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Abstract: In this paper we study a tour-scheduling problem for an attended home delivery
problem with uncertain order requests. The problem is modelled as a two-stage stochastic
programming problem and solved using the multi-cut L-shaped method. Weekly working
patterns are generated by means of a pricing heuristic. Numerical results on randomly generated
instances show that including weekly working rules increases the total cost by only a small
amount (up to 2.54%) when compared to an approach that only considers daily working rules
for the generation of driver schedules.
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1. INTRODUCTION

Home service (HS) operations are becoming increasingly
important due to social, demographic, and epidemiological
trends in most countries. Attended home delivery (AHD)
is an example of this type HS operations. In this problems,
employees travel to perform work-related activities at
geographically dispersed customer locations. For instance,
drivers, deliver packages at customers’ homes. As reported
in recent social and demographic studies, several service
operations, which require customers to travel and to visit a
place indoor, are switching to become services provided at
home. In fact, as from 2014 to 2019 e-commerce sales ratios
nearly tripled globally (WEF, 2020). This accelerated
growth creates important challenges and opportunities for
AHD providers, and requires the development of decision
support tools to optimise their operations and to organise
them in a more sustainable way.

The most prevalent home service operation planning prob-
lems in real-life are multi-period (i.e., the planning hori-
zon spans multiple days) because a demand for continu-
ous operations have to be satisfied or because customers
might request multiple services spread over different days.
This important characteristic makes necessary the inte-
gration of different decision levels such as tactical em-
ployee scheduling (e.g., tour scheduling) and operational
employee routing while optimising HS operations.

Many variants of employee scheduling and routing for
home service operations have been studied for decades.
However, the integration of both problems have only
started to get the attention of the operations research
and artificial intelligence communities. The majority of the
works in the literature focuses on single-period optimisa-
tion problems (i.e. the planning horizon corresponds to one
working day). A good deal of this literature considers the
incorporation of working regulations an important factor.

However, to the best of our knowledge, only few works have
addressed multi-period personnel scheduling and routing
problems including uncertainty (in order requests, crowd-
source capacities,...) and working regulations. Examples
include the studies in (Steeg and Schröder, 2008; Traut-
samwieser and Hirsch, 2014; Wirnitzer et al., 2016; Cap-
panera et al., 2018; Restrepo, M. I. et al., 2020) for home
healthcare, and the studies in (Zäpfel and Bögl, 2008; Goel
and Irnich, 2017) for urban delivery and long-distance
haulage applications, respectively. These works propose
different approaches to generate multi-period plans in-
cluding scheduling and routing decisions simultaneously.
However, with the exception of the studies in (Zäpfel and
Bögl, 2008; Trautsamwieser and Hirsch, 2014; Restrepo,
M. I. et al., 2020), they fail to incorporate working regu-
lations related to the allocation of days-off and rest times
between consecutive shifts. In addition, as these problems
are already difficult to solve, they do not consider uncer-
tainty in the demands and/or supply capacities, except for
(Cappanera et al., 2018; Restrepo, M. I. et al., 2020).

In this work, we study an integrated tour scheduling and
order allocation problem problem for AHD. The problem
is defined over a time horizon of one week, where days are
divided into multiple time periods, and the majority of
order requests are uncertain and must be fulfilled within a
narrow time window. Customer orders can be delivered by
company drivers or by external drivers (crowd-sourcing).
Hence the focus of our research is to decide weekly tours
for company drivers (working days, days-off, and start time
and duration of shifts for each working day) and to assign
customer orders to the drivers so as to fullfill all customer
orders at minimum cost.
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∗ IMT Atlantique, Laboratoire des Sciences du Numérique de Nantes
(LS2N, UMR CNRS 6004), Team Modelis, Nantes, France (e-mails:

tom.perroux@gmail.com, fabien.lehuede@imt-atlantique.fr,
maria-isabel.restrepo-ruiz@imt-atlantique.fr).

Abstract: In this paper we study a tour-scheduling problem for an attended home delivery
problem with uncertain order requests. The problem is modelled as a two-stage stochastic
programming problem and solved using the multi-cut L-shaped method. Weekly working
patterns are generated by means of a pricing heuristic. Numerical results on randomly generated
instances show that including weekly working rules increases the total cost by only a small
amount (up to 2.54%) when compared to an approach that only considers daily working rules
for the generation of driver schedules.

Keywords: Personnel scheduling, Tour scheduling problem, Attended home delivery, L-shaped
method

1. INTRODUCTION

Home service (HS) operations are becoming increasingly
important due to social, demographic, and epidemiological
trends in most countries. Attended home delivery (AHD)
is an example of this type HS operations. In this problems,
employees travel to perform work-related activities at
geographically dispersed customer locations. For instance,
drivers, deliver packages at customers’ homes. As reported
in recent social and demographic studies, several service
operations, which require customers to travel and to visit a
place indoor, are switching to become services provided at
home. In fact, as from 2014 to 2019 e-commerce sales ratios
nearly tripled globally (WEF, 2020). This accelerated
growth creates important challenges and opportunities for
AHD providers, and requires the development of decision
support tools to optimise their operations and to organise
them in a more sustainable way.

The most prevalent home service operation planning prob-
lems in real-life are multi-period (i.e., the planning hori-
zon spans multiple days) because a demand for continu-
ous operations have to be satisfied or because customers
might request multiple services spread over different days.
This important characteristic makes necessary the inte-
gration of different decision levels such as tactical em-
ployee scheduling (e.g., tour scheduling) and operational
employee routing while optimising HS operations.

Many variants of employee scheduling and routing for
home service operations have been studied for decades.
However, the integration of both problems have only
started to get the attention of the operations research
and artificial intelligence communities. The majority of the
works in the literature focuses on single-period optimisa-
tion problems (i.e. the planning horizon corresponds to one
working day). A good deal of this literature considers the
incorporation of working regulations an important factor.

However, to the best of our knowledge, only few works have
addressed multi-period personnel scheduling and routing
problems including uncertainty (in order requests, crowd-
source capacities,...) and working regulations. Examples
include the studies in (Steeg and Schröder, 2008; Traut-
samwieser and Hirsch, 2014; Wirnitzer et al., 2016; Cap-
panera et al., 2018; Restrepo, M. I. et al., 2020) for home
healthcare, and the studies in (Zäpfel and Bögl, 2008; Goel
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Bögl, 2008; Trautsamwieser and Hirsch, 2014; Restrepo,
M. I. et al., 2020), they fail to incorporate working regu-
lations related to the allocation of days-off and rest times
between consecutive shifts. In addition, as these problems
are already difficult to solve, they do not consider uncer-
tainty in the demands and/or supply capacities, except for
(Cappanera et al., 2018; Restrepo, M. I. et al., 2020).

In this work, we study an integrated tour scheduling and
order allocation problem problem for AHD. The problem
is defined over a time horizon of one week, where days are
divided into multiple time periods, and the majority of
order requests are uncertain and must be fulfilled within a
narrow time window. Customer orders can be delivered by
company drivers or by external drivers (crowd-sourcing).
Hence the focus of our research is to decide weekly tours
for company drivers (working days, days-off, and start time
and duration of shifts for each working day) and to assign
customer orders to the drivers so as to fullfill all customer
orders at minimum cost.

Tour Scheduling in Attended Home
Delivery

Tom Perroux ∗ Fabien Lehuédé ∗ Maŕıa I. Restrepo ∗
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samwieser and Hirsch, 2014; Wirnitzer et al., 2016; Cap-
panera et al., 2018; Restrepo, M. I. et al., 2020) for home
healthcare, and the studies in (Zäpfel and Bögl, 2008; Goel
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problems including uncertainty (in order requests, crowd-
source capacities,...) and working regulations. Examples
include the studies in (Steeg and Schröder, 2008; Traut-
samwieser and Hirsch, 2014; Wirnitzer et al., 2016; Cap-
panera et al., 2018; Restrepo, M. I. et al., 2020) for home
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and Irnich, 2017) for urban delivery and long-distance
haulage applications, respectively. These works propose
different approaches to generate multi-period plans in-
cluding scheduling and routing decisions simultaneously.
However, with the exception of the studies in (Zäpfel and
Bögl, 2008; Trautsamwieser and Hirsch, 2014; Restrepo,
M. I. et al., 2020), they fail to incorporate working regu-
lations related to the allocation of days-off and rest times
between consecutive shifts. In addition, as these problems
are already difficult to solve, they do not consider uncer-
tainty in the demands and/or supply capacities, except for
(Cappanera et al., 2018; Restrepo, M. I. et al., 2020).

In this work, we study an integrated tour scheduling and
order allocation problem problem for AHD. The problem
is defined over a time horizon of one week, where days are
divided into multiple time periods, and the majority of
order requests are uncertain and must be fulfilled within a
narrow time window. Customer orders can be delivered by
company drivers or by external drivers (crowd-sourcing).
Hence the focus of our research is to decide weekly tours
for company drivers (working days, days-off, and start time
and duration of shifts for each working day) and to assign
customer orders to the drivers so as to fullfill all customer
orders at minimum cost.
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1. INTRODUCTION
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However, the integration of both problems have only
started to get the attention of the operations research
and artificial intelligence communities. The majority of the
works in the literature focuses on single-period optimisa-
tion problems (i.e. the planning horizon corresponds to one
working day). A good deal of this literature considers the
incorporation of working regulations an important factor.

However, to the best of our knowledge, only few works have
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are already difficult to solve, they do not consider uncer-
tainty in the demands and/or supply capacities, except for
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In this work, we study an integrated tour scheduling and
order allocation problem problem for AHD. The problem
is defined over a time horizon of one week, where days are
divided into multiple time periods, and the majority of
order requests are uncertain and must be fulfilled within a
narrow time window. Customer orders can be delivered by
company drivers or by external drivers (crowd-sourcing).
Hence the focus of our research is to decide weekly tours
for company drivers (working days, days-off, and start time
and duration of shifts for each working day) and to assign
customer orders to the drivers so as to fullfill all customer
orders at minimum cost.
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2. PROBLEM DESCRIPTION AND SOLUTION
APPROACH

We study the case of a last-mile delivery company that pro-
poses two types of services to satisfy customers demands.
The problem is closely related to the tactical problem ad-
dressed in Restrepo et al. (2019). Deliveries are composed
by a number of packages, a time window, a pickup location
and a delivery location. To receive their orders, customers
can choose between one of two services. The first type
of service corresponds to pre-ordered deliveries, called ap-
pointment deliveries, where the client can choose between
some predefined time slots. The second type corresponds
to express deliveries where the client must be served within
a two-hour time window after having placed their order. To
satisfy customer requests, the company can hire company
drivers and external drivers. Company drivers are assigned
to working shifts, and they are paid a fixed amount of
money per hour worked, plus a variable amount of money
depending on the number of deliveries made during the
day. External drivers are more expensive than company
drivers. However, they add flexibility and help to keep
service levels when client requests cannot be satisfied by
company drivers. We suppose that the company can hire
an infinite amount of external drivers and can thus always
satisfy the demand.

We consider a fleet of C company drivers to schedule over a
planning horizon ofD days and I time periods on each day.
The set of pre-defined shifts for company drivers is denoted
by S. Shifts are composed by consecutive working hours
and must respect a minimum minS and maximum maxS

number of working time periods over the day. A shift is
said to be compatible with a driver if the driver is available
during the entire duration of the shift. We denote by Sc

the set of shifts compatible with driver c (Sc ⊆ S). Set
T define the possible weekly working patterns. A pattern
is a sequence containing shifts and days-off. Each pattern
must respect some working rules: a minimum minT and a
maximum maxT number of working hours over the week
and a minimum restT number of days-off. A pattern is
said to be compatible with a driver c if every shift s ∈ Sc

in the sequence is compatible with driver c. We denote by
T c ⊆ T the set of patterns compatible with driver c.

Since the problem we are addressing in this paper is tacti-
cal by nature, we do not consider an explicit representation
of each customer location. Instead, we define a set of areas
A = {1..A}, such that all pickup and delivery locations in
the same area a ∈ A are considered at the same location.
We then define the set of origin-destination pairs (o-d
pairs) P as the product P = A × A. We assume that
a driver can visit only one o-d pair per time period and
that he can always travel from the origin to the destina-
tion within each time period. Drivers can deliver several
packages (limited by the capacity of their vehicle) in the
same o-d pair at each time period.

Since not all customer requests are known in advance, we
use a scenario-based approach to represent the uncertainty
in the demand. Let Ωd

i be the set of scenarios for the
demand on day d and time period i. Each scenario ω in
Ωd

i is assigned a probability pωdi such that
∑

ω∈Ωd
i
pωdi=1.

The demand in a particular scenario is composed of a

deterministic part plus a stochastic part. The demand
is distributed among all o-d pairs following a probability
distribution. The deterministic component of the demand
(client requests known in advance) in a particular o-d pair
p is denoted as gdip and the stochastic demand as hω

dip.
The total demand in o-d pair p under scenario ω is then
equal to bωdip= gdip + hω

dip with a probability pωdi.

We consider a fixed cost f c
t associated to each pattern

t ∈ T c for driver c. This cost depends on a vehicle wear
cost and a staffing cost per working time period. Deliveries
made by company drivers have a variable cost lcdip that
depends on the distance between o-d pairs and the type of
vehicle used. Deliveries performed by external drivers have
a cost cdip that depends on the location of the destination.
For instance, if the destination is far from the city center,
the delivery is more expensive.

2.1 A two-stage stochastic approach

Let xt
c be a binary variable assuming value 1 if weekly

pattern t is assigned to company driver c, and 0 otherwise.
Let ycdip be a binary variable taking value 1 if company
driver c is allocated to o-d pair p during day d and time
period i, it assumes value 0 otherwise. Decision variables
vcωdip and eωdip denote the number of packages delivered by
company drivers and external drivers respectively. Let δcdit
be a binary parameter taking value 1 if period i ∈ I
of day d ∈ D is a working period for driver c ∈ C in
pattern t ∈ T c. It assumes value 0 otherwise. Let βc the
capacity in number of packages of driver’s c ∈ C vehicle,
and let µcω

dip = min{bωdip, βc} be the maximum number of
packages that driver c ∈ C can effectively deliver in o-d
pair p ∈ P on day d ∈ D at time period i ∈ I under
scenario ω ∈ Ωd

i . The deterministic equivalent program of
the tour scheduling problem for attended home delivery is
as follows:

min
∑
c∈C

∑
t∈T c

f c
t x

c
t+

∑
d∈D

∑
i∈ I

∑

ω ∈Ωd
i

pωdi

( ∑
c∈C

∑
p∈P

lcdipv
cω
dip +

∑
p∈P

cdipe
ω
dip

)

(1)∑
t∈T c

xc
t ≤ 1, ∀ c ∈ C (2)

∑
p∈P

ycdip =
∑
t∈T c

δcditx
c
t , ∀ c ∈ C, d ∈ D, i ∈ I (3)

vcωdip ≤ µcω
dipy

c
dip,

∀ c ∈ C, d ∈ D, i ∈ I, ω ∈ Ωd
i , p ∈ P (4)∑

c∈C

vcωdip + eωdip = bωdip,

∀ d ∈ D, i ∈ I, ω ∈ Ωd
i , p ∈ P

(5)

xc
t ∈ {0, 1}, ∀ c ∈ C, t ∈ T c (6)

ycdip ∈ {0, 1}, ∀ c ∈ C, d ∈ D, i ∈ I, p ∈ P (7)

vcωdip ∈ Z≥0, ∀ c ∈ C, d ∈ D, i ∈ I, ω ∈ Ωd
i , p ∈ P (8)

eωdip ≥ 0, ∀ d ∈ D, i ∈ I, ω ∈ Ωd
i , p ∈ P. (9)

Constraint (2) limits the allocation of patterns to maxi-
mum one per company driver. Constraint (3) enforces that
if driver c ∈ C is working in pattern t ∈ T c and period
i ∈ I of day d ∈ D, then driver c is assigned to an o-d pair.
Constraint (4) limits the number of packages that driver
c ∈ C can deliver in o-d pair p ∈ P at each time period.
Constraint (5) ensures that the demand is satisfied either
by company drivers or by external drivers. Note that there
is no upper bound on the value of variables eωdip. Therefore,

problem (1)-(9) is always feasible. Constraints (6)-(9) are
the domain constraints.

The number of constraints and variables in problem (1)-
(9) grows with the number of drivers, days, patterns, time
periods, o-d pairs, and scenarios. Thus the problem can
become prohibitively large, especially when the number of
scenarios is important. Therefore, we use a multi-cut L-
shaped method (Birge and Louveaux, 1988) as a solution
approach. Let M be the first-stage problem and R(x, y)
the second-stage problem (recourse problem). R(x, y) can
be decomposed into multiple sub-problems Rω

dip(x, y) for

each d ∈ D, i ∈ I, ω ∈ Ωd
i , p ∈ P . The formulation of the

second-stage problem, denoted as Rω
dip, is as follows:

Q(x, ydip, ξ
ω
dip) = min

∑
c∈C

lcdipv
cω
dip + cdipe

ω
dip (10)

vcωdip ≤ µcω
dipy

c
dip, ∀ c ∈ C (11)∑

c∈C

vcωdip + eωdip = bωdip (12)

vcωdip ≥ 0, ∀ c ∈ C (13)

eωdip ≥ 0. (14)

Note that integrality constraints on vcωdip variables have

been relaxed as problem (10)-(14) corresponds to a sorting
problem and thus its solution is integer.

We define θωdip variables and optimality cuts (18) to ap-
proximate the objective function of recourse problems
Rω

dip(x, y). The dual multipliers from constraints (11) and

(12) are denoted by πcω
dip and λω

dip, respectively. Note that
there is no need to add feasibility cuts since recourse
problems are always feasible and have fix recourse matrix.
The formulation of the first-stage problem is as follows:

min
∑
c∈C

∑
t∈T c

f c
t x

c
t +

∑
d∈D

∑
i∈ I

∑

ω ∈Ωd
i

∑
p∈P

θωdip (15)

∑
t∈T c

xc
t ≤ 1, ∀ c ∈ C (16)

∑
p∈P

ycdip =
∑
t∈T c

δcditx
c
t , ∀c ∈ C, d ∈ D, i ∈ I (17)

θωdip ≥ pωdi

(∑
c∈C

µcω
dipπ

cω
dipy

c
dip + bωdipλ

ω
dip

)
,

∀ d ∈ D, i ∈ I, ω ∈ Ωd
i , p ∈ P (18)

xc
t ∈ {0, 1}, ∀ c ∈ C, t ∈ T c (19)

ycdip ∈ {0, 1}, ∀ c ∈ C, d ∈ D, i ∈ I, p ∈ P (20)

θωdip ≥ 0, ∀ d ∈ D, i ∈ I, ω ∈ Ωd
i , p ∈ P. (21)

2.2 Weekly pattern generation

An important limitation to the efficiency of the resolution
of problem (15)-(21) is related to the number of patterns
|T | to generate. An upper bound to this number can be
obtained with |S||D| which becomes prohibitively large as
the number of days and shifts increase. The exhaustive
enumeration of patterns would, in most situations, result
in an intractable problem. Successful methods facing this
kind of limitations often come with a Branch & Price
strategy. Since we are solving the problem with a Branch
& Cut method, implementing a good Branch & Price could
be tedious and is thus out of the scope of this study. Hence,
we propose a heuristic method (inspired by a column
generation approach) to generate a reasonable number of
patterns before problem (15)-(21) is solved with the multi-
cut L-shaped method. Its procedure follows.

We denote by T ′ ⊂ T the subset of patterns generated so
far by the heuristic method, starting with a non empty set
of initial patterns. Variable xc

t , ∀c ∈ C, t ∈ T ′ represents
the allocation of patterns to company drivers. Variables
z+di, z−di represent respectively under-staffing and over-
staffing at day d and time period i. The notation and
mathematical model of the master problem for pattern-
generation follows:

Table 1. Parameters for the pattern generation
master problem.

fc : cost per working period for company driver c
c+, c− : over-staffing and under-staffing costs, respectively
ρcdit: 1 if i is a working period for driver c on day d, 0

otherwise
wt: number of working periods in pattern t
rdi: average number of drivers required on day d at time

period i (rdi =
∑
p∈P

∑
ω∈Ω

pωdib
ω
dip/β̄). β̄ is the mean

capacity over all company drivers.

min
∑
c∈C

∑
t∈T ′

f cwtx
c
t +

∑
d∈D

∑
i∈I

(c+z+di + c−z−di) (22)

∑
c∈C

∑
t∈T ′

ρcditx
c
t − z+di + z−di = rdi, ∀d ∈ D, i ∈ I (23)

∑
t∈T ′

xc
t ≤ 1, ∀ c ∈ C (24)

xc
t ≥ 0, ∀ c ∈ C, t ∈ T ′ (25)

z+di, z
−
di ≥ 0 ∀d ∈ D, i ∈ I. (26)

Constraints (23) ensure that the total number of drivers
working at each time period is equal to the average number
of required drivers subject to some adjustments related
to excess or lack of employees. Constraints (24) limit the
allocation of patterns to one per driver. The dual variables
of constraints (23)-(24) are ϕdi and ψc, respectively. The
expression to compute the reduced cost of shift s ∈ S for
driver c on day d is: pcd =

∑
i∈I

(f c − ϕdi)ρ
c
is − ψc, where ρcis

is equal to 1 if time period i is a working period for shift
s, and 0 otherwise.

The procedure to generate feasible patterns is as follows:
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Constraint (5) ensures that the demand is satisfied either
by company drivers or by external drivers. Note that there
is no upper bound on the value of variables eωdip. Therefore,

problem (1)-(9) is always feasible. Constraints (6)-(9) are
the domain constraints.

The number of constraints and variables in problem (1)-
(9) grows with the number of drivers, days, patterns, time
periods, o-d pairs, and scenarios. Thus the problem can
become prohibitively large, especially when the number of
scenarios is important. Therefore, we use a multi-cut L-
shaped method (Birge and Louveaux, 1988) as a solution
approach. Let M be the first-stage problem and R(x, y)
the second-stage problem (recourse problem). R(x, y) can
be decomposed into multiple sub-problems Rω
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Note that integrality constraints on vcωdip variables have

been relaxed as problem (10)-(14) corresponds to a sorting
problem and thus its solution is integer.

We define θωdip variables and optimality cuts (18) to ap-
proximate the objective function of recourse problems
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dip(x, y). The dual multipliers from constraints (11) and

(12) are denoted by πcω
dip and λω
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2.2 Weekly pattern generation

An important limitation to the efficiency of the resolution
of problem (15)-(21) is related to the number of patterns
|T | to generate. An upper bound to this number can be
obtained with |S||D| which becomes prohibitively large as
the number of days and shifts increase. The exhaustive
enumeration of patterns would, in most situations, result
in an intractable problem. Successful methods facing this
kind of limitations often come with a Branch & Price
strategy. Since we are solving the problem with a Branch
& Cut method, implementing a good Branch & Price could
be tedious and is thus out of the scope of this study. Hence,
we propose a heuristic method (inspired by a column
generation approach) to generate a reasonable number of
patterns before problem (15)-(21) is solved with the multi-
cut L-shaped method. Its procedure follows.

We denote by T ′ ⊂ T the subset of patterns generated so
far by the heuristic method, starting with a non empty set
of initial patterns. Variable xc

t , ∀c ∈ C, t ∈ T ′ represents
the allocation of patterns to company drivers. Variables
z+di, z−di represent respectively under-staffing and over-
staffing at day d and time period i. The notation and
mathematical model of the master problem for pattern-
generation follows:

Table 1. Parameters for the pattern generation
master problem.

fc : cost per working period for company driver c
c+, c− : over-staffing and under-staffing costs, respectively
ρcdit: 1 if i is a working period for driver c on day d, 0

otherwise
wt: number of working periods in pattern t
rdi: average number of drivers required on day d at time
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Constraints (23) ensure that the total number of drivers
working at each time period is equal to the average number
of required drivers subject to some adjustments related
to excess or lack of employees. Constraints (24) limit the
allocation of patterns to one per driver. The dual variables
of constraints (23)-(24) are ϕdi and ψc, respectively. The
expression to compute the reduced cost of shift s ∈ S for
driver c on day d is: pcd =

∑
i∈I

(f c − ϕdi)ρ
c
is − ψc, where ρcis

is equal to 1 if time period i is a working period for shift
s, and 0 otherwise.

The procedure to generate feasible patterns is as follows:
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• Step 0: Compute one initial feasible pattern for each
driver c ∈ C

• Step 1: Solve problem (22)-(26) and get the value of
dual variables ϕdi, ψc.

• Step 2: Compute the reduced cost of each shift s ∈ S
for each day d ∈ D and for each driver c ∈ C

• Step 3: Generate the lowest reduced cost pattern
respecting the working rules for each driver c ∈ C
based on the shifts reduced costs computed at Step 2

• Add the new patterns (not already in T ′) generated
to T ′. If a new pattern is added for any of the drivers
c ∈ C go to Step 1, else stop.

3. NUMERICAL RESULTS

In this section, we evaluate the performance of the two-
stage stochastic model under different configurations. We
also compare the solutions and costs to draw conclusions
concerning the interest of this study and how it could be
used to take managerial medium term decisions. Experi-
ments were run on an Ubuntu 20.4 system with an Intel
Xeon Gold 6230 2.10 GHz CPU and 4Go to 10Go RAM
allocated depending on the size of the instance. All CPU
times are given in seconds. We first introduce the instance
generation process.

We consider a planning horizon of 6 days, as the 7th day
of the week is considered a day-off. A day is divided into
10 time periods of one-hour length each. The demand is
given by O, the total number of packages to deliver per
day. To have more realistic instances, we use a random
perturbation factor γ ∈ [0.8, 1.5] to compute the total
number of packages to deliver on day d. The total demand
τd = O×γ on day d is then distributed among the different
time periods following a probability distribution. We use
a gamma distribution with parameters k = 2 and Θ = 2
to represent a demand with more requests arriving during
the first time periods of the day, and a normal distribution
with parameters µ = 5 and σ = 2 to represent requests
arriving in increasing numbers until the middle of the day
and then decreasing.

We denote by τdi the total demand at time period i ∈ I on
day d ∈ D. The demand at each time period is then split
between the pre-ordered requests and the express requests
using a variability coefficient vardi on each day and time
period. vardi represents the percentage of the demand on
day d and time period i that is not known in advance. We
use two types of variability: a medium variability where
the percentage of unknown requests increases throughout
the day and taking a higher value at each new day of
the week, and a high variability where the uncertainty
increases drastically throughout the first day and increase
slightly over the rest of the week. The unknown requests
are the stochastic part of the demand which is represented
with scenarios generated as follows: let ξ̄di = τdi×vardi

100
be the mean number of unknown packages to deliver at
time period i on day d. All possible demand realisations
ξωdi are generated and a perturbation is applied to the
demand κω

di = ξωdi − ξ̄di (i.e., the perturbation is positive
if ξωdi ≥ ξ̄di and negative if ξωdi < ξ̄di). The probability
pωdi of each scenario ω ∈ Ωdi is computed following a
probability mass function with a Poisson distribution.
Finally, the orders are distributed among the o-d pairs by

randomly choosing an origin and a destination pair. The
deterministic demand gdip is the sum of all the pre-ordered
requests allocated to o-d pair p on day d and time period
i, and the stochastic demand hω

dip is the sum of all the
express requests deliveries allocated to o-d pair p in this
particular scenario ω. The total demand as used in the
model is bωdip = gdip + hω

dip, the sum of the deterministic
demand and the stochastic demand in scenario ω.

For each instance, we consider a fleet of company drivers
C. Each driver can use one of the three different types
of vehicles with parameters described in Table 2. Column
labelled Cap. gives is the maximum number of packages
that can be delivered per driver per time period. The
wear cost is the cost of using the vehicle per time period,
the delivery and pickup costs are the costs per package
delivered using the vehicle. Additionally, there is a cost of
10 per hour for each internal driver, thus the total fixed
cost f c is 10 plus the wear cost of the vehicle allocated to
driver c. The fixed cost of a pattern f c

t is defined as the sum
of the fixed costs at every working hour plus an extra 100
cost over the week for managing the driver. The variable
cost associated to the delivery of a package is the sum of
the delivery cost (presented in column Del. cost) and the
pickup cost. External deliveries cost 50 per package.

Table 2. Vehicle parameters

Type Cap. Wear cost Pickup cost Del. cost

Car 4 15 2.5 2.5
Motorcycle 3 10 2.5 2.5
Bicycle 3 0 7.5 7.5

We define a class of instances for each combination of
total orders, probability distribution (labelled in Table 3
as Dist.) and variability (labelled in Table 3 as Var.), and
generate a set of 5 instances for each class. Instances are
summarised in Table 3.

Table 3. Class instances summary

Class Total orders Dist. Var. Nb. instances

0 50 normal medium 5
1 50 normal high 5
2 50 gamma medium 5
3 50 gamma high 5
4 100 normal medium 5
5 100 normal high 5
6 100 gamma medium 5
7 100 gamma high 5

The set of possible shifts S is generated based on three
parameters: the minimum and maximum length (in time
periods) of a shift (minS and maxS , respectively) and the
interval for the start between two consecutive shifts of the
same length (∆S). For instance, if ∆S = 2 and a shift with
a length of 4 time periods starts at time period 0, then
the next shift with a 4-period length will start at 2. We
consider an additional shift of length 0 to represent a day-
off. The number of possible shifts depends on parameters
minS , maxS , ∆S and the number of time periods |I|. We
use the combination of parameters minS = 6, maxS =
8, ∆S = 2 to generate a set Sr of 6 shifts with low
flexibility, and parameters minS = 4, maxS = 8 ,∆S = 1
to generate a set Sf of 26 shifts with more flexibility.

The set of possible weekly patterns T is generated from
the set of shifts S and three parameters: the minimum

and maximum working hours over the week (minT and
maxT , respectively) and the minimum number of resting
days (restT ). We set restT = 1 to impose at least one day-
off between the 1st day and the 6th day of work. As for the
weekly working hours, we set minT = 10 and maxT = 40.
We use two strategies to generate the set of patterns
T : we do the complete enumeration of feasible patterns
using either Sr or Sf and the values of minT , maxT ,and
restT , or we generate patterns with the pricing heuristic
presented in the Section 2.2.

To measure the impact of using different pattern genera-
tion methods on the objective value and the CPU time,
we solve the set of instances with the set of patterns T
and with the set of patterns generated with the heuristic
pricing procedure denoted as T ′. We denote by Tr and
T ′
r the set of patterns generated from the set of shifts Sr.

Similarly, we denote by Tf and T ′
f the set of patterns gener-

ated from the set of shifts Sf . We decompose the problem
into daily problems and solve them using shifts S and Sf

to compute a lower bound that is not feasible in terms
of working rules for the weekly version of the problem.
The difference between the weekly solution and the lower
bound measures the cost of respecting the working rules
over the week. Additionally we build a feasible solution
from the lower bound by replacing shifts with external
drivers until the solution respects the weekly working rules.
This is used to measure the interest of solving a large
weekly model compared to a simple heuristic procedure
to obtain a feasible solution from an infeasible one.

Results are presented in Table 4. For each class of instances
we give the mean value over all instances of each measure
with the full patterns Tr (upper row) and the priced
patterns T ′

r (bottom row). The set Tr is the same for all
instances, whereas T ′

r is different for each instance since it
depends on the solution of the pricing problem presented
in Section 2.2. Values th and |T ′

r | represent respectively
the time in seconds spent generating the set T ′

r and its
size. The total time in seconds required to define and to
solve the two-stage problem with the L-shaped method is
given by time. Z is the objective value of the solution. We
set a time limit of one and two hours for instances with
50 and 100 orders per day, respectively. ∆LB measures
the percentage difference between the best integer solution
found with the two-stage method and a lower bound
related to the solution of the problem without considering
weekly working rules. In a similar way, ∆UB measures the
percentage difference between the best integer solution
found with the two-stage method and an upper bound
found with the solution obtained after making the lower
bound feasible with respect to the weekly working rules
by means of external drivers. Finally, ∆Z measure the
cost difference (in percentage) between the solution to the
problem with full patterns and with priced patterns.

Table 4 shows that even if the set of patterns T ′
r is

approximately 100 times smaller than the full set of
patterns Tr, the problem is not much easier to solve when
we look at the values of time. We remark that the value
of the optimality gap was lower than 0.1% for all the
instances solved. It is thus preferable to solve the problem
with full patterns when possible. On the other hand, ∆Z

shows that the solution obtained with priced patterns is

Table 4. Solution comparison with different
pattern generation methods

Cl th |T ′
r | time Z ∆LB ∆UB ∆Z

- - 1382 8001 -1.80 8.49
0 0.93

144 266 2613 8076 -2.70 7.49

- - 1305 7974 -1.61 9.20
1 0.80

246 339 1949 8038 -2.39 8.34

- - 4025 9,619 -2.42 6.07
2 0.41

68 171 3875 9663 -2.82 5.64

- - 3916 11148 -2.57 5.79
3 0.56

118 205 2572 11211 -3.11 5.21

- - 8532 16699 -1.72 5.30
4 0.45

245 343 8607 16773 -2.16 4.83

- - 6927 16374 -1.73 4.51
5 0.79

228 341 9085 16508 -2.50 3.69

- - 8050 21055 -2.54 4.02
6 0.47

190 274 8040 21154 -3.00 3.54

- - 7736 22464 -2.51 4.36
7 0.58

254 306 6924 22594 -3.06 3.76

less than 1% from the optimal solution obtained with full
patterns, and thus the heuristic generates good quality
patterns. Additionally we can observe that the distance
to the lower bound is small, -1.6% to -2.57% with full
patterns, thus the impact of considering the weekly rules
is not very high on these instances. This difference is
expected to be larger if longer planning horizons and
additional working rules over the week are considered.
Conversely, the distance to the upper bound shows that
when weekly rules are not considered and the resulting
solution is made feasible by using external drivers, the
impact on the objective value is significant, up to 8.49%
when considering full flexibility patterns on instance class
0.

We solve the same instances as before but including more
flexibility. Patterns are generated with the pricing heuristic
using shifts Sf . Results are presented in Table 5. The time
in seconds for generating the patterns and the number
of patterns generated are presented in columns labelled
th and |T ′

f |. The time in seconds for defining and solving
the problem, the value of the objective function and the
optimality gap of the two-stage stochastic problem are
presented in columns time, Zf , and Gap. The time limit
is set to one and two hours for instances with 50 and 100
orders, respectively. ∆Zf−Zr

measures the difference (in
percentage) between the best integer solution found with
Tr and the best integer solution found with T ′

f .

First, we can observe that with increased flexibility the
number of patterns is 3 to 4 times higher than in Table
4. Gap shows that the problem is more difficult to solve
with T ′

f than with Tr as the optimality gap is larger for
the problem considering patterns with more flexibility.
Negative values of ∆Zf−Zr reveal that our approach for
generating patterns can lack of quality when the number
of possible patterns become too important. Although we
cannot solve the problem with Tf and thus we cannot
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and maximum working hours over the week (minT and
maxT , respectively) and the minimum number of resting
days (restT ). We set restT = 1 to impose at least one day-
off between the 1st day and the 6th day of work. As for the
weekly working hours, we set minT = 10 and maxT = 40.
We use two strategies to generate the set of patterns
T : we do the complete enumeration of feasible patterns
using either Sr or Sf and the values of minT , maxT ,and
restT , or we generate patterns with the pricing heuristic
presented in the Section 2.2.

To measure the impact of using different pattern genera-
tion methods on the objective value and the CPU time,
we solve the set of instances with the set of patterns T
and with the set of patterns generated with the heuristic
pricing procedure denoted as T ′. We denote by Tr and
T ′
r the set of patterns generated from the set of shifts Sr.

Similarly, we denote by Tf and T ′
f the set of patterns gener-

ated from the set of shifts Sf . We decompose the problem
into daily problems and solve them using shifts S and Sf

to compute a lower bound that is not feasible in terms
of working rules for the weekly version of the problem.
The difference between the weekly solution and the lower
bound measures the cost of respecting the working rules
over the week. Additionally we build a feasible solution
from the lower bound by replacing shifts with external
drivers until the solution respects the weekly working rules.
This is used to measure the interest of solving a large
weekly model compared to a simple heuristic procedure
to obtain a feasible solution from an infeasible one.

Results are presented in Table 4. For each class of instances
we give the mean value over all instances of each measure
with the full patterns Tr (upper row) and the priced
patterns T ′

r (bottom row). The set Tr is the same for all
instances, whereas T ′

r is different for each instance since it
depends on the solution of the pricing problem presented
in Section 2.2. Values th and |T ′

r | represent respectively
the time in seconds spent generating the set T ′

r and its
size. The total time in seconds required to define and to
solve the two-stage problem with the L-shaped method is
given by time. Z is the objective value of the solution. We
set a time limit of one and two hours for instances with
50 and 100 orders per day, respectively. ∆LB measures
the percentage difference between the best integer solution
found with the two-stage method and a lower bound
related to the solution of the problem without considering
weekly working rules. In a similar way, ∆UB measures the
percentage difference between the best integer solution
found with the two-stage method and an upper bound
found with the solution obtained after making the lower
bound feasible with respect to the weekly working rules
by means of external drivers. Finally, ∆Z measure the
cost difference (in percentage) between the solution to the
problem with full patterns and with priced patterns.

Table 4 shows that even if the set of patterns T ′
r is

approximately 100 times smaller than the full set of
patterns Tr, the problem is not much easier to solve when
we look at the values of time. We remark that the value
of the optimality gap was lower than 0.1% for all the
instances solved. It is thus preferable to solve the problem
with full patterns when possible. On the other hand, ∆Z

shows that the solution obtained with priced patterns is

Table 4. Solution comparison with different
pattern generation methods

Cl th |T ′
r | time Z ∆LB ∆UB ∆Z

- - 1382 8001 -1.80 8.49
0 0.93

144 266 2613 8076 -2.70 7.49

- - 1305 7974 -1.61 9.20
1 0.80

246 339 1949 8038 -2.39 8.34

- - 4025 9,619 -2.42 6.07
2 0.41

68 171 3875 9663 -2.82 5.64

- - 3916 11148 -2.57 5.79
3 0.56

118 205 2572 11211 -3.11 5.21

- - 8532 16699 -1.72 5.30
4 0.45

245 343 8607 16773 -2.16 4.83

- - 6927 16374 -1.73 4.51
5 0.79

228 341 9085 16508 -2.50 3.69

- - 8050 21055 -2.54 4.02
6 0.47

190 274 8040 21154 -3.00 3.54

- - 7736 22464 -2.51 4.36
7 0.58

254 306 6924 22594 -3.06 3.76

less than 1% from the optimal solution obtained with full
patterns, and thus the heuristic generates good quality
patterns. Additionally we can observe that the distance
to the lower bound is small, -1.6% to -2.57% with full
patterns, thus the impact of considering the weekly rules
is not very high on these instances. This difference is
expected to be larger if longer planning horizons and
additional working rules over the week are considered.
Conversely, the distance to the upper bound shows that
when weekly rules are not considered and the resulting
solution is made feasible by using external drivers, the
impact on the objective value is significant, up to 8.49%
when considering full flexibility patterns on instance class
0.

We solve the same instances as before but including more
flexibility. Patterns are generated with the pricing heuristic
using shifts Sf . Results are presented in Table 5. The time
in seconds for generating the patterns and the number
of patterns generated are presented in columns labelled
th and |T ′

f |. The time in seconds for defining and solving
the problem, the value of the objective function and the
optimality gap of the two-stage stochastic problem are
presented in columns time, Zf , and Gap. The time limit
is set to one and two hours for instances with 50 and 100
orders, respectively. ∆Zf−Zr

measures the difference (in
percentage) between the best integer solution found with
Tr and the best integer solution found with T ′

f .

First, we can observe that with increased flexibility the
number of patterns is 3 to 4 times higher than in Table
4. Gap shows that the problem is more difficult to solve
with T ′

f than with Tr as the optimality gap is larger for
the problem considering patterns with more flexibility.
Negative values of ∆Zf−Zr reveal that our approach for
generating patterns can lack of quality when the number
of possible patterns become too important. Although we
cannot solve the problem with Tf and thus we cannot
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Table 5. Results with a high flexibility set of
patterns generated heuristically

Class th |T ′
f | time Zf Gap ∆Zf−Zr

0 470 970 3678 8147 9.28e-3 -1.83
1 352 782 3687 8116 1.17e-2 -1.78
2 284 769 3670 8954 5.81e-3 6.90
3 262 764 3701 10308 7.35e-3 7.52
4 742 1140 8451 16755 1.89e-2 -0.33
5 700 1270 8519 16700 2.94e-2 -1.99
6 1108 1430 8580 19970 9.22e-3 5.15
7 667 1163 8499 20993 8.54e-3 6.54

Table 6. Value of the stochastic solution for
each class of instance

Class V SSfix(%) V SSvar(%) V SSext(%) V SSt(%)

0 -2.10 -0.18 2.66 0.57
1 -2.93 -0.38 3.74 0.74
2 -2.90 -0.29 4.54 1.34
3 -4.79 -0.60 7.49 2.10
4 -7.33 -0.75 10.41 2.32
5 -8.60 -1.20 12.30 2.49
6 -2.68 -0.28 4.94 1.98
7 -4.04 -1.03 9.83 4.76

estimate the quality of patterns generated, ∆Zf−Zr
shows

that increasing flexibility can lead to important cost sav-
ings (up to 7.52% for instances from Class 3). In addition,
we find smaller objective values with instances having a
gamma distribution for the demand and negative values
with instances having a normal distribution. Theses re-
sults reveal that flexibility can really matter depending
on the distribution of the requests, here with a gamma
distribution flexibility is really important. We cannot con-
clude that with a normal distribution of the demand the
flexibility does not have impact since the negative values
of ∆zf−Zr

could come from the pattern generation method
not performing well with this kind of distribution.

To estimate the interest of solving a two-stage stochastic
problem we measure the value of the stochastic solution
(V SS) on our set of instances. Let us recall that V SS =
EEV − RP where RP is the objective function of the
two-stage stochastic problem and EEV is obtained after
solving the mean value problem and then solving the two-
stage problem with the first stage decisions from the mean
value problem. The mean scenario is obtained by aggregat-
ing all scenarios into one single scenario considering their
corresponding probability. We use the set of patterns T ′

f .

Results are presented in table 6. We decompose the total
value of the stochastic solution (V SSt) into V SSfix,
V SSvar, V SSext (for the fixed staffing costs, variable costs,
and external driver costs, respectively). Negative values of
V SS indicate that the EEV solution finds lower costs.
Note that V SSt cannot be negative as EEV cannot be
better than RP . All values of V SSfix and V SSvar are
negative which indicates that the mean value problem
allocates less working hours to company drivers and thus
more deliveries are done by external drivers as can be
seen with the values of V SSext. The external cost can be
significantly higher for some class of instances: 10.41% and
12.30% for classes 4 and 5 but this comes with high fixed
costs savings -7.33% and -8.6%. We can observe that V SSt

increases with the total number of orders and is in general
higher with the gamma distribution. As expected, V SSt

also increases with high variability instances (classes 1, 3,
5, and 7).

4. CONCLUSION

In this paper we addressed a tour-scheduling problem for
attended home delivery with uncertain order requests.
This problem is important as numerous attended home de-
livery providers rely on a flexible workforce where drivers
have individual preferences, several skills, and different
working contracts. This flexibility adds complexity to at-
tended home delivery operations planning because of the
large number of working regulations that need to be con-
sidered in the problem, especially in multi-period prob-
lems. If these aspects are not included in the optimisation
phase of the operations planning, poor-quality schedules
are affected to employees, deteriorating their working con-
ditions. We defined a two-stage stochastic programming
model to represent the problem and solved it using a multi-
cut L-shaped method. Numerical results showed that the
weekly working rules considered increased the cost by only
a small amount (up to 2.54%), and that

Future research perspectives include the implementation
of a Branch & Price method to generate the set of weekly
patterns.
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