BINGO: Bi-Isotope 0${\nu}$2${\beta}$ Next Generation Observatory
Résumé
The search for neutrinoless double-beta decay ($0\nu 2\beta$), a hypothetical nuclear decay, is one of the major challenges of contemporary physic since its discovery would prove the non conservation of the lepton number and would give an answer to the question of neutrino nature (Dirac or Majorana particles). Starting from the scintillating bolometer technique (a scintillating cryogenic absorber embedding a $0\nu 2\beta$ candidate coupled with a cryogenic light detector for dual heat-light readout), BINGO will search for this decay using the knowledge acquired so far by bolometric experiments with the addition of new methods and technologies to reduce drastically the background in the region of interest. BINGO will study two isotopes which have already shown their good suitability for this detection method: ${}^{100}$Mo and ${}^{130}$Te. The proposed solutions will have a high impact on next-generation bolometric tonne-scale experiments, like CUPID, to push further the sensitivity to the half-life of the process. In this contribution, we present the main axes of the project.