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Abstract

The extraction of 3D dimensional measurements based on a limited number of 2D X-ray radio-
graphs of a part would offer a significant speed-up of quality control procedures in industry. However,
there are challenges with respect to both measurements and uncertainties. This work addresses these
challenges by creating an estimated numerical model of the imaged part on which dimensional mea-
surements can be made. The numerical model is chosen as a parametric deformable model that
encodes the expected shape variability of the parts resulting from the manufacturing process. The
parameters and uncertainties of the numerical model of the imaged part are estimated by the reg-
istration of the computed projections of the model and the observed radiographs without the need
of any segmentation. The registration requires the model, the initial parameters, and the observed
radiographs. The proposed approach is applied to the inspection of turbine blades manufactured by
investment casting, and in particular to the measurement of their wall thickness, which is a critical
control. The deformable model consists in partitioning the inner ceramic core into multiple subparts,
which may undergo a rigid body motion with respect to the master die. Wall thickness measurements
are determined from the estimation of these rigid body motions. To assess the reliability of the pro-
posed procedure, a repeatability study is performed. In addition, wall thickness measurements were
compared to corresponding measurements from the surface of the metal boundary obtained by X-ray
computed tomography. This surface was determined from a reconstructed tomogram using commer-
cial software. Both analyses show that such measurements are reliable and efficient. Furthermore,
residual differences between captured and computed projections reveal localized shape deviations
from the CAD model, meaning that despite localized model errors, the approach is operable.

Keywords – Shape modeling, Shape parameter estimation, Deformation model, Metrology

1 Introduction

Non-destructive evaluation (NDE) is performed in the industry to control the quality of produced parts,
ensuring that they meet their technical specifications. The increasing complexity of part geometry calls
for the development of more advanced NDE methods. The necessity of NDE is even more stringent in
sectors where safety is critical, such as aeronautics.

Turbine blades are key parts of aircraft engines. Their complex geometry is meticulously designed
and optimized to improve the performance of the engine. Such an optimization addresses the overall
aerodynamic efficiency and structural reliability [1], the isentropic efficiency [2], the adiabatic efficiency
[3], or the stress and deformation [4] of the blades, through various approaches. In particular, internal
air cooling features, such as rib turbulators, dimples, pin-fins or jet impingement [5], allow metal blades
to operate at temperatures higher than their melting point, with combusted gas temperatures as high as
1500K [6], or turbine inlet temperatures found between 1700◦C and 2000◦C [7]. These extremely high
temperatures are necessary to increase the power and fuel efficiency of aircraft engines. Turbine blades
are fabricated following a high precision manufacturing process; nevertheless, geometrical indications —
i.e. dimensional irregularities of the part that may result in a sub-optimal behavior of the engine — may
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appear [8]. To ensure the structural integrity of the manufactured turbine blades, it is crucial to have
high-precision measurements regarding their geometry for quality control.

Coordinate Measuring Machines (CMM) [9, 10] have been used to identify external dimensional im-
perfections. However, they are not suited to detect internal dimensional imperfections (such as cavities
or just complex non-convex shapes). To this end, radiographic imaging methods, and in particular X-ray
imaging, have been adopted. This non-destructive method enables the identification of voids, misalign-
ment, perforations or material losses [11], the precise inspection of the internal cooling channels with a
good contrast and resolution [12] and the wall thickness inspection with high accuracy [13]. The acquisi-
tion of a large number of X-ray radiographs, also called X-ray images, allows the 3D image (tomography
or tomogram) of the part to be reconstructed through X-ray Computed Tomography (CT). X-ray CT
involves taking multiple radiographs from different angles and combining them to create a detailed 3D
representation of the part. By aligning the nominal model to the reconstructed volume, it is possible
to compare the inspected part with its ideal design and extract measurements of deviation. Offering a
complete 3D image of the inspected part, it appears as the gold standard for dimensional metrology.
However, it suffers from some uncertainty, the main source of which being the thresholding of the gray
scale image which may lead to a misidentification of material boundaries. Additionally, an inappropriate
choice of the threshold causes a systematic error by either thickening or thinning the part. The proposed
approach eliminates this uncertainty factor by not requiring any thresholding operations on tomograms.
In addition, such an inspection requires a long acquisition and processing time. In contrast, inspection
using X-ray radiography typically involves capturing a limited number of 2D images from specific views.
In production lines, each part is observed from these limited views. These images are then inspected by
specialist operators seeking an unusual gray level difference indicating an irregularity of the part. The
measurement of 3D indications from 2D radiographs remains a complex problem for which automated
methodology and procedures are highly desirable.

This paper presents an NDE method exploiting a limited number of acquired X-ray images. It
relies on the simulation of the X-ray images from a numerical model of the part using an adequate and
calibrated projective model [14, 15]. The CAD model is extended to a parametric deformable model
so that the computed projections of the inspected part are registered onto the acquired X-ray images.
This registration is performed by comparing the gray levels of the two series of X-ray images — acquired
and computed — without requiring the determination of contours from 2D images or surfaces from 3D
tomograms. 3D measurements and the associated uncertainty can be computed on the corrected model,
which corresponds to the deformable model computed for the optimal transformation parameters.

In techniques such as Digital Image Correlation, it has been shown that displacements in the range of
10−3–10−2 could be measured when the kinematics is simple (e.g. a mere translation), and analyzed over
a large region of interest [16, 17]. A similar situation is faced here, where the “motion” is the one that
relates the position of a surface in the model as compared to reality. Therefore, the proposed approach
has the potential to significantly achieve a sub-voxel accuracy.

Section 2 is devoted to describing the developed method. More specifically, a discussion regarding the
studied dimensional control, namely the wall thickness measurement, is provided in section 2.1. There,
a discussion is proposed on the uncertainty of kinematics based on rigid body motion. The method to
identify the optimal transformation parameters is then presented in section 2.2. A deformable model
derived from the manufacturing process of turbine blades is proposed in section 2.3. The parameter
identification method and the deformable model are the key features that permit the generation of a
corrected numerical model. A repeatability study to assess the reliability of the proposed approach to
measure wall thicknesses of a turbine blade is formalized in section 2.4. It consists of the wall thickness
measurement of various samples of a turbine blade, each inspection being repeated multiple times. Section
3 reports and discusses the results of this study. They reveal that, even with the presence of model errors,
the method is capable of generating a corrected model and measurements comparable to the ground truth
(tomogram for which surface determination is performed automatically using the VGSTUDIO MAX®
software), which implies comparable calculated wall thicknesses.

2 Methods

An NDE procedure to compute variations in the wall thickness of turbine blades based on a limited
number of X-ray images has been developed. It requires a deformable model M of the inspected part
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whose shape is controlled by a set of transformation parameters. A registration methodology is proposed
to identify the transformation parameters of a reference model of the imaged part that best describes the
difference between computed projections and observed radiographs.

The principle of the studied dimensional control is introduced before discussing the model parametriza-
tion and the method employed to identify the optimal transformation parameters.

2.1 Wall thickness metrology

Wall thickness corresponds to the distance between two surfaces, whether internal or external, S1 and
S2. This distance W12 is classically defined as

W12 = min
p1∈S1
p2∈S2

∥p1 − p2∥2 (1)

where p1 and p2 correspond to points on surfaces S1 and S2, respectively. This definition is, however,
not very convenient from an operational point of view since p1 (resp. p2) has to visit the entire surface
S1 (resp. S2), and the minimum may not be unique. Hence, in practice, further restrictions can be
enforced on p1 or p2. In the following, this distance is computed using the “Ray method” implemented
in VGSTUDIO MAX® (Volume Graphics GmbH, v 2.2) as the surfaces of the part are flat and the
recommendation from the software provider has been followed. Namely, an initial point p0

1 is chosen
along surface S1, together with a solid angle of possible search. The closest point to p0

1 along surface S2
is found, and denoted p1

2. Then, the role of the two surfaces is interchanged, and the closest point to
p1
2 along surface S1 is sought (with the same solid angle restrictions), and its minimum is denoted p2

1.
This process is repeated until convergence, where a stationary solution (p1,p2) is found. To avoid the
points getting out of a neighborhood of the initial point p0

1, it is necessary to consider escape conditions
where the process does not converge. In case of success, the resulting distance is noted as W12(p0

1). This
procedure is applied successively for all mesh nodes that lie on surface S1 as a starting point, and finally
W12 = minp0

1
W12(p0

1).
Although not strictly identical to the above mathematical definition, eq. (1), this estimate is highly

precise. However, secondary minima may exist, so the algorithm initialization (or its sampling) may miss
the global minimum. This risk cannot be excluded in principle, although the region where the global
minimum may be found suffers no ambiguity in practice. Ultimately, this evaluation has been retained
after careful neighborhood choice.

In the following, a specific class of transformation applied to the surfaces defining the deformation
model will be considered, namely rigid body motions. A brief discussion about their uncertainty is
proposed before assessing the fluctuation of wall thickness measurement resulting from a rigid body
motion.

2.1.1 Rigid body motion uncertainty

The screw theory mathematically describes a rigid body motion [18] and can be represented by a rotation
R and translation T (q) at an arbitrary point q. Although R is intrinsic, the translation depends on the
chosen reference point q. More precisely, if another point q′ is chosen, then T (q′) = T (q) + q′q ×R.

An aspect that deserves specific comments is the uncertainty of the measured rigid body motion.
From image registration, a displacement field can be calculated which can be described by its average
Mq = (T (q),R) and its fluctuation, δMq = (δT (q), δR). This fluctuation is characterized by a null
expectation value and a covariance matrix Cq, embedding the rigid body motion uncertainty, composed
of three terms, each of which is a 3× 3 matrix:

C(1)
q ≡⟨δT (q)⊗ δT (q)⟩

C(2)
q ≡⟨δT (q)⊗ δR⟩

C(3) ≡⟨δR⊗ δR⟩

(2)

where ⟨·⟩ denotes the average of the quantities within the angle brackets, and ⊗ is the tensor product. The
covariance matrix of the rotation, i.e. C(3), is intrinsic. Considering it is a symmetric positive matrix, it
can be diagonalized in the basis of eigenvectors B. However, the full covariance matrix Cq is not intrinsic.
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In particular, the non-diagonal terms of the cross-correlation C
(2)
q depend on the chosen reference point

q. It can be shown that there exists a unique point, denoted q∗, such that the antisymmetric part of

C
(2)
q∗ is exactly zero. A privileged frame of reference is then q∗ as the origin while the axes orientations

are given by B.

2.1.2 Uncertainty of the distance between surfaces

Rigid body motions are applied to the surfaces S1 and S2. Because the definition of the distance between
surfaces, eq. (1), is not affected by a global rigid body motion affecting both surfaces, only the relative
displacement of one surface with respect to the other matters. Thus only S2 may be considered to be
moving while S1 remains static. The uncertainty of the measurement of W12 results from the uncertainty
of the rigid body motion affecting S2. This question is addressed subsequently.

Let p∗
1 denote the point on surface S1 where the minimum distance to S2 is found, at point p∗

2. The
surfaces are supposed to be smooth in the neighborhood of p∗

1 and p∗
2 (no angular edge or corner) so that

the surface around them can be described as parabolic. After applying the transformation δMq to S2,
the shortest distance between the surfaces changes. Assuming the rigid body motion δMq is of small
amplitude, a first order expansion of the change in distance δW12 is found to be a translation along the
normal common to both surfaces n = p∗

1p
∗
2/ |p∗

1p
∗
2|.

This translation is however not intrinsic as it depends on the point at which the rigid body motion
is expressed (section 2.1.1). There exists a unique point q∗ for which the antisymmetric part of the
cross-correlation between δR and δT (q∗) in the covariance matrix is null. Thus this point is chosen to
compute the statistics of the correlation Cq∗ , and the orientation of the frame is chosen to be given by
the above introduced basis of eigenvectors B. The variance of δW12 then reads〈

δW 2
12

〉
=
(
C

(1)
q∗ + |q∗p∗

2|
2
C(3)

)
: (n⊗ n) + C

(2)
q∗ : ((q∗p∗

2)⊗ n) (3)

where : denotes the double dot product.
These findings rely on the assumption that surfaces are smooth in the neighborhood of p∗

1 and p∗
2.

Additionally, the determination of p∗
i after the transformation δMq requires the curvature tensor (κ1 +

κ2 + W12 κ1 κ2) to be inverted, where κ1 and κ2 denotes the curvature tensor of surfaces S1 and S2,
respectively. When the two surfaces approach a flat configuration, the inversion give rise to high values,
so that the first order approximation assumption must be carefully assessed. The curvature tensor may
even become negative, in which case the determination of p∗

i may be unstable. One should note that,
even if the position of the points p∗

i becomes variable, the distance W12 itself may remain well behaved,
but firm conclusions using the above development rest on the assumption that the change in p∗

i remains
small.

Therefore, wall thickness should be computed on smooth surfaces and for which the curvature tensor
(κ1+κ2+W12 κ1 κ2) is well-conditioned (stable inversion) to obtain consistent and reliable measurements.
In the following, wall thickness is measured at measurement points located in the airfoil of the blade, in
accordance with these recommendations.

2.2 Identification of transformation parameters

Transformation parameters are identified by registering numerically simulated X-ray projections onto
the corresponding set of radiographs that constitutes the observations. It is thus essential to consider
a simulation tool capable of producing realistic X-ray images accounting for multiple phenomena such
as beam hardening and/or scattering, and the appropriate projection geometry [15]. The N acquired
radiographs of the inspected part are denoted Pn

a (x) , n ≤ N , where x represents the pixel position and
n is the index of the view (different views implying different orientations of the part). Let Πn be the
projection operator for the view n acting on the model M . The acquired images correspond to the
projections of a modified version of the model polluted by noise

Pn
a (x) ≈ Πn[M(d)](x) + ηn(x) (4)

where d is the K-component vector containing the transformation parameters dk, and ηn(x) denotes
the acquisition noise. Because of the detector and the cone-beam geometry of the source, acquisition
noise is not homogeneous and is characterized by a variance that depends on pixel localization, noted as
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V n(x). Although a dependence on n is not generally expected, the averaging of the images performed
during the acquisition of the radiographs is likely to depend on the projection angle to compensate for
different attenuations related to the part orientation. Working on the assumption of a white Gaussian
noise ηn(x), the maximum of the (log-)likelihood associated to the probability of obtaining the difference
Pn
a (x)−Πn[M(d)](x) corresponds to the minimum of its L2-norm. Hence, the following cost function is

introduced

Ψ(d) =
∑
n

∥∥∥∥∥ 1√
V n(x)

(Pn
a (x)−Πn[M(d)](x))

∥∥∥∥∥
2

2

(5)

Minimizing this function with respect to d leads to the identification of the optimal transformation
parameters. The weight term involving V n(x) accounts for local uncertainties brought by the noise. The
weighted L2-norm in eq (5) is justified as being optimal for the acquisition noise. This problem is solved
iteratively using a gradient descent algorithm. At iteration t, the correction vector δd corresponds to
small perturbations, so that the above cost function is linearized about the solution dt = dt−1 + δd

Ψlin(δd) =
∑
n

∥∥∥∥∥ 1√
V n(x)

(
Pn
a (x)−Πn

[
M
(
dt−1

)]
(x)−Πn

[
∇dM

(
dt−1

)]
(x) · δd

)∥∥∥∥∥
2

2

(6)

where ∇dM denotes the derivative of M with respect to d. The projection residuals and the sensitivity
fields are defined respectively as

ρn(x) = Pn
a (x)−Πn

[
M
(
dt−1

)]
(x) (7)

snk (x) = Πn

[
∂M

∂dk

(
dt−1

)]
(x) (8)

Applying (7) and (8) in (6), the linearized cost function is rewritten as

Ψlin(δd) =
∑
n

∥∥∥∥∥ 1√
V n(x)

(
ρn(x)−

∑
k

snk (x) · δdk

)∥∥∥∥∥
2

2

(9)

The vector minimizing (6), noted δd∗, is
δd∗ = H−1 b (10)

where the matrix H = (Hij), the Hessian of Ψlin, and the vector b = (bk) are given by

Hij =
∑
n

∑
x

1

V n(x)
sni (x) snj (x) (11)

bk =
∑
n

∑
x

1

V n(x)
snk (x) ρn(x) (12)

This approach converges towards the minimum of the cost function (5), leading to the identification of
the sought vector of transformation parameters d. The analysis of the uncertainties in the computed
optimal parameters is an indicator of their reliability and is used to assess the quality of the registration.
Assuming that the residuals ρn(x) at convergence mostly contains noise ηn(x), these uncertainties are
extracted from the registration procedure. The uncertainties associated with the estimates δdi together
with their correlations are given by the covariance matrix Cij = ⟨δdi δdj⟩

⟨δdi δdj⟩ =
∑
k,l

H−1
ik H−1

lj

∑
n,m

∑
x,y

snk (x) sml (y)

〈
ηn(x)

V n(x)

ηm(y)

V m(y)

〉
(13)

The noise is assumed to be Gaussian and white (spatially and temporally uncorrelated) such that

⟨ηn(x) ηm(y)⟩ = δnm δxy V n(x) (14)

where δ·· denotes the Kronecker symbol. Using the previous expression, eq. (13) reads

Cij = ⟨δdi δdj⟩ = H−1
ij =⇒ C = H−1 (15)

The associated correlation matrix R is defined as

Rij =
Cij√

Cii Cjj

(16)
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2.3 Deformable model of a turbine blade

To best capture the shape of the part, it is necessary to consider a deformable model M describing the
expected shape variability. If the chosen deformable model provides a large flexibility, it will involve many
degrees of freedom, at the risk of rendering the registration procedure ill-conditionned or even ill-posed.
The deformable model thus needs to contain a reasonable number of parameters while describing the
desired range of shapes. A deformable model derived from the a priori information on the manufacturing
process is ideal to mitigate the lack of information due to the limited number of views.

The internal air cooling cavity of a turbine blade describing the internal structure is manufactured by
an investment casting process. A ceramic core reproducing the shape of the desired cavity is positioned
in the injection mold, known as master die. A slight misalignment of the core results in thinner or thicker
walls in different regions of the blade compared to its ideal CAD model. Moreover, the core and master
die may expand or shrink during the manufacturing process due to thermal constraints, which leads to
geometrical deviations with the blade CAD model. Another potential source of thickness variation is a
manufacturing defect in the core or in the master die themselves. However, they are considered negligible
as compared to those induced by the core misalignment.

This manufacturing process may be exploited to generate the deformable model. The model M
consists in the partition of the part into two main subparts: the master die and the core. The shape of
the core is then extracted from the master die (see Figure 1). This model can be enriched depending
on the structure or the manufacturing process of the core, for instance by further dividing the core into
subparts. In this study, the core has been partitionned into 5 subparts, as illustrated in Figure 1 (middle).
Each subpart indexed by k is associated with a transformation denoted τk that maps the model of the
corresponding subpart into the corrected one. To correctly interpret transformations, they need to be
expressed in the same frame of reference, for instance, that of the ideal part CAD model. A corrected
model is obtained by applying the transformations τk to each subpart.

The kinematics of the subparts that define a simple yet representative deformable model is given by
a rigid body motion of the independent subpart k parametrized by (tk,αk). tk denotes the translation
vector of the kth subpart, and αk its rotation with respect to the center of the bounding box surrounding
the initial master die (black point on Figure 1 (right)) which coincides with the origin O of the coordinate
system of reference. To account for thermal shrinkage/dilatation of the core, an additional scale factor s
affecting all subparts of the core is introduced. This representation assumes that the geometry of each
individual subpart perfectly matches its CAD model without deformation of its surface. This parametric
deformable model of the turbine blade takes advantage of information about the manufacturing process,
and is well suited for NDE. Moreover, the parametric representation of the corrected model allows for a
direct interpretation of the origin of possible deviations from the conceived nominal model, and hence it
provides insights about the manufacturing process itself and keys for improving it.

0

1

2 3 4 5

Figure 1: Illustration of the part divided into 6 subparts: the master die (left) and 5 subparts of the
core (middle); and their association (right).

The estimation of the parameters s and (tk,αk) is achieved following the procedure described in
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Algorithm 1. The parameters are initialized from the ideal design of the core and of the master die. The
convergence criterion is based on the norm of the residuals after each iteration.

Algorithm 1: Iterative registration procedure

Input: Meshes of each subpart, Initial estimates of parameters T c := (s, t1, . . . ,α5) and
T 0 := (t0,α0)

Output: Optimal values T ∗
c = (s∗, t∗1 , . . . ,α

∗
5) and T ∗

0 = (t∗0,α
∗
0)

1 Load meshes;
2 do
3 for k ← 0 to 5 do
4 Apply the transformation τk to the corresponding mesh of the kth subpart;

5 Compute the sensitivity fields for T c;
6 Compute the sensitivity fields for T 0;
7 Compute δT ∗

c using (10) from the sensitivity fields computed at lines 5;
8 Compute δT ∗

0 using (10) from the sensitivity fields computed at line 6;
9 Update T c ← T c + δT ∗

c and T 0 ← T 0 + δT ∗
0 ;

10 while Convergence criterion reached ;

2.4 Repeatability study

A repeatability study was performed to assess the stability of the method and to evaluate the ability of the
deformable model to cope with different parts. Indeed, the acquisition of X-ray images to control a part
involves the manual positioning of the sample in the acquisition system which induces human variability.
In practice, each control is then executed with a set of (slightly) different viewpoints. Because of their
limited number, these viewpoints would contribute greatly to the determination of the transformations
τk. To eliminate the dependence on the sample positioning in the acquisition system, the transformation
τ−1
0 is to be applied to the computed corrected model. The idea behind this is to capture the relative

motion of the core with respect to the master die, which fully determines the wall thickness. It also
allows the computation of wall thicknesses in the same reference frame for all samples. This amounts to
only applying the relative transformations τ0k := τ−1

0 τk, k > 0 to each subpart of the core. Although it
theoretically solves the issue, it is essential for the reliability of the NDE procedure to validate this point.

During the repeatability study, X-ray images of six metallic turbine blades, selected so that they
cover or exceed the tolerance interval for the wall thickness measurements, were acquired nine times
each, after a complete tomography of each blade had been done to assess the actual wall thicknesses. The
inspected turbine blades are referred to as samples in the following. The images were acquired at the
Safran Advanced Turbine Airfoils (PFX) research center with an XT H 450 system developed by Nikon
Metrology. The acquisition parameters are listed in Table 1. This tomograph has been qualified using
strict industrial standards provided by a Metrologic Laboratory reference, namely the French National
Laboratory of Metrology and Testing. During acquisition, the sample was manually positioned in the
acquisition system and rotated by intervals of 30◦, leading to a total of N = 12 projections. The
acquisition procedure was reproduced for all six samples and all nine repetitions.

For each batch of observed radiographs, the above described parametric deformable model was fitted
using Algorithm 1 to generate a corrected model. Wall thickness was measured for 80 points in the
airfoil, as mentioned in Section 2.1, using an automatic routine. Surfaces S1 and S2 introduced in eq. (1)
correspond in practice to sub-surfaces around these measurement points. These sub-surfaces contain
between 10 and 30 points each.

For each sample, nine sets of optimal transformation parameters were identified, one for each batch
of images. A reasonable assumption of a Gaussian dispersion of the nine batches of transformation
parameters allows the uncertainties on the measurements to be computed. This assumption was verified
using Shapiro-Wilk normality test [19].

3 Results and discussion

The results of the repeatability study are discussed, and an illustration is provided as to how the infor-
mation on residuals and transformation uncertainties could be exploited to assess the accuracy of the

7



Acceleration voltage 400 kV Frames per projection 32
Tube current 500 µA Size of images 2000× 2000 pixels
Pre-filtering 4 mm of copper Voxel size 50.55 µm
Exposure time 354 ms Encoding 16-bit uint

Table 1: Parameters for X-ray image acquisition using the XT H 450 (Nikon Metrology).

model during inspection. Additionally, the concordance of the proposed method with X-ray tomography,
the reference modality for wall thickness characterization, is evaluated.

3.1 Transformation across all samples

Figure 2 presents the average values of transformation parameters per sample in the repeatability study.
The average was estimated over the nine repetitions. Each identified relative transformation τ0k is a
combination of a scaling by a factor s, a translation Tk, and a rotation specified by Euler angles θk. It

Figure 2: Average values of the transformation parameters for all samples: scale factor s (top left),
components of the translation vectors Tk (top right), Euler angles θk (bottom).

is observed that the transformation parameters display some variability between the different samples.
This is due to the selection of the parts such that they would represent the production operating range.
In this sense, Figure 2 describes the ability of the registration procedure to handle parts that have the
same ideal design but whose actual geometry differs due to production variability. This highlights the
relevance of the proposed approach to capture different model deformations.

In addition, considering that the transformation parameters are noticeable, it confirms the necessity
of taking into account the rigid transformation of the core to perform accurate measurements of wall
thicknesses. The large variability of the translation vectors T1 and T5 is due to the choice of the point
about which rotations are computed (cf. subsection 2.1.1). For rigid body motions, translations are not
intrinsic as they depend on the chosen point of rotation. As seen in Figure 1, subpart 1 (red) is far from
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the center of rotation (black). The curved nature of the blade, not visible in Figure 1, leads to the same
conclusion for subpart 5 (purple).

3.2 Transformation parameters for Sample #1

The variability of the identified transformation parameters for Sample #1 over the nine repetitions is
presented in Figure 3. Values have been centered around their median m to better visualize their spread.
The figure shows that the variability of the transformation parameters across repetitions are minute
compared to the variability between samples: in the range of 10−3 for the scale factor, 35 µm for the
translations parameters, and 0.2◦ for the Euler angles. Similar values were observed for all samples in the
repeatability study. It should be emphasized that the variability in the translation parameter is smaller
than the voxel size. This is made possible by the fact that the measurement is global and involves the
entire Region of Interest, rather than individual points. As mentioned in the introduction, this property
is well known in Digital Image Correlation, where uncertainties below 10−2 pixel or less are routinely
achieved.

Figure 3: Boxplots showing the variability of the identified optimal transformation parameters over nine
repetitions for sample number 1. Values have been centered around their median m to better visualize

their spread. Below each box, the median value (red) and the average magnitude (in µm) of the
displacements associated with the observed variabilities (black) are presented.

The displacements associated with these observed variabilities need to be compared to the voxel
size (50.55 µm, Table 1) for proper interpretation. Thus, for each parameter, two transformations are
considered: one using the lowest identified value, and the other using the highest identified value, with
the remaining parameters set to their respective medians. These transformations are applied to the initial
model, and the magnitude of the displacement between the two transformed models is computed at each
node of the mesh. For the rotation and translation parameters, this magnitude is averaged over the
associated subpart; and for the scale factor, over the entire core. These values, expressed in µm, are
reported below each box of Figure 3, in black (second line).

A high level of accuracy is observed for all parameters. Such accuracy is met thanks to the exploitation
of the large number of pixels that make up the part in the radiographs acquired from different points of
view, along with the prior knowledge of its shape. Combining these factors contributes to a more refined
and precise estimate for transformation parameters that affect large-scale regions, reducing the variability
to a sub-voxel level. The parameter θ2,z, for which the sub-voxel accuracy is barely met, exhibits the
largest variability and, thus, uncertainty. θ2,z represents a rotation of the 2nd subpart, shown in blue in
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Figure 1, around the Z-axis. This variability can be explained by the very elongated geometry of the
subpart almost aligned with the Z-axis. As a consequence, any rotation about this axis induces a minute
apparent motion in its projection. Because of this, the sensitivity field with respect to this parameter,
θ2,z, is very small and contributes to bad conditioning of the Hessian matrix to be inverted. Ultimately,
a Hessian eigenmode of low eigenvalue gives rise to a high variance in its measurement.

3.3 Projection residuals

Projection residuals are indicators of the effectiveness of the approach. Their analysis during production
would enable to establish if the output model explains the acquired radiographs and, therefore, if it
captures the shape of the part under inspection. Figure 4 displays projection residuals with the initial
(top) and optimal (bottom) transformation parameters computed for one repetition on sample #1. The
figure focuses on four areas of interest chosen for being representative of the entire field. Residual values
are expressed as a percentage of the dynamic range of the observed projections. The higher level of
residuals in the root of the turbine blade, panel (a), is explained by the fact that some phenomena,
particularly visible for high thicknesses, were misestimated (e.g. Beam Hardening) or not included in
the projection operator Πn (e.g. diffraction). It should, however, be noted that this imperfection in the
projection operator is small as it represents, at most, in the thickest area, a 5.6% deviation from the gray
levels of the observed projections. In the top row, the observed residuals are mainly due to the deviation
of the core from its ideal design, as shown, for instance, in panel (c)-top where a structure with positive
residuals on the left and negative on the right is visible. Similar structures are apparent on the other
panels. These deviations are accounted for by the introduced degrees of freedom. Thus, in the bottom
row, the above-described structure visible on panel (c) is highly reduced, as well as for the other panels.
The procedure leads to the estimates of the best transformation parameters considering the proposed
parametrization and is deemed validated for all computed residuals.

Figure 4: Color-coded difference between acquired and simulated projections, before (top) and after
(bottom) identification of the transformation parameters. The different panels show (a) a curved region

in the root of the turbine blade, (b) an internal structure, known as a rib structure, in the airfoil, (c)
the wall of an internal cavity, (d) slots on the trailing edge of the blade. Values are expressed as a

percentage of the dynamic range of the observed projections.

3.4 Covariance and correlation matrices

Using equation (15), the covariance matrices C are computed. An example of such a matrix is displayed
in Figure 5, together with the associated correlation matrix R.
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Figure 5: Element-wise absolute value of the covariance matrix C (left, logarithmic scale) and
correlation matrix R (right) computed at convergence. Black dotted lines are plotted to better visualize

the different subparts.

By definition, the diagonal terms of the correlation matrix R are equal to 1. Non-diagonal terms,
which range from −1 to 1, represent the degree of correlation (or anti-correlation when negative) between
a pair of parameters. As expected, parameters associated with distinct subparts are weakly correlated
(less than 0.5). The scale factor s is mostly (negatively) correlated to the translation parameter along
the main orientation of the subpart, as a result of its slenderness.

The displacement u(x) of any point x at the surface of a subpart can be written as a linear combination
of the transformation parameters, u(x) = a(x) · d. The uncertainty on the estimation of this particular
displacement is readily accessible from the covariance matrix: the variance on u is σ2(x) = a(x)⊤Ca(x).
Similarly, the expression of the covariance between the displacement of two points can be very easily
computed from C.

3.5 Shape comparison with ground truth (tomogram)

The transformed CAD models are compared to the ground truth given by a tomographic volume recon-
structed from a set of 3000 radiographs. Figure 6 displays the tomogram (gray) with the initial CAD
model (orange) and corrected ones (different shades of blue are used for all nine estimates for sample
#1). It can be seen that the blue surfaces line up more tightly with the boundaries of the tomogram
than those of the initial CAD model. Discrepancies are observed for the cavity in view (a) or the rib in
view (c), which appear shifted. As displayed in Figure 6, these areas are characterized by a high curvature
of the surfaces. Moreover, the surfaces of these cavities are inclined at a low angle with respect to the
section planes, further amplifying the discrepancy in those section views. The offset between the surfaces
can be measured to be about one or two voxels. Let us emphasize the remarkable agreement between
the corrected model and the tomogram (when the curvature is low), despite the drastic reduction in the
number of radiographs by a factor of almost 300.

Some remaining deviations are observed. In view (c), the CAD design displays sharp corners, whereas
the ones in the manufactured part are smoother. This discrepancy can be explained by the effect of the
sintering of the mold or the surface tension between the metal and the core during metal casting. As
these phenomena are not described in the deformable model, such deviations cannot be resolved.

Thus, even with (hopefully localized) model errors, the proposed deformable model explains most of
the differences, which renders the correction efficient and operable. In addition, the observed differences
between the part and its CAD model in highly curved regions point towards considering other deviations
from the original CAD model, namely non-rigid shape deformations. These deviations may be accounted
for by resorting to a more flexible deformable model, for instance, an additional correction model acting at
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a more local scale. An alternative would be to use a more representative core mesh obtained from actual
manufactured cores. Such a procedure would allow us to distinguish more clearly between systematic
shape deviation due to the manufacturing process and intrinsic variability. In the case where the geometry
of the subparts are systematically measured in the control chain, e.g. by Non-Contact CMM, this approach
would allow one to increase the available a priori information without increasing the time allocated for
the control. Introducing a local weighting of the surfaces based on their curvature and incorporating it
into an additional weight term in eq. (5) can also be considered to further reduce the impact of these
model errors.

(a)

(b) (c)

Figure 6: Superimposition of the ideal (orange) and transformed (shades of blue) designs of the core
over the tomogram (gray).

3.6 Concordance of wall thickness measurements by model-based NDE and
by tomogram

Wall thicknesses have been measured in the airfoil of the nine corrected models of sample #1 and of the
tomogram, at 90 particular locations to sample the statistical dispersion. As visually suggested by Figure
6, measurements of the transformed models are similar, such that the average values of the measurements
are shown for further data acquisition and processing. Figure 7 (left) shows a Bland-Altman plot [20]
to illustrate the disagreement between the two measurement methods. The bias of 26.6 µm indicates
the average difference between the two measurement methods. This discrepancy represents slightly more
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than half a voxel, showing the high accuracy of the proposed approach. The limits of agreement, which
indicate the precision of the measuring system, are to be compared to the tolerance values defined in the
part specification. In the case of aeronautical parts for which dimensional compliances are very stringent,
this large interval of ≈ 196 µm does not meet the technical requirements. For the sake of comparison,
the same measurements have been performed on the untransformed model (see Figure 7 right). Using
the proposed approach, the bias is increased by a slight amount of 15 µm, while the limits of agreement
are significantly reduced by 185 µm. It should, however, be noted that a less constrained parametrization
of the shape would be likely to yield a transformed model closer to reality and, thus, more accurate
measurements.
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Figure 7: Bland-Altman plot of wall thickness measurements by the proposed model and by X-ray CT
tomography. The plot displays the difference ∆W as a function of the mean value W of measurements
using the corrected (left) and initial (right) models. The mean of the differences (blue line) indicates

the bias between the values obtained from the two measurement methods. The limits of agreement (red
lines) delineate the interval where 95% of the differences are expected to lie.

The computation of measurement uncertainties based on the covariance matrix C produced estimates
of the order of a few hundred nanometers, which is significantly lower than the uncertainty values obtained
by repeating the same control several times. The formula (13) used for the computation of C relies on
the assumption that the residual ρn mostly contains noise ηn. For this assumption to be verified, it is
necessary to have a transformed model that exactly matches the imaged part and a perfect projection
operator. From the previous results, it appears that these two conditions are not met as the shape of
each surface differs between the CAD model and each sample because of the fabrication process. Figure
6 displays differences in geometry between the estimated model and the ground truth, mainly because
the non-rigid deformation of the core is not included in the deformable model.

3.7 Limitations

The findings of this study do have some limitations. A limitation of the approach is that the proposed
deformable model is presumably too simple to account for all sources of shape mismatch. Ideally, a
flexible model would be required. However, an important feature is the parametrization of the considered
deformation modes. The ones considered in this work (independent rigid body motions) benefit from a
parametrization that is neither too rich (large uncertainty) nor too poor (realism of shape deviations).
It is this trade-off that motivated the decision to define the modes as independent rigid body motions.
This trade-off leaves a margin of error which leads to residual shape deviations between the transformed
model and the tomogram and, thus, unreliable measurements. To improve the set of transformations,
one may envision a more flexible deformable model, adding a local correction model or replacing CAD
models of the surfaces with measured ones. Furthermore, projection residuals (above denoted ρn) are
indicators of the registration quality and, thus, of the reliability of the computed measurements. They
may also be used to identify the most appropriate locations for the measurement points.
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It is worth noticing that the images were acquired in a single X-ray cabin (XT H 450), which may
constitute a bias in the analysis. Likewise, the procedure was tested on parts of a single type, i.e. a single
reference of a turbine blade, even if multiple samples were imaged to account for shape variability. It is,
however, expected that similar results would be observed for a different acquisition system or reference
of a turbine blade with a comparable manufacturing process, as no other assumptions other than the
manufacturing process have been made. However, accounting for e.g. the panel detector used in the X-
ray cabin may enrich the projection operator. From an industrial point of view, endorsing the procedure
would require that the same study be performed with multiple parts to ensure that a change in the blade
geometry would not lead to inconsistent results. Nevertheless, nothing currently suggests that additional
issues are to be encountered.

The time needed to estimate parameters is about 5-6 hours. This figure is only indicative since the code
was not optimized, as the feasability and potential of the method was the main objective of this study. In
particular, costly voxelization (estimated to take about 3 hours alone) and voxel-based projection were
used. In the latest release of the Astra toolbox [21], the CAD model (or its mesh) can directly be used,
resulting presumably in a significant speed-up, but this option was not tested. Estimating uncertainties,
performed only at the last iteration, is very fast.

4 Conclusion

In this work, an approach to assess 3D dimensional measurements of complex shape parts from a limited
number of 2D X-ray images has been presented. It consists of fitting a parametric model of the imaged
part to generate a corrected numerical model. The dimensions to be controlled are measured directly on
this corrected model. The selected application case is the control of wall thicknesses of a hollow turbine
blade, a part with complex internal geometry. Describing the control principle allowed the definition of
guidelines to perform reliable measurements. The optimal transformation parameters of the model are
identified by iteratively matching the projections simulated from the transformed model to the observed
projections. The parametric model has been developed in line with the manufacturing process. It relies
on the partition of the part into multiple subparts: one representing the external surface, five representing
the various element of the inner ceramic core describing the internal geometry. The kinematics of each
subpart is a rigid-body motion, plus a scale factor to account for thermal constraints experienced by the
ceramic core during metal casting. This sparse model mimics what occurs during manufacturing and thus
provides a fair description of the expected shape variabilities. In addition, the observed transformations
can be further exploited to improve the manufacturing process and reduce the range of shape deviations.

The reliability of the approach was verified via a repeatability study where only a slight discrepancy
in the identified parameters, and thus in the associated corrected models, was observed. Furthermore, the
agreement between measurements computed from the transformed models and reference values computed
from a tomogram demonstrated the approach performance. Discrepancies are mostly explained by the
non-rigid shape deformations not considered in the simple deformable model proposed here. These
discrepancies, although small, do not comply with the very demanding requirements for NDE of turbine
blades. Suggestions to mitigate the discrepancy are proposed and include the use of measured surfaces,
or the introduction of a more flexible deformable model.

It is worth emphasizing that the proposed methodology has been designed to minimize the acquisition
noise error, as expressed in eq. (5). This error is currently much lower than other elements of uncertainty
and as a consequence, the method leads to an over-quality. One can consider faster, therefore noisier,
acquisitions while still remaining below the uncertainties due to other factors. Let us also stress that the
entire procedure is automated, with no specific input from the operator (and hence no particular skill or
experience is required), after criteria for shape tolerance have been set.

GUM methodology [22] offers a rigorous framework for taking into account a multiplicity of operations,
each affecting the final (expanded) uncertainty of a measurement. The proposed thickness measurement
can be viewed mostly as an elementary operation, for which a careful assessment of the uncertainty
has been performed, through what can be regarded as the first steps of the GUM method (identifying
detector noise as the main source of uncertainty, modeling the measurement, and computing the resulting
uncertainty due to noise on the result). This procedure could be embedded into a wider framework adding
other sources of uncertainty, and combining them with those studied in the manuscript.
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