N

N

Sabine: Self-Adaptive Blockchaln coNsEnsus
Guilain Leduc, Sylvain Kubler, Jean-Philippe Georges

» To cite this version:

Guilain Leduc, Sylvain Kubler, Jean-Philippe Georges. Sabine: Self-Adaptive Blockchaln coNsEnsus.
9th International Conference on Future Internet of Things and Cloud, FiCloud 2022, Aug 2022, Rome,
Italy. hal-03777391

HAL Id: hal-03777391
https://hal.science/hal-03777391v1

Submitted on 15 Sep 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03777391v1
https://hal.archives-ouvertes.fr

Sabine: Self-Adaptive Blockchaln coNsEnsus

Guilain Leduc, Sylvain Kubler, Jean-Philippe Georges
Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
(e-mail: guilain.leduc @univ-lorraine.fr)

Abstract—The Practical Bizantine Fault Tolerance (PBFT)
consensus is a well adopted consensus protocol in private and
consortium blockchains, the reason being that it is a light
protocol, it is not computational intensive (particularly when
compared to proof-based consensus protocols), and it allows to
reach high transaction throughput. Security in this consensus
depends on the number of nodes (aka validators) involved in
the consensus: the higher the number of nodes, the higher the
security level. However, increasing the number of validators goes
along with an increase in the latency, and consequently a decrease
in the throughput. The present research proposes a new Self-
Adaptive Blockchaln coNsEnsus protocol (Sabine), which tries to
optimally address this trade-off by continuously adapting the size
of the pool of validators with the prime objective that the output
throughput (i.e., number of transactions validated at a given time)
meets — fo the best extent possible — the input throughput (i.e.,
requested by the application). Sabine is evaluated and validated
in real-life settings, whose results show that Sabine has a relative
error of 7.79% between the requested and committed transaction
throughput, compared to 39.5% for a classic chain with all nodes
participating in the consensus, implying a more reactive chain,
with less latency.

Index Terms—Blockchain, BFT, Security, Consensus, Control
Theory.

I. INTRODUCTION

Blockchain technologies are distributed ledger which are
increasingly adopted in various sectors [1] such as energy,
finance or supply chain, as they provide a shared, immutable
and transparent history of all the transactions to build appli-
cations with trust. One of the key building blocks of any
blockchain is the consensus protocol, which is in charge to
guarantee the integrity of the ledgers by defining a total order
on newly appended blocks of transactions. There are two main
families of consensus protocols: Proof-based protocols (e.g.,
Proof of Work, Proof-of-Stake, Proof of Importance, etc.) and
BFT protocols [2]; the former requiring a proof of thrust based
on the cost or the difficulty to propose a block, while the latter
relies on a common agreement among a pool of nodes (aka,
validators). The logic and functioning of these two families
of consensus result in different performance characteristics,
whether in terms of scalability, throughput, consistency or
permission (e.g., throughput of a BFT chain is higher than a
Proof-based one). Overall, each consensus family has specific
pros and cons, which are often in opposition to one another.

A new type of blockchain consensus, called Hybrid BFT-
based Algorithms, is emerging [3], which aims at combining
the pros of each family. It consists of first using a Proof-
based consensus to select a temporary set of trusted nodes
among all nodes of the networks (based on various criteria

such as reputation or stake), and then applying a BFT consen-
sus to ensure strong consistency, liveness and safety among
validators. While BFT consensus protocols are energy efficient
and fast, they are costly in terms of “communications”, since
every block proposal needs the agreement of more than %
of the validators to be committed. The number of messages
to gossip this agreement is initially quadratic. As a result,
if a BFT consensus protocol provides higher throughput than
proof-based ones, large-scale deployment leads to a substantial
decrease in the throughput. It is the reason why BFT networks
are limited to a maximum of a hundred validators, setting a
limit on the security. Indeed, as BFT protocol tolerates up to
a third of adversaries among validators, a greater network can
tolerate more adversaries which can compromise the chain
by avoiding the commit of new blocks or supported the
commit of suspicious blocks. The choice of the number of
validators when configuring a chain is thus done manually
by solving a trade off between two conflicting properties:
the maximum throughput that the chain can reach and the
number of malicious validator tolerated. But as the perfor-
mance requirements may change according to the needs, the
maximum throughput, and consequently the security, cannot
be adapted on the fly to the needs because of a constant
number of validators, which could allow an increase in the
number of malicious validators tolerated in case of a low
demand period. Having a fixed number of validators is thus
a fixed response to a dynamic trade off between security and
performances. To overcome this limitation, the present paper
introduces a new BFT-based algorithm called Sabine (standing
for “Self-Adaptive Blockchaln coNsEnsus™), which self-adapt
the number of validators in order to continuously meet (i.e.,
at any given point in time) the requested/input transaction
throughput under security constraints.

Section II further discusses existing Hybrid BFT-based Con-
sensus protocols, along with their limitation to continuously
meet the requested input throughout. Section III presents the
problem that should be solved in order to overcome this
limitation. Section IV presents Sabine, which solves that
problem. Sabine is then evaluated and validated through real-
life experiments in section V; conclusions follow.

II. VALIDATOR SELECTION

In BFT-based blockchain platforms like Hyperledger or
Sawtooth-PBFT [13], the selection of validators is usually
defined during the setting up of the platform, resulting in a
fixed number of validators throughout the operational use of
the platform defining a fixed number of validators. This type

TABLE I
LIST OF BLOCKCHAIN

Chain Name ‘When Whom How Many
Albatross [4] Fixed Size Rounds PoS + VRF

Algorand [5] Each Rounds PoS + VRF > 500k
ASHWAChain [6] Each PoW commit PoW

ByzCoin [7] Fixed Size Rounds PoW 1004 (eval)
DRBFT [8] /! PoS + VRF 10M
Gosig [9] Each Rounds VRF > 10k
Imporoved PoS [10] Consensus failure PoS + VRF 100
LinSBFT [11] Fixed Size Rounds PoS 64
Tendermint [12] Each Round PoS 125
Sawtooth [13] Vi 1/

of platform/strategy is commonly referred to as Consortium
Blockchain [3], which moves away from a truly decentralized
blockchain solution, and in large networks, the consensus
becomes nearly equivalent to a PoA. Central authorities like
banks [14] are often selected as validators to ensure the trust
of the committee of validators. If the pool of validators must
be updated, the intervention of the central authority is required
with closed negotiations between validators.

A second strategy consists in selecting a random set of
validators after a specific time period, which prevents it from
having a trusted third party, as was the case with the first
strategy. The main condition to be met is that all nodes must
agree on the next pool of validators, which is where Proof-
based protocols come into play. A partial selection of state-of-
the-art strategies are reported in TABLE I, which are further
introduced in the following. The TABLE I presents multiple
chains with: when the set of validator is changed, with which
protocols associated (detailed in the next subsections) and with
how many nodes the solution has been tested (in the associated

paper).
A. PoW

PoW (Proof-of-Work) protocol avoids Sybil Attacks by
ensuring that the membership and the participation in the
protocol are limited by the hardware capacity [15]. ByzCoin
[7] and ASHWAChain [6] use this protocol to select a core
of validators in order to protect the chain from these kinds
of attacks. They proposed to merge a PoW and PBFT-based
protocols (appending a new block in the PoW chain gives the
right to take part to the consensus in the PBFT chain). In
Byzcoin, a sliding window approach removes validators on
the PBFT chain in order to keep a fixed number of validators,
statistically represented in proportion to their hash power.

B. PoS

Selecting validators based on PoW is energy-intensive. To
overcome this issue, PoS (Proof-of-Stake) can be applied in-
stead, as proposed by Tendermint et al. [12]. In their approach,
each node that wants to take part to the consensus must make a
security deposit using the chain’s cryptocurrency, and the 125
nodes with the highest deposits are then selected and included

TABLE II
NOTATION

Var. Description

n The number of validator in the chain

Niimit Minimum number of validators

N The number of nodes

dreq Requested transaction throughput

deommit Committed transaction throughput

lag Overall Delay (incl., network delay hardware delay...)

M Model obtained by ML, giving the maximum committed
transaction throughput according the number of validator and
delay

BlockSize Maximal number of transaction per block

b The committed block throughput

w(d, nyar) Return the maximal latency such that the model M restricted
to the number of validator n provide a capacity equal to d

w(d,lag) Return the maximal number of validator such that the model

M restricted to the latency lag provide a capacity equal to d

into the pool of validators. The proposer of each epoch is
selected according to a deterministic round-robin algorithm,
which selects the proposer according to the relative weights of
the stakes. The LinSBFT blockchain presented in [11] adopts
a similar PoS strategy.

C. VRF

Randomness is a critical issue in secured distributed sys-
tems. As blockchains are secure and deterministic distributed
ledger, all nodes need to agree on an unbiased mechanism
in a deterministic environment thus not leaving much room
for randomness. Verifiable Random Functions (VRF) [16] are
pseudo-random functions providing publicly verifiable proof
of the correctness of the output. They are used to simu-
late a pseudo-random mechanism that can be used to select
validators. VRF needs to ensure the following properties:
uniqueness, full collision resistance, pseudo-randomness and
public verifiability. Algorand [5] is based on a PPoS (Pure
Proof-of-Stake) consensus, which mixes PoS and VRE. In
order to avoid the PoS situation where token are concentrated
in a small group, ‘The rich get richer’, PPoS is based on
cryptographic sortition. At each round, a VRF is computed
based on a shared seed based on the previous block and the
pseudo-random output is used to select the validator of the new
round. In order to counter Sybil Attack, the validator selection
is weighted with the owning of the embedded cryptocurrency.
With this system, even the poorest nodes have the possibility to
take part to the consensus. The Albatros blockchain [4] uses a
similar process, where a random number obtained with a VRF
is used to select a list of validators based on a list of nodes
weighed with tokens stalked by that node. Wu et al. propose
a similar protocol but use a metric based on hardware and
network performance instead of a cryptocurrency token [10].
Likely to Algorand, Gosig [9] uses a VRF to select a list
of potential proposers, but with the difference that all nodes
has the same weight to be selected. Finally, in DRBFT [8], a
voting system is present between nodes and a VRF is used to

select a set of validator among nodes with the highest number
of vote.

All the previously introduced blockchain solutions are based
on the idea that a small group of validators is faster than a
large group, but the current state of affairs does not highlight
a blockchain with a varying size of the validator group. As
was explained previously, performance of a BFT blockchain
is intrinsically linked to the size of the pool of validators.
To the best of our knowledge, no study has ever proposed a
blockchain consensus protocol that makes it possible the self-
adaptation of the pool size over time in order to meet the input
throughput.

III. PROBLEM STATEMENT

All the blockchain solutions previously discussed do select
a number of validators among a set of nodes, but this number
is set constant (around 100 validators), which implies con-
stant performance (in terms of maximum throughput, latency,
security, ...) of the chain whatever the needs, assuming nodes
are homogeneous. As was already mentioned in section I, the
higher the number of validators, the more secure the chain.
However, this has a direct consequence in the chain (output)
throughput, which (quadratically) decreases, thus leading to a
trade off problem between security and throughput. This trade-
off problem can be expressed as a constraint to be solved, as
formalized in (1) according to the statement of table II.

argj\nflax (n" | deommit(n',lag") = d..,) st. 1> Ny (1)

For this purpose, Sabine adjust the number of validators
of the chain n! in real time ¢ in order that the Capacity,
i.e., the maximum throughput that the chain reach, is close to
the recent requested throughput, implying that the requested
throughput d,..4 is equal to the committed throughput dcommit,

whatever a delay lag is present in the network.

IV. SABINE STEPS

Due to the specificity of each network where Sabine can be
applied, it is not possible to identify a mathematical model tak-
ing into account the link capacity, the delays and the number of
validators. Falling that, Sabine uses Machine Learning to link
this value and control the number of validators. The principles
and the execution of Sabine follow the steps presented in the
figure 1. Three main steps emerged and are discussed in the
current section: a training phase, detailed in subsection IV-A,
is required to build a network-specific model, linking capacity,
delay and the number of validators. This model is used by the
controller of Sabine, detailed in subsection IV-B1, to estimate
the ideal number of validators, which is applied in the chain
by the mechanism detailed in subsection IV-B2.

A. Training Phase

Sabine aims at adapting the chain configuration to maximize
the throughput according to a model estimated during a
training phase. Thus, the first step of Sabine is to collect
samples of the network’s maximum throughput to build the
model. This particular value of throughput is called Capacity

and is straight linked to the time needed to commit a block.
To measure this capacity, the chain is deployed on the network
and the committed throughput in response to a fixed requested
throughput of transaction is measured. This requested through-
put is determined in a primary analysis to be as close as pos-
sible but also greater than the expected committed throughput.
Two parameters are varying: the number of validators of the
blockchain and the (network) delay. Assuming that there is no
other traffic in the network, the delay represents time variation
due to bandwidth or hardware performance variation. It is
simulated by nodes by a wait before sending a message to
other nodes of the chain. This delay can be considered as the
root cause of the system drift from the initial estimated model.
Estimating such drift is hence necessary to adapt the system in
case of perturbations. As a consequence, every sample consists
of a triplet (capa,lag,n) and if a set of triplets is large
enough, it is used as a training dataset to build a model which
associates the number of validators, the delay and the capacity
of the chain using machine learning based on a polynomial
regression. The given model M provides a mostly decreasing
throughput M (n, lag) according to the number of nodes n and
the delay lag, and a post filter treatment is applied to assert
the decrease.

oM

<
dlag (n,lag) <0 2)
oM

B. Operational Phase

1) Controller: Based on this model, the Sabine algorithm
solves the constraint 1. The idea is to maximize security by
increasing the number of validators as long as the throughput is
adequate, i.e., the committing transaction throughput is equal
to the requested transaction throughput, under the condition of
a minimum security level, equivalent to a minimum number of
validators. Sabine solves this constraint by measuring the com-
mitted transaction throughput and the requested transaction
throughput, and comparing these variables with the previous
model.

In a realistic environment, a delay may emerge due to
network latency or hardware performance variation and reduce
chain performance. Due to the properties 2 and 3, the inverse
functions 4 and 3 can be defined:

u(d,n) = maz({lag|M(n, lag) = d}) @
o(d,lag) = maz({n|M(n,lag) = d}) (5)

In order to estimate an ideal number of validators in this en-
vironment, Sabine estimates the delay based on the simulated
delay of the model obtained by ML. This calculus follows the
scheme 4. In a first step, the delay is assumed responsible
for the loss of performance of the chain. Knowing the actual
number of validators n*~!, the delay lag.s; is estimated by
taking the simulating delay that meets with the actual capacity
of the chain (green line in fig 2). The committed throughput
is not a good metric to estimate the actual capacity because,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

| I
| I
samples Training | (] . ‘
| I
{(d, lat, par), .}] Sablne !
(poly reg) subsec:IV-A | mOdel !
| I
Network ! !
dpe !
q d ’e) |
I
7 *{} n o . dcommit
! Controller Chain j
! subsec: IV-B1 subsec: TV-B2 :
| |
| I
I b !
| I
I I
I

Fig. 1. Phases of Sabine

100 [

Capacity (tz/s)
[
o

lag (s)

Fig. 2. Estimated Model

depending of the requested throughput, all block may not be
fulfilled with transactions. However, the block commitment
throughput is more relevant, assuming that the requested
transaction throughput is important enough to produce con-
tinuous blocks, which occurs if the requested throughput is
greater than the capacity divided by the block size. So, the
capacity is estimated by multiplying the block commitment
throughput b with the maximum number of transactions in a
block BlockSize.

lagt,, = p(b* - BlockSize,n'™ ") (6)

Then, the model is restricted to the estimated delay lag,s;,
forming a decreasing bijection between the maximum through-
put and the number of validators (red line in fig 2). The
ideal number of validators is obtained by comparing the
requested transaction throughput d,..,. to this bijection. In case
of incertitude, the lower number of validators is chosen. With
this configuration, the chain is able to commit with throughput
equal to the requested throughput, answering the constraint 1,
under the condition the estimated number of validators is
greater than a security limit detailed by administrators.

nt = @(df‘em la‘gést) (7)

2) Action on the Chain: Sabine is launched in every node
of a chain to keep the system decentralized. After the end
of a time-out without validator changes, the Proposer of the
blockchain applies the Sabine algorithm to determine the new
ideal number of validators, which means that Sabine is called
periodically by one node of the network. Once this number
is determined, a special transaction is inserted and committed
firstly in the chain to transmit to all nodes the update of the
number of validators and modification are applied after the
transaction commitment. The selection mechanism for new
validators depends on the chain and all mechanisms listed
in the table I can be adapted. In our example chain, no
particular mechanism is implemented, nodes are ordered on a
list and a pivot separates validators from non-validators. Using
a transaction in a BFT chain to transmit the validator update
ensures the consistency of the modification for the next blocks.

V. EXPERIMENTATION

Sabine has been implemented and adapted to a BFT chain!
running on a Raspberry PI platform. The chain and the
platform is described in subsection V-A. Results have been
extracted from this experimentation and are detailed in sub-
section V-B.

A. Chain Description

The initial source of inspiration of the tested BFT Chain is
the Ethereum’s EIP 650 which describe the Istanbul Byzantine
Fault Tolerance consensus [17]. It is a state machine which
realized the original PBFT consensus of Castro-Liskov [18]
and follows the state diagram represented in figure 3. The
added states correspond to state where a node is non-validator.
Unlike the original PBFT protocol, the leader is selected
randomly among the validator with a VRF based on the
previous block: id},,poser = sha256(block™') mod n".
As the goal of our study is to measure the impact of a
BFT protocol, the block policy is set to limit blocks to 5
transactions, an arbitrary size that is low enough to favour
the appearance of blocks.

IThe code is available on https://github.com/inpprenable/Sabine

wait for

TRANSACTION messages broadcast
New Round| PRE-PREPARE message R — b g
Proposer (New Round) | Pre-prepare
wait for 2 Broadcast PREPARE
PRE-PREPARE message roadcast
message
No Wait for 2F+1
Yes @)ared PREPARE messages
Is Proposer?
Yes Broadcast COMMIT
Insertion Insert message
Final succeeds block —— Wait for 2F+1
T@ @ COMMIT messages
i 9
No Validator?
New Round
NV

Wait for BLOCK message

Fig. 3. Representation of scaling mechanism of BFT based blockchains

nt_l . lagést
BlocliSzze — M 1 diff - Ant
bt — nt
o 1]
dreq

Fig. 4. Sabine Calculus explained with a diagram, each block represents a
function detailed in subsection IV-B1

The topology between nodes is ensured strongly connected
thanks with a dedicated bootstrap protocol. No gossip proto-
cols are implemented to reduce the number of messages. This
ensures an estimation of the number of messages equals to
the initial PBFT model. All messages are transmitted with the
TCP protocol. As only overall performance is studied, nodes
are not assumed to fail, so no recovery phases are attempted.

Nodes are deployed with Docker Swarm on a cluster of 10
Raspberry PI 4. Around 50 nodes are deployed on dockers
with dedicated resources (0.5 CPUs and up to 1 Gb of Ram
per node) to consider independent nodes on a single machine.
Raspberry PI are directly connected with a dedicated switch in
order to minimize network latency. Transactions are generated
and gossiped by an external computer without resource limits
to keep stable the transaction request throughput. They consist
of the same string with a growing salt. Transactions, and
therefore blocks, are all the same size.

B. Results

The figure 5a shows an example of a (throughput) demand
that the chain must support. The proposed control is designed
to achieve this support by determining an appropriate num-
ber of validators between the minimum and the maximum
numbers of validators. At the end of each experiment, the

demand is fixed to zero in order to highlight the presence of
stacked transactions in the chain and let the chain the time for
committing these transactions. The demand’s variations remain
close to the capacity of the maximal number of validators since
it corresponds to the area the most sensitive to the number of
validators (shown in figure 2).

Figure 5b shows the difficulty of finding a perfect number
of validators for a chain to make its committed transaction
throughput meet the demand. Considering few validators (like
4, the minimal in BFT consensus) helps to satisfy correctly
the demand with a low relative error of 0.58% between the
requested and committed (estimated on a window of 60s)
throughputs, but the security is reduced because only one
single malicious validator is tolerated. However, setting the
security to the maximum number of validators (50 nodes, so it
can tolerate 16 malicious validators) won’t satisfy the demand
without a high delay and with a high relative error of 39.5%
before the end of demand (at ¢ = 3000 s). Finding offline
a perfect number of validators need the knowledge of the
average requested transactions throughput and cannot adapt to
its variation. Indeed, in this example, the average throughput
of the demand can be satisfied by 22 nodes, but the relative
error of a chain with this number of validators is still high
since equal to 24.1%. Those errors are mainly due to requested
throughput variations stages.

The figure 2 represents the model obtained by Machine
Learning on the experimentation bench described above (with
a mean absolute error of 0.465). As expected, the Capacity,
i.e., the maximal committed throughput, decreases with the
number of validators and the simulated delay. This study
shows that the Sabine algorithm control is interesting if the
desired throughput is between the capacities at the number
of validator limits. If it is lower, the throughput is committed
without need of adaptation, higher, the committed throughput
is limited by the capacity with the minimum of validator (4

—— 4 validators

--- Demand J
N 22 validators

50 validator
——- Demand

—— Throughput on a 60s windows
——- Demand

Number of validator

80 80 80
50
70 4 70 70 1
60 [l 60 60 L 40
1
1 -
= ! = P 5
R — 3 : ! 501 ———r 7 50 g
£ 1 £ | £ 2
= ! ! 1 = | = F30 @
5 1 1 5 40 4 | | S 40 4 g
Fop | £ | £ :
3 i 3 5 | 3 2] g
2 o 1 LS E— I 2 g 1 h £
£ 30 A et : £ q £] F20 5
LORGrnas e eeerennnnnineesseeeni e L
1 1 | 20
20 1 20 :
|
! 10 | 10 10
101 i \
1
! 0] oo o e
0 T T ™ ™ ™ T + T T T ™ ™ ™ T ™ ™ T T T y T y T y
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500

Timestamp (s)

(a) Demand used to benchmark chains
of validators

Timestamp (s)

Timestamp (s)

(b) Responses to the demand 5a with a fixed number (c) Sabine committed throughput and number of

validators for the demand 5a

Fig. 5. Comparison of committed throughput for a common demand for chains with and without Sabine

Number of validator
=== Simulated Delay

—— Throughput on a 60s windows
=== Demand

60

I 50
50 1

T
IS
S

40 1

@
o

Number of validator
Delay (s)

T
n
S

Throughput (tx/s)

10 4 r10

T T - 0
400 800 1000

Timestamp (s)
(a) Chain with Sabine response to a delay variation with a fixed
requested throughput

—— Experiment 1 ——~- Demand

Experiment 35

Throughput (tx/s)
n
o
i
IT
1

1500 2000 2500 3000 3500
Timestamp (s)

0 500 1000

(b) 2 chain with Sabine, with same model and demand, but with
random and independent delay

Fig. 6. Sabine’s responses to delay variations

in our study, the BFT minimum).

With this model, the chain can adapt itself to a demand like
represented in figure 5a, with the response shown in figure 5c.
Here the number of validators is adapted online to the incom-
ing transaction throughput. As results, the committed transac-
tion throughput is around 7.79% of the requested throughput
(corresponding to an absolute error of 1.71 transactions) and
with an average number of 21.3 validators. The time needed
to estimate an ideal number of nodes is equal to 60s, which
correspond to an occurrence of Sabine’s control.

Taking into account an arbitrary delay permits to adapt the
chain in case of the emergence of an unknown delay. To
illustrate this property, a delay is introduced and vary in a
run of a chain. The figure 6a shows the response of the chain
with Sabine for a fixed transaction request throughput with a
change of the delay. The relative error between the demand
and the committed throughput in this scenario is now equal

to 4.87% in average. As a consequence, our control adapt the
validators pool by decreasing the number in order to accelerate
the committed throughput and compensate the slowdown due
to the delay.

With this model, Sabine is able to manage the number
of validators according both to the demand and the delay
variations. 35 chains associated with Sabine were deployed
and submitted to the demand 5a with a random delay dif-
ferent for each experiment. This delay is around 15s and
changes every 150 s in average. Two of these experiments are
represented in figure 6b (all experiments are not represented
for visibility). Results show that the committed throughput is
closed to the demand. Decreased due to delay are quickly
compensated because the relative error between the demand
and the committed throughput remains equal in average to
17.45%. This compensation of the delay was managed by a
reduction of the number of validators to 18.2 in average (with

a standard deviation of 3.0 between experiments).

VI. CONCLUSIONS

We have performed the first control on the number of
validators in a BFT chain in order to adapt the capacity of
the chain to its need, based on the requested throughput while
keeping a security limit. In this paper, we proposed a new
Self-Adaptive Blockchaln coNsEnsus protocol (Sabine) and
we showed that a BFT chain using Sabine can increase it
security during a period of low request by increasing the
number of validators. Real experimentations and benchmarks
show that Sabine significantly increased the satisfaction of
demand throughput rates while sill covering security concerns.

In our study, Sabine was used on a chain which uses a
classic PBFT protocol but the control can be adapted to more
efficient BFT protocols (for which performances are also lim-
ited by the number of validators). Sabine can also be adapted
on chains which solve the problem of selection of validator
like Hybrid BFT-based Consensus. These consensuses solve
the problem of which validators to choose, Sabine how many.

Future work may consider include other criteria such as
the energy efficiency. BFT protocol are energy efficient but
the energy spent in the protocol increase with the number of
nodes involved in the consensus. By taking into account the
energy to define the model like a new dimension, Sabine could
adapt the number of validator in order to respect an energy
limit.

ACKNOWLEDGEMENT

The authors acknowledge the support of the Agence Na-
tional de la Recherche (ANR), under grant ANR-20-CE25-001
(project TIC-TAC-SDN).

REFERENCES

[1] M. B. Mollah, J. Zhao, D. Niyato, K.-Y. Lam, X. Zhang,
A. M. Y. M. Ghias, L. H. Koh, and L. Yang, “Blockchain
for Future Smart Grid: A Comprehensive Survey,” IEEE
Internet Things J., vol. 8, no. 1, pp. 18—43, Jan. 2021.

[2] L. Lamport, Time, Clocks, and the Ordering of Events in
a Distributed System. New York, NY, USA: Association
for Computing Machinery, 2019, p. 179-196.

[3] M. Belotti, N. Bozi¢, G. Pujolle, and S. Secci, “A
vademecum on blockchain technologies: When, which,
and how,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 4, pp. 3796-3838, Fourthquarter 2019.

[4] P. Berrang, P. von Styp-Rekowsky, M. Wissfeld,
B. Franca, and R. Trinkler, “Albatross — an optimistic
consensus algorithm,” in 2019 Crypto Valley Conference
on Blockchain Technology (CVCBT), June 2019, pp. 39—
42.

[5] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zel-
dovich, “Algorand: Scaling byzantine agreements for
cryptocurrencies,” in Proceedings of the 26th Symposium
on Operating Systems Principles, ser. SOSP "17. New
York, NY, USA: Association for Computing Machinery,
2017, p. 51-68.

[6] S. Arora, A. Jain, and S. Gujar, “Ashwachain: A fast,
scalable and strategy-proof committee-based blockchain
protocol,” in Workshop on Game Theory in Blockchain
at WINE, vol. 2020, 2020, p. 9.

[7] E. K. Kogias, P. Jovanovic, N. Gailly, 1. Khoffi, L. Gasser,
and B. Ford, “Enhancing bitcoin security and perfor-
mance with strong consistency via collective signing,”
in 25th USENIX Security Symposium (USENIX Security
16). Austin, TX: USENIX Association, Aug. 2016, pp.
279-296.

[8] Y. Zhan, B. Wang, R. Lu, and Y. Yu, “Drbft: Delegated
randomization byzantine fault tolerance consensus proto-
col for blockchains,” Information Sciences, vol. 559, pp.
8-21, 2021.

[9] P. Li, G. Wang, X. Chen, F. Long, and W. Xu, “Gosig:

A scalable and high-performance byzantine consensus

for consortium blockchains,” in Proceedings of the 11th

ACM Symposium on Cloud Computing, ser. SoOCC ’20.

New York, NY, USA: Association for Computing Ma-

chinery, 2020, p. 223-237.

Y. Wu, P. Song, and F. Wang, “Hybrid consensus algo-

rithm optimization: A mathematical method based on pos

and pbft and its application in blockchain,” Mathematical

Problems in Engineering, vol. 2020, p. 7270624, Apr

2020.

[11] X. Qi, Y. Yang, Z. Zhang, C. Jin, and A. Zhou, “Linsbft:

Linear-communication one-step bft protocol for public

blockchains,” 2020.

E. Buchman, J. Kwon, and Z. Milosevic, “The latest

gossip on bft consensus,” CoRR, vol. abs/1807.04938,

2018.

[12]

[13] F. Hyperledger, “Introduction to hyper-
ledger sawtooth,” 2022. [Online]. Available:
https://sawtooth.hyperledger.org/docs/1.2/

[14] Consensys, “Quorum,” Now. 2021, original-
date: 2016-11-14T05:42:57Z. [Online]. Available:

https://github.com/ConsenSys/quorum

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” Decentralized Business Review, 10 2008.

S. Goldberg, J. Vcelak, D. Papadopoulos, and L. Reyzin,
“Verifiable Random Functions (VRFs),” p. 24, 2018.
Y.-T. Lin, “Istanbul Byzantine Fault Tolerance - Issue
#650 - ethereum/EIPs,” June 2017. [Online]. Available:
https://github.com/ethereum/EIPs/issues/650

M. Castro and B. Liskov, “Practical byzantine fault toler-
ance,” in Proceedings of the Third Symposium on Operat-
ing Systems Design and Implementation, ser. OSDI ’99.
USA: USENIX Association, Feb. 1999, p. 173-186.

