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Abstract

In this paper we study a tour-scheduling problem for an attended
home delivery problem with uncertain order requests. The problem is
modelled as a two-stage stochastic programming problem and solved using
the multi-cut L-shaped method. Weekly working patterns are generated
by means of a pricing heuristic. Numerical results on randomly generated
instances show that including weekly working rules increases the total cost
by only a small amount (up to 2.54%) when compared to an approach that
only considers daily working rules for the generation of driver schedules.

1 Introduction

Home service (HS) operations are becoming increasingly important due to so-
cial, demographic, and epidemiological trends in most countries. Attended home
delivery (AHD) is an example of this type HS operations. In this problems,
employees travel to perform work-related activities at geographically dispersed
customer locations. For instance, drivers, deliver packages at customers’ homes.
As reported in recent social and demographic studies, several service operations,
which require customers to travel and to visit a place indoor, are switching to
become services provided at home. In fact, as from 2014 to 2019 e-commerce
sales ratios nearly tripled globally (WEF, 2020). This accelerated growth cre-
ates important challenges and opportunities for AHD providers, and requires
the development of decision support tools to optimise their operations and to
organise them in a more sustainable way.

The most prevalent home service operation planning problems in real-life
are multi-period (i.e., the planning horizon spans multiple days) because a de-
mand for continuous operations have to be satisfied or because customers might
request multiple services spread over different days. This important character-
istic makes necessary the integration of different decision levels such as tactical
employee scheduling (e.g., tour scheduling) and operational employee routing
while optimising HS operations.

Many variants of employee scheduling and routing for home service opera-
tions have been studied for decades. However, the integration of both problems
have only started to get the attention of the operations research and artificial
intelligence communities. The majority of the works in the literature focuses
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on single-period optimisation problems (i.e. the planning horizon corresponds
to one working day). A good deal of this literature considers the incorporation
of working regulations an important factor. However, to the best of our knowl-
edge, only few works have addressed multi-period personnel scheduling and
routing problems including uncertainty (in order requests, crowdsource capaci-
ties,...) and working regulations. Examples include the studies in (?????) for
home healthcare, and the studies in (??) for urban delivery and long-distance
haulage applications, respectively. These works propose different approaches
to generate multi-period plans including scheduling and routing decisions si-
multaneously. However, with the exception of the studies in (???), they fail
to incorporate working regulations related to the allocation of days-off and rest
times between consecutive shifts. In addition, as these problems are already dif-
ficult to solve, they do not consider uncertainty in the demands and/or supply
capacities, except for (??).

In this work, we study an integrated tour scheduling and order allocation
problem problem for AHD. The problem is defined over a time horizon of one
week, where days are divided into multiple time periods, and the majority of
order requests are uncertain and must be fulfilled within a narrow time window.
Customer orders can be delivered by company drivers or by external drivers
(crowd-sourcing). Hence the focus of our research is to decide weekly tours for
company drivers (working days, days-off, and start time and duration of shifts
for each working day) and to assign customer orders to the drivers so as to
fullfill all customer orders at minimum cost.

2 Problem Description and solution approach

We study the case of a last-mile delivery company that proposes two types
of services to satisfy customers demands. The problem is closely related to
the tactical problem addressed in ?. Deliveries are composed by a number of
packages, a time window, a pickup location and a delivery location. To receive
their orders, customers can choose between one of two services. The first type
of service corresponds to pre-ordered deliveries, called appointment deliveries,
where the client can choose between some predefined time slots. The second
type corresponds to express deliveries where the client must be served within
a two-hour time window after having placed their order. To satisfy customer
requests, the company can hire company drivers and external drivers. Company
drivers are assigned to working shifts, and they are paid a fixed amount of money
per hour worked, plus a variable amount of money depending on the number
of deliveries made during the day. External drivers are more expensive than
company drivers. However, they add flexibility and help to keep service levels
when client requests cannot be satisfied by company drivers. We suppose that
the company can hire an infinite amount of external drivers and can thus always
satisfy the demand.

We consider a fleet of C company drivers to schedule over a planning horizon
of D days and I time periods on each day. The set of pre-defined shifts for com-
pany drivers is denoted by S. Shifts are composed by consecutive working hours
and must respect a minimum minS and maximum maxS number of working
time periods over the day. A shift is said to be compatible with a driver if the
driver is available during the entire duration of the shift. We denote by Sc the
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set of shifts compatible with driver c (Sc ⊆ S). Set T define the possible weekly
working patterns. A pattern is a sequence containing shifts and days-off. Each
pattern must respect some working rules: a minimum minT and a maximum
maxT number of working hours over the week and a minimum restT number of
days-off. A pattern is said to be compatible with a driver c if every shift s ∈ Sc

in the sequence is compatible with driver c. We denote by T c ⊆ T the set of
patterns compatible with driver c.

Since the problem we are addressing in this paper is tactical by nature, we
do not consider an explicit representation of each customer location. Instead,
we define a set of areas A = {1..A}, such that all pickup and delivery locations
in the same area a ∈ A are considered at the same location. We then define
the set of origin-destination pairs (o-d pairs) P as the product P = A×A. We
assume that a driver can visit only one o-d pair per time period and that he
can always travel from the origin to the destination within each time period.
Drivers can deliver several packages (limited by the capacity of their vehicle) in
the same o-d pair at each time period.

Since not all customer requests are known in advance, we use a scenario-
based approach to represent the uncertainty in the demand. Let Ωd

i be the set
of scenarios for the demand on day d and time period i. Each scenario ω in Ωd

i is
assigned a probability pωdi such that

∑
ω∈Ωd

i
pωdi=1. The demand in a particular

scenario is composed of a deterministic part plus a stochastic part. The demand
is distributed among all o-d pairs following a probability distribution. The
deterministic component of the demand (client requests known in advance) in a
particular o-d pair p is denoted as gdip and the stochastic demand as hωdip. The
total demand in o-d pair p under scenario ω is then equal to bωdip= gdip + hωdip
with a probability pωdi.

We consider a fixed cost f ct associated to each pattern t ∈ T c for driver c.
This cost depends on a vehicle wear cost and a staffing cost per working time
period. Deliveries made by company drivers have a variable cost lcdip that de-
pends on the distance between o-d pairs and the type of vehicle used. Deliveries
performed by external drivers have a cost cdip that depends on the location of
the destination. For instance, if the destination is far from the city center, the
delivery is more expensive.

2.1 A two-stage stochastic approach

Let xtc be a binary variable assuming value 1 if weekly pattern t is assigned to
company driver c, and 0 otherwise. Let ycdip be a binary variable taking value 1
if company driver c is allocated to o-d pair p during day d and time period i, it
assumes value 0 otherwise. Decision variables vcωdip and eωdip denote the number
of packages delivered by company drivers and external drivers respectively. Let
δcdit be a binary parameter taking value 1 if period i ∈ I of day d ∈ D is a
working period for driver c ∈ C in pattern t ∈ T c. It assumes value 0 otherwise.
Let βc the capacity in number of packages of driver’s c ∈ C vehicle, and let
µcω
dip = min{bωdip, βc} be the maximum number of packages that driver c ∈ C

can effectively deliver in o-d pair p ∈ P on day d ∈ D at time period i ∈ I under
scenario ω ∈ Ωd

i . The deterministic equivalent program of the tour scheduling
problem for attended home delivery is as follows:
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min
∑
c∈C

∑
t∈T c

f ct x
c
t+

∑
d∈D

∑
i∈ I

∑
ω ∈Ωd

i

pωdi

( ∑
c∈C

∑
p∈P

lcdipv
cω
dip +

∑
p∈P

cdipe
ω
dip

)
(1)

∑
t∈T c

xct ≤ 1, ∀ c ∈ C(2) ∑
p∈P

ycdip =
∑
t∈T c

δcditx
c
t , ∀ c ∈ C, d ∈ D, i ∈ I(3)

vcωdip ≤ µcω
dipy

c
dip,

∀ c ∈ C, d ∈ D, i ∈ I, ω ∈ Ωd
i , p ∈ P(4) ∑

c∈C

vcωdip + eωdip = bωdip,

∀ d ∈ D, i ∈ I, ω ∈ Ωd
i , p ∈ P(5)

xct ∈ {0, 1}, ∀ c ∈ C, t ∈ T c(6)

ycdip ∈ {0, 1}, ∀ c ∈ C, d ∈ D, i ∈ I, p ∈ P(7)

vcωdip ∈ Z≥0,∀ c ∈ C, d ∈ D, i ∈ I, ω ∈ Ωd
i , p ∈ P(8)

eωdip ≥ 0, ∀ d ∈ D, i ∈ I, ω ∈ Ωd
i , p ∈ P.(9)

Constraint (2) limits the allocation of patterns to maximum one per company
driver. Constraint (3) enforces that if driver c ∈ C is working in pattern t ∈ T c

and period i ∈ I of day d ∈ D, then driver c is assigned to an o-d pair. Constraint
(4) limits the number of packages that driver c ∈ C can deliver in o-d pair p ∈ P
at each time period. Constraint (5) ensures that the demand is satisfied either
by company drivers or by external drivers. Note that there is no upper bound
on the value of variables eωdip. Therefore, problem (1)-(9) is always feasible.
Constraints (6)-(9) are the domain constraints.

The number of constraints and variables in problem (1)-(9) grows with the
number of drivers, days, patterns, time periods, o-d pairs, and scenarios. Thus
the problem can become prohibitively large, especially when the number of
scenarios is important. Therefore, we use a multi-cut L-shaped method (?) as
a solution approach. Let M be the first-stage problem and R(x, y) the second-
stage problem (recourse problem). R(x, y) can be decomposed into multiple
sub-problems Rω

dip(x, y) for each d ∈ D, i ∈ I, ω ∈ Ωd
i , p ∈ P . The formulation

of the second-stage problem, denoted as Rω
dip, is as follows:

Q(x, ydip, ξ
ω
dip) = min

∑
c∈C

lcdipv
cω
dip + cdipe

ω
dip(10)

vcωdip ≤ µcω
dipy

c
dip, ∀ c ∈ C(11) ∑

c∈C

vcωdip + eωdip = bωdip(12)

vcωdip ≥ 0, ∀ c ∈ C(13)

eωdip ≥ 0.(14)
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Note that integrality constraints on vcωdip variables have been relaxed as prob-
lem (10)-(14) corresponds to a sorting problem and thus its solution is integer.

We define θωdip variables and optimality cuts (18) to approximate the objec-
tive function of recourse problems Rω

dip(x, y). The dual multipliers from con-
straints (11) and (12) are denoted by πcω

dip and λωdip, respectively. Note that
there is no need to add feasibility cuts since recourse problems are always fea-
sible and have fix recourse matrix. The formulation of the first-stage problem
is as follows:

min
∑
c∈C

∑
t∈T c

f ct x
c
t +

∑
d∈D

∑
i∈ I

∑
ω ∈Ωd

i

∑
p∈P

θωdip(15)

∑
t∈T c

xct ≤ 1, ∀ c ∈ C(16) ∑
p∈P

ycdip =
∑
t∈T c

δcditx
c
t , ∀c ∈ C, d ∈ D, i ∈ I(17)

θωdip ≥ pωdi

(∑
c∈C

µcω
dipπ

cω
dipy

c
dip + bωdipλ

ω
dip

)
,

∀ d ∈ D, i ∈ I, ω ∈ Ωd
i , p ∈ P(18)

xct ∈ {0, 1}, ∀ c ∈ C, t ∈ T c(19)

ycdip ∈ {0, 1}, ∀ c ∈ C, d ∈ D, i ∈ I, p ∈ P(20)

θωdip ≥ 0,∀ d ∈ D, i ∈ I, ω ∈ Ωd
i , p ∈ P.(21)

2.2 Weekly pattern generation

An important limitation to the efficiency of the resolution of problem (15)-(21)
is related to the number of patterns |T | to generate. An upper bound to this
number can be obtained with |S||D| which becomes prohibitively large as the
number of days and shifts increase. The exhaustive enumeration of patterns
would, in most situations, result in an intractable problem. Successful methods
facing this kind of limitations often come with a Branch & Price strategy. Since
we are solving the problem with a Branch & Cut method, implementing a good
Branch & Price could be tedious and is thus out of the scope of this study. Hence,
we propose a heuristic method (inspired by a column generation approach) to
generate a reasonable number of patterns before problem (15)-(21) is solved
with the multi-cut L-shaped method. Its procedure follows.

We denote by T ′ ⊂ T the subset of patterns generated so far by the heuristic
method, starting with a non empty set of initial patterns. Variable xct , ∀c ∈
C, t ∈ T ′ represents the allocation of patterns to company drivers. Variables
z+di, z

−
di represent respectively under-staffing and over-staffing at day d and time

period i. The notation and mathematical model of the master problem for
pattern-generation follows:
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Table 1: Parameters for the pattern generation master problem.
f c : cost per working period for company driver

c
c+, c− : over-staffing and under-staffing costs, re-

spectively
ρcdit: 1 if i is a working period for driver c on day

d, 0 otherwise
wt: number of working periods in pattern t
rdi: average number of drivers required on day d

at time period i (rdi =
∑
p∈P

∑
ω∈Ω

pωdib
ω
dip/β̄).

β̄ is the mean capacity over all company
drivers.

min
∑
c∈C

∑
t∈T ′

f cwtx
c
t +

∑
d∈D

∑
i∈I

(c+z+di + c−z−di)(22) ∑
c∈C

∑
t∈T ′

ρcditx
c
t − z+di + z−di = rdi, ∀d ∈ D, i ∈ I(23) ∑

t∈T ′

xct ≤ 1, ∀ c ∈ C(24)

xct ≥ 0, ∀ c ∈ C, t ∈ T ′(25)

z+di, z
−
di ≥ 0 ∀d ∈ D, i ∈ I.(26)

Constraints (23) ensure that the total number of drivers working at each
time period is equal to the average number of required drivers subject to some
adjustments related to excess or lack of employees. Constraints (24) limit the
allocation of patterns to one per driver. The dual variables of constraints (23)-
(24) are ϕdi and ψc, respectively. The expression to compute the reduced cost
of shift s ∈ S for driver c on day d is: pcd =

∑
i∈I

(f c − ϕdi)ρ
c
is − ψc, where ρ

c
is is

equal to 1 if time period i is a working period for shift s, and 0 otherwise.
The procedure to generate feasible patterns is as follows:

• Step 0: Compute one initial feasible pattern for each driver c ∈ C

• Step 1: Solve problem (22)-(26) and get the value of dual variables ϕdi,
ψc.

• Step 2: Compute the reduced cost of each shift s ∈ S for each day d ∈ D
and for each driver c ∈ C

• Step 3: Generate the lowest reduced cost pattern respecting the working
rules for each driver c ∈ C based on the shifts reduced costs computed at
Step 2

• Add the new patterns (not already in T ′) generated to T ′. If a new pattern
is added for any of the drivers c ∈ C go to Step 1, else stop.
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3 Numerical Results

In this section, we evaluate the performance of the two-stage stochastic model
under different configurations. We also compare the solutions and costs to draw
conclusions concerning the interest of this study and how it could be used to
take managerial medium term decisions. Experiments were run on an Ubuntu
20.4 system with an Intel Xeon Gold 6230 2.10 GHz CPU and 4Go to 10Go
RAM allocated depending on the size of the instance. All CPU times are given
in seconds. We first introduce the instance generation process.

We consider a planning horizon of 6 days, as the 7th day of the week is
considered a day-off. A day is divided into 10 time periods of one-hour length
each. The demand is given by O, the total number of packages to deliver per
day. To have more realistic instances, we use a random perturbation factor
γ ∈ [0.8, 1.5] to compute the total number of packages to deliver on day d.
The total demand τd = O × γ on day d is then distributed among the different
time periods following a probability distribution. We use a gamma distribution
with parameters k = 2 and Θ = 2 to represent a demand with more requests
arriving during the first time periods of the day, and a normal distribution with
parameters µ = 5 and σ = 2 to represent requests arriving in increasing numbers
until the middle of the day and then decreasing.

We denote by τdi the total demand at time period i ∈ I on day d ∈ D.
The demand at each time period is then split between the pre-ordered requests
and the express requests using a variability coefficient vardi on each day and
time period. vardi represents the percentage of the demand on day d and time
period i that is not known in advance. We use two types of variability: a medium
variability where the percentage of unknown requests increases throughout the
day and taking a higher value at each new day of the week, and a high variability
where the uncertainty increases drastically throughout the first day and increase
slightly over the rest of the week. The unknown requests are the stochastic part
of the demand which is represented with scenarios generated as follows: let
ξ̄di = τdi×vardi

100 be the mean number of unknown packages to deliver at time
period i on day d. All possible demand realisations ξωdi are generated and a
perturbation is applied to the demand κωdi = ξωdi − ξ̄di (i.e., the perturbation
is positive if ξωdi ≥ ξ̄di and negative if ξωdi < ξ̄di). The probability pωdi of each
scenario ω ∈ Ωdi is computed following a probability mass function with a
Poisson distribution. Finally, the orders are distributed among the o-d pairs by
randomly choosing an origin and a destination pair. The deterministic demand
gdip is the sum of all the pre-ordered requests allocated to o-d pair p on day d
and time period i, and the stochastic demand hωdip is the sum of all the express
requests deliveries allocated to o-d pair p in this particular scenario ω. The total
demand as used in the model is bωdip = gdip + hωdip, the sum of the deterministic
demand and the stochastic demand in scenario ω.

For each instance, we consider a fleet of company drivers C. Each driver
can use one of the three different types of vehicles with parameters described
in Table 2. Column labelled Cap. gives is the maximum number of packages
that can be delivered per driver per time period. The wear cost is the cost of
using the vehicle per time period, the delivery and pickup costs are the costs
per package delivered using the vehicle. Additionally, there is a cost of 10 per
hour for each internal driver, thus the total fixed cost f c is 10 plus the wear cost
of the vehicle allocated to driver c. The fixed cost of a pattern f ct is defined as
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the sum of the fixed costs at every working hour plus an extra 100 cost over the
week for managing the driver. The variable cost associated to the delivery of a
package is the sum of the delivery cost (presented in column Del. cost) and the
pickup cost. External deliveries cost 50 per package.

Table 2: Vehicle parameters
Type Cap. Wear cost Pickup cost Del. cost
Car 4 15 2.5 2.5

Motorcycle 3 10 2.5 2.5
Bicycle 3 0 7.5 7.5

We define a class of instances for each combination of total orders, probability
distribution (labelled in Table 3 as Dist.) and variability (labelled in Table 3 as
Var.), and generate a set of 5 instances for each class. Instances are summarised
in Table 3.

Table 3: Class instances summary
Class Total orders Dist. Var. Nb. instances
0 50 normal medium 5
1 50 normal high 5
2 50 gamma medium 5
3 50 gamma high 5
4 100 normal medium 5
5 100 normal high 5
6 100 gamma medium 5
7 100 gamma high 5

The set of possible shifts S is generated based on three parameters: the
minimum and maximum length (in time periods) of a shift (minS and maxS ,
respectively) and the interval for the start between two consecutive shifts of
the same length (∆S). For instance, if ∆S = 2 and a shift with a length of 4
time periods starts at time period 0, then the next shift with a 4-period length
will start at 2. We consider an additional shift of length 0 to represent a day-
off. The number of possible shifts depends on parameters minS , maxS , ∆S

and the number of time periods |I|. We use the combination of parameters
minS = 6, maxS = 8, ∆S = 2 to generate a set Sr of 6 shifts with low flexibility,
and parameters minS = 4, maxS = 8 ,∆S = 1 to generate a set Sf of 26 shifts
with more flexibility.

The set of possible weekly patterns T is generated from the set of shifts
S and three parameters: the minimum and maximum working hours over the
week (minT and maxT , respectively) and the minimum number of resting days
(restT ). We set restT = 1 to impose at least one day-off between the 1st day
and the 6th day of work. As for the weekly working hours, we set minT = 10
and maxT = 40. We use two strategies to generate the set of patterns T :
we do the complete enumeration of feasible patterns using either Sr or Sf and
the values of minT , maxT ,and restT , or we generate patterns with the pricing
heuristic presented in the Section 2.2.

To measure the impact of using different pattern generation methods on the
objective value and the CPU time, we solve the set of instances with the set
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of patterns T and with the set of patterns generated with the heuristic pricing
procedure denoted as T ′. We denote by Tr and T ′

r the set of patterns generated
from the set of shifts Sr. Similarly, we denote by Tf and T ′

f the set of patterns
generated from the set of shifts Sf . We decompose the problem into daily
problems and solve them using shifts S and Sf to compute a lower bound that
is not feasible in terms of working rules for the weekly version of the problem.
The difference between the weekly solution and the lower bound measures the
cost of respecting the working rules over the week. Additionally we build a
feasible solution from the lower bound by replacing shifts with external drivers
until the solution respects the weekly working rules. This is used to measure
the interest of solving a large weekly model compared to a simple heuristic
procedure to obtain a feasible solution from an infeasible one.

Results are presented in Table 4. For each class of instances we give the
mean value over all instances of each measure with the full patterns Tr (upper
row) and the priced patterns T ′

r (bottom row). The set Tr is the same for
all instances, whereas T ′

r is different for each instance since it depends on the
solution of the pricing problem presented in Section 2.2. Values th and |T ′

r |
represent respectively the time in seconds spent generating the set T ′

r and its
size. The total time in seconds required to define and to solve the two-stage
problem with the L-shaped method is given by time. Z is the objective value
of the solution. We set a time limit of one and two hours for instances with 50
and 100 orders per day, respectively. ∆LB measures the percentage difference
between the best integer solution found with the two-stage method and a lower
bound related to the solution of the problem without considering weekly working
rules. In a similar way, ∆UB measures the percentage difference between the
best integer solution found with the two-stage method and an upper bound
found with the solution obtained after making the lower bound feasible with
respect to the weekly working rules by means of external drivers. Finally, ∆Z

measure the cost difference (in percentage) between the solution to the problem
with full patterns and with priced patterns.

Table 4 shows that even if the set of patterns T ′
r is approximately 100 times

smaller than the full set of patterns Tr, the problem is not much easier to solve
when we look at the values of time. We remark that the value of the optimality
gap was lower than 0.1% for all the instances solved. It is thus preferable to
solve the problem with full patterns when possible. On the other hand, ∆Z

shows that the solution obtained with priced patterns is less than 1% from the
optimal solution obtained with full patterns, and thus the heuristic generates
good quality patterns. Additionally we can observe that the distance to the
lower bound is small, -1.6% to -2.57% with full patterns, thus the impact of
considering the weekly rules is not very high on these instances. This difference
is expected to be larger if longer planning horizons and additional working rules
over the week are considered. Conversely, the distance to the upper bound
shows that when weekly rules are not considered and the resulting solution is
made feasible by using external drivers, the impact on the objective value is
significant, up to 8.49% when considering full flexibility patterns on instance
class 0.

We solve the same instances as before but including more flexibility. Patterns
are generated with the pricing heuristic using shifts Sf . Results are presented
in Table 5. The time in seconds for generating the patterns and the number of
patterns generated are presented in columns labelled th and |T ′

f |. The time in
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Table 4: Solution comparison with different pattern generation methods
Cl th |T ′

r | time Z ∆LB ∆UB ∆Z

- - 1382 8001 -1.80 8.49
0 0.93

144 266 2613 8076 -2.70 7.49
- - 1305 7974 -1.61 9.20

1 0.80
246 339 1949 8038 -2.39 8.34
- - 4025 9,619 -2.42 6.07

2 0.41
68 171 3875 9663 -2.82 5.64
- - 3916 11148 -2.57 5.79

3 0.56
118 205 2572 11211 -3.11 5.21
- - 8532 16699 -1.72 5.30

4 0.45
245 343 8607 16773 -2.16 4.83
- - 6927 16374 -1.73 4.51

5 0.79
228 341 9085 16508 -2.50 3.69
- - 8050 21055 -2.54 4.02

6 0.47
190 274 8040 21154 -3.00 3.54
- - 7736 22464 -2.51 4.36

7 0.58
254 306 6924 22594 -3.06 3.76
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Table 5: Results with a high flexibility set of patterns generated heuristically
Class th |T ′

f | time Zf Gap ∆Zr−Zf

0 470 970 3678 8147 9.28e-3 -1.83
1 352 782 3687 8116 1.17e-2 -1.78
2 284 769 3670 8954 5.81e-3 6.90
3 262 764 3701 10308 7.35e-3 7.52
4 742 1140 8451 16755 1.89e-2 -0.33
5 700 1270 8519 16700 2.94e-2 -1.99
6 1108 1430 8580 19970 9.22e-3 5.15
7 667 1163 8499 20993 8.54e-3 6.54

seconds for defining and solving the problem, the value of the objective function
and the optimality gap of the two-stage stochastic problem are presented in
columns time, Zf , and Gap. The time limit is set to one and two hours for
instances with 50 and 100 orders, respectively. ∆Zf−Zr

measures the difference
(in percentage) between the best integer solution found with Tr and the best
integer solution found with T ′

f .
First, we can observe that with increased flexibility the number of patterns is

3 to 4 times higher than in Table 4. Gap shows that the problem is more difficult
to solve with T ′

f than with Tr as the optimality gap is larger for the problem
considering patterns with more flexibility. Negative values of ∆Zf−Zr reveal that
our approach for generating patterns can lack of quality when the number of
possible patterns become too important. Although we cannot solve the problem
with Tf and thus we cannot estimate the quality of patterns generated, ∆Zf−Zr

shows that increasing flexibility can lead to important cost savings (up to 7.52%
for instances from Class 3). In addition, we find smaller objective values with
instances having a gamma distribution for the demand and negative values with
instances having a normal distribution. Theses results reveal that flexibility can
really matter depending on the distribution of the requests, here with a gamma
distribution flexibility is really important. We cannot conclude that with a
normal distribution of the demand the flexibility does not have impact since the
negative values of ∆zf−Zr

could come from the pattern generation method not
performing well with this kind of distribution.

To estimate the interest of solving a two-stage stochastic problem we measure
the value of the stochastic solution (V SS) on our set of instances. Let us recall
that V SS = EEV − RP where RP is the objective function of the two-stage
stochastic problem and EEV is obtained after solving the mean value problem
and then solving the two-stage problem with the first stage decisions from the
mean value problem. The mean scenario is obtained by aggregating all scenarios
into one single scenario considering their corresponding probability. We use the
set of patterns T ′

f .
Results are presented in table 6. We decompose the total value of the

stochastic solution (V SSt) into V SSfix, V SSvar, V SSext (for the fixed staffing
costs, variable costs, and external driver costs, respectively). Negative values
of V SS indicate that the EEV solution finds lower costs. Note that V SSt

cannot be negative as EEV cannot be better than RP . All values of V SSfix

and V SSvar are negative which indicates that the mean value problem allocates
less working hours to company drivers and thus more deliveries are done by
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Table 6: Value of the stochastic solution for each class of instance
Class V SSfix(%) V SSvar(%) V SSext(%) V SSt(%)
0 -2.10 -0.18 2.66 0.57
1 -2.93 -0.38 3.74 0.74
2 -2.90 -0.29 4.54 1.34
3 -4.79 -0.60 7.49 2.10
4 -7.33 -0.75 10.41 2.32
5 -8.60 -1.20 12.30 2.49
6 -2.68 -0.28 4.94 1.98
7 -4.04 -1.03 9.83 4.76

external drivers as can be seen with the values of V SSext. The external cost
can be significantly higher for some class of instances: 10.41% and 12.30% for
classes 4 and 5 but this comes with high fixed costs savings -7.33% and -8.6%.
We can observe that V SSt increases with the total number of orders and is in
general higher with the gamma distribution. As expected, V SSt also increases
with high variability instances (classes 1, 3, 5, and 7).

4 Conclusion

In this paper we addressed a tour-scheduling problem for attended home delivery
with uncertain order requests. This problem is important as numerous attended
home delivery providers rely on a flexible workforce where drivers have individ-
ual preferences, several skills, and different working contracts. This flexibility
adds complexity to attended home delivery operations planning because of the
large number of working regulations that need to be considered in the problem,
especially in multi-period problems. If these aspects are not included in the op-
timisation phase of the operations planning, poor-quality schedules are affected
to employees, deteriorating their working conditions. We defined a two-stage
stochastic programming model to represent the problem and solved it using a
multi-cut L-shaped method. Numerical results showed that the weekly working
rules considered increased the cost by only a small amount (up to 2.54%), and
that

Future research perspectives include the implementation of a Branch & Price
method to generate the set of weekly patterns.
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