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Abstract
We consider the parameterized verification problem for distributed algorithms where the goal is
to develop techniques to prove the correctness of a given algorithm regardless of the number of
participating processes. Motivated by an asynchronous binary consensus algorithm [3], we consider
round-based distributed algorithms communicating with shared memory. A particular challenge in
these systems is that 1) the number of processes is unbounded, and, more importantly, 2) there is a
fresh set of registers at each round. A verification algorithm thus needs to manage both sources of
infinity. In this setting, we prove that the safety verification problem, which consists in deciding
whether all possible executions avoid a given error state, is PSPACE-complete. For negative instances
of the safety verification problem, we also provide exponential lower and upper bounds on the
minimal number of processes needed for an error execution and on the minimal round on which the
error state can be covered.

2012 ACM Subject Classification Theory of computation → Verification by model checking; Theory
of computation → Distributed algorithms

Keywords and phrases Verification, Parameterized models, Distributed algorithms

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Distributed algorithms received in the last decade a lot of attention from the automated
verification community. Parameterized verification emerged as a subfield that specifically
addresses the verification of distributed algorithms. The main challenge is that distributed
algorithms should be proven correct for any number or participating processes. Parameterized
models are thus infinite by nature and parameterized verification is in general unfeasible [2].
However, one can recover decidability by considering specific classes of parameterized models,
as in the seminal work by German and Sistla where identical finite state machines interact via
rendezvous communications [14]. Since then, various models have been proposed to handle
various communication means (see [11, 7] for surveys).

Shared memory is one possible communication means. This paper makes first steps
towards the parameterized verification of round-based distributed algorithms in the shared-
memory model; examples of such algorithms can be found in [4, 3, 16]. In particular, our
approach covers Aspnes’ consensus algorithm [3] which we take as a motivating example.
Shared-memory models without rounds have been considered in the literature: the verification
of safety properties for systems with a leader and many anonymous contributors interacting
via a single shared register is coNP-complete [12, 13]; and for Büchi properties, it is NP-
complete [10]. Randomized schedulers have also been considered for shared-memory models
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without leaders; the verification of almost-sure coverability is in EXPSPACE, and is PSPACE-
hard [9]. Finally, safety verification is PSPACE-complete for so-called distributed memory
automata, that combine local and global memory [8].

Round-based algorithms make verification particularly challenging since they use fresh
copies of the registers at each round, and an unbounded number of asynchronous processes
means that verification must handle a system with an unbounded number of registers. This
is why existing verification techniques fall short at analyzing such algorithms combining two
sources of infinity: an unbounded number of processes, and an unbounded number of rounds
(hence of registers).

1 int k := 0, bool p ∈ {0, 1}, (rgb [r])b∈{b0,b1},r∈N all initialized to ⊥;
2 while true do
3 read from rgb0 [k] and rgb1 [k];
4 if rgb0 [k] = ⊤ and rgb1 [k] = ⊥ then p := 0;
5 else if rgb0 [k] = ⊥ and rgb1 [k] = ⊤ then p := 1;
6 write ⊤ to rgbp [k];
7 if k > 0 then
8 read from rgb1−p [k−1];
9 if rgb1−p [k−1] = ⊥ then return p;

10 k := k+1;
Algorithm 1 Aspnes’ consensus algorithm [3].

Algorithm 1 gives the pseudocode of the binary consensus algorithm proposed by
Aspnes [3], in which the processes communicate through shared registers. The algorithm
proceeds in asynchronous rounds, which means that there is no a priori bound on the
round difference between pairs of processes. Furthermore, reading from and writing to
registers are separate operations, and a sequence of a read and a write cannot be performed
atomically. Each round r has two shared registers rgbi [r] for i ∈ {0, 1}; notation bi is used in
register indices to avoid confusion with other occurrences of digits 0 and 1. All registers are
initialized to a default value ⊥, and within an execution, their value may only be updated
to ⊤. Intuitively, rgbi [r] = ⊤ if i is the proposed consensus value at round r.

As usual in distributed consensus algorithms, each process starts with a preference value p.
At each round, a process starts by reading the value of the shared registers of that round
(Line 3). If exactly one of them is set to ⊤, the process updates its preference p to the
corresponding value (Lines 4 and 5). In all cases, it writes ⊤ to the current-round register
that corresponds to its preference p (Line 6). Then, it reads the register of the previous
round corresponding to the opposite preference 1−p (Line 8), and if it is ⊥, the process
decides its preference p as return value for the consensus (Line 9). To be able to decide its
current preference value, a process thus has to win a race against others, writing to a register
of its current round k while no other process has written to the register of round k−1 for the
opposite value. Note that a process can read from and write to the registers of its current
round, whereas the registers of the previous rounds are read-only.

The expected properties of such a distributed consensus algorithm are validity, agreement
and termination. Validity expresses that if all processes start with the same preference p, then
no process can return a value different from p. Agreement expresses that no two processes
can return different values. Finally, termination expresses that eventually all processes should
return a value. The termination of Aspnes’ algorithm is only guaranteed under some fairness
constraints on the adversary that schedules the moves of processes [3]. Its validity and
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agreement properties hold unconditionally. Our objective is to develop automated verification
techniques for safety properties, which include validity and agreement.

For a single round –corresponding to one iteration of the while loop– safety properties
can be proved applying techniques from [12, 13]. The additional difficulty here lies in the
presence of unboundedly many rounds and thus of unboundedly many shared registers. Other
settings of parameterized verification exist for round-based distributed algorithms, but none
of them apply to asynchronous shared-memory distributed algorithms: they either concern
fault-tolerant threshold-based algorithms [5, 6], or synchronous distributed algorithms [15, 1].

Contributions

In this paper, we introduce round-based register protocols, a formalism that models round-
based algorithms in which processes communicate via shared memory. Figure 1 depicts a
representation of Aspnes’ algorithm in this formalism.
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Figure 1 A round-based register protocol for Aspnes’ noisy consensus algorithm. Since the first
round (k = 0) slightly differs from the others, to avoid duplication of the state space, we allow for
guards on round number k in the transition labels.

Round-based register protocols form a class of models inspired by register protocols [12,
9, 13], which were introduced to represent shared-memory distributed algorithms without
rounds. In register protocols, states typically represent the control point of each process as
well as the value of its private variables. For instance, the preference p of the process is
encoded in the state space: in the top part, p = 0 and in the bottom part p = 1, as reflected
by the states indices. To allow for multiple rounds and round increments, as in Line 10,
we extend register protocols with a new action Inc that labels the transitions from state Ep
to state Ap, for each preference p ∈ {0, 1}. The processes may read from the registers of
the current round but also from those of previous rounds, so reads must specify not only
the register identifier but also the lookback distance to the current round: for a process in
round k, read−d

bp
(x) represents reading value x from register rgbp [k−d].

The validity and agreement properties translate as follows on the register protocols.
For validity, one needs to check two properties, one for each common preference p ∈ {0, 1}.
Namely, if all processes start in state A0 (resp. A1), then no processes can enter state R0
(resp. R1). Agreement requires that, independently from the initial state of each process
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in {A0, A1}, no executions reach a configuration with at least one process in R0 and at least
one process in R1. Both validity and agreement are safety properties.

After introducing round-based register protocols, we study the parameterized verification
of safety properties, with the objective of automatically checking whether a configuration
involving an error state can be covered for arbitrarily many processes. Our main result is the
PSPACE-completeness of this verification problem. We develop an algorithm exploiting the
fact that the processes may only read the values of registers within a bounded window on
rounds. However, a naive algorithm focusing on the v latest rounds only is hopeless: perhaps
surprisingly, we show that the number of active rounds (i.e., rounds where a non-idle process
is in) may need to be as large as exponential to find an execution covering an error state.
The cutoff i.e., the minimal number of processes needed to cover an error state, may also be
exponential. The design of our polynomial space algorithm addresses these difficulties by
carefully tracking first-write orders, that is, the order in which registers are written to for
the first time. One of the main technical difficulties of the algorithm is making sure that
enough information is stored in this way, allowing the algorithm to solve the verification
problem, while also staying in polynomial space.

The rest of the paper is structured as follows. To address the verification of safety
properties for round-based register protocols, after introducing their syntax and semantics
(Section 2.1), we first observe that they enjoy a monotonicity property (Section 2.2), which
justifies the definition of a sound and complete abstract semantics (Section 2.3). We then
highlight difficulties of coming up with a polynomial space decision procedure (Section 3.1).
Namely, we provide exponential lower bounds on (1) the minimal round number, (2) the min-
imal number of processes, and (3) the minimal number of active rounds in error executions.
We then introduce the central notion of first-write orders and its properties (Section 3.2).
Section 3.3 details our polynomial-space algorithm, and Section 3.4 presents the complexity-
matching lower bound. Due to space constraints, detailed proofs are in the appendix.

2 Round-based shared-memory systems

2.1 Register protocols with rounds
▶ Definition 1 (Round-based register protocols). A round-based register protocol is a tuple
P = ⟨Q, q0, d,D, v,∆⟩ where

Q is a finite set of states with a distinguished initial state q0;
d ∈ N is the number of shared registers per round;
D is a finite data alphabet containing d0 the initial value and D \ {d0} the values that can
be written to the registers;
v is the visibility range (a process on round k may read only from rounds in [k − v, k]);
∆ ⊆ Q × A × Q is the set of transitions, where A = {Inc} ∪ {read−i

α (x) | i ∈ [0, v],
α ∈ [1, d], x ∈ D} ∪ {writeα(x) | α ∈ [1, d], x ∈ D \ {d0}} is the set of actions.

Intuitively, in a round-based register protocol, the behavior of a process is described by
a finite-state machine with a local variable k representing its current round number; note
that each process has its own round number, as processes are asynchronous and can be on
different rounds. Moreover, there are d registers per round, and the transitions can read and
modify these registers. Transitions in round-based register protocols can be labeled with
three different types of actions: the Inc action simply increments the current round number
of the process; action read−i

α (x) can be performed by a process at round k when the value of



N. Bertrand, N. Markey, O. Sankur, N. Waldburger XX:5

register α of round k−i is x; finally, with the action writeα(x), a process at round k writes
value x to the register α of round k. Note that all actions read−i

α (x) must satisfy i ≤ v; in
other words, processes of round k can only read values of registers of rounds k − v to k.

For complexity purposes, we define the size of the protocol P = ⟨Q, q0, d,D, v,∆⟩ as
|P| = |Q| + |D| + |∆| + v + d (thus implicitly assuming that v is given in unary).

Before defining the semantics of round-based register protocols, let us introduce some
useful notations. For round number k, we write rgα[k] the register α of round k, we let
Regk = {rgα[k] | α ∈ [1, d]} denote the set of registers of round k, and Reg =

⋃
k∈N Regk the

set of all registers.
Round-based register protocols execute on several processes asynchronously. The processes

communicate via the shared registers, and they progress in a fully asynchronous way through
the rounds. A location (q, k) ∈ Q ×N describes the current state q and round number k
of a process, and Loc = Q × N is the set of all locations. A configuration intuitively
describes the location of each process, as well as the value of each register. Since processes
are anonymous and indistinguishable, the locations of all processes can be represented by
maps Loc → N describing how many processes populate each location. Formally, a concrete
configuration is a pair γ = (µ, d) ∈ NLoc × DReg such that

∑
(q,k)∈Loc µ(q, k) < ∞. We write

Γ = NLoc × DReg for the set of all concrete configurations. For a concrete configuration γ =
(µ, d), the location multiset µ is denoted loc(γ) and the value d(k)(α) of register α at round k
in γ is written datargα[k](γ). The size of γ corresponds to the number of involved processes:
|γ| =

∑
(q,k)∈Loc µ(q, k). Configuration γ is initial if for every (q, k) ̸= (q0, 0), loc(γ)(q, k) = 0,

and for every register ξ, dataξ(γ) = d0. The set of initial concrete configurations therefore
consists of all initn = ((q0, 0)n, dReg

0 ). A register is blank when it still has initial value d0. The
support of the multiset loc(γ) is supp(γ) = {(q, k) | loc(γ)(q, k) > 0}. Finally, for γ, γ′ ∈ Γ,
we write data(γ) = data(γ′) whenever for all ξ ∈ Reg, dataξ(γ) = dataξ(γ′).

The evolution from a concrete configuration to another reflects the effect of a process
taking a transition in the register protocol. A move is thus an element θ = (δ, k) consisting
of a transition δ ∈ ∆ and a round number k; Moves = ∆ × N is the set of all moves.
For two concrete configurations γ, γ′, we say that γ′ is a successor of γ if there is a move
((q, a, q′), k) ∈ Moves satisfying one of the following conditions, depending on the action type:

(i) a = Inc, loc(γ)(q, k) > 0, loc(γ′) = loc(γ) ⊖ (q, k) ⊕ (q′, k+1), and data(γ′) = data(γ);
(ii) a = read−i

α (x) with x ∈ D, datargα[k−i](γ) = x, loc(γ)(q, k) > 0, loc(γ′) = loc(γ) ⊖
(q, k) ⊕ (q′, k) and data(γ′) = data(γ);

(iii) a = writeα(x) with x ∈ D \ {d0}, datargα[k](γ′) = x, loc(γ)(q, k) > 0, loc(γ′) =
loc(γ) ⊖ (q, k) ⊕ (q′, k) and for all ξ ∈ Reg \ {rgα[k]}, dataξ(γ′) = dataξ(γ).

Here, ⊕ and ⊖ are operations on multisets, respectively adding and removing elements. The
first case represents round increment for a process and the register values are unchanged.
The second case represents a read: it requires that the correct value is stored in the
corresponding register, that the involved process moves, and that the register values are
unchanged. By convention, here, if k − i < 0, i.e., for registers with negative round numbers,
we let datargα[k−i](γ) = d0. Finally, the last case represents a write action; it only affects
the corresponding register, and the state of the involved process. Note that in all cases,
|γ| = |γ′|: the number of processes is constant. If γ′ is a successor of γ by move θ, we write
γ

θ−→ γ′. A concrete execution is an alternating sequence γ0, θ1, γ1, . . . , γℓ−1, θℓ, γℓ of concrete
configurations and moves such that for all i, γi

θi+1−−−→ γi+1. In such a case, we write γ0
∗−→ γℓ,

and we say that γℓ is reachable from γ0. A location (q, k) is coverable from γ0 when there
exists γ ∈ Reach(γ0) such that (q, k) ∈ loc(γ0), and similarly a state q is coverable from γ0
when there exist k ∈ N such that (q, k) is coverable from γ0.
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q0q1 q2

q3 q4

q5 q6 qerr

Inc

write(a) Inc

write(a)
read−1(d0)
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read0(d0)

write(b)

read0(b)

Figure 2 A simple round-based register protocol.

Given a concrete configuration γ ∈ Γ, Reachc(γ) denotes the set of all configurations that
can be reached from γ: Reachc(γ) = {γ′ | γ ∗−→ γ′}.

We are now in a position to define our problem of interest:
Safety problem for round-based register protocols
Input: A round-based register protocol P = ⟨Q, q0, d,D, v,∆⟩ and a state qerr ∈ Q

Question: Is it the case that for every n ∈ N, for every γ ∈ Reachc(initn) and for every
round number k, loc(γ)(qerr, k) = 0?

The state qerr is referred to as an error state that all executions should avoid. An error
configuration is a configuration in which the error state qerr appears, and an error execution is
an execution containing an error configuration. Given a protocol P and a state qerr, in order
to check whether (P, qerr) is a positive instance of the safety problem, we will look for an
error execution, and therefore check the dual problem: whether there exist a size n and a
configuration γ ∈ Reachc(initn) such that for some round number k, loc(γ)(qerr, k) > 0.

▶ Example 2. We illustrate round-based register protocols and their safety problem on
the model depicted in Figure 2. This protocol has a single register per round (d = 1, and
the register identifier is thus omitted), and set of symbols D = {d0, a, b}. Let us give two
examples of concrete executions. State q4 is coverable from init1 with the sequence of moves:

π1 =
(
⟨(q0, 0)⟩, rg[0]=d0

rg[1]=d0

) ⟨q0,Inc,q2⟩,0−−−−−−−→
(
⟨(q2, 1)⟩, rg[0]=d0

rg[1]=d0

) ⟨q2,write(a),q3⟩,1−−−−−−−−−−−→
(
⟨(q3, 1)⟩, rg[0]=d0

rg[1]=a )
)

⟨q3,read−1(d0),q4⟩,1−−−−−−−−−−−−→
(
⟨(q4, 1)⟩, rg[0]=d0

rg[1]=a
)
.

State q6 is coverable from init2 as witnessed by the concrete execution:

π2 =
(
⟨(q0, 0), (q0, 0)⟩, rg[0]=d0

rg[1]=d0

) ⟨q0,write(a),q1⟩,0−−−−−−−−−−−→
(
⟨(q0, 0), (q1, 0)⟩, rg[0]=a

rg[1]=d0

) ⟨q0,Inc,q2⟩,0−−−−−−−→(
⟨(q2, 1), (q1, 0)⟩, rg[0]=a

rg[1]=d0

) ⟨q2,read−1(a),q5⟩,1−−−−−−−−−−−−→
(
⟨(q5, 1), (q1, 0)⟩, rg[0]=a

rg[1]=d0

) ⟨q5,read0(d0),q6⟩,1−−−−−−−−−−−→(
⟨(q6, 1), (q1, 0)⟩, rg[0]=a

rg[1]=d0

)
.

However, it can be observed that no concrete execution can cover both states at the same
round whatever the number of processes, thus preventing from covering qerr. We justify this
observation in Subsection 3.2. This example is a positive instance of the safety problem. ◀

▶ Example 3. The validity of Aspnes’ algorithm can be expressed as two safety properties,
with A0 (resp. A1) as initial state, and R1 (resp. R0) as error state. Let us argue that
the protocol of Figure 1 is safe for q0 = A0 and qerr = R1; the other case is symmetric.
Towards a contradiction, suppose there exists an execution π : initn

∗−→ γ1
θ−→ γ2

∗−→ γ where
γ2 contains a process in the bottom part, and γ2 is the first such configuration along π. Then



N. Bertrand, N. Markey, O. Sankur, N. Waldburger XX:7

θ = ((B0, read0
b1

(⊤), C1), k) for some k, thus implying that datargb1 [k](γ1) = ⊤. However, b1
can only be written to rgb1 [k] by a process already in the bottom part, which contradicts the
minimality of γ2.

To formally encode agreement of Aspnes’ algorithm as a safety property, we make two
slight modifications to the protocol from Figure 1. We add an extra initial state q0 with silent
outgoing transitions to A0 and to A1; we also add an error state qerr that can be covered
only if R0 and R1 are covered in a same execution. To do so, one can mimick the gadget at
q4 and q6 in Figure 2, using an extra letter b ∈ D and adding Inc loops on both R0 and R1,
allowing processes to synchronize on the same round, before writing and reading b.

Checking validity and agreement automatically for Aspnes’ algorithm requires the ma-
chinery that we develop in the rest of the paper. ◀

2.2 Monotonicity
Similarly to other parameterized models, and specifically shared-memory systems [13, 9],
round-based register protocols enjoy a monotonicity property called the copycat property.
Intuitively, this property states that if a location can be populated with one process, then,
increasing the size of the initial configuration, it can be populated by an arbitrary number of
them without affecting the behaviour of the other processes. Formally:

▶ Lemma 4 (Copycat property). Let q ∈ Q, k, n,N ∈ N and γi, γf ∈ Γ such that γf ∈
Reachc(γi) and (q, k) ∈ supp(γf). Then there exist γ′

i , γ
′
f ∈ Γ such that γ′

f ∈ Reachc(γ′
i ) and:

|γ′
i | = |γi| +N , supp(γ′

i ) = supp(γi), and data(γ′
i ) = data(γi);

loc(γ′
f) = loc(γf) ⊕ (q, k)N and data(γ′

f) = data(γf).
The copycat property strongly relies on the fact that operations on the registers are

non-atomic. In particular it is crucial that processes cannot atomically read and write to a
given register, since that could prevent another process from copycating its behaviour.

By the copycat property, the existence of an execution covering the error state qerr implies
the existence of similar executions for any larger number of processes, which motivates the
notion of cutoff. Formally, given (P, qerr) a negative instance of the safety problem, the cutoff
is the least n0 ∈ N such that for every n ≥ n0 there exist γn ∈ Reachc(initn) and kn ∈ N
with loc(γn)(qerr, kn) > 0.

Another consequence is that any value that has been written to a register can be rewritten,
at the cost of increasing the number of involved processes.

▶ Corollary 5. Let n ∈ N, π : initn
∗−→ γ1

∗−→ γ a concrete execution and ξ ∈ Reg a register
such that dataξ(γ1) ̸= d0. There exist n′ ≥ n and a concrete execution π′ : initn′

∗−→ γ′ such
that loc(γ) ⊆ loc(γ′), dataξ(γ′) = dataξ(γ1) and for all ξ′ ̸= ξ, dataξ′(γ′) = dataξ′(γ).

2.3 Abstract semantics
The copycat property suggests that, for existential coverability properties, the precise number
of processes populating a location is not relevant, only the support of the location multiset
matters. As for registers, the only important information to remember is whether they still
contain the initial value, or they have been written to (the support then suffices to deduce
which values can be written and read). In this section, we therefore define an abstract
semantics for round-based register protocols, and we prove it to be sound and complete for
the safety problem.

Formally, an abstract configuration, or simply a configuration, is a pair σ ∈ 2Loc×2Reg, with
location support loc(σ) ∈ 2Loc and set of written registers FW(σ) ∈ 2Reg. We write Σ for the
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set 2Loc × 2Reg of all configurations. The (unique) initial configuration is σinit = ({(q0, 0)}, ∅).
Configuration σ′ is a successor of configuration σ if there exists a move θ = ((q, a, q′), k) ∈
Moves such that one of the following conditions holds:

(i) a = Inc, (q, k) ∈ loc(σ), loc(σ′) = loc(σ) ∪ {(q′, k+1)}, and FW(σ′) = FW(σ);
(ii) a = read−i

α (x) with x ̸= d0, (q, k) ∈ loc(σ), rgα[k−i] ∈ FW(σ), loc(σ′) = loc(σ) ∪
{(q′, k)}, FW(σ′) = FW(σ), and there is a transition (q1,writeα(x), q2) ∈ ∆ with
(q1, k−i), (q2, k−i) ∈ loc(σ);

(iii) a = read−i
α (d0), (q, k) ∈ loc(σ), rgα[k−i] /∈ FW(σ), loc(σ′) = loc(σ) ∪ {(q′, k)} and

FW(σ′) = FW(σ);
(iv) a = writeα(x) with x ̸= d0, (q, k) ∈ loc(σ), loc(σ′) = loc(σ) ∪ {(q′, k)} and FW(σ′) =

FW(σ) ∪ {rgα[k]}.
In this case, we write σ

θ−→ σ′. An (abstract) execution is an alternating sequence of
configurations and moves ρ = σ0, θ1, σ1, . . . , σℓ−1, θℓ, σℓ such that for all i, σi

θi+1−−−→ σi+1, and
we write σ ∗−→ σℓ. Similarly to the concrete semantics, Reach(σ) = {σ′ | σ ∗−→ σ′} denotes
the set of reachable configurations from σ. Again, a location (q, k) is coverable from σ when
there exists σ′ ∈ Reach(σ) such that (q, k) ∈ loc(σ′), and similarly a state q is coverable from
σ when there exist σ′ ∈ Reach(σ) and k ∈ N such that (q, k) ∈ loc(σ′). We simply say that
a configuration is reachable if it is reachable from the initial configuration σinit, and that a
location (resp. a state) is coverable if it is coverable from the initial configuration σinit.

▶ Example 6. Consider again the protocol of Example 2. The (abstract) execution associated
with the concrete execution π1 in this example is

ρ1 =
(
{(q0, 0)}, ∅

) ⟨q0,Inc,q2⟩,0−−−−−−−→
(
{(q0, 0), (q2, 1)}, ∅

) ⟨q2,write(a),q3⟩,1−−−−−−−−−−−→(
{(q0, 0), (q2, 1), (q3, 1)}, {rg[1]}

) ⟨q3,read−1(d0),q4⟩,1−−−−−−−−−−−−→
(
{(q0, 0), (q2, 1), (q3, 1), (q4, 1)}, {rg[1]}

)
.

Similarly, the execution associated with π2 is

ρ2 =
(
{(q0, 0)}, ∅

) ⟨q0,write(a),q1⟩,0−−−−−−−−−−−→
(
{(q0, 0), (q1, 0)}, {rg[0]}

) ⟨q0,Inc,q2⟩,0−−−−−−−→(
{(q0, 0), (q1, 0), (q2, 1)}, {rg[0]}

) ⟨q2,read−1(a),q5⟩,1−−−−−−−−−−−−→
(
⟨(q0, 0), (q1, 0), (q2, 1), (q5, 1)⟩, {rg[0]}

)
⟨q5,read0(d0),q6⟩,1−−−−−−−−−−−→

(
⟨(q0, 0), (q1, 0), (q2, 1), (q5, 1), (q6, 1)⟩, {rg[0]}

)
.

◀

Note that, in contrast to the concrete semantics, the location support of configurations
cannot decrease along an abstract execution. One can easily be convinced that any concrete
execution can be lifted to an abstract one, by possibly increasing the support, which is not a
problem as long as one is interested in the verification of safety properties. Conversely, from
an abstract execution, for a large enough number of processes, using the copycat property one
can build a concrete execution with the same final location support. Altogether, the abstract
semantics is therefore sound and complete to decide the safety problem on round-based
register protocols.

▶ Theorem 7. Let P be a round-based register protocol, qerr a state and k ∈ N. Then:

∃n ∈ N,∃γ ∈ Reachc(initn) : (qerr, k) ∈ loc(γ) ⇐⇒ ∃σ ∈ Reach(σinit) : (qerr, k) ∈ loc(σ) .

Moreover, for negative instances of the safety problem, the proof of Theorem 7 yields an
upper bound on the cutoff, which is linear in the round number at which qerr is covered.

▶ Corollary 8. If there exists k ∈ N such that (qerr, k) is coverable, then, letting N =
2|Q|(k+1)+1, there exists π : initN

∗−→ γ such that (qerr, k) ∈ loc(γ).
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3 Decidability and complexity of the safety problem

3.1 Exponential lower bounds everywhere!
To highlight the challenges in coming up with a polynomial space algorithm, we first state
three exponential lower bounds when considering safety verification of round-based register
protocols. Namely, we prove that (1) the minimal round are which the error state is covered,
(2) the minimal number of processes needed for an error execution, and (3) the minimal
number of simultaneously active rounds within an error execution, all may need to be
exponential in the size of the protocol.

Exponential minimal round

▶ Proposition 9. There exists a family (BCm)m≥1 of round-based register protocols with qerr
an error state, visibility range v = 0 and number of registers per round d = 1, such that
|BCm| = O(m) and the minimum round at which qerr can be covered is in Ω(2m).

q0qtick

q1,0 q1,1

. . .

qi,0 qi,1

. . .
qm,0 qerr

read(waiti)
write(waiti+1)

Inc

read(waitm)
Inc read(movem)

read(move1)
write(wait2)

Inc

read(move1)
write(move2)

Inc

read(movei)
write(waiti+1)

Inc

read(movei)
write(movei+1)

Inc

read(waiti)
write(waiti+1)

Inc
write(move1)

Inc

Figure 3 Protocol BCm for which an exponential number of rounds is needed to cover qerr. For
the sake of readability, transitions may be labelled by a sequence of actions: e.g., the transition
from qi,0 to qi,1 is labelled by read(move1), write(wait2), Inc. Such sequences of actions are not
performed atomically: one should in principle add intermediate states to split the transition into
several consecutive transitions, with one action each. We also use silent transitions (with no action
label) that do not perform any action. The tick gadget in grey will be modified in subsequent figures.

The protocol BCm, depicted in Figure 3, encodes a binary counter on m bits. The
high-level idea of this protocol is that the counter value starts with 0 and is incremented at
each round; setting the most significant bit to 1 puts a process in qerr. In order to cover qerr,
any concrete execution needs at least m+1 processes: one in qtick ticking every round, and
one per bit, in states {qi,0, qi,1} to represent the value of the counter’s i-th bit. At round k,
the value of the i-th least significant bit is 0 if at least one process is at (qi,0, k), and 1 if
at least one process is at (qi,1, k). Finally, at round 2m−1, setting the m-th least significant
bit –of weight 2m−1– to 1 corresponds to (qerr, 2m−1) being covered.

The following proposition is useful for the analysis of BCm. It states that, in register
protocols where v = 0 and d = 1, coverable locations can be covered with a common execution.
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▶ Proposition 10. In a register protocol P with v = 0 and d = 1, for any finite set L of
coverable locations, there exists n ∈ N and an execution ρ : σinit

∗−→ σ such that, for all
(q, k) ∈ L, (q, k) ∈ loc(σ).

Our protocol BCm satisfies the following property, that entails Proposition 9.

▶ Proposition 11. Let k ∈ [0, 2m−1]. Location (qerr, k) is coverable in BCm iff k = 2m−1.

q0qtickqsink
write(move1)

Inc

(a) An exponential number of processes is needed
to cover qerr.

q0qtick

qB

qC

qD

qA

Inc

write(a)

Inc

rea
d−

1 (d0)

read −1(move1 ) write
(m

ov
e1)

write(move1 )

(b) An exponential number of active rounds is
needed to cover qerr.

Figure 4 Two modifications of the tick mechanism of (BCm)m≥1 yielding protocols that need
respectively an exponential number of processes and an exponential number of active rounds.

Exponential cutoff

▶ Proposition 12. There exists a family (Pm)m≥1 of round-based register protocols with qerr
an error state, v = 0 and d = 1, such that |Pm| = O(m) and the minimal number of processes
to cover an error configuration is in Ω(2m).

The protocol Pm is easily obtained from BCm by modifying the tick mechanism so
that each tick must be performed by a different process, as illustrated in Figure 4a. Since
exponentially many ticks are needed to cover qerr, the cutoff is also exponential.

Exponential number of simultaneously active rounds

We have seen that the minimal round at which the error state can be covered may be
exponential. Perhaps more surprisingly, we now show that the processes may need to spread
over exponentially many different rounds. We formalise this with the notion of active rounds.
At a configuration along a given execution, round k is active when some process is at round
k and not idle, i.e., it performs a move later in the execution. The number of active rounds
of an execution is the maximum number of active rounds at each configuration along the
execution.

Towards a polynomial space algorithm for the safety problem, a polynomial bound on the
number of active rounds would allow one to guess on-the-fly an error execution by storing
only non-idle processes for the current configuration. However, such a polynomial bound
does not exist:

▶ Proposition 13. There exists a family (P ′
m)m≥1 of round-based register protocols with qerr

an error state, v = 1 and d = 1, such that |P ′
m| = O(m) and the minimal number of active

rounds for any error execution is in Ω(2m).
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The protocol P ′
m is again obtained from BCm by modifying the tick mechanism, as

illustrated in Figure 4b. The transitions from qtick to qB and from qB to qC ensure that, for
all k ∈ [0, 2m−1], a must be written to rg[k] before it is written to rg[k−1]. The transitions
from qC to qD and from qD to qtick, on the contrary, ensure that, for all k ∈ [1, 2m−1], move1
must be written to rg[k−1] before it is written to rg[k]. Hence, in an error execution, when
move1 is first written to rg[0], all rounds from 1 to 2m−1 must be active, and the number of
active rounds is at least 2m−1.

Note that Proposition 13 requires v > 0. Generally for round-based register protocols
with v = 0, processes in different rounds do not interact and an error execution can be
reordered: all moves on round 0 first, then all moves on round 1, and so on, so that the
number of active rounds is at most 2. Therefore, when v = 0, a naive polynomial-space
algorithm for the safety problem consists in computing all coverable states round after round.

3.2 Compatibility and first-write orders
The compatibility of coverable locations expresses that they can be covered in a common
execution. Formally, two locations (q1, k1) and (q2, k2) are compatible when there exists
ρ : σinit

∗−→ σ such that (q1, k1), (q2, k2) ∈ loc(σ). In contrast to several other classes of
parameterized models (such as broadcast protocols for instance), for round-based register
protocols, not all coverable locations are compatible, which makes the safety problem trickier.

▶ Example 14. The importance of compatibility can be illustrated on the protocol of Figure 2,
whose safety relies on the fact that, for all k ≥ 1, locations (q4, k) and (q6, k) –although both
coverable– are not compatible. Intuitively, in order to cover (q4, k), one must write a to rg[k]
and then read d0 from rg[k−1], while in order to cover (q6, k), one must read a from rg[k−1]
and then read d0 from rg[k]. Since d0 cannot be written, covering (q4, k) requires a write to
rg[k] while rg[k−1] is still blank, and covering (q6, k) requires the opposite. ◀

More generally, the order in which registers are first written to appears to be crucial for
compatibility. We thus define in the sequel the first-write order associated with an execution,
and use it to give sufficient conditions for compatibility of locations, that we express as being
able to combine executions covering these locations.

▶ Definition 15. For ρ = σ0, θ1, · · · θℓ, σℓ an execution, move θi is a first write (to rgα[k]) if
θi = ((q,writeα(x), q′), k) and rgα[k] /∈ FW(σi−1). The first-write order of ρ is the sequence
of registers fwo(ρ) = ξ1 : . . . :ξm such that the j-th first write along ρ writes to ξj.

Following Example 6, fwo(ρ1) = rg[1] and fwo(ρ2) = rg[0]. Two executions with same
first-write order can be combined into a “larger” one with same first-write order.

▶ Lemma 16. Let ρ1 : σinit
∗−→ σ1 and ρ2 : σinit

∗−→ σ2 be two executions such that fwo(ρ1) =
fwo(ρ2). Then, there exists ρ : σinit

∗−→ σ such that loc(σ) = loc(σ1) ∪ loc(σ2), FW(σ) =
FW(σ1) = FW(σ2), and fwo(ρ) = fwo(ρ1) = fwo(ρ2).

It follows that, for any fixed first-write order, there is a maximal support that can be
covered by executions having that first-write order.

To extend the previous result, we exploit the fact that executions do not read registers
arbitrarily far back. It is sufficient to require the first-write orders to have the same projections
on all round windows of size v. Formally, for a first-write order f, and two round numbers
k, k′ ∈ N with k ≤ k′, proj[k,k′](f) denotes the restriction of f to registers from rounds k to k′.
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▶ Lemma 17. Let ρ1 : σinit
∗−→ σ1 and ρ2 : σinit

∗−→ σ2 be two executions of a register protocol
with visibility range v, such that, for all k ∈ N, proj[k−v,k](fwo(ρ1)) = proj[k−v,k](fwo(ρ2)).
Then, there exists ρ : σinit

∗−→ σ such that loc(σ) = loc(σ1) ∪ loc(σ2), FW(σ) = FW(σ1) =
FW(σ2), and, for all k ∈ N, proj[k−v,k](fwo(ρ)) = proj[k−v,k](fwo(ρ1)) = proj[k−v,k](fwo(ρ2)).

▶ Example 18. Agreement of Aspnes’ algorithm is closely related to the notion of location
(in)compatibility. Intuitively, one requires that no pair of locations (R0, k0) and (R1, k1)
are compatible. Their incompatibility is a consequence of a difference between the first-
write orders of the executions that respectively cover them. First, for every k ≥ 1 and
every execution ρ : σinit

∗−→ σ
∗−→ σ′, if rgbi [k] ∈ FW(σ) and rgb1−i [k − 1] /∈ FW(σ), then

rgb1−i [k] /∈ FW(σ′); indeed, since rgb1−i [k] /∈ FW(σ), all locations in loc(σ) whose states
correspond to p = 1 − i are either on round ≤ k − 1 or on round k not on state E1−i, and
⊥ can no longer be read from rgb1−i [k]; by induction, for all k′ ≥ k, rgb1−i [k

′] /∈ FW(σ′). Let
ρ0 : σinit

∗−→ σ0 and ρ1 : σinit
∗−→ σ1 such that, for all i ∈ {0, 1}, (Ri, ki) ∈ loc(σi). For all

i ∈ {0, 1}, moves θi := ((Ci,writebi(⊤), Di), ki) and θ′
i := ((Di, read−1

b1−i
(⊥), Ri), ki) are in

ρi, and θi appears before θ′
i in ρi. Therefore, by letting i such that ki ≤ k1−i, ρi requires

that rgbi [ki] is first-written while rgb1−i [ki − 1] is still blank, and therefore that rgbi [k1−i]
is left blank, while ρ1−i requires a first write on rgbi [k1−i], which proves that (R0, k0) and
(R1, k1) are incompatible. Note that fwo(ρ0) and fwo(ρ1) do not have the same projection
on [k1−i − 1, k1−i], which justifies that Lemma 17 does not apply. ◀

3.3 Polynomial-space algorithm
We now present the main contribution of this paper.

▶ Theorem 19. The safety problem for round-based register protocols is in PSPACE.

To establish Theorem 19, because PSPACE is closed under complement and thanks to
Savitch’s theorem, it suffices to provide a nondeterministic procedure that finds an error
execution (if one exists) within polynomial space. We do this in two steps: first, we give
a nondeterministic procedure that iteratively guesses projections of a first-write order and
computes the set of coverable locations under those projections, but does not terminate;
second, we justify how to run this procedure in polynomial space and that it can be stopped
after an exponential number of iterations (thus encodable by a polynomial space binary
counter).

The high-level idea of the nondeterministic procedure is to iteratively guess a first-write
order f, and to simultaneously compute the set of coverable locations under f. Thanks
to Lemma 17, rather than considering a precise first-write order, the algorithm guesses
its projections on windows of size v. Concretely, at iteration k, the algorithm guesses
Fk = proj[k−v,k](f) and computes the set Sk(Fk) of states that can be covered at round k

under f. These sets are computed incrementally along the prefixes of Fk, called progressions,
which are considered in increasing order. For each prefix, we check whether a first write to
the last register is feasible, that is, whether some coverable location is the source of such a
write; we reject the computation otherwise.

Algorithm 2 provides the skeleton of this procedure. In Line 3 of Algorithm 2, the
sequence of registers Fk is constructed from Fk−1 by removing the registers at round (k−v−1)
and non-deterministically inserting some registers at round k. By convention, in the special
case where k = 0, F0 is set to a sequence of registers of round 0. From Line 4 on, one
considers the successive progressions of Fk, i.e., prefixes of increasing length, Line 5 setting
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Variables computed : F = (Fk)k∈N, (Sk(f))k∈N,f∈Prefixes(Fk)
1 Initialisation: S0(ε) := {q0}; ∀(k, f) ̸= (0, ε), Sk(f) := ∅; ;
2 for k from 0 to +∞ do
3 non-deterministically choose Fk from Fk−1 ;
4 for i from 0 to length(Fk) do
5 f := prefixi(Fk) ;
6 if f ̸= ϵ then
7 Let f = g :ξ, and set Sk(f) := Sk(f) ∪ Sk(g);
8 add to Sk(f) the states that can be covered from round k−1 by Inc moves;
9 if first write to last(f) is feasible then

10 saturate Sk(f) by read and write moves;
11 else
12 Reject;

Algorithm 2 Non-deterministic polynomial space algorithm to compute the set of coverable
states round by round.

f to the prefix of Fk of length i. At Line 7, the set of coverable states at round k for
progression f = g :ξ is inherited from the one for progression g.

The next line requires an extra definition. For every k ∈ N and every prefix f of Fk, the
synchronisation ϕkk−1(f) is the longest prefix of Fk−1 that coincides with f on rounds k−v
to k−1, i.e. such that proj[k−v,k−1](ϕkk−1(f)) = proj[k−v,k−1](f). This is always well defined
since Fk is obtained from Fk−1 by removing registers of round k−v−1, and inserting registers
of round k. So ϕkk−1(f) can be obtained from f by removing registers of round k, and inserting
back those of round k−v−1 that, in Fk−1, are before the first register of round in [k−v, k−1]
that is not in f . Similarly, we define the prefixes of f corresponding to previous rounds. For
every r < k−1 and every prefix f of Fk, the synchronisation ϕkr (f) is defined inductively
by ϕkr (f) := ϕr+1

r (ϕkr+1(f)), so that ϕkr (f) := ϕr+1
r (ϕr+2

r+1(. . . (ϕk−1
k−2(ϕkk−1(f))) . . . )). Last, by

convention, ϕkk(f) := f .

▶ Example 20. We illustrate the notion of synchronisation function on a toy example.
Consider the sequence of registers F1 = α1 :β1 :γ0 : δ0 : ϵ1 : ζ0, where the subscripts denote
the rounds, and assume that v = 1. The sequence F2 is obtained from F1 by removing
the round 0 registers γ0, δ0, ζ0, and by inserting some registers of round 2. For instance,
one nondeterministically construct F2 = α1 : η2 : β1 : θ2 : ϵ1. In that case, for instance
ϕ2

1(α1 : η2 : β1) = α1 : β1 : γ0 : δ0; in words, when we are at iteration 2 with progression
α1 :η2 :β1, the corresponding progression at iteration 1 is α1 :β1 :γ0 :δ0. Also, ϕ2

1(α1 :η2) = α1
and ϕ2

1(α1 :η2 :β1 :θ2) = α1 :β1 :γ0 :δ0 :ϵ1 :ζ0.
On iteration further, one could have F3 = η2 : κ3 : θ2 and thus ϕ3

1(η2 : κ3) = ϕ2
1(ϕ3

2(η2 :
κ3)) = ϕ2

1(α1 :η2 :β1) = α1 :β1 :γ0 :δ0. ◀

Now, Sk(f) is defined in two steps. First, Line 8 adds to Sk(f) the states that can
be immediately obtained by an Inc move from states coverable at round k−1. Formally,
Sk(f) := Sk(f) ∪ {q′ ∈ Q | ∃q ∈ Sk−1(ϕkk−1(f)), (q, Inc, q′) ∈ ∆}. Line 9 then checks that
a first write to the last register in f is feasible; that is, if f = g : rgα[k], then, one checks
whether there exists a write transition (q,writeα(x), q′) ∈ ∆ with x ̸= d0 and q ∈ Sk(g).
Second, in Line 10, we saturate Sk(f) by all possible moves at round k. Formally, we add
every state q′ ∈ Q \ Sk(f) such that there exist q ∈ Sk(f) and (q, a, q′) ∈ ∆ where action a

satisfies one of the following conditions:
a = read−j

α (d0) and rgα[k−j] does not appear in f ;
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a = read−j
α (x) with x ̸= d0, rgα[k−j] appears in f and there exist q1, q2 ∈ Sk−j(ϕkk−j(f))

such that (q1,writeα(x), q2) ∈ ∆;
a = writeα(x) and rgα[k] appears in f .

In Line 12, the computation is rejected since the guessed first-write order is not feasible.

Characterisation of the sets Sk(Fk) computed in Algorithm 2

For a family of first-write order projections F = (Fk)k∈N and a round k, we define
Qcover(F , k) = {q | ∃ρ : σinit

∗−→ σ s.t. (q, k) ∈ loc(σ) and ∀r ≤ k, proj[r−v,r](fwo(ρ)) = Fr}.
In words, Qcover(F , k) is the set of states that can be covered at round k by an execution
whose first-write order projects to the family F on windows of size v.

Observe that the only non-deterministic choice in Algorithm 2 is the choice of the
sequences Fk; hence, for a given F = (Fk)k∈N, there is at most one non-rejecting computation
whose first-write order projections agrees with family F . In that case, we say that the F-
computation of Algorithm 2 is non-rejecting.

▶ Theorem 21. For F = (Fk)k∈N a family of projections, if the F-computation of Algorithm 2
is non-rejecting, then the computed sets (Sk(Fk))k∈N satisfy, for all k ∈ N, Sk(Fk) =
Qcover(F , k). Also, for any execution ρ from σinit, letting F = (proj[k−v,k](fwo(ρ)))k≥0, the
F-computation of Algorithm 2 is non-rejecting.

Building on Algorithm 2, our objective it to design a polynomial space algorithm to decide
the safety problem for round-based register protocols. Theorem 21 shows the correctness of
the nondeterministic procedure in the following sense: a non-rejecting computation computes
all coverable states for the guessed first-write order, and any possible first-write order admits
a corresponding non-rejecting computation. To conclude however, the space complexity
should be polynomial in the size of the protocol, and termination must be guaranteed by
some stopping criterion.
Staying within space budget. As presented, Algorithm 2 needs unbounded space to
execute since it stores all sequences of first-write orders Fk and all sets Sk(f). To justify that
polynomial space is sufficient, we first observe that some computed values can be ignored
after each iteration. Precisely, iteration k only uses variables of iteration k−1 for increments
and of iterations k−v to k−1 for read/write moves. Thus, at the end of iteration k, all
variables indexed with round k−v can be forgotten. It is thus sufficient to store the variables
of v+1 consecutive rounds.

To conclude, observe also that the maximum length of any sequence Fk is d(v+1).
Therefore each Fk has at most d(v+1)+1 prefixes, and there are at most (d(v+1)+1)(v+1)
sets Sr(f) with r ∈ [k−v, k] for a fixed round number k. We also do not need to store the
value of k. All in all, the algorithm can be implemented in space complexity O(Q · d · v2).
Ensuring termination. To exhibit a stopping criterion, we apply the pigeonhole principle
to conclude that after a number of iterations at most exponential in Q · d · v2, the elements
stored in memory repeat from a previous iteration, so that the algorithm starts looping. If
qerr was not covered at that point, it cannot be covered in further iterations. One can thus
use an iteration counter, encoded in polynomial space in the size of the protocol, to count
iterations and return a decision when the counter reaches its largest value.

Note that, for negative instances of the safety problem, this gives an exponential upper
bound on the round number at which qerr is covered. Combined with Corollary 8, it yields
an exponential upper bound on the cutoff too. Both match the lower bounds established in
Propositions 9 and 12.
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▶ Corollary 22. Let P be a round-based register protocol, and qerr an error state. If (P, qerr)
is a negative instance of the safety problem, then there exist K,N ∈ N both exponential in |P|
such that there exist k ≤ K and a concrete execution π : initN

∗−→ γ such that (qerr, k) ∈ loc(γ).

With the space constraints and stopping criterion discussed above, the nondeterministic
algorithm decides the safety problem for round-based register protocols. Indeed, it suffices
to execute Algorithm 2 up until iteration K and check whether qerr appears in one the sets
Sk(Fk). If qerr is found in some Sk(Fk) with k ≤ K, then qerr ∈ Qcover(F , k), where (Fr)r≤k
is the family of projections picked by the computation of the algorithm. Thus, the protocol
is unsafe. Conversely, if the protocol is unsafe, then there exist k ≤ K and ρ : σinit

∗−→ σ

such that (qerr, k) ∈ loc(σ). Letting F = (proj[r−v,r](fwo(ρ)))r∈N, the F-computation of the
algorithm is non-rejecting, and since qerr ∈ Qcover(F , k), one has qerr ∈ Sk(Fk).

3.4 PSPACE lower bound
▶ Theorem 23. The safety problem for round-based register protocols is PSPACE-hard, even
for fixed v = 0 and fixed d = 1.

Proof. The proof is by reduction from the validity of QBF.
From a 3-QBF instance, we define a round-based register protocol PQBF with an error state

qerr so that the answer to the safety problem is no if and only if the answer to QBF-validity
is yes, i.e., state qerr is coverable if, and only if, the QBF instance is valid. This proves that
the safety problem is coPSPACE-hard, and therefore that it is PSPACE-hard since PSPACE =
coPSPACE.

The protocol PQBF that we construct from a QBF instance is partly inspired by the
binary counter from Figure 3. Recall that in BCm, each bit is represented by a subprotocol,
and every round corresponds to an increment of the counter value. In PQBF, each variable
is represented by a subprotocol, and every round corresponds to considering a different
valuation and evaluating whether it makes the inner SAT formula true. PQBF uses a single
register per round (d = 1), and the subprotocol corresponding to variable x writes at each
round the truth value of x in the considered valuation. The protocol is designed to enumerate
all relevant valuations, and take the appropriate decision about the validity.

We fix an instance ϕ of 3-QBF over the 2m variables {x0, · · · , x2m−1}

ϕ = ∀x2m−1∃x2m−2∀x2m−3∃x2m−4 . . . ∀x1∃x0
∧

1≤j≤p

aj ∨ bj ∨ cj ,

with for every j ∈ [1, p], aj , bj , cj ∈ {xi,¬xi | i ∈ [0, 2m−1]} are the literals and write ψ for
the inner 3-SAT formula.

From ϕ we construct a round-based register protocol on the data alphabet

D := {waiti, yesi, noi | i ∈ [0, 2m]} ∪ {xi,¬xi | i ∈ [0, 2m−1]} ∪ {d0} ,

that in particular contains two symbols xi and ¬xi for each variable xi. Moreover, we let
v = 0 and d = 1.

Thanks to Proposition 10, when v = 0 and d = 1, all coverable locations are compatible,
for every finite number of coverable locations, there exists an execution that covers all these
locations. We therefore do not have to worry about with which execution a location is
coverable, and we will simply write that a location is coverable or is not coverable and that a
symbol can be written or cannot be written to a given register.

The protocol we construct is represented in Figure 5; it contains several gadgets that
we detail in the sequel. Before that we provide a high-level view of PQBF. In PQBF, each
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q0

gadget
Pcheck(ψ)
(Figure 6)

...gadget G0
(Figure 7)

gadget G2m−1
(Figure 7)

qyes qno qint qerrif yes

Inc
write(yes0)

if no

Inc
write(no0)

Inc

read(yes2m)

Figure 5 Overview of the protocol PQBF. All transitions to gadgets go to their initial states.

variable xi is represented by a subprotocol Gi, and every round corresponds to considering a
different valuation and evaluating whether it makes the inner SAT formula true with the
gadget Pcheck(ψ). The gadget Gi writes at each round the truth value of xi in the considered
evaluation. The protocol enumerates all valuations: a given round k will correspond to one
valuation of the variables of ψ, in which variable x is true if x can be written to rg[k], and
false if ¬x can be written to rg[k]. The enumeration of the valuations and corresponding
evaluations of ψ are performed so as to take the appropriate decision about the validity of
the global formula ϕ.

We start by describing the gadget Pcheck(ψ), depicted in Figure 6, that checks whether ψ
is satisfied by the valuation under consideration. State qyes corresponds to ψ evaluated to

qψ q1 q2 ... qyes

qno

read(a1)

read(b1)
read(c1)

read(a2)

read(b2)
read(c2)

read(¬a1)
read(¬b1)
read(¬c1)

read(¬a2)
read(¬b2)
read(¬c2)

read(¬a3)
read(¬b3)
read(¬c3)

Figure 6 Gadget Pcheck(ψ) that checks whether ψ is satisfied by the current valuation.

true and qno corresponding to ψ evaluated to false. Note that we allow transitions labelled by
sequences of actions; for instance the transition from state qψ to state qno consists of three
consecutive reads. The following lemma proves that the gadget Pcheck(ψ) indeed checks how
ψ evaluates for the current valuation.

▶ Lemma 24. Let k ∈ N. Suppose that (qψ, k) is coverable and that we have a valuation ν

of the variables of ψ such that, for every i ∈ [0, 2m−1]:
if ν(xi) = 1, then xi can be written to rg[k], and ¬xi cannot,
if ν(xi) = 0, then ¬xi can be written to rg[k], and xi cannot.

Then (qyes, k) is coverable if and only if ν |= ψ, and (qno, k) is coverable if and only if ν |= ¬ψ.
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We now explain how valuations are enumerated, and how the different quantifiers are
handled. The procedure next, given valuation ν, computes the next valuation next(ν) that
needs to be checked. Eventually, the validity of the formula will be determined by checking
whether ν0 |= ψ (where ν0 assigns 0 to all variables) and nextk(ν0) |= ψ for increasing values
of k ≥ 1.

Let ν a valuation of all variables, and define the valuation next(ν). Let ϕi denote
the subformula Qxi . . . ∀x1∃x0ψ where Q = ∃ if i is even, and Q = ∀ otherwise. We
write ν |= ϕi when ϕi is true when its free variables x2m−1, . . . , xi+1 are set to their
values in ν. The procedure next uses variables bi ∈ {yes, no,wait} for each i ∈ [0, 2m],
whose role is the following. We will set b0 = yes if ν |= ψ, and b0 = no otherwise. For
any 1 ≤ i ≤ 2m−1, bi = yes means ν |= ϕi; bi = no means ν ̸|= ϕi; while bi = wait means that
more valuations need to be checked to determine whether ν |= ϕi or not. Given a valuation
ν, the procedure next computes, at each iteration i, the truth value of xi in valuation next(ν)
and the value of bi+1. After 2m iterations, this provides the new valuation next(ν) against
which ψ must be checked. Formally, b0 = yes if ν |= ψ, and b0 = no otherwise, and for all
i ∈ [0, 2m− 1]:

If bi = wait, then next(ν)(xi) := ν(xi) and bi+1 := wait.
Otherwise

If i is even (existential quantifier).
∗ if bi = yes, then next(ν)(xi) := 0 and bi+1 := yes,
∗ if bi = no and ν(xi) = 0, then next(ν)(xi) := 1 and bi+1 := wait,
∗ if bi = no and ν(xi) = 1, then next(ν)(xi) := 0 and bi+1 := no.
if i is odd (universal quantifier),
∗ if bi = no, then next(ν)(xi) := 0 and bi+1 := no,
∗ if bi = yes and ν(xi) = 0, then next(ν)(xi) := 1 and bi+1 := wait,
∗ if bi = yes and ν(xi) = 1, then next(ν)(xi) := 0 and bi+1 := yes.

Note that variable b2m is computed but not used in the computation. Its value will play the
role of a result, e.g., in Lemma 25.

The following lemma formalizes how validity can be checked using next. It is easily proven
by induction on m.

▶ Lemma 25. ϕ is valid if and only if, when iterating next from valuation ν0, one eventually
obtains a computation of next that sets b2m to yes. Otherwise, one eventually obtains a
computation of next that sets b2m to no.

▶ Example 26. Let us illustrate the next operator and Lemma 25 on a small example.
Assume

ϕ = ∃x2∀x1∃x0 ¬x2 ∧ ¬x1 ∧ (x1 ∨ ¬x0),

which is not a valid formula. To determine that ϕ is not valid, we start by checking the
valuation ν0 = (0, 0, 0), writing ν0 as the tuple (ν0(x0), ν0(x1), ν0(x2)). Let ν = next(ν0). ν0
satisfies the inner formula, hence we set b0 = yes. By following the procedure of next, we
obtain ν(x0) = 0, b1 = yes in the first iteration (in fact, ν0 |= ϕ0); and ν(x1) = 1, b2 = wait
in the second iteration. In fact, even though ν0 |= ψ, because x1 is quantified universally,
we cannot yet conclude: we must also check whether ψ holds by setting x1 to 1. This is
what b2 = wait means, and this is why ν(x1) is set to 1. Lastly, we obtain ν(x2) = 0 and
b3 = wait, therefore ν = (0, 1, 0).

Let ν′ = next(ν) = next2(ν0). We observe that ν ̸|= ψ and set b0 = no. We then have
ν′(x0) = 1, b1 = wait, and therefore ν′(x1) = 1 and ν′(x2) = 0. In the end, ν′ = (0, 1, 1).
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The computation of next3(ν0) then sets x2 to 1 because no valuation with x2 = 0 satisfied
the formula. We obtain next3(ν0) = (1, 0, 0) and next4(ν0) = (1, 0, 1). The computation of
next5(ν0) sets b2m to no, establishing that ϕ is not valid. ◀

Now, we define, for all i ∈ [0, 2m−1], a gadget Gi that will play the role of variable xi. At
each round, gadget Gi receives from gadget Gi−1 a value in {waiti, yesi, noi} (except for gadget
G0 which receives this value from Pcheck(ψ)). It transmits a value in {waiti+1, yesi+1, noi+1}
to Gi+1, and modifies the value of variable xi accordingly, writing either xi or ¬xi to the
register. These gadgets Gi are given in Figure 7a if xi is existentially quantified (i.e., i even),

qfalse,i qtrue,i

write(¬xi)
Inc

read(waiti)
write(waiti+1)

write(¬xi)
Inc

read(yesi)
write(yesi+1)

write(¬xi)
Inc

read(noi)
write(waiti+1)

write(xi)
Inc

read(waiti)
write(waiti+1)

write(xi)
Inc

read(yesi)
write(yesi+1)

write(xi)
Inc

read(noi)
write(noi+1)

(a) Gadget Gi for existentially quantified variable
xi (i.e., i even).

qfalse,i qtrue,i

write(xi)
Inc

read(waiti)
write(waiti+1)

write(xi)
Inc

read(noi)
write(noi+1)

write(xi)
Inc

read(yesi)
write(waiti+1)

write(¬xi)
Inc

read(waiti)
write(waiti+1)

write(¬xi)
Inc

read(yesi)
write(yesi+1)

write(¬xi)
Inc

read(noi)
write(noi+1)

(b) Gadget Gi for universally quantified variable
xi (i.e., i odd).

Figure 7 Illustration of the gadgets Gi.

and Figure 7b if xi is universally quantified (i.e., i odd). Using those gadgets Gi and Pcheck(ψ)
together with the earlier described gadget Pcheck(ψ), we define the protocol PQBF represented
in Figure 5.

Finally, the following lemma justifies the correctness of our construction by formalising
the relation between next and PQBF.

▶ Lemma 27. Let k ∈ N and νk := nextk(ν0), the valuation obtained by applying next k
times from ν0 := 02m. For all i ∈ [0, 2m−1]:

(qfalse,i, k) is coverable if and only if νk(xi) = 0,
(qtrue,i, k) is coverable if and only if νk(xi) = 1,
¬xi can be written to rg[k] if and only if νk(xi) = 0,
xi can be written to rg[k] if and only if νk(xi) = 1.

Moreover, if k > 0, then for all j ∈ [0, 2m]:
yesj can be written to rg[k] if and only if computation νk = next(νk−1) sets bj to yes,
noj can be written to rg[k] if and only if computation νk = next(νk−1) sets bj to no,
waitj can be written to rg[k] if and only if computation νk = next(νk−1) sets bj to wait.
Combining Lemma 27 with Lemma 25 proves that there exists a register to which yes2m

can be written if and only if ϕ is valid. Also, qerr is coverable in PQBF if and only if there
exists a register to which yes2m can be written, concluding the proof of Theorem 23. ◀
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It may seem surprising that the safety problem is PSPACE-hard already for d = 1 and
v = 0, i.e., with a single register and no visibility on previous rounds. For single register
protocols without rounds, safety properties can be verified in polynomial time with a simple
saturation algorithm. This complexity blowup highlights the expressive power of rounds,
independently of the visibility on previous rounds.

Theorems 19 and 23 yield the precise complexity of the safety problem.

▶ Corollary 28. The safety problem for round-based register protocols is PSPACE-complete.

4 Conclusion

This paper makes a first step towards the automated verification of round-based shared-
memory distributed algorithms. We introduce the model of round-based register protocols
and solves its parameterized safety verification problem. Precisely, we prove that this problem
is PSPACE-complete, providing in particular a non-trivial polynomial space decision algorithm.
We also establish exponential lower and upper bounds on the cutoff and on the minimal
round at which an error is reached.

Many interesting extensions could be considered, such as assuming the presence of a
leader as in [13], or considering other properties than safety. In particular, for algorithms
such as Aspnes’, beyond validity and agreement that are safety properties, one would need
to be able to handle liveness properties (possibly under a fairness assumption) to prove
termination.
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Technical appendix
This appendix contains details and full proofs that were ommitted in the paper due to space
constraints. New statements are numbered with the appendix section letter where they
appear followed by a number. Statements that appear in the paper are restated here with
their original number.

Additional notions and notations
We start by defining several notions used in several proofs.

A schedule is a finite sequence of moves θ1 · . . . · θℓ. The schedule sched(ρ) associated with
an execution ρ = σ0, θ1, σ1, . . . , σℓ−1, θℓ, σℓ, is the sequence θ1 · . . . · θℓ. We similarly define
the schedule sched(π) associated with a concrete execution π.

A schedule s is applicable from a configuration σ if there exist an execution ρ and
a configuration σ′ such that ρ : σ ∗−→ σ′. We then write ρ : σ s−→ σ′ or simply σ

s−→ σ′.
Applicability of a schedule from a concrete configuration is defined analogously. Since single
moves are particular case of schedules, this also defines applicability of a move to a concrete
or abstract configuration.

Given a schedule s and k ≤ k′, proj[k,k′](s) is the schedule obtained by removing from s on
moves whose rounds are not in [k, k′], i.e., all moves of the form ((q, a, q′), r) with r /∈ [k, k′].
Given ρ : σ ∗−→ σ′ and k ∈ N, proj[0,k](sched(ρ)) is applicable from σ; write proj[0,k](ρ) the
execution from σ of schedule proj[0,k](sched(ρ)).

Given two executions ρ : σ ∗−→ σ′ and ρ′ : σ′ ∗−→ σ′′, we write ρ · ρ′ : σ ∗−→ σ′′ the execution
of schedule sched(ρ) · sched(ρ′).

A Proofs and details for Section 2

A.1 Copycat property
▶ Lemma 4 (Copycat property). Let q ∈ Q, k, n,N ∈ N and γi, γf ∈ Γ such that γf ∈
Reachc(γi) and (q, k) ∈ supp(γf). Then there exist γ′

i , γ
′
f ∈ Γ such that γ′

f ∈ Reachc(γ′
i ) and:

|γ′
i | = |γi| +N , supp(γ′

i ) = supp(γi), and data(γ′
i ) = data(γi);

loc(γ′
f) = loc(γf) ⊕ (q, k)N and data(γ′

f) = data(γf).

Proof. The key observation is that if a process at location (q, k) takes a move, it can be
mimicked right away by any other process also at location (q, k).

Since γf ∈ Reachc(γi), there exists a schedule s such that γi
s−→ γf . The proof is by

induction on the length (i.e., the number of moves) of s. For the base case where |s|=0,
we have γi = γf , and it suffices to let loc(γ′

i ) = loc(γi) ⊕ (q, k)N and data(γ′
i ) = data(γi).

Suppose now that γi
s−→ γf with |s| ≥ 1, and that the property holds for schedules of

length at most |s|−1.
If loc(γi)(q, k) > 0, then it suffices to define γ′

i such that loc(γ′
i ) = loc(γi) ⊕ (q, k)N and

data(γ′
i ) = data(γi), and to define γ′

f as the result of applying schedule s from γ′
i , i.e., such

that γ′
i
s−→ γ′

f , keeping the N fresh copies of (q, k) unchanged all along the new execution.
Otherwise, there must exist a move θ in the schedule s such that θ = ((q′, a, q), k)

for some state q′ ∈ Q and some action a. We let k′ be k unless a = Inc, in which case
k′ = k+1. We decompose s into s = sp · θ · ss, and consider the prefix execution ρp : γi

sp−→ γp.

Then |sp| ≤ |s|−1, and by induction hypothesis, there exist γ′
i , γ′

p and s′
p with γ′

i
s′

p−→ γ′
p,
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loc(γ′
p) = loc(γp) ⊕ (q, k′)N and data(γ′

p) = data(γp). Moreover, |γ′
i| = |γi|+N , supp(γ′

i ) =
supp(γi) and data(γ′

i ) = data(γi). Since move θ is applicable to γp, θN+1 is applicable to
γ′
p. Letting s′ = s′

p · θN+1 · ss, we obtain that γ′
i
s′

−→ γ′
f with loc(γ′

f) = loc(γf) ⊕ (q, k)N and
data(γ′

f) = data(γf), which concludes the proof. ◀

A.2 Soundness and completeness of the abstraction
▶ Theorem 7. Let P be a round-based register protocol, qerr a state and k ∈ N. Then:

∃n ∈ N,∃γ ∈ Reachc(initn) : (qerr, k) ∈ loc(γ) ⇐⇒ ∃σ ∈ Reach(σinit) : (qerr, k) ∈ loc(σ) .

Proof. The direct implication is simpler to prove: one can easily mimick a concrete execution
in the abstraction. The right-to-left implication relies on the copycat property, Lemma 4,
and Corollary 5, to accomodate the differences between the concrete and abstract semantics.

In the following, for every concrete configuration γ ∈ Γ, we write abst(γ) ∈ Σ for the
corresponding (abstract) configuration defined by loc(abst(γ)) = supp(γ) and FW(abst(γ)) =
{ξ ∈ Reg | dataξ(γ) ̸= d0}. We start with the direct implication, proving that a concrete
execution from initn can be directly converted into an abstract execution that covers more
locations.

▶ Lemma A.1. Let n ∈ N and π : initn
∗−→ γ. Writing π = γ0, θ1, γ1, . . . , γℓ−1, θℓ, γℓ with

γ0 = initn and γℓ = γ, there exists ρ : σinit
∗−→ σ such that FW(abst(γ)) = FW(σ) and, for

every i ∈ [0, ℓ], loc(abst(γi)) ⊆ loc(σ).

Proof of Lemma A.1. We construct an abstract execution that mimicks each move of the
concrete execution π. We proceed by induction on the length of π, that is on the number of
moves in its schedule sched(π). The base case, where π contains no moves, is trivial, letting
σ := σinit.

Assume now that |π| > 0, and that the lemma holds for any concrete execution with
at most |π| moves. We isolate the last move of π to decompose π as initn

sp−→ γp
θ−→ γ,

with θ ∈ Moves, and write πp : initn
sp−→ γp. By induction hypothesis on πp, there exists

ρp : σinit
∗−→ σp satisfying the property. Let us write θ = ((q, a, q′), k). We now claim that

there exists σ ∈ Σ such that σp
θ−→ σ, i.e., θ is applicable from σp. Indeed, θ is applicable

from γp, hence loc(γp)(q, k) > 0 and by induction hypothesis (q, k) ∈ loc(σp); moreover:
if a = writeα(x), then rgα[k] ∈ FW(abst(γp)) = FW(σp),
if a = read−i

α (d0), then rgα[k−i] /∈ FW(abst(γp)) = FW(σp),
if a = read−i

α (x) with x ̸= d0, then rgα[k−i] ∈ FW(abst(γp)) = FW(σp) and datargα[k−i](γp) =
x hence there exist q1, q2 ∈ Q such that sched(ρp) contains move ((q1,writeα(x), q2), k−i),
and by induction hypothesis, (q1, k−i), (q2, k−i) ∈ loc(σp).

Therefore, there exists σ such that σp
θ−→ σ. Finally, σ satisfies the conditions of the

lemma. First, since FW(abst(γp)) = FW(σp), we have FW(abst(γ)) = FW(σ). Second,
loc(σp) ⊆ loc(σ). Last, loc(abst(γp)) ⊆ loc(σp), and if a process goes to location (q, k)
with move γp

θ−→ γ, then (q, k) ∈ loc(σ) thanks to the abstract step σp
θ−→ σ, and hence

loc(abst(γ)) ⊆ loc(σ). ◀

Lemma A.1 directly entails the left-to-right implication of Theorem 7. The following
lemma states the converse implication:

▶ Lemma A.2. Let σ ∈ Σ and ρ : σinit −→ σ. There exist n ∈ N, γ ∈ Γ and π : initn −→ γ such
that FW(abst(γ)) = FW(σ) and loc(abst(γ)) = loc(σ′).
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Proof of Lemma A.2. Similarly to the previous proof, we would like to construct a concrete
execution that mimicks each move of the (abstract) execution. To do so however, we need to
handle two difficulties. First, in the concrete semantics and in contrast to the abstract one,
a step can remove a location from the current configuration; we overcome this problem by
adding a extra process in the given location, using the copycat property (Lemma 4). Second,
in the concrete semantics, reading x ∈ D \ {d0} from register ξ requires x to actually be
the value stored in ξ, while the abstract semantics only requires a move writing x to ξ to
be available; here again, we overcome this using Lemma 4 and Corollary 5 to add in the
concrete execution a process that writes x to ξ.

Let ρ : σinit −→ σ. We proceed by induction on the number of moves of ρ. If ρ contains no
moves, then σ = σinit, and it suffices to take γ = init1.

Suppose now that |sched(ρ)| > 0, and that the lemma holds for every execution of schedule
of length at most |sched(ρ)|−1, and write sched(ρ) = sp·θ. By induction hypothesis, there exist
n ∈ N and ρ̃p : initn

sp−→ γp such that FW(abst(γp)) = FW(σp) and loc(σp) ⊆ loc(abst(γp)).
Write θ = ((q, a, q′), k); we know that loc(γp)(q, k) > 0. By Lemma 4, we can modify γp
so that loc(γp)(q, k) > 1 (this may require to increase the number of processes n by 1).
It remains to prove that there exists γ such that γp −→ γ, FW(σ) = FW(abst(γ)) and
loc(σ) = loc(abst(γ)). We split cases, depending on the action a of θ:

If a = Inc, consider γ such that γp
θ−→ γ (this is possible because (q, k) ∈ loc(γp)); we then

have (q′, k+1) ∈ supp(γ) but also (q, k) ∈ supp(γ) (because loc(γp)(q, k) > 1) hence
loc(σ) = loc(abst(γ)) and FW(abst(γ)) = FW(abst(γp)) = FW(σp) = FW(σ).
If a = writeα(x), as above consider γ such that γp

θ−→ γ; we then have that datargα[k](γ) = x

hence rgα[k] ∈ FW(abst(γ)), allowing to prove that FW(abst(γ)) = FW(abst(γp)) ∪
{rgα[k]} = FW(σp) ∪ {rgα[k]} = FW(σ).
If a = read−i

α (d0), thanks to σp
θ−→ σ, we have rgα[k−i] /∈ FW(σp) hence datargα[k−i](γp) =

d0, hence it is again possible to consider γ such that γp
θ−→ γ.

If a = read−i
α (x), because σp

θ−→ σ, there exists (q1,writeα(x), q2) ∈ ∆ such that
(q1, k−i), (q2, k−i) ∈ loc(σp). Since loc(σp) = loc(abst(γp)), loc(γp)(q1, k−i) > 0 and
thanks to Lemma 4 we can change γp in order to have loc(γp)(q1, k−i) > 1. By writing
θ′ := ((q1,writeα(x), q2), k−i), consider γ such that γp

θ′·θ−−→ γ. Since loc(γp)(q1, k−i) > 1,
we have (q1, k−i), (q2, k−i) ∈ supp(γ). Therefore, loc(abst(γ)) = loc(abst(γp))∪{(q, k)} =
loc(abst(γp)) ∪ {(q, k)} = loc(σp) ∪ {(q, k)} = loc(σ). Moreover, since σp

θ−→ σ, we
have rgα[k−i] ∈ FW(σ) hence FW(abst(γ)) = FW(abst(γp)) ∪ {rgα[k−i]} = FW(σp) ∪
{rgα[k−i]} = FW(σ).

This ends the proof of the right-to-left implication of Theorem 7 and of the theorem itself. ◀

A.3 Upper bound on cutoff
▶ Corollary 8. If there exists k ∈ N such that (qerr, k) is coverable, then, letting N =
2|Q|(k+1)+1, there exists π : initN

∗−→ γ such that (qerr, k) ∈ loc(γ).

Proof. If qerr is coverable at round k in the concrete semantics, then thanks to Theorem 7,
there exist σ ∈ Σ and ρ : σinit

∗−→ σ such that (qerr, k) ∈ loc(σ). Let s′ = proj[0,k](sched(ρ)) be
the schedule obtained from sched(ρ) by removing all moves on rounds after round k. We have
σinit

s′

−→ σ′ with (qerr, k) ∈ loc(σ′). Let now s′′ be the schedule obtained from s′ restricting to
moves that cover a new location, i.e. a location that was not covered by previous moves.
We have that σinit

s′′

−→ σ′′ with loc(σ′′) = loc(σ′), and |s′′| ≤ |Q|(k+1).
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To conclude, observe that in the proof of Lemma A.2, for |sched(ρ)| = 0 we let n = 1 (a
single process suffices) and we later increased the value of n by at most 2 per move in sched(ρ)
(we applied Lemma 4 at most twice). Applying this observation to ρ′′ : σinit

s′′

−→ σ′′ implies
that, for N := 2|Q|(k+1)+1, there exists γ ∈ Reachc(initN ) such that (qerr, k) ∈ loc(γ). ◀

B Proofs and details for Section 3

B.1 Proof of Proposition 10
▶ Proposition 10. In a register protocol P with v = 0 and d = 1, for any finite set L of
coverable locations, there exists n ∈ N and an execution ρ : σinit

∗−→ σ such that, for all
(q, k) ∈ L, (q, k) ∈ loc(σ).

Proof. It suffices to prove the following statement: for all ρ1 : σinit
∗−→ σ1 and ρ2 : σinit

∗−→ σ2,
there exists ρ : σinit

∗−→ σ such that loc(σ1) ∪ loc(σ2) ⊆ loc(σ).
Thanks to v = 0, moves on round k can only read the register of round k, hence all

executions can be reorganised with their moves on round 0 first, then their moves on round
1, and so on. Let K the maximum round of moves in ρ1 and ρ2, and proceed by induction
on K.

Suppose first K = 0: ρ1 and ρ2 only contain moves on round 0. If neither ρ1 nor ρ2 write
on rg[0], one can simply concatenate the schedules. Otherwise, suppose that ρ1 writes on
rg[0], and write sched(ρ1) = s1 · θ1 · s′

1 where θ1 is the first write in sched(ρ1). Consider the
following schedule: s := s1 · sched(ρ2) · θ1 · s′

1. We have that:
s1 is a prefix of sched(ρ1) which is valid from σinit;
s1 does not write and sched(ρ2) is valid from σinit hence s1 · sched(ρ2) is valid from σinit;
s1 · sched(ρ1) only writes on register 0, which is overwritten by θ1, hence s is valid from
σinit.

Suppose that ρ1 and ρ2 have moves on rounds 0 to K + 1, and that the property is true
for K. Reorganize ρ1 and ρ2 so that they start with moves on round 0, followed by moves
on round 1 and so on. Decompose ρ1 into ρ1,≤K : σinit

∗−→ σ′
1 and ρ1,K+1 : σ′

1
∗−→ σ1, where

ρ1,≤K only has moves on rounds ≤ K and ρ1,K+1 only has moves on round K + 1, and
similarly for ρ2. By induction hypothesis, there exists ρ≤K : σinit

∗−→ σ′ with only moves on
rounds ≤ K such that loc(σ′

1) ∪ loc(σ′
2) ⊆ loc(σ′). Since σ′ has register rg[K + 1] blank,

sched(ρ1,K+1) and sched(ρ2,K+1) are both applicable from σ′ . By reapplying the reasoning
of K = 0 onto ρ1,K+1 and ρ2,K+1, which may only write on rg[k+ 1], we obtain an execution
ρK+1 : σ′ ∗−→ σ with loc(σ1) ∪ loc(σ2) ⊆ loc(σ). Combining ρ≤K with ρK+1 gives the desired
execution, concluding the proof.

Note that it is also possible to see Proposition 10 as a consequence of Lemma 17; indeed,
with v = 0 and d = 1, the condition of equality of first-write order projections becomes that
ρ1 and ρ2 have to write to the same set of registers, which we can always enforce by adding
dummy writes to our protocol. ◀

B.2 Binary counter
Recall the protocol BCm from Figure 3 that encodes a binary counter over m bits. We now
prove that 2m−1 rounds are needed and sufficient to cover qerr.

▶ Proposition 11. Let k ∈ [0, 2m−1]. Location (qerr, k) is coverable in BCm iff k = 2m−1.

Proof. Thanks to Proposition 10, when v = 0 and d = 1, all coverable locations are
compatible, for every finite number of coverable locations, there exists an execution that
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covers all these locations. We therefore do not have to worry about with which execution a
location is coverable, and we will simply write that a location is coverable or is not coverable
and that a symbol can be written or cannot be written to a given register.

The set of coverable locations can be characterised as follows:

▶ Lemma B.3. Let i ∈ [1,m], k ∈ [0, 2m−1] and r the remainder of the Euclidean division
of k by 2i. In BCm, one has the following equivalences:

(qi,0, k) is coverable ⇐⇒ 0 ≤ r ≤ 2i−1 − 1 ;

(qi,1, k) is coverable ⇐⇒ 2i−1 ≤ r ≤ 2i−1 .

Proof of Lemma B.3. The proof is by induction on pairs (k, i), ordered lexicographically.
Observe first that, for all i ∈ [1,m], (qi,0, 0) is coverable and (qi,1, 0) is not. Moreover, for

all k ∈ [0, 2m], (q1,0, k) is coverable exactly for even k, and (q1,1, k) is coverable exactly for
odd k.

Let k > 0, i ∈ [2,m] and suppose that the lemma holds for all pairs (k′, i′) with k′ < k

or k′ = k and i′ < i. The only way to write movei to rg[k] is when a process moves from
(qi−1,1, k−1) to (qi−1,0, k). By induction hypothesis, this means that the remainder of the
Euclidean division of k−1 by 2i−1 is in [2i−2, 2i−1 − 1] and the remainder of the Euclidean
division of k by 2i−1 is in [0, 2i−2], which is equivalent to k being divisible by 2i−1. To sum
up, movei can be written to rg[k] exactly when k is a multiple of 2i−1. Similarly, waiti can
be written to rg[k] exactly when k is not divisible by 2i−1.
Let r be the remainder of the Euclidean division of k by 2i. We distinguish cases according
to the value of r:

if r = 0, then the remainder of k−1 by 2i is in [2i−1, 2i − 1] hence (qi,1, k−1) can be
covered and (qi,0, k−1) cannot; since k is divisible by 2i−1, movei can be written to rg[k]
but waiti cannot, so that (qi,0, k) can be covered and (qi,1, k) cannot;
if 1 ≤ r ≤ 2i−1 −1, then the remainder of k−1 by 2i is in [0, 2i−1 −1] hence (qi,0, k−1) can
be covered and (qi,1, k−1) cannot; since k is not divisible by 2i−1, waiti can be written to
rg[k] but movei cannot, so that (qi,0, k) can be covered and (qi,1, k) cannot;
if r = 2i−1, then the remainder of k−1 by 2i is in [0, 2i−1 − 1] hence (qi,0, k−1) can be
covered and (qi,1, k−1) cannot; since k is divisible by 2i−1, movei can be written to rg[k]
but waiti cannot, so that (qi,1, k) can be covered and (qi,0, k) cannot;
if 2i−1 + 1 ≤ r ≤ 2i − 1, then the remainder of k−1 by 2i is in [2i−1, 2i − 1] hence
(qi,1, k−1) can be covered and (qi,0, k−1) cannot; since k is divisible by 2i−1, waiti can
be written to rg[k] but movei cannot, (qi,1, k) can be covered and (qi,0, k) cannot. ◀

Applied with i = m, Lemma B.3 implies Proposition 9: indeed the only value k in
[0, 2m−1] such that the Euclidian division of k by 2m yields a remainder of at least 2m−1 is
2m−1. ◀

B.3 Compatibility and first-write orders
Let us introduce a few more notions related to first-write orders. Given a sequence of
registers f = ξ1 : . . . : ξℓ, a swap of f is any sequence ξ1 : . . . : ξi−1 : ξi+1 : ξi : ξi+2 : . . . ξℓ with
round(ξi) > round(ξi+1) + v; in words, a swap is obtained from f by swapping two registers
more than v rounds apart to put the one with earliest round first. A finite sequence of
registers f is swap-proof when no swap is possible from f.

We first prove that executions with same first-write orders are compatible.
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▶ Lemma 16. Let ρ1 : σinit
∗−→ σ1 and ρ2 : σinit

∗−→ σ2 be two executions such that fwo(ρ1) =
fwo(ρ2). Then, there exists ρ : σinit

∗−→ σ such that loc(σ) = loc(σ1) ∪ loc(σ2), FW(σ) =
FW(σ1) = FW(σ2), and fwo(ρ) = fwo(ρ1) = fwo(ρ2).

Proof. To establish the result, the only problematic moves are reads from blank registers
and first writes; indeed, if ρ, ρ′ leave all registers blank, one can simply concatenate their
schedules into sched(ρ) · sched(ρ′). To overcome the difficulty of first writes, we explain below
how to interleave ρ and ρ′, considering parts of ρ and ρ′ where the sets of blank registers
agree.

In this proof, for two configurations σ, σ′ ∈ Σ such that FW(σ) = FW(σ′), we write σ ∪σ′

for the configuration τ defined by loc(τ) = loc(σ) ∪ loc(σ′) and FW(τ) = FW(σ) = FW(σ′).
Consider ρ1 and ρ2 as in the statement. We let f = ξ1 : . . . :ξℓ with ξ1, . . . , ξℓ ∈ Reg be the

first-write order of both ρ1 and ρ2. The two executions are then “decomposed” according to
their first-write order: ρ1 = ρ1,0 · . . . ·ρ1,ℓ and ρ2 = ρ2,0 · . . . ·ρ2,ℓ. Formally, for every i ∈ [0, ℓ],
ρ1,i and ρ2,i do not write to registers ξi+1 to ξℓ, and do not read d0 from registers ξ1 to ξi.
Also, for every i ∈ [1, ℓ], ρ1,i and ρ2,i start with a write to register ξi.

For every i ∈ [1, ℓ], we consider the following prefix executions, ρ1,0 · . . . · ρ1,i : σinit
∗−→ σ1,i

and ρ2,0 · . . . · ρ2,i : σinit
∗−→ σ2,i. More precisely, ρ1,0 · . . . · ρ1,i (resp. ρ2,0 · . . . · ρ2,i) is the

prefix execution of ρ1 (resp. of ρ2) stopping just before the first write to ξi+1. Note that,
for every i ∈ [0, ℓ], fwo(ρ1,0 · . . . · ρ1,i) = fwo(ρ2,0 · . . . · ρ2,i) hence FW(σ1,i) = FW(σ2,i) and
σ1,i ∪ σ2,i is defined.

We now prove the following property by induction on i: there exists an execution
ρ̃i : σinit −→ σ1,i ∪ σ2,i such that fwo(ρ̃i) = fwo(ρ1,0 · . . . · ρ1,i) = fwo(ρ2,0 · . . . · ρ2,i).

Assume the property holds for i < ℓ and let us prove it for i+1. By induction hypothesis,
there exists ρ̃i : σinit −→ σ1,i ∪ σ2,i. Letting s1 := sched(ρ1,i+1) and s2 := sched(ρ2,i+1),
we claim that σ1,i ∪ σ2,i

s1·s2−−−→ σ1,i+1 ∪ σ2,i+1. First, σ1,i
s1−→ σ1,i+1. Since FW(σ1,i ∪

σ2,i) = FW(σi) = {ξ1, . . . , ξi}, σ1,i ∪ σ2,i
s1−→ σ1,i+1 ∪ σ2,i. Moreover, FW(σ1,i+1 ∪ σ2,i) =

{ξ1, . . . , ξi, ξi+1} and since s2 starts with a write to register ξi+1, it never reads d0 from
ξi+1 hence σ1,i+1 ∪ σ2,i

s2−→ σ1,i+1 ∪ σ2,i+1. In the end, letting s̃i = sched(ρ̃i), we have

ρ̃i+1 : σinit
s̃i·s1·s2−−−−→ σ1,i+1 ∪ σ2,i+1; we also have fwo(ρ̃i+1) = fwo(ρ1,0 · . . . · ρ1,i+1) = fwo(ρ2,0 ·

. . . · ρ2,i+1) concluding the proof. ◀

▶ Lemma 17. Let ρ1 : σinit
∗−→ σ1 and ρ2 : σinit

∗−→ σ2 be two executions of a register protocol
with visibility range v, such that, for all k ∈ N, proj[k−v,k](fwo(ρ1)) = proj[k−v,k](fwo(ρ2)).
Then, there exists ρ : σinit

∗−→ σ such that loc(σ) = loc(σ1) ∪ loc(σ2), FW(σ) = FW(σ1) =
FW(σ2), and, for all k ∈ N, proj[k−v,k](fwo(ρ)) = proj[k−v,k](fwo(ρ1)) = proj[k−v,k](fwo(ρ2)).

Proof. To prove Lemma 17, we first prove that ρ1 and ρ2 can be replaced with executions
whose first-write order is swap-proof, while preserving their last configuration. This relies on
the following lemma:

▶ Lemma B.4. If ρ : σ ∗−→ τ satisfies fwo(ρ) = p : ξ : ξ′ : s with p, s sequences of registers,
ξ, ξ′ ∈ Reg and round(ξ) > round(ξ′)+v, then there exists ρ̃ : σ ∗−→ τ with fwo(ρ̃) = p :ξ′ :ξ :s.

Proof of Lemma B.4. Write k := round(ξ) and k′ := round(ξ′) for the rounds of registers
ξ and ξ′; by assumption, k > k′+v. The prefix of ρ before the first write to ξ and the
suffix of ρ after the first write to ξ′ will be preserved in ρ̃. Therefore, we focus on the
middle part, and suppose that fwo(ρ) = ξ : ξ′ and that sched(ρ) ends with a first write to
ξ′. Decompose sched(ρ) = θ · s · θ′ where θ is the first write to ξ and θ′ is the first write to
ξ′. Let s̃ := s<k · θ′ · θ · s≥k, where s<k := proj[0,k−1](s) and s≥k := proj[k+1,+∞[(s). We claim
that s̃ is applicable from σ. Indeed:
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s<k · θ′ is applicable from σ because proj[0,k−1](sched(ρ)) = s<k · θ′ and moves on rounds
smaller than k are not impacted by what happens on rounds larger than or equal to k;
θ is applicable after s<k · θ′ because it is a write action applicable from σ;
s≥k is applicable after s<k · θ′ · θ because it is applicable after s<k · θ (s<k only adds new
locations, it does not first write) and since k′ < k−v, moves of s≥k cannot see the first
write to ξ′.

Let ρ̃ : σ s̃−→ τ̃ . Since s̃ contains the same moves as sched(ρ), τ̃ = τ . Finally, fwo(ρ̃) = ξ′ :ξ,
which concludes the proof. ◀

Lemma B.4 states that one can perform swaps in the first-write order of an execution
while preserving the final configuration. To prove Lemma 17, we iteratively apply Lemma B.4
on ρ1 and ρ2 until obtaining a swap-proof first-write order. The following lemma states that
this iterative process yields a unique swap-proof first-write order when starting with ρ1 or ρ2.

▶ Lemma B.5. Let f and g be two finite sequences of registers such that, for all k ∈ N,
proj[k−v,k](f) = proj[k−v,k](g). There exists a swap-proof sequence of registers h that can be
obtained by iteratively applying swaps from f and also by iteratively applying swaps from g.

Proof of Lemma B.5. Swaps decrease the number of inversions, i.e., of pairs of registers
(ξ, ξ′) with round(ξ) > round(ξ′)−v and ξ precedes ξ′. Therefore, iteratively applying swaps
from f one obtains a swap-proof sequence of registers hf after finitely many swaps. Similarly,
iteratively applying swaps from g on obtains a swap-proof sequence of registers hg. Let us
prove that hf = hg.

Observe first that swaps preserve the projection of windows of size v. Therefore, for all
k ∈ N, proj[k−v,k](hf) = proj[k−v,k](f) = proj[k−v,k](g) = proj[k−v,k](hg).

We now prove by induction on the maximum round K present in hf and hg that hf = hg.
The degenerate case hf = hg = ε is trivial.

Now, suppose that hf and hg are not empty, and write K the maximum round of registers
in hf and hg. Write h′

f := proj[0,K−1](hf) and h′
g := proj[0,K−1](hg); as observed above, we have

proj[k−v,k](h′
f) = proj[k−v,k](h′

g) for all k ∈ N. We claim that h′
f and h′

g are swap-proof. Indeed,
if h′

f contained a factor ξ :ξ′ with round(ξ) > round(ξ′)+v, then hf has a factor ξ :p :ξ′ where
p is a non-empty sequence of registers of round K. Moreover, since K is the maximum round
in hf , round(ξ′) < K−v hence ξ′ and the last register of p contradict hf being swap-proof.
The proof for h′

g is identical.
Applying the induction hypothesis to h′

f and h′
g, we obtain h′

f = h′
g. Towards a con-

tradiction, suppose there exist ξ, ξ′ ∈ Reg such that ξ appears before ξ′ in hf and after
ξ′ in hg. Then either round(ξ) = K or round(ξ′) = K; wlog, suppose round(ξ) = K and
round(ξ′) < K−v. Letting ξ :p :ξ′ the factor of f between ξ and ξ′, we can suppose that all
registers in p are on rounds strictly less than K, otherwise replace ξ by the last register in p
on round K. Since h′

f = h′
g, all registers in p are before ξ′ in h′

g, hence before ξ; therefore the
first register in p is on a round stricly less than K−v. This is a contradiction, since it would
imply the existence of a possible swap in hf . ◀

Thanks to Lemma B.5, when applying iteratively swaps on fwo(ρ1) and fwo(ρ2), we obtain
the same swap-proof sequence of registers h. Let us denote by fwo(ρ1) = f1, f2, . . . , fℓ = h
and fwo(ρ2) = g1, g2, . . . , gℓ′ = h the sequences of first-write orders corresponding to these
transformations. Thus, for every i ∈ [1, ℓ−1], fi+1 is a swap from fi, and for every j ∈ [1, ℓ′−1],
gj+1 is a swap from gj . Thanks to Lemma B.4, there exist ρ1,1, . . . , ρ1,ℓ such that, for every
i ∈ [1, ℓ], ρ1.i : σinit

∗−→ σ1 and fwo(ρ1,i) = fi. Similarly, there exist ρ2,1, . . . , ρ2,ℓ′ such that,
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for every i ∈ [1, ℓ′], ρ2,i : σinit
∗−→ σ2 and fwo(ρ2,i) = gi. Applying Lemma 16 to ρ1,ℓ and ρ2,ℓ′

concludes the proof of Lemma 17. ◀

B.4 Characterisation of the sets Sk(Fk) computed in Algorithm 2
▶ Theorem 21. For F = (Fk)k∈N a family of projections, if the F-computation of Algorithm 2
is non-rejecting, then the computed sets (Sk(Fk))k∈N satisfy, for all k ∈ N, Sk(Fk) =
Qcover(F , k). Also, for any execution ρ from σinit, letting F = (proj[k−v,k](fwo(ρ)))k≥0, the
F-computation of Algorithm 2 is non-rejecting.

Proof. In this proof, given F = (Fk)k∈N, k ∈ N and f a prefix of Fk, we consider the partial
computation of Algorithm 2 up until iteration (k, f), that corresponds to the computation
that chooses projections Fr for all r ≤ k and that artificially stops at the end of iteration
(k, f).

We define, for every k ∈ N and for every f prefixes of Fk, the set

Rk(f) := {q | ∃σ ∈ Σ, (q, k) ∈ loc(σ), ∃ρ : σinit
∗−→ σ, ∀r ≤ k, proj[r−v,r](fwo(ρ)) = ϕkr (f)}

of states that can be covered at round k with an execution consistent with f .
For all k ∈ N and σ ∈ Σ, we let stk(σ) := {q ∈ Q | (q, k) ∈ loc(σ)}. Given two executions

ρ = σ0, θ1, . . . , σℓ, a prefix execution of ρ is an execution of the form ρp := σ0, θ1, . . . , σip with
ip ≤ ℓ; similarly, ρs := σip , θip+1, . . . σℓ is a suffix execution of ρ, and we write ρ = ρp · ρs.

Let us prove that, for all k ∈ N, for all f prefixes of Fk, Rk(f) = Sk(f). First, the following
technical lemma states that any execution that satisfies the first-write order constraints of
Rk(f) with f = g :ϵ admits a prefix execution satisfying the first-write order constraints of
Rk(g).

▶ Lemma B.6. Let k ∈ N, f, g prefixes of Fk such that g is a strict prefix of f . Let an
abstract execution ρ : σinit

∗−→ σ such that, for all r ≤ k, proj[r−v,r](fwo(ρ)) = ϕkr (f). There
exists ρp a prefix execution of f such that, for all r ≤ k, proj[r−v,r](fwo(ρp)) = ϕkr (g) and,
decomposing ρ = ρp · ρs, ρs starts with a first write to the first register in f that is not in g.

Proof of Lemma B.6. Let f := fwo(ρ). According to the proof of Lemma 17, we can assume
fwo(ρ) to be swap-proof (see the definition of this notion in Subsection B.3). Moreover, wlog
we can always assume that fwo(ρ) only has registers of rounds ≤ k, by removing from ρ all
moves on rounds > k.

Let g : ξ, with ξ a register of round rξ := round(ξ), the shortest prefix of f such that,
for all r ≤ k, proj[r−v,r](g) is a prefix of ϕkr (g), but ξ is not in ϕkrξ

(g). We claim that
rξ ≥ k − v. Indeed, otherwise, ϕkrξ+v(g) : ξ = proj[rξ,rξ+v](g : ξ) would be a prefix of Frξ+v
(since proj[rξ,rξ+v](f) = ϕkrξ+v(f) is a prefix of Frξ+v) that coincides with ϕkrξ+v+1(g) on
common rounds, contradicting the maximality of ϕkrξ+v(g).

Towards a contradiction, suppose now that there exists s ≤ k such that proj[s−v,s](g) is a
strict prefix of ϕks(g). Write ϕks(g) = proj[s−v,s](g) :ξ′ :h with ξ′ a register and h a sequence
of registers. Since proj[s−v,s](f) = ϕks(f), ξ′ appears in f; we decompose f = g : ξ : c : ξ′ : d
where c and d are sequences of registers. Since ϕks(g) is a prefix of proj[s−v,s](f) = ϕks(f), ξ :c
contains no registers of rounds in [s−v, s+v]; in particular rξ /∈ [s−v, s+v] and rξ ≥ k−v
hence rξ > s+v and, because f is swap-proof, c only has registers of rounds greater than s+v.
But then, the two last elements of c :ξ′ allow for a swap, which is a contradiction.

Therefore, for all r ≤ k, proj[k−v,k](g) = ϕkr (g). It suffices to define ρ =: ρp · ρs as the
prefix execution of ρ such that the first move in ρs is the first write to the first register in f
not in g. ◀
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In order to prove the first statement of Theorem 21, we characterise the sets Sk(f) for all
k and f under the assumption that the computation does not reject.

▶ Lemma B.7. Let F = (Fk)k∈N a family of projections, k ∈ N a f a prefix of Fk.
If the partial computation of Algorithm 2 up until iteration (k, f) does not reject, then
Sk(f) = Rk(f).

Proof of Lemma B.7. We first prove Sk(f) ⊆ Rk(f), by induction on (k, f) with k ∈ N
and f a prefix of Fk, using the lexicographical order: (k, f) < (k′, f ′) if k < k′ or k = k′ and
f is a strict prefix of f ′.

To do so, we build a family of abstract executions ρk(f) : σinit −→ σk(f) such that, for all
k, f , for all r ≤ k, proj[r−v,r](fwo(ρk(f))) = ϕkr (f) and, for all q ∈ Sk(f), (q, k) ∈ loc(σk(f)).
More precisely, the property proven by induction is that, if the partial F-computation up
until (k, f) is non-rejecting, then there exists an abstract execution ρk(f) : σinit −→ σk(f)
such that:

for all r ≤ k, proj[r−v,r](fwo(ρk(f))) = ϕkr (f),
Sk(f) ⊆ stk(σk(f)),
for all r ≤ k, proj[0,r](ρk(f)) = ρr(ϕkr (f)),
for all prefixes g of f , ρk(g) is a prefix of ρk(f).

For simplicity, we initialize our induction with k = −1, in which case we have F−1 = ε and
S−1(ε) = ∅; simply let ρ−1(ε) the empty execution.

Let (k, f) with k ≥ 0 and f a prefix of Fk such that the partial F-computation up until
(k, f) is non-rejecting, and suppose that the property is true for all (k′, f ′) < (k, f). In the
following, for all prefix h of Fk and k′ ≤ k, write ρ̃k′(h) := ρk′(ϕkk′(h)). ρ̃k′(h) corresponds to
the execution inductively build for round k and progression ϕk

′

k (h), which is the progression
on round k′ that corresponds to progression h on k.

We build ρk(f) step by step following the steps of iteration (k, f) of Algorithm 2. First,
if f ̸= ε, write f = g :ξ with x a register. Let ρ(1) = ρk(g). By hypothesis, proj[0,k−1](ρ(1)) =
ρ̃k−1(h), which is a prefix of ρ̃k−1(f) because ϕkk−1(g) is a prefix of ϕkk−1(f). Let ρsuf be
the corresponding suffix execution of ρ̃k−1(f), i.e., ρ̃k−1(f) = ρ̃k−1(g) · ρsuf . sched(ρsuf) is
applicable from σ(1) because ρsuf only has moves on rounds 0 to k−1, is applicable after
ρ̃k−1(h) and the projection of ρ(1) on rounds 0 to k−1 is ρ̃k−1(h). Let ρ(2) : σinit

sched(ρsuf )−−−−−−→ σ(2).
By induction hypothesis on g, Sk(g) ⊆ stk(σ(2)); also, proj[0,k−1](ρ(2)) = ρ̃k−1(f).

If f = ε, let ρ(2) := ρ̃k−1(f), which also gives proj[0,k−1](ρ(2)) = ρ̃k−1(f). Either way,
stk(σ(2)) contains all states that have been added to Sk(f) at the end of Line 7.

Let ρ(3) : σinit
∗−→ σ(3) be the execution of schedule obtained by appending to sched(ρ(2))

all moves of the form ((q, Inc, q′), k−1) with q ∈ Sk−1(ϕkk−1(f)). This is possible because
Sk−1(ϕkk−1(f)) ⊆ stk−1(σ(2)), by induction hypothesis applied on (k−1, ϕkk−1(f)) and thanks
to proj[0,k−1](ρ(2)) = ρ̃k−1(f). We obtain that stk(σ(3)) contains all states that are in Sk(f)
after Line 8.

Write θ1, . . . , θℓ the moves detected by Line 10, in this order. We prove the following
property by induction on i ∈ [0, ℓ]: there exists σi such that σ(3) ∗−→ σi, all registers of rounds
k−v to k in FW(σi) are in f and after the step of Line 10 detecting θi, Sk(f) ⊆ stk(σi). The
proof is by induction on i, the case i = 0 being a consequence of Sk(f) ⊆ stk(σ(3)) after
Line 8. Suppose that the property is true until i−1. Write θi = ((q, a, q′), k). Since the
algorithm detected θi, q ∈ Sk(f) right before step i of Line 10, and by induction hypothesis
(q, k) ∈ loc(σi−1). Moreover:

if a = writeα(x), then let σi such that σi−1
θi−→ σi; rgα[k] is in f hence all registers in

FW(σi) of rounds k−v to k are in f ;
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if a = read−j
α (d0), then rgα[k − j] is not in f hence it is not in FW(σi−1) and θi is

applicable from σi−1, it then suffices to let σi such that σi−1
θi−→ σi;

if a = read0
α(x) with x ̸= d0, there exist q1, q2 ∈ stk(σi−1) such that (q1,writeα(x), q2) ∈ ∆

and rgα[k] in f ; hence, q1, q2 are in σi−1 and, by letting θ = ((q1,writeα(x), q2), k), θ · θi
is applicable from σi−1, and it suffices to let σi such that σi−1

θ·θi−−→ σi (θ is here to make
sure that rgα[k] is not blank);
if a = read−j

α (x) with x ̸= d0 and j > 0, there exist q1, q2 ∈ Sk−j(ϕkk−j(f)) such that
(q1,writeα(x), q2) ∈ ∆ and rgα[k − j] in f ; but proj[0,k−j](ρ(2)) = proj[0,k−j](ρ̃k−1(f))
since j > 0, and by induction hypothesis on (k−1, ϕkk−1(f)), proj[0,k−j](ρ̃k−1(f)) =
ρk−j(ϕk−1

k−j (ϕkk−1(f))) = ρk−j(ϕkk−j(f)), hence by induction hypothesis on (k−j, ϕkk−j(f)),
(q1, k − j), (q2, k − j) ∈ loc(σ(2)) ⊆ loc(σ(3)), therefore θi is applicable from σi−1 and one
can let σi such that σi−1

θi−→ σi.

Therefore, there exists ρ(4) : σ(3) ∗−→ σ(4) where σ(4) = σℓ satisfies stk(σ(4)) = Sk(f)
at the end of iteration (k, f) of Algorithm 2. By construction, ρ(4) only has moves on
round k. Define ρk(f) as the concatenation of ρ(3) and ρ(4). Note that proj[0,k−1](ρk(f)) =
proj[0,k−1](ρ(3)) = ρk−1(ϕkk−1(f)). We now check that ρk(f) satisfies the required properties:

by induction, for all r < k, proj[r−v,r](fwo(ρr(k))) = proj[r−v,r](fwo(ρk−1(ϕkk−1(f)))) =
ϕk−1
r (ϕkk−1(f)) = ϕkr (f);

since σk(f) = σℓ, Sk(f) ⊆ stk(σk(f));
by construction, for all prefixes g of f , ρk(g) is a prefix of ρkf ,
for all r < k, proj[0,r](ρk(f)) = proj[0,r](proj[0,k−1](ρk(ϕk) (f))) = ρr(ϕkr (f)) by induction
on (k−1, ϕkk−1(f)); also, proj[k−v,k](fwo(ρk(f))) = f = ϕkk(f), indeed:

if f = ε then the only first writes of ρk(f) are in ρk−1(ϕkk−1(ε)) and by induction
hypothesis proj[k−v,k](fwo(ρk(f))) = proj[k−v,k](ϕkk−1(ε)) = ε;
if f = g :ξ with round(ξ) < k, the first writes of ρk(f) are those of fwo(ρk(g)) followed
by those in fwo(ρk−1(ϕkk−1(f))) not in fwo(ρk(g)) (ρ(4) adds no new first write); by
induction on k−1 and by definition of ϕkk−1(f), proj[k−v,k](fwo(ρk−1(ϕkk−1(f)))) =
proj[k−v,k](ϕkk−1(f)) = proj[k−v,k−1](f) = proj[k−v,k−1](g) : ξ. Hence, we get that
proj[k−v,k](fwo(ρk(f))) = g :ξ = f ;
if f = g : ξ with round(ξ) = k, then proj[k−v,k](fwo(ρk(f))) is equal to g plus the
first writes in ρ(4) not in g; ρ(4) only writes to registers in f , and since the partial
ocmputation is non-rejecting, a first write is detected at Line 9 and ρ(4) writes on ξ,
hence proj[k−v,k](fwo(ρk(f))) = f .

We now prove Rk(f) ⊆ Sk(f).
Suppose by contradiction that there exist k ∈ N and f a prefix of Fk such that the partial

computation up until (k, f) is non-rejecting and Rk(f) ⊈ Sk(f). Let k, f minimal (for the
lexicographical order) satisfying the previous statement. There exists an abstract execution
ρ : σinit −→ σ such that stk(σ) ⊈ Sk(f) and, for all r ≤ k, proj[r−v,r](fwo(ρ)) = ϕkr (f). By
minimality of k, for all r < k, str(σ) ⊆ Sr(ϕkr (f)): it suffices to consider execution proj[0,r](ρ).
Also, for all g strict prefixes of f , thanks to Lemma B.6, there exists ρp : σinit

∗−→ σp a prefix
execution of ρ such that, for all r ≤ k, proj[r−v,r](fwo(ρ)) = ϕkr (g), hence, by minimality of f ,
Sk(g) ⊆ stk(σ).

Consider q the first state covered by ρ on round k that is not in Sk(f), i.e., write
ρ : σinit

sp−→ σp
θ−→ σm

ss−→ σs with stk(σp) ⊆ Sk(f) and q ∈ stk(σm) \ Sk(f). We distinguish
cases according to θ:
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if θ = ((q′, Inc, q), k−1) , then q′ ∈ stk−1(σ) ⊆ Sk−1(ϕkk−1(f)), hence q ∈ Sk(f) thanks to
Line 8, which is a contradiction;
if θ = ((q′,writeα(x), q), k), then q′ ∈ Sk(f), and since proj[k−v,k](fwo(ρ)) = f , rgα[k] is in
f , hence q is added to Sk(f) at Line 10, which is a contradiction;
if θ = ((q′, read−j

α (d0), q), k), then q′ ∈ Sk(f) and by writing ρp : σinit
∗−→ σp and

h := proj[k−v,k](fwo(ρp)), we have that rgα[k − j] is not in h since θ is applicable from σp,
hence q is added at Line 10 to Sk(h) ⊆ Sk(f), which is a contradiction;
if θ = ((q′, read−j

α (x), q), k) with x ≠ d0, then q′ ∈ Sk(f), and there exist q1, q2 such
that (q1, k − j), (q2, k − j) ∈ loc(σp) and (q1,writeα(x), q2) ∈ ∆; by minimality of k,
q1, q2 ∈ Sk−j(ϕkk−j(f)), and since proj[k−v,k](fwo(ρ)) = f , rgα[k − j] is in f ; hence q is
added to Sk(f) at Line 10, which is a contradiction.

◀

The second statement of Theorem 21 is a consequence of the following lemma:

▶ Lemma B.8. Let F = (Fk)k∈N a family of first-write order projections, k ∈ N, f a
prefix of Fk. Suppose that there exists an execution ρ from σinit such that, for all r ≤ k,
proj[r−v,r](fwo(ρ)) = ϕkr (Fk). Then the partial F-computation of Algorithm 2 up until iteration
(k, f) is non-rejecting.

Proof of Lemma B.8. We proceed by induction on (k, f). Again, for simplicity, we initialize
the induction with k = −1 and f = ε, in which case the partial computation does nothing
hence is non-rejecting. Let k ∈ N, f a prefix of Fk and suppose that the property is true for
all (k′, f ′) < (k, f). Suppose that there exist an abstract execution ρ starting on σinit such
that, for all r ≤ k, proj[r−v,r](fwo(ρ)) = ϕkr (Fk).

First, consider the case f = ε. Apply the induction hypothesis on (k−1, Fk−1) with
witness ρ, the partial F-computation up until (k−1, Fk−1) is non-rejecting. Because there
in no first write to check in ε, iteration (k, ε) does not reject at Line 9 and the partial
F-computation up until (k, ε) is non-rejecting.

Now, treat the case f = g :ξ. By induction hypothesis on g, the partial F-computation
up until (k, g) is non-rejecting. Thanks to Lemma B.6, since g is a prefix of Fk, there exist
ρp, ρs such that ρ = ρp · ρs, for all r ≤ k, proj[r−v,r](fwo(ρp)) = ϕkr (g), and ρs starts with a
first write on ξ.

If ξ is on a round < k, then iteration (k, f) has no first write to check at Line 9, and the
partial F -computation up until (k, f) is non-rejecting. If ξ is on round k, write ρp : σinit

∗−→ σp,
and let θ the first move in ρs, which is a first write on ξ. By applying Lemma B.7, since ρp
satisfies the condition in Rk(g), all the states in stk(σp) are in Sk(g). Since θ is applicable
from σp, it is detected by the algorithm at Line 9 during iteration (k, f). Therefore, the
partial F-computation up until (k, f) is non-rejecting. ◀

To conclude the proof of Theorem 21, letting an abstract execution ρ from σinit, it suffices
to apply Lemma B.8 to F = (proj[j−v,j](fwo(ρ)))k∈N and to all (k, f). This proves that all
partials F -computations are non-rejecting, hence that the F -computation is non-rejecting. ◀

B.5 Proof of PSPACE-hardness
▶ Lemma 24. Let k ∈ N. Suppose that (qψ, k) is coverable and that we have a valuation ν

of the variables of ψ such that, for every i ∈ [0, 2m−1]:
if ν(xi) = 1, then xi can be written to rg[k], and ¬xi cannot,
if ν(xi) = 0, then ¬xi can be written to rg[k], and xi cannot.
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Then (qyes, k) is coverable if and only if ν |= ψ, and (qno, k) is coverable if and only if ν |= ¬ψ.

Proof of Lemma 24. If ν |= ψ then for all i ∈ [1, p], ν must set to true one of the literals ai,
bi and ci. By hypothesis, for all i ∈ [1, p], one symbol among ai, bi and ci can be written to
rg[k], and (qψ, k) is coverable hence (qyes, k) is coverable too. Moreover, for all i ∈ [1, p], one
symbol among ¬a1, ¬bi and ¬ci cannot be written to rg[k] hence (qno, k) is not coverable.

If ν |= ¬ψ, there exists i ∈ [1, p] such that ν sets to false all three literals ai, bi and ci.
We consider the minimal i with this property. By hypothesis, none of the symbols among ai,
bi and ci can be written to rg[k], and (qyes, k) is not coverable. Moreover, by minimality
of i, (qi−1, k) is coverable and one symbol among ¬a1, ¬bi and ¬ci can be written to rg[k],
hence (qno, k) is coverable. ◀

▶ Lemma 27. Let k ∈ N and νk := nextk(ν0), the valuation obtained by applying next k
times from ν0 := 02m. For all i ∈ [0, 2m−1]:

(qfalse,i, k) is coverable if and only if νk(xi) = 0,
(qtrue,i, k) is coverable if and only if νk(xi) = 1,
¬xi can be written to rg[k] if and only if νk(xi) = 0,
xi can be written to rg[k] if and only if νk(xi) = 1.

Moreover, if k > 0, then for all j ∈ [0, 2m]:
yesj can be written to rg[k] if and only if computation νk = next(νk−1) sets bj to yes,
noj can be written to rg[k] if and only if computation νk = next(νk−1) sets bj to no,
waitj can be written to rg[k] if and only if computation νk = next(νk−1) sets bj to wait.

Proof of Lemma 27. Write Pk,i for the property corresponding to the first four items, and
Qk,j for the property corresponding to the last three items in the lemma statement. We prove
by induction on k the following property: for all i ∈ [0, 2m−1], Pk,i, and if k > 0, for all
j ∈ [0, 2m], Qk,j .

First, for all i ∈ [0, 2m−1], (qfalse,i, 0) is coverable and (qtrue,i, 0) is not; also, ¬xi can be
written to rg[0] and xi cannot, which proves the case k = 0.

Suppose that k > 0 and that the property is true for k−1. Write (bj)j∈[0,2m] for the
values set by computation νk = next(νk−1).
We prove Qk,j , j ∈ [0, 2m], by induction on j. Thanks to Lemma 24 and to the induction
hypothesis on k−1, yes0 can be written to rg[k] if and only if νk−1 |= ψ, i.e., if and only
if b0 = yes; a similar property holds for no0. Also, wait0 cannot be written to rg[k], and
b0 ̸= wait, which proves Qk,0.

Suppose that the property is true for j ∈ [0, 2m−1] in order to prove it for j+1. By
induction hypothesis on k, we have that (qtrue,i, k−1) is coverable if and only if νk−1(xi) = 1
(and similarly for qfalse,i). Moreover, by the induction hypothesis applied to j−1, exactly
one symbol among {yesj−1, noj−1,waitj−1} can be written to rg[k] and it matches bj−1.
Therefore, by looking at every case in the computation of next(ν)(xj−1), exactly one symbol
among {yesj , noj ,waitj} can be written to rg[k] and it matches bj . This also proves that
exactly one of {(qtrue,j−1, k), (qfalse,j−1, k)} is coverable and that it matches νk(xj−1). ◀
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