Mathieu Granzotto
email: mgranzotto@unimelb.edu.au

Olivier Lindamulage De Silva

Romain Postoyan

Dragan Nešić

Zhong-Ping Jiang
email: zjiang@nyu.edu.

Regularizing policy iteration for recursive feasibility and stability

We present a new algorithm called policy iteration plus (PI +) for the optimal control of nonlinear deterministic discrete-time plants with general cost functions. PI + builds upon classical policy iteration and has the distinctive feature to enforce recursive feasibility under mild conditions, in the sense that the minimization problems solved at each iteration are guaranteed to admit a solution. While recursive feasibility is a desired property, it appears that existing results on the policy iteration algorithm fail to ensure it in general, contrary to PI + . We also establish the recursive stability of PI + : the policies generated at each iteration ensure a stability property for the closed-loop system. We prove our results under more general conditions than those currently available for policy iteration, by notably covering set stability. Finally, we present characterizations of near-optimality bounds for PI + and prove the uniform convergence of the value functions generated by PI + to the optimal value function. We believe that these results would benefit the burgeoning literature on approximate dynamic programming and reinforcement learning, where recursive feasibility is typically assumed without a clear method for verifying it and where recursive stability is essential for safe operation of the system.

I. INTRODUCTION

Policy and value iteration (PI and VI) are two optimisation algorithms that form the pillars of approximate dynamic programming [START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF]. Both algorithms generate control laws, also called policies, that converge to an optimal control law under mild conditions, see, e.g., [START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF][START_REF] Bian | Adaptive dynamic programming and optimal control of nonlinear nonaffine systems[END_REF][START_REF] Granzotto | Finite-horizon discounted optimal control: stability and performance[END_REF][START_REF] Heydari | Analyzing policy iteration in optimal control[END_REF][START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF][START_REF] Jiang | Learning-based control: A tutorial and some recent results[END_REF]. PI exhibits the attractive feature to converge faster to the optimal value function than VI in general [START_REF] Heydari | Analyzing policy iteration in optimal control[END_REF]. For these reasons, PI attracts a lot of attention both in terms of theoretical investigations see, e.g., [START_REF] Bertsekas | Value and policy iterations in optimal control and adaptive dynamic programming[END_REF][START_REF] Bian | Adaptive dynamic programming and optimal control of nonlinear nonaffine systems[END_REF][START_REF] Chun | Stability and monotone convergence of generalised policy iteration for discrete-time linear quadratic regulations[END_REF][START_REF] Heydari | Analyzing policy iteration in optimal control[END_REF][START_REF] Liu | Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems[END_REF][START_REF] Modares | A policy iteration approach to online optimal control of continuous-time constrainedinput systems[END_REF] and practical applications e.g., [START_REF] Guo | Policy approximation in policy iteration approximate dynamic programming for discrete-time nonlinear systems[END_REF][START_REF] Li | A framework of human-robot coordination based on game theory and policy iteration[END_REF][START_REF] Wang | Self-learning cruise control using kernel-based least squares policy iteration[END_REF][START_REF] Wu | Policy iteration approach to control residual gas fraction in ic engines under the framework of stochastic logical dynamics[END_REF]. Compared to VI [START_REF] Bertsekas | Value and policy iterations in optimal control and adaptive dynamic programming[END_REF][START_REF] Bian | Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design[END_REF][START_REF] Granzotto | Finite-horizon discounted optimal control: stability and performance[END_REF][START_REF] Heydari | Stability analysis of optimal adaptive control using value iteration with approximation errors[END_REF], several fundamental questions remain largely open regarding the properties of PI in a control context: (i) its recursive feasibility; (ii) general conditions for recursive stability where the attractor is not a single point but a more general set; (iii) near-optimality guarantees. We explain each of these questions next.

We say that PI is recursively feasible when the minimization problems solved at each iteration are guaranteed to admit a solution. Recursive feasibility is thus a vital property for the algorithm to be able to generate a policy at each iteration.

While this property is ensured in special cases, like when the input set is finite [START_REF] Bertsekas | Value and policy iterations in optimal control and adaptive dynamic programming[END_REF] or the system is linear and the cost is quadratic [START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF], the question becomes much more involved when dealing with general dynamics and cost functions. In this case, the dominant approach in the literature is to assume that the algorithm is feasible, see, e.g., [START_REF] Heydari | Analyzing policy iteration in optimal control[END_REF][START_REF] Liu | Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems[END_REF], or to rely on conditions that can only be checked at each iteration, and not a priori, in general [START_REF] Bertsekas | Value and policy iterations in optimal control and adaptive dynamic programming[END_REF].

In a control context, PI must also guarantee recursive stability. Stability is critical in many applications as: (i) it provides analytical guarantees on the behavior of the controlled system solutions as time evolves; (ii) it endows the system with robustness properties and is thus associated to safety considerations, see, e.g., [START_REF] Berkenkamp | Safe model-based reinforcement learning with stability guarantees[END_REF]. Available results on the stability of systems controlled by PI concentrate on the case where the attractor is a single point, see, e.g., [START_REF] Bian | Adaptive dynamic programming and optimal control of nonlinear nonaffine systems[END_REF][START_REF] Chun | Stability and monotone convergence of generalised policy iteration for discrete-time linear quadratic regulations[END_REF][START_REF] Liu | Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems[END_REF][START_REF] Modares | A policy iteration approach to online optimal control of continuous-time constrainedinput systems[END_REF]. They exclude set stability, which is often a natural requirement for optimal control problems where the cost is zero for a range of desirable states and non-zero elsewhere. Moreover, the existing conditions imposed on the plant model and the stage cost are also subject to some conservatism, like requiring the stage cost to satisfy positive definiteness properties. There is therefore a need for more general conditions allowing to conclude set stability properties for systems controlled by PI.

Finally, it is important to have near-optimality guarantees, in particular in the form of computable bounds on the mismatch between the value function obtained at each iteration and the optimal value function. The value functions generated by PI at each iteration are known to converge point-wise to the optimal value function under mild conditions [START_REF] Bian | Adaptive dynamic programming and optimal control of nonlinear nonaffine systems[END_REF][START_REF] Heydari | Analyzing policy iteration in optimal control[END_REF]. Nevertheless, it is also important to know, at each iteration, how "far" the obtained value function compared to the desired optimal one is. Available results along those lines concentrate on discounted costs, which are not always natural in control applications. Moreover, the provided near-optimality bounds explode when the discount factor converges to one [START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF]. Hence, new explicit bounds on near-optimality that do not exhibit these shortcomings are needed.

In this context, our first claim is that PI needs to be modified to address these challenges: an example is provided where PI fails to be recursively feasible despite the apparent regularities of the system, the stage cost and initial policy. We thus present a new algorithm called PI + , inspired by PI, which avoids such issues. PI + differs from PI on two key points: (i) the original map obtained at the so-called improvement step is regularized, (ii) we only select the policies with the minimum cost at the so-called evaluation step. As a result, we guarantee the recursive feasibility of PI + under mild and easy to check conditions on the plant, the cost function and the initial policy. Moreover, we prove recursive stability for PI + , under new conditions which are more general than those available in the related literature, see, e.g., [START_REF] Bian | Adaptive dynamic programming and optimal control of nonlinear nonaffine systems[END_REF][START_REF] Chun | Stability and monotone convergence of generalised policy iteration for discrete-time linear quadratic regulations[END_REF][START_REF] Liu | Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems[END_REF][START_REF] Modares | A policy iteration approach to online optimal control of continuous-time constrainedinput systems[END_REF]. Furthermore, we show that PI + does generate sequences of policies that uniformly, and not only point-wisely, converge to an optimal policy and we provide easily computable bounds on the mismatch between the value function obtained at any iteration and the optimal policy for non-discounted costs. In view of its attractive properties, we believe that PI + could serve as a basis for the development of new approximate dynamic programming and reinforcement learning algorithms in the future.

The rest of the paper is organized as follows. Preliminaries are given in Section II. PI is presented and discussed in Section III. We describe the new algorithm PI + in Section IV. In Section V, we first present assumptions on the system, the stage cost and the initial policy under which recursive feasibility, recursive stability and near-optimality guarantees for PI + are established. Finally, concluding remarks are provided in Section VI. The proofs are omitted for space reasons.

II. PRELIMINARIES

In this section, we describe the notation, definitions and the optimal control problem considered in this paper.

A. Notation

Let R := (-∞, ∞), R ≥0 := [0, ∞), R ≥0 := [0, ∞], Z >0 := {1, 2, . . .} and Z ≥0 := {0, 1, 2, . . .}. Given a symmetric matrix P ∈ R n×n with n ∈ Z >0 , we write P ≥ 0 when P is positive semi-definite. The notation (x, y) stands for [x ⊤ , y ⊤] ⊤ , where x ∈ R n , y ∈ R m and n, m ∈ Z >0 . The Euclidean norm of a vector x ∈ R n with n ∈ Z >0 is denoted by |x| and the distance of x ∈ R n to a non-empty set A ⊆ R n is denoted by |x| A := inf{|x -y| : y ∈ A}. The unit closed ball of R n for n ∈ Z >0 centered at the origin is denoted by B. For any set A ⊆ R n , x ∈ R n , the indicator function δ A : R n → R ≥0 is defined as δ A (x) = 0 when x ∈ A and δ A (x) = ∞ when x / ∈ A as in [START_REF] Rockafellar | Variational Analysis[END_REF]. We consider K, K ∞ and KL functions as defined in [START_REF] Khalil | Nonlinear Systems[END_REF]Section 4.4]. We write β ∈ exp-KL when β(s 1 , s 2) = λ 1 s 1 e -λ2s2 for some

λ 1 ∈ [1, ∞) and λ 2 > 0 for any (s 1 , s 2) ∈ R 2 ≥0 . The identity map R ≥0 → R ≥0 is denoted by I. Given a set valued map S : R n ⇒ R m , a selection of S is a single-valued mapping s : dom S → R m such that s(x) ∈ S(x) for any x ∈ dom S.
For the sake of convenience, we write s ∈ S to denote a selection s of S. We also employ the following definition from [START_REF] Rockafellar | Variational Analysis[END_REF]Def. 1.16].

Definition 1 (uniform level boundedness):

A function f : R n × U → R ≥0 with U ⊆ R m and n, m ∈ Z >0 with values f (x, u) is level-bounded in u locally uniform in x if for each x ∈ R n and α ∈ R there is a neighborhood S ∈ N (x) along a bounded set B ⊂ R n such that {u ∈ U | f (z, u) ≤ α} ⊂ B for any z ∈ S.
□

B. Plant model and cost function

Consider the plant model

x(k + 1) = f (x(k), u(k)), (1)
where

x(k) ∈ R nx is the state, u(k) ∈ U is the control input at time k ∈ Z ≥0 , U ⊆ R nu
is the non-empty set of admissible inputs, and n x , n u ∈ Z >0 . We wish to find, for any given x ∈ R nx , an infinite-length sequence of inputs u = (u(0), u(1), . . .), whose elements are in U, that minimizes the infinite-horizon cost

J(x, u) := ∞ k=0 ℓ(ϕ(k, x, u| k), u(k)), (2)
where ℓ : R nx ×U → R ≥0 is the non-negative stage cost and ϕ(k, x, u| k) is the solution to (1) at the k th -step, initialized at x at time 0 with inputs u| k := (u(0), . . . , u(k -1)). The minimum of J(x, •) is denoted as

V ⋆ (x) := min u J(x, u) (3)
for any x ∈ R nx when it exists, where V ⋆ is the optimal value function associated to the minimization of (2).

To solve (3) for the general dynamics in (1) is notoriously hard. PI provides a solution to this problem [START_REF] Bertsekas | Neuro-Dynamic Programming[END_REF]. Before recalling the algorithm, we introduce some notation, which will be convenient in the sequel. Given an admissible feedback law h : R nx → U, we denote the solution to system (1) in closed-loop with feedback law h at time k ∈ Z ≥0 with initial condition x at time 0 as ϕ(k, x, h). Likewise, J(x, h) is the cost induced by h at initial state x, i.e., J(x, h) = ∞ k=0 ℓ(ϕ(k, x, h), h(ϕ(k, x, h))).

III. POLICY ITERATION We recall in this section the original PI formulation as well as its possible shortcomings. We then motivate the need for the proposed new algorithm, which will be presented in Section IV, by showing an example where PI is not recursively feasible.

A. The algorithm PI is presented in Algorithm 1. Given an initial policy h 0 , PI generates at each iteration i ∈ Z ≥0 a policy h i+1 with cost V i+1 (x) := J(x, h i+1) ≤ V i (x) for all x ∈ R nx . This is done via the improvement step in (PI.2). The policy h i at iteration i is an arbitrary selection of H i in (PI.2) where H i may be set-valued. We then evaluate the cost induced by h i , namely V i = J(•, h i), this is the evaluation step, see (PI.3). By doing so repeatedly, V i converges to the optimal value function V ∞ = V ⋆ under mild conditions, see [START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF].

Remark 1: In practice, PI is typically stopped at some iteration, for instance by looking at the difference between V i and V i-1 for some i ∈ Z >0 . We return to this point for PI + in Remark 1 in Section V. □ As explained in the introduction, it is important to ensure in a control context that PI is:

Algorithm 1 Policy Iteration (PI) Input: f in (1), ℓ in (2), initial policy h 0 : R nx → U Output: Policy h ∞ , cost V ∞ 1: Initial evaluation step: for all x ∈ R nx , V 0 (x) := J(x, h 0). (PI.1) 2: for i ∈ Z ≥0 do 3:
Policy improvement step: for all x ∈ R nx ,

H i+1 (x) := argmin u∈U {ℓ(x, u) + V i (f (x, u))}. (PI.2) 4:
Select h i+1 ∈ H i+1 .

5:

Policy evaluation step: for all x ∈ R nx ,

V i+1 (x) := J(x, h i+1). (PI.3) 6: end for 7: return h ∞ ∈ H ∞ and V ∞ .
• recursively stabilizing, i.e., if h 0 stabilizes system (1), then this property is also ensured by any h i for any i ∈ Z >0 ; • such that we have (near-optimality) bounds on V i -V ⋆ , despite the fact that V ⋆ is typically unknown. As mentioned in the introduction, the recursive feasibility of PI is a challenging question as illustrated in the next example, where it fails to hold despite the fact that f , ℓ, h 0 and V 0 are continuous and U is compact. This will serve as a motivation for PI + presented in the sequel.

B. Recursive feasibility: a counter-example for PI

Consider the control affine system

x(k + 1) = (1 -u(k)) max{0, |x(k)| -1}, (4)
with x(k) ∈ R, u(k) ∈ U, U := [-δ, 1] with δ = 1 100 . Note that system (4) is affine in the input. Stage cost ℓ defined as, for any x ∈ R and u ∈ U, ℓ(x, u) = 3|x|g 1 (u) + |x| + 7 4 |x| 2 g 2 (u), where g 1 (u) := max{min{2(1u), 1}, 0} and g 2 (u) := max{min{2u, 1}, 0}. Note that ℓ(x, u) ≥ 0 for any x ∈ R and ℓ(0, u) = 0 for any u ∈ U.

Let h 0 (x) = 0 for all x ∈ R, we obtain

V 0 (x) = 3|x| for |x| ∈ [0, 1], V 0 (x) = 6|x| -3 for |x| ∈ (1, 2], V 0 (x) = 9|x|-9 for |x| ∈ (2,
3] and so on, hence V 0 is continuous. As a result, since U is compact, H 1 (x) in (PI.2) is non-empty for any x ∈ R. Consider x = 18 7 , we have that H 1 (x) = {0, 1}: H 1 is set-valued at x. This implies that we can consider two distinct policies h 1 , h x+1,u)) has no minimum on U, but only an infimum at u = 0. As a result, the minimization step in (PI.2) is not feasible in this case at step i = 2. Algorithm 1 can thus not proceed although f , ℓ, h 0 and V 0 are continuous and U is compact.

1 ′ ∈ H 1 such that h(x) = 1 and h 1 ′ (x) = 0. For x ∈ {2}∪[x, ∞), H 1 (x) = 0, for x ∈ [0, x], H 1 (x) = 1 and H 1 (0) = U. Let V 1 (x) := J(x, h 1) and V 1 ′ (x) := J(x, h 1 ′). We note that V 1 (x) = ℓ(x, 1) = 396 28 > 381 28 = ℓ(x, 0) + ℓ(x -1, 1) = V 1 ′ (x). Consider h 1 and V 1 . We see in Figure 1 that u → ℓ(x+1, u)+V 1 (f (
. 1. u → ℓ(x + 1, u) + V 1 (f (x + 1, u)) has no minimum.
We present in the sequel a modification of PI that ensures recursive feasibility (and stability) for the above example.

Remark 2: The conditions in [START_REF] Bertsekas | Value and policy iterations in optimal control and adaptive dynamic programming[END_REF] for the feasibility of (PI.2) are not satisfied in this example. Indeed, [START_REF] Bertsekas | Value and policy iterations in optimal control and adaptive dynamic programming[END_REF] requires the set U 2 λ (x) = {u ∈ U : ℓ(x, u) + V 1 (f (x, u)) ≤ λ} to be compact for any x, λ ∈ R, see the discussion following [3, (7) and Proposition 3]. However, U 2 λ (x + 1) is not closed, and hence not compact, for any λ ≥ 681 28 , as seen in Figure 1. We also note that the other condition for feasibility provided in [3, Propositions 3 and 4], namely {u ∈ U : ℓ(x, u) ≤ λ} compact for any x, λ ∈ R, is verified for the considered example but does not guarantee feasibility here. □ Remark 3: Contrary to model predictive control problems where the main obstacles for recursive feasibility are state constraints, we see via this example that the issue arises even when no restriction is imposed on the set where the state lies. □

IV. POLICY ITERATION PLUS

In this section we present PI + and formally state our objectives. PI + consists of two key modifications of PI: one for the improvement step in (PI.2), and the other for the evaluation step in (PI.3). We comment on both of them in the sequel.

A. The algorithm PI + is presented in Algorithm 2. At any iteration i + 1 ∈ Z >0 , to enforce the existence of minimizer to ℓ(x, u) + V i (f (x, u)) over u ∈ U in (PI.2) for any given x ∈ R nx , we first regularize the set-valued map H i in (PI + .3), see [START_REF] Goebel | Hybrid Dynamical Systems[END_REF]Def. 4.13]. H i+1 r (x) for x ∈ R nx is the intersection for all δ > 0 of the closures of sets H i+1 (x + δB). As a result, H i r in (PI + .3) is outer semicontinous [START_REF] Goebel | Hybrid Dynamical Systems[END_REF]Lemma 5.16]. It is important to notice that H i (x) ⊆ H i r (x) for any x ∈ R nx . The second modification is on the evaluation step. Given i ∈ Z >0 , for any x ∈ R nx , instead of (PI.3), we define V i r (x) as the minimum cost over all selections h i r of H i r , see (PI + .4). Note that all selections do not necessarily lead to the same cost V i , see Section III-B for an example. The differences with the evaluation step in PI are that we consider H i+1 r , instead of H i+1 , and that we do not take an arbitrary selection of this set-valued map, but only

Algorithm 2 Policy Iteration Plus (PI +) Input: f in (1), ℓ in (2), initial policy h 0 : R nx → U Output: Policy h ⋆,∞ r , cost V ∞ r 1: Initial evaluation step: for all x ∈ R nx , V 0 r (x) := J(x, h 0). (PI + .1) 2: Let H 0 := H 0 r := H ⋆,0 r := {h 0 }. 3: for i ∈ Z ≥0 do 4:
Policy improvement step: for all x ∈ R nx ,

H i+1 (x) := argmin u∈U {ℓ(x, u) + V i r (f (x, u))}. (PI + .2) 5:
Policy regularization step: for all x ∈ R nx ,

H i+1 r (x) := δ>0 H i+1 (x + δB). (PI + .3) 6:
Policy evaluation step: for all x ∈ R nx ,

V i+1 r (x) := min h i+1 r ∈H i+1 r J(x, h i+1 r). (PI + .4) 7: Select h ⋆,i+1 r ∈ H ⋆,i+1 r
where, for all x ∈ R nx ,

H ⋆,i+1 r (x):= argmin u∈H i+1 r (x) {ℓ(x, u) + V i+1 r (f (x, u))}. (PI + .5) 8: end for 9: return h ⋆,∞ r ∈ H ⋆,∞ r and V ∞ r .
those policies which give the minimum cost, see (PI + .5). Therefore,

V i+1 r (•) = J(•, h ⋆,i+1 r) for any h ⋆,i+1 r ∈ H ⋆,i+1
r . It can be noted that, when H i is a single-valued map at any iteration i ∈ Z ≥0 , PI + coincides with PI.

Remark 4: In this work, we do not consider the possible errors arising for solving (PI + .3), (PI + .4) and (PI + .5), these are relevant questions, which are left for future work. □ We will see in Section V that these two modifications are essential to ensure the recursive feasibility of PI + .

B. Problem formulation

Our objectives are to provide conditions under which, at any iteration i ∈ Z ≥0 :

• (recursive feasibility) for any x ∈ R nx , H i (x), H i r (x) and H ⋆,i r (x) are non-empty; • (recursive stability) system (1) whose inputs are generated by PI + , i.e.,

x(k + 1) ∈ f (x(k), H ⋆,i r (x(k))) =: F i r (x(k)), (5)
exhibits stability properties; • (near-optimality guarantees) explicit bounds on V i r (x)-V ⋆ (x) for any x ∈ R nx can be derived, which asymptotically go to zero as i increases.

The assumptions we rely on to achieve these goals are presented in the next section. For convenience, solutions to system (5) are denoted in the sequel ϕ i (•, x) when initialized at some x ∈ R nx for any i ∈ Z ≥0 .

V. MAIN RESULTS

In this section, we first state the standing assumptions. We then present our main results.

A. Standing Assumptions

We first assume the existence of at least one admissible sequence of optimal inputs for the optimal control problem in Section II-B, for any initial state.

Standing Assumption 1 (SA1): For any x ∈ R nx , there exists a sequence of admissible inputs u ⋆ (x) such that V ⋆ (x) = J(x, u ⋆ (x)) < +∞ and for any infinite-length sequence of admissible inputs u, V ⋆ (x) ≤ J(x, u).

□ Conditions to ensure SA1 can be found in, e.g., [START_REF] Keerthi | An existence theorem for discretetime infinite-horizon optimal control problems[END_REF]. We make the next assumption on f, ℓ and U in (1) and [START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF].

Standing Assumption 2 (SA2): The following holds.

(i) The function f and the stage cost function ℓ are continuous on R nx × U. (ii) ℓ is level-bounded in u locally uniformly in x. (iii) U is closed. □ Item (i) of SA2 imposes regularity conditions on vector field f and stage cost ℓ. Item (ii) of SA2 is satisfied when ℓ(x, u) = ℓ 1 (x, u) + ℓ 2 (u) for any (x, u) ∈ R nx × R nu with ℓ 1 (x, u) ≥ 0 and ℓ 2 radially unbounded, i.e., ℓ 2 (u) → +∞ as |u| → +∞ for instance. A typical example of ℓ 2 radially unbounded being ℓ 2 (u) = u ⊤ Ru with R ∈ R nu×nu symmetric and positive definite; note that this property also trivially holds when U is compact. On the other hand, item (iii) of SA2 is satisfied when U = R nu or when U is compact for example.

To define stability, we use a continuous function σ : R nx → R ≥0 that serves as a state "measure" relating the distance of the state to a given attractor where σ vanishes, like in, e.g., [START_REF] Granzotto | Finite-horizon discounted optimal control: stability and performance[END_REF][START_REF] Grimm | Model predictive control: for want of a local control Lyapunov function, all is not lost[END_REF][START_REF] Postoyan | Stability analysis of discrete-time infinite-horizon optimal control with discounted cost[END_REF]. When σ(x) = |x| a for any x ∈ R nx , with a ≥ 1, stability of the origin x = 0 is investigated, for instance. When σ = | • | a A , with a ≥ 1 and A ⊂ R nx closed and non-empty, we study the stability of the set A. Function σ is thus convenient to address stability properties for general attractors in a unified manner. We assume that σ is radially unbounded as formalized next, which is the case for the above example (when A is bounded).

Standing Assumption 3 (SA3): For all ∆ > 0, the set {x ∈ R nx : σ(x) ≤ ∆} is compact. □ To prove stability properties for system [START_REF] Bian | Adaptive dynamic programming and optimal control of nonlinear nonaffine systems[END_REF] for any i ∈ Z ≥0 , we also make the next detectability assumption on (1) and stage cost ℓ, consistently with e.g., [START_REF] Granzotto | Finite-horizon discounted optimal control: stability and performance[END_REF][START_REF] Grimm | Model predictive control: for want of a local control Lyapunov function, all is not lost[END_REF][START_REF] Kalman | Contributions to the theory of optimal control[END_REF][START_REF] Postoyan | Stability analysis of discrete-time infinite-horizon optimal control with discounted cost[END_REF].

Standing Assumption 4 (SA4): There exist a continuous function W : R nx → R ≥0 , α W , χ W ∈ K ∞ and α W : R ≥0 → R ≥0 continuous, nondecreasing and zero at zero, such that, for any (x, u) ∈ R nx × U,

W (x) ≤ α W (σ(x)) W (f (x, u)) -W (x) ≤ -α W (σ(x)) + χ W (ℓ(x, u)). (6)
□ SA4 is a detectability property of system (1) and stage cost ℓ, see [START_REF] Grimm | Model predictive control: for want of a local control Lyapunov function, all is not lost[END_REF][START_REF] Höger | On the relation between detectability and strict dissipativity for nonlinear discrete time systems[END_REF] for more details. When ℓ(x, u) = ℓ 1 (x) + ℓ 2 (x, u) with ℓ 1 positive definite with respect to the set {x ∈ R nx : σ(x) = 0} and ℓ 2 (x, u) ≥ 0 for any (x, u) ∈ R nx ×U, (6) holds with W = 0. Note that SA4 relaxes the requirement that ℓ(•, u) be positive definite for any u ̸ = 0 as found in, e.g., [START_REF] Bian | Adaptive dynamic programming and optimal control of nonlinear nonaffine systems[END_REF][START_REF] Chun | Stability and monotone convergence of generalised policy iteration for discrete-time linear quadratic regulations[END_REF][START_REF] Liu | Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems[END_REF][START_REF] Modares | A policy iteration approach to online optimal control of continuous-time constrainedinput systems[END_REF], and thus is not necessarily convex.

Finally, like in e.g., [START_REF] Bertsekas | Value and policy iterations in optimal control and adaptive dynamic programming[END_REF][START_REF] Heydari | Analyzing policy iteration in optimal control[END_REF][START_REF] Liu | Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems[END_REF], we assume that we initialize the algorithm with a stabilizing feedback law h 0 . In particular, we make the next assumption.

Standing Assumption 5 (SA5): The following holds. (i) There exists α V ∈ K ∞ such that, for any

x ∈ R nx , V 0 r (x) = J(x, h 0) ≤ α V (σ(x)). (ii) V 0
r is lower semicontinuous on R nx . □ Item (i) of SA5 is related to the stability property of system [START_REF] Berkenkamp | Safe model-based reinforcement learning with stability guarantees[END_REF], as in [START_REF] Granzotto | Finite-horizon discounted optimal control: stability and performance[END_REF][START_REF] Grimm | Model predictive control: for want of a local control Lyapunov function, all is not lost[END_REF][START_REF] Postoyan | Stability analysis of discrete-time infinite-horizon optimal control with discounted cost[END_REF]. Item (ii) of SA5 is a mild regularity assumption on the initial cost function, recall that V 0 r in (PI + .1) is equal to V 0 in (PI.1), and it holds when V 0 r is continuous for instance. Remark 5: The example in Section III-B verifies SA1-5 with σ(

•) = | • |, W = α W = 0, α W = χ W = I and α V = V 0 r • σ where V 0 r = V 0 .
As a result, the objectives stated for PI + in Section IV-B are satisfied in view of the results presented next in Section V-B. Regarding the issue identified in the example of Section III-B, PI + produces cost V 1 ′ and selects h 1 ′ due (PI + .4) and (PI + .5), which ensures u → ℓ(x + 1, u) + V 1 ′ (f (x + 1, u)) to be lower semicontinuous for u ∈ U and thus H 2 (x + 1) is non-empty.

□ We are ready to present the main results.

B. PI + guarantees

The next theorem ensures recursive feasibility and recursive stability for PI + and also provide near-optimality guarantees.

Theorem 1: PI + ensures the next properties. (i) (recursive feasibility) Sets H i (x), H i r (x) and H ⋆,i r (x) are non-empty for any i ∈ Z ≥0 and x ∈ R nx . (ii) (recursive stability) There exists β ∈ KL such that, for any i ∈ Z ≥0 and solution ϕ i to (5), for any x ∈ R nx and k ∈ Z ≥0 ,

σ(ϕ i (k, x)) ≤ β(σ(x), k). (7)
(iii) (near-optimality) For any i ∈ Z ≥0 and x

∈ R nx , V i r (x)-V ⋆ (x) ≤ α V (β(σ(x), i))
holds, where β comes from item (ii) and α V comes from SA5. □ Item (i) of Theorem 1 guarantees PI + is feasible for all i ∈ Z ≥0 . On the other hand, item (ii) of Theorem 1 implies a uniform global asymptotic set stability property of system [START_REF] Bian | Adaptive dynamic programming and optimal control of nonlinear nonaffine systems[END_REF] where the attractor is {x ∈ R nx | σ(x) = 0}. It is important to note that β in (7) is independent of the number of iterations i, which makes the stability property uniform with respect to i. This observation is essential for the near-optimality bound in item (iii) of Theorem 1. Indeed, as a result, the upperbound is ensured to converge to zero as i increases to infinity.

Remark 6: The bound in item (iii) of Theorem 1 can be used to stop PI + . Indeed, note that this bound can be computed based on i, σ(x), β and α V . Hence, we are free to iterate PI + until the bound in item (iii) of Theorem 1 is considered satisfactory, without requiring the knowledge of V ⋆ . □

When some of the functions in SA1-5 satisfy stronger conditions, the stability property in item (ii) of Theorem 1 becomes exponential and a tailored near-optimality bound can be derived.

Corollary 1: Items (ii) and (iii) of Theorem 1 hold with

β : (s, k) → a Y a Y
(1 -a Y) k s ∈ exp-KL when there exist c W , a W , a V , a W > 0 such that χ W (s) ≤ c W s, α W (s) ≥ a W s, α V (s) ≤ a V s, α W (s) ≤ a W s for any s ≥ 0, where χ W , α W , α W come from SA4 and α V comes from SA5. □

C. Additional properties

We provide below additional properties, which are either used in the omitted proof of Theorem 1 or follow from Theorem 1. We first have the next result on the regularity of V i r , whose proof follows similar development as the proof of [START_REF] Kellett | Discrete-time asymptotic controllability implies smooth control-Lyapunov function[END_REF]Theorem 6].

Proposition 1: V i r is lower semicontinuous on R nx for any i ∈ Z ≥0 . □ The regularity of V i r is interesting in its own right and has several important implications. For instance, if we aim at exploiting PI + in the context of learning where the system dynamics is unknown (which is not addressed in this paper), to know that V i r is only lower semicontinuous helps selecting the right technique to learn the value function at each iteration.

It is also interesting to see that a strong Lyapunov function is constructed to establish item (ii) of Theorem 1, as formalized next.

Proposition 2: There exist α Y , α Y , α Y , ρ V , ρ W ∈ K ∞ such that, for any i ∈ Z ≥0 , Y i := ρ V (V i r)+ρ W (W) satisfies α Y (σ(x)) ≤ Y i (x) ≤ α Y (σ(x))

Y i (v) -Y i (x) ≤ -α Y (σ(x)) (8)
for any x ∈ R nx and v ∈ F i r (x), where V i r and W come from (PI + .4) and SA4, respectively. □ Finally, regarding the convergence of the algorithm to the optimal value function, we derive from item (iii) of Theorem 1, which implies that the sequence of cost functions V i r uniformly converges to V ⋆ , as formalized next. Proposition 3: For any ∆, δ > 0, there exists i ⋆ ∈ Z >0 such that, for any i ≥ i ⋆ , V i r (x) -V ⋆ (x) ≤ δ holds for any x ∈ {z ∈ R nx | σ(z) ≤ ∆}. □ Proposition 3 implies the uniform convergence of V i r towards V ⋆ for any σ(x) ≤ ∆. This is an additional benefit of PI + and its analysis compared to PI, for which only pointwise convergence of the value functions to the optimal one is guaranteed in general [START_REF] Bertsekas | Value and policy iterations in optimal control and adaptive dynamic programming[END_REF][START_REF] Heydari | Analyzing policy iteration in optimal control[END_REF].

VI. CONCLUSION

Fig

 Fig. 1. u → ℓ(x + 1, u) + V 1 (f (x + 1, u)) has no minimum.

• recursively feasible, i.e., the improvement step in (PI.[START_REF] Bertsekas | Dynamic Programming and Optimal Control[END_REF] is such that H i (x) is non-empty for any x ∈ R nx and any i ∈ Z ≥0 ;

We have introduced a new algorithm called PI + for which we have proved recursive feasibility, recursive stability and provided easily computable near-optimality guarantees, under mild conditions. In future work, we will provide conditions under which the stability properties established in Theorem 1 have some nominal robustness in the sense of [19]. It would also be interesting to develop implementation schemes for PI + , and to extend the analysis to account for the induced approximation errors.

by the Australian Research Council under the Discovery Project DP210102600. His work was supported partly by the National Science Foundation under Grant EPCN-1903781.