo(ρ 1) = f 1 , f 2 , . . . , f ℓ = h and fwo(ρ 2) = g 1 , g 2 , . . . , g ℓ ′ = h the sequences of first-write orders corresponding to these transformations. Thus, for every i ∈ [1, ℓ-1], f i+1 is a swap from f i , and for every j ∈ [1, ℓ ′ -1], g j+1 is a swap from g j . Thanks to Lemma B.4, there exist ρ 1,1 , . . . , ρ 1,ℓ such that, for every i ∈ [1, ℓ], ρ 1.i : σ init * -→ σ 1 and fwo(ρ 1,i) = f i . Similarly, there exist ρ 2,1 , . . . , ρ 2,ℓ ′ such that, XX:28 Parameterized safety verification of round-based shared-memory systems

Proof. In this proof, given F = (F k) k∈N , k ∈ N and f a prefix of F k , we consider the partial computation of Algorithm 2 up until iteration (k, f), that corresponds to the computation that chooses projections F r for all r ≤ k and that artificially stops at the end of iteration (k, f). We define, for every k ∈ N and for every f prefixes of F k , the set

of states that can be covered at round k with an execution consistent with f . For all k ∈ N and σ ∈ Σ, we let st k (σ) := {q ∈ Q | (q, k) ∈ loc(σ)}. Given two executions ρ = σ 0 , θ 1 , . . . , σ ℓ , a prefix execution of ρ is an execution of the form ρ p := σ 0 , θ 1 , . . . , σ ip with i p ≤ ℓ; similarly, ρ s := σ ip , θ ip+1 , . . . σ ℓ is a suffix execution of ρ, and we write ρ = ρ p • ρ s .

Let us prove that, for all k ∈ N, for all f prefixes of

First, the following technical lemma states that any execution that satisfies the first-write order constraints of R k (f) with f = g : ϵ admits a prefix execution satisfying the first-write order constraints of R k (g).

▶ Lemma B.6. Let k ∈ N, f, g prefixes of F k such that g is a strict prefix of f . Let an abstract execution ρ : σ init * -→ σ such that, for all r ≤ k, proj [r-v,r] (fwo(ρ)) = ϕ k r (f). There exists ρ p a prefix execution of f such that, for all r ≤ k, proj [r-v,r] (fwo(ρ p)) = ϕ k r (g) and, decomposing ρ = ρ p • ρ s , ρ s starts with a first write to the first register in f that is not in g.

Proof of Lemma B.6. Let f := fwo(ρ). According to the proof of Lemma 17, we can assume fwo(ρ) to be swap-proof (see the definition of this notion in Subsection B.3). Moreover, wlog we can always assume that fwo(ρ) only has registers of rounds ≤ k, by removing from ρ all moves on rounds > k.

Let g : ξ, with ξ a register of round r ξ := round(ξ), the shortest prefix of f such that, for all r ≤ k, proj

) that coincides with ϕ k r ξ +v+1 (g) on common rounds, contradicting the maximality of ϕ k r ξ +v (g). Towards a contradiction, suppose now that there exists

, s+v] and r ξ ≥ k-v hence r ξ > s+v and, because f is swap-proof, c only has registers of rounds greater than s+v. But then, the two last elements of c : ξ ′ allow for a swap, which is a contradiction.

Therefore, for all r ≤ k, proj [k-v,k] (g) = ϕ k r (g). It suffices to define ρ =: ρ p • ρ s as the prefix execution of ρ such that the first move in ρ s is the first write to the first register in f not in g. ◀ N. Bertrand, N. Markey, O. Sankur, N. Waldburger

XX:29

In order to prove the first statement of Theorem 21, we characterise the sets S k (f) for all k and f under the assumption that the computation does not reject.

Proof of Lemma B.7. We first prove S k (f) ⊆ R k (f), by induction on (k, f) with k ∈ N and f a prefix of F k , using the lexicographical order:

To do so, we build a family of abstract executions ρ k (f) :

and, for all q ∈ S k (f), (q, k) ∈ loc(σ k (f)). More precisely, the property proven by induction is that, if the partial F-computation up until (k, f) is non-rejecting, then there exists an abstract execution ρ k (f) :

For simplicity, we initialize our induction with k = -1, in which case we have F -1 = ε and S -1 (ε) = ∅; simply let ρ -1 (ε) the empty execution.

Let (k, f) with k ≥ 0 and f a prefix of F k such that the partial F-computation up until (k, f) is non-rejecting, and suppose that the property is true for all (k ′ , f ′) < (k, f). In the following, for all prefix h of F k and k

. ρk ′ (h) corresponds to the execution inductively build for round k and progression ϕ k ′ k (h), which is the progression on round k ′ that corresponds to progression h on k.

We build ρ k (f) step by step following the steps of iteration (k, f) of Algorithm 2. First, if f ̸ = ε, write f = g : ξ with x a register. Let ρ (1) = ρ k (g). By hypothesis, proj [0,k-1] (ρ (1)) = ρk-1 (h), which is a prefix of ρk-1 (f) because ϕ k k-1 (g) is a prefix of ϕ k k-1 (f). Let ρ suf be the corresponding suffix execution of ρk-1 (f), i.e., ρk-1 (f) = ρk-1 (g) • ρ suf . sched(ρ suf) is applicable from σ (1) because ρ suf only has moves on rounds 0 to k-1, is applicable after ρk-1 (h) and the projection of ρ (1) on rounds 0 to k-1 is ρk-1 (h). Let ρ (2) : σ init sched(ρ suf) ------→ σ (2) . By induction hypothesis on g, S k (g) ⊆ st k (σ (2)); also, proj [0,k-1] (ρ (2)) = ρk-1 (f).

If f = ε, let ρ (2) := ρk-1 (f), which also gives proj [0,k-1] (ρ (2)) = ρk-1 (f). Either way, st k (σ (2)) contains all states that have been added to S k (f) at the end of Line 7.

Let ρ (3) : σ init * -→ σ (3) be the execution of schedule obtained by appending to sched(ρ (2)) all moves of the form ((q, Inc, q ′), k-1))), by induction hypothesis applied on (k-1, ϕ k k-1 (f)) and thanks to proj [0,k-1] (ρ (2)) = ρk-1 (f). We obtain that st k (σ (3)) contains all states that are in S k (f) after Line 8.

Write θ 1 , . . . , θ ℓ the moves detected by Line 10, in this order. We prove the following property by induction on i ∈ [0, ℓ]: there exists σ i such that σ (3) * -→ σ i , all registers of rounds k-v to k in FW(σ i) are in f and after the step of Line 10 detecting θ i , S k (f) ⊆ st k (σ i). The proof is by induction on i, the case i = 0 being a consequence of S k (f) ⊆ st k (σ (3)) after Line 8. Suppose that the property is true until i-1. Write θ i = ((q, a, q ′), k). Since the algorithm detected θ i , q ∈ S k (f) right before step i of Line 10, and by induction hypothesis (q, k) ∈ loc(σ i-1). Moreover:

XX:30 Parameterized safety verification of round-based shared-memory systems

) and θ i is applicable from σ i-1 , it then suffices to let σ i such that σ i-1 θi -→ σ i ; if a = read 0 α (x) with x ̸ = d 0 , there exist q 1 , q 2 ∈ st k (σ i-1) such that (q 1 , write α (x), q 2) ∈ ∆ and rg α [k] in f ; hence, q 1 , q 2 are in σ i-1 and, by letting θ = ((q 1 , write α (x), q 2), k), θ • θ i is applicable from σ i-1 , and it suffices to let σ i such that σ i-1 θ•θi --→ σ i (θ is here to make sure that rg α [k] is not blank); if a = read -j α (x) with x ̸ = d 0 and j > 0, there exist q 1 , q 2 ∈ S k-j (ϕ k k-j (f)) such that (q 1 , write α (x), q 2) ∈ ∆ and rg α [k -j] in f ; but proj [0,k-j] (ρ (2)) = proj [0,k-j] (ρ k-1 (f)) since j > 0, and by induction hypothesis on (k-1,

Therefore, there exists ρ (4) : σ (3) * -→ σ (4) where σ (4) = σ ℓ satisfies st k (σ (4)) = S k (f) at the end of iteration (k, f) of Algorithm 2. By construction, ρ (4) only has moves on round k. Define ρ k (f) as the concatenation of ρ (3) and ρ (4) . Note that proj

. We now check that ρ k (f) satisfies the required properties: by induction, for all r < k,

) not in fwo(ρ k (g)) (ρ (4) adds no new first write); by induction on k-1 and by definition of

) is equal to g plus the first writes in ρ (4) not in g; ρ (4) only writes to registers in f , and since the partial ocmputation is non-rejecting, a first write is detected at Line 9 and ρ (4)

Suppose by contradiction that there exist k ∈ N and f a prefix of F k such that the partial computation up until (k, f) is non-rejecting and R k (f) ⊈ S k (f). Let k, f minimal (for the lexicographical order) satisfying the previous statement. There exists an abstract execution ρ :

. By minimality of k, for all r < k, st r (σ) ⊆ S r (ϕ k r (f)): it suffices to consider execution proj [0,r] (ρ). Also, for all g strict prefixes of f , thanks to Lemma B.6, there exists ρ p : σ init * -→ σ p a prefix execution of ρ such that, for all r ≤ k, proj [r-v,r] (fwo(ρ)) = ϕ k r (g), hence, by minimality of f , S k (g) ⊆ st k (σ).

Consider q the first state covered by ρ on round k that is not in S k (f), i.e., write

We distinguish cases according to θ: N. Bertrand, N. Markey, O. Sankur, N. Waldburger XX:31 if θ = ((q ′ , Inc, q), k-1) , then q ′ ∈ st k-1 (σ) ⊆ S k-1 (ϕ k k-1 (f)), hence q ∈ S k (f) thanks to Line 8, which is a contradiction; if θ = ((q ′ , write α (x), q), k), then q ′ ∈ S k (f), and since proj [k-v,k] (fwo(ρ)) = f , rg α [k] is in f , hence q is added to S k (f) at Line 10, which is a contradiction; if θ = ((q ′ , read -j α (d 0), q), k), then q ′ ∈ S k (f) and by writing ρ p : σ init * -→ σ p and h := proj [k-v,k] (fwo(ρ p)), we have that rg α [k -j] is not in h since θ is applicable from σ p , hence q is added at Line 10 to S k (h) ⊆ S k (f), which is a contradiction; if θ = ((q ′ , read -j α (x), q), k) with x ̸ = d 0 , then q ′ ∈ S k (f), and there exist q 1 , q 2 such that (q 1 , k -j), (q 2 , k -j) ∈ loc(σ p) and (q 1 , write α (x), q 2) ∈ ∆; by minimality of k, q 1 , q 2 ∈ S k-j (ϕ k k-j (f)), and since

The second statement of Theorem 21 is a consequence of the following lemma:

) k∈N a family of first-write order projections, k ∈ N, f a prefix of F k . Suppose that there exists an execution ρ from σ init such that, for all r ≤ k,

Proof of Lemma B.8. We proceed by induction on (k, f). Again, for simplicity, we initialize the induction with k = -1 and f = ε, in which case the partial computation does nothing hence is non-rejecting. Let k ∈ N, f a prefix of F k and suppose that the property is true for all (k ′ , f ′) < (k, f). Suppose that there exist an abstract execution ρ starting on σ init such that, for all r ≤ k, proj [r-v,r] (fwo(ρ)) = ϕ k r (F k). First, consider the case f = ε. Apply the induction hypothesis on (k-1, F k-1) with witness ρ, the partial F-computation up until (k-1, F k-1) is non-rejecting. Because there in no first write to check in ε, iteration (k, ε) does not reject at Line 9 and the partial F-computation up until (k, ε) is non-rejecting. Now, treat the case f = g : ξ. By induction hypothesis on g, the partial F-computation up until (k, g) is non-rejecting. Thanks to Lemma B.6, since g is a prefix of F k , there exist ρ p , ρ s such that ρ = ρ p • ρ s , for all r ≤ k, proj [r-v,r] (fwo(ρ p)) = ϕ k r (g), and ρ s starts with a first write on ξ.

If ξ is on a round < k, then iteration (k, f) has no first write to check at Line 9, and the partial F-computation up until (k, f) is non-rejecting. If ξ is on round k, write ρ p : σ init * -→ σ p , and let θ the first move in ρ s , which is a first write on ξ. By applying Lemma B.7, since ρ p satisfies the condition in R k (g), all the states in st k (σ p) are in S k (g). Since θ is applicable from σ p , it is detected by the algorithm at Line 9 during iteration (k, f). Therefore, the partial F-computation up until (k, f) is non-rejecting. ◀

To conclude the proof of Theorem 21, letting an abstract execution ρ from σ init , it suffices to apply Lemma B.8 to F = (proj [j-v,j] (fwo(ρ))) k∈N and to all (k, f). This proves that all partials F-computations are non-rejecting, hence that the F-computation is non-rejecting. ◀

B.5 Proof of PSPACE-hardness

▶ Lemma 24. Let k ∈ N. Suppose that (q ψ , k) is coverable and that we have a valuation ν of the variables of ψ such that, for every i ∈ [0, 2m-1]:

if ν(x i) = Proof of Lemma 27. Write P k,i for the property corresponding to the first four items, and Q k,j for the property corresponding to the last three items in the lemma statement. We prove by induction on k the following property: for all i ∈ [0, 2m-1], P k,i , and if k > 0, for all j ∈ [0, 2m], Q k,j .

First, for all i ∈ [0, 2m-1], (q false,i , 0) is coverable and (q true,i , 0) is not; also, ¬x i can be written to rg[0] and x i cannot, which proves the case k = 0.

Suppose that k > 0 and that the property is true for k-1. Write (b j) j∈ [0,2m] for the values set by computation ν k = next(ν k-1). We prove Q k,j , j ∈ [0, 2m], by induction on j. Thanks to Lemma 24 and to the induction hypothesis on k-1, yes 0 can be written to rg[k] if and only if ν k-1 |= ψ, i.e., if and only if b 0 = yes; a similar property holds for no 0 . Also, wait 0 cannot be written to rg[k], and b 0 ̸ = wait, which proves Q k,0 .

Suppose that the property is true for j ∈ [0, 2m-1] in order to prove it for j+1. By induction hypothesis on k, we have that (q true,i , k-1) is coverable if and only if ν k-1 (x i) = 1 (and similarly for q false,i). Moreover, by the induction hypothesis applied to j-1, exactly one symbol among {yes j-1 , no j-1 , wait j-1 } can be written to rg[k] and it matches b j-1 . Therefore, by looking at every case in the computation of next(ν)(x j-1), exactly one symbol among {yes j , no j , wait j } can be written to rg[k] and it matches b j . This also proves that exactly one of {(q true,j-1 , k), (q false,j-1 , k)} is coverable and that it matches ν k (x j-1). ◀