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MICROSCOPIC TRIDOMAIN MODEL OF ELECTRICAL ACTIVITY IN THE

HEART WITH DYNAMICAL GAP JUNCTIONS. PART 2- DERIVATION OF

THE MACROSCOPIC TRIDOMAIN MODEL BY UNFOLDING

HOMOGENIZATION METHOD

FAKHRIELDDINE BADER∗, MOSTAFA BENDAHMANE, MAZEN SAAD, AND RAAFAT TALHOUK

Abstract. We study the homogenization of a novel microscopic tridomain system, allowing for

a more detailed analysis of the properties of cardiac conduction than the classical bidomain and
monodomain models. In [5], we detail this model in which gap junctions are considered as the

connections between adjacent cells in cardiac muscle and could serve as alternative or supporting

pathways for cell-to-cell electrical signal propagation. Departing from this microscopic cellular
model, we apply the periodic unfolding method to derive the macroscopic tridomain model. Several

difficulties prevent the application of unfolding homogenization results, including the degenerate

temporal structure of the tridomain equations and a nonlinear dynamic boundary condition on
the cellular membrane. To prove the convergence of the nonlinear terms, especially those defined

on the microscopic interface, we use the boundary unfolding operator and a Kolmogorov-Riesz

compactness’s result.
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1. Introduction

The conduction of electrical waves in cardiac tissue is key to human life, as the synchronized
contraction of the cardiac muscle is controlled by electrical impulses that travel in a coordinated
manner throughout the heart chambers. Under pathological conditions cardiac conduction can
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be severely reduced, potentially leading to reentrant arrhythmias and ultimately death if normal
propagation is not restored properly. At a sub-cellular level, electrical communication in cardiac
tissue occurs by means of a rapid flow of ions moving through the cytoplasm of cardiac cells, and a
slower inter-cellular flow mediated by gap junctions embedded in the intercalated discs (see Figure
1). Gap junctions are inter-cellular channels composed by hemichannels of specialized proteins,
known as connexions, that control the passage of ions between neighboring cells.

Figure 1. Representation of the cardiomyocyte structure
http://www.cardio-research.com/cardiomyocytes

Starting from a more accurate microscopic (cell-level) model of cardiac tissue, with the hetero-
geneity of the underlying cellular geometry represented in great detail, it is possible to derive the
macroscopic tridomain model (tissue-level) using the homogenization method. The microscopic
tridomain model consists of three quasi-static equations, two for the electrical potential in the in-
tracellular medium and one for the extracellular medium, coupled by ordinary differential equations
describing the dynamics of the ions channels at each membrane (the sarcolemma) and at gap junc-
tions. These equations depend on scaling parameter ε whose is the ratio of the microscopic scale
from the macroscopic one. The microscopic tridomain model was proposed three years ago [20, 15]
in the case of just two coupled cells. Recently, we have extended in [5] this microscopic tridomain
model to larger collections of cells. Further, we have established the well-posedness of this problem
and proved the existence and uniqueness of their solutions based on Faedo-Galerkin method.

The macroscopic tridomain model is used as a quantitative description of the electric activity
in cardiac tissue with dynamical gap junctions. The relevant unknowns are the two intracellular
uki for k = 1, 2 and extracellular ue potentials, along with the so-called transmembrane potential
vk := uki − ue for k = 1, 2 and the so-called gap potential s := u1

i − u2
i . In this model, the

intra- and extracellular spaces are considered at macro-scale as two separate homogeneous domains
superimposed on the cardiac domain. Conduction of electrical signals in cardiac tissue relies on the
flow of ions through cell membrane and gap junctions. Each intracellular domain and extracellular
one are separated by the cell membrane while the two intracellular domains are connected by gap
junctions (see Figure 2). The macroscopic tridomain model can be viewed as a PDE system consisting
of three degenerate reaction-diffusion equations involving the unknowns (u1

i , u
2
i , ue). These equations

are supplemented by a ODE system for the dynamics of the ion channels through the cell membrane
(involving the gating variable wk for k = 1, 2).

Regarding the classical bidomain model in the literature, there are formal and rigorous mathe-
matical derivations of the macroscopic model from a microscopic description of heart tissue. From a
mathematical point of view, Krassowska et al. [17] applied the two-scale method to formally obtain
this macroscopic model (see also [1, 13] for different approaches). Furthermore, Pennachio et al.

http://www.cardio-research.com/cardiomyocytes
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[19] used the tools of the Γ-convergence method to obtain a rigorous mathematical form of this
homogenized macroscopic model. Amar et al. [2] studied a hierarchy of electrical conduction prob-
lems in biological tissues via two-scale convergence. While, the authors in [6] proved the existence
and uniqueness of solution of the microscopic bidomain model based on Faedo-Galerkin technique.
Further, they used the periodic unfolding method at two scales to show that the solution of the
microscopic biodmain model converges to the solution of the macroscopic one. Recently, we have
developed the meso-microscopic bidomain model by taking account three different scales and derived
a new approach of its macroscopic model using two different homogenization methods. The first
method [3] is a formal and intuitive method based on a new three-scale asymptotic expansion method
applied to the meso- and microscopic model. The second one [4] based on unfolding operators which
not only derive the homogenized equation but also prove the convergence and rigorously justify the
mathematical writing of the preceding asymptotic expansion method.

The main contribution of our paper is to provide a simple homogenization proof that can handle
some relevant nonlinear membrane models (the FitzHugh-Nagumo model), relying only on unfolding
operators. More precisely, we show that the solution constructed in the microscopic tridomain
problem converge to the solution of the macroscopic (homogenized) tridomain model. So, we will
derive the homogenized tridomain model of cardiac electro-physiology from the microscopic one
using the periodic unfolding technique. The latter method not only makes it possible to derive the
homogenized equation but also to prove the convergence and to rigorously justify the mathematical
writing of the preceding formal method. The homogenization method that we propose allows us to
investigate the effective properties of the cardiac tissue at each structural level, namely, micro-macro
scales.

The paper is organized as follows: Section 2 is devoted to the geometrical setting and to the
introduction of the microscopic tridomain problem. In Section 3, we state our main homogenization
results. Next, some notations and properties on the domain and boundary unfolding operators
are introduced in Section 4. Finally, Section 5 is devoted to homogenization procedure based on
unfolding operators.

2. Tridomain modeling of the heart tissue

The aim of this section is to describe the geometry of the cardiac tissue and to present the
microscopic tridomain model of the heart.

2.1. Geometrical setting of heart tissue. Let Ω be an open connected bounded subset of Rd,
d ≥ 3. The typical periodic geometrical setting is displayed in Figure 2.

Let ε ∈ (0, 1) be a small positive parameter, related to the characteristic dimension of the micro-
structure and which takes values in a sequence of strictly positive numbers tending to zero. Under
the one-level scaling, the characteristic length `mic is related to a given macroscopic length L (of the
cardiac fibers), such that the scaling parameter ε introduced by:

ε =
`mic

L
.

From the biological point of view, the cardiac cells are connected by many gap junctions. There-
fore, geometrically, Ω represents the region occupied by the cardiac tissue and consists of two in-
tracellular media Ωki,ε for k = 1, 2, that are connected by gap junctions Γ1,2

ε = ∂Ω1
i,ε ∩ ∂Ω2

i,ε and

extracellular medium Ωe,ε (for more details see [20, 15]). Each intracellular medium Ωki,ε and the ex-

tracellular one Ωe,ε are separated by the surface membrane Γkε (the sarcolemma) which is expressed
by:

Γkε = ∂Ωki,ε ∩ ∂Ωe,ε, with k = 1, 2,
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Figure 2. (Left) Periodic heterogeneous domain Ω. (Right) Reference cell Y at
ε-structural level.

while the remaining (exterior) boundary is denoted by ∂extΩ. We can consider that the intracellu-
lar zone as a perforated domain obtained from Ω by removing the holes which correspond to the
extracellular domain Ωe,ε.

We can divide Ω into Nε small elementary cells Yε =
d∏

n=1
]0, ε `mic

n [, with `mic
1 , . . . , `mic

d are positive

numbers. These small cells are all equal, thanks to a translation and scaling by ε, to the same

reference cell of periodicity called the reference cell Y =
d∏

n=1
]0, `mic

n [. So, the ε-dilation of the reference

cell Y is defined as the following shifted set Yε,h :

(1) Yε,h := Thε + εY = {εξ : ξ ∈ h` + Y },

where Thε represents the translation of εh with h = (h1, . . . , hd) ∈ Zd and h` := (h1`
mic
1 , . . . , hd`

mic
d ).

Therefore, for each macroscopic variable x that belongs to Ω, we define the corresponding microscopic

variable y ≈ x

ε
that belongs to Y with a translation. Indeed, we have:

x ∈ Ω⇒ ∃h ∈ Zd such that x ∈ Y hε ⇒ x = ε(h` + y)⇒ y =
x

ε
− h` ∈ Y.

Since we will study the behavior of the functions u(x, y) which are y-periodic, by periodicity we

have u
(
x,
x

ε
− h`

)
= u

(
x,
x

ε

)
. By construction, we say that y =

x

ε
belongs to Y.

We are assuming that the cells are periodically organized as a regular network of interconnected
cylinders at the microscale. The microscopic reference cell Y is also divided into three disjoint
connected parts: two intracellular parts Y ki for k = 1, 2, that are connected by an intercalated disc
(gap junction) Γ1,2 and extracellular part Ye. Each intracellular parts Y ki and the extracellular one
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are separated by a common boundary Γk for k = 1, 2. So, we have:

Y := Y
1

i ∪ Y
2

i ∪ Y e, Γk := ∂Y ki ∩ ∂Ye, Γ1,2 := ∂Y 1
i ∩ ∂Y 2

i ,

with k = 1, 2. In a similar way, we can write the corresponding common periodic boundary as follows:

(2) Γε,h = Thε + εΓ = {εξ : ξ ∈ h` + Γ},

with Thε denote the same previous translation, Γε,h := Γkε,h,Γ
1,2
ε,h and Γ := Γk,Γ1,2 for k = 1, 2.

In summary, the intracellular and extracellular media can be described as follows:

(3)

Ωki,ε = Ω ∩
⋃
h∈Zd

Y ki,ε,h, Ωe,ε = Ω ∩
⋃
h∈Zd

Ye,ε,h,

Γkε = Ω ∩
⋃
h∈Zd

Γkε,h and Γ1,2
ε = Ω ∩

⋃
h∈Zd

Γ1,2
ε,h,

where Y ki,ε,h, Ye,ε,h and Γkε ,Γ
1,2
ε are respectively defined as (1)-(2) for k = 1, 2.

2.2. Microscopic tridomain model. The electric properties of the tissue at cellular level are
described by the intracellular uki,ε for k = 1, 2 and extracellular ue,ε, potentials respectively with the
associated conductivities Mε

i and Mε
e. In [5], we presented and studied in details the non-dimensional

tridomain model with respect the scaling parameter ε, as well as the models chosen for the membrane
and gap junctions dynamics. More precisely, we consider the following microscopic tridomain model:

−∇ ·
(
Mε
i∇uki,ε

)
= 0 in Ωki,ε,T := (0, T )× Ωki,ε,(4a)

−∇ · (Mε
e∇ue,ε) = 0 in Ωe,ε,T := (0, T )× Ωe,ε,(4b)

uki,ε − ue,ε = vkε on Γkε,T := (0, T )× Γkε ,(4c)

−Mε
i∇uki,ε · nki = Mε

e∇ue,ε · ne = Ikm on Γkε,T ,(4d)

ε
(
∂tv

k
ε + Iion

(
vkε , w

k
ε

)
− Ikapp,ε

)
= Ikm on Γkε,T ,(4e)

∂tw
k
ε −H

(
vkε , w

k
ε

)
= 0 on Γkε,T ,(4f)

u1
i,ε − u2

i,ε = sε on Γ1,2
ε,T := (0, T )× Γ1,2

ε ,(4g)

−Mε
i∇u1

i,ε · n1
i = Mε

i∇u2
i,ε · n2

i = I1,2 on Γ1,2
ε,T ,(4h)

ε

2
(∂tsε + Igap (sε)) = I1,2 on Γ1,2

ε,T ,(4i)

with k = 1, 2 and each equation corresponds to the following sense: (4a) Intra quasi-stationary con-
duction, (4b) Extra quasi-stationary conduction, (4c) Transmembrane potential, (4d) Continuity
equation at cell membrane, (4e) Reaction condition at the corresponding cell membrane, (4f) Dy-
namic coupling, (4g) Gap junction potential, (4h) Continuity equation at gap junction, (4e) Reaction
condition at gap junction.

Observe that the tridomain equations (4a)-(4b) are invariant with respect to the scaling parameter
ε. As usual in homogenization theory, the electrical potentials are assumed to have the following
form

uki,ε(t, x) := uki

(
t, x,

x

ε

)
, ue,ε(t, x) := ue

(
t, x,

x

ε

)
, for k = 1, 2,

where each function depends on time t ∈ (0, T ), slow (macroscopic) variable x and the fast (micro-
scopic) variable y = x/ε. Similarly, the transmembrane potential vkε , the gap junction potential sε
and the corresponding gating variable wkε for k = 1, 2 have the same previous form. Furthermore, the
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conductivity tensors are considered symmetric and dependent both on the slow and fast variables,
i.e. for j = i, e, we have

(5) Mε
j(x) := Mj

(
x,
x

ε

)
,

satisfying the elliptic and periodicity conditions: there exist constants α, β ∈ R, such that 0 < α < β
and for all λ ∈ Rd :

Mjλ · λ ≥ α |λ|2 ,(6a)

|Mjλ| ≤ β |λ| ,(6b)

Mj y-periodic, for j = i, e.(6c)

We complete system (4) with no-flux boundary conditions on ∂extΩ:(
Mε
i∇uki,ε

)
· n = (Mε

e∇ue,ε) · n = 0 on (0, T )× ∂extΩ,

where k = 1, 2 and n is the outward reference normal to the exterior boundary of Ω. We impose
initial conditions on transmembrane potential vkε , gap junction potential sε and gating variable wkε
as follows:

(7)
vkε (0, x) = vk0,ε(x), wkε (0, x) = wk0,ε(x) a.e. on Γkε,T ,

and sε(0, x) = s0,ε(x) a.e. on Γ1,2
ε,T ,

with k = 1, 2.

Next, we introduce some assumptions on the ionic functions, the source term and the initial data.
Assumptions on the ionic functions. The ionic current Iion(vk, wk) at each cell membrane Γk

can be decomposed into Ia,ion
(
vk
)

and Ib,ion
(
wk
)
, where Iion

(
vk, wk

)
= Ia,ion

(
vk
)

+ Ib,ion
(
wk
)

with k = 1, 2. Furthermore, the nonlinear function Ia,ion : R→ R is considered as a C1 function and
the functions Ib,ion : R → R and H : R2 → R are considered as linear functions. Also, we assume
that there exists r ∈ (2,+∞) and constants α1, α2, α3, α4, α5, C > 0 and β1 > 0, β2 ≥ 0 such that:

1

α1
|v|r−1 ≤ |Ia,ion (v)| ≤ α1

(
|v|r−1

+ 1
)
, |Ib,ion (w)| ≤ α2(|w|+ 1),(8a)

|H(v, w)| ≤ α3(|v|+ |w|+ 1), and Ib,ion (w) v − α4H(v, w)w ≥ α5 |w|2 ,(8b)

Ĩa,ion : v 7→ Ia,ion(v) + β1v + β2 is strictly increasing with lim
v→0

Ĩa,ion(v)/v = 0,(8c)

∀v, v′ ∈ R,
(

Ĩa,ion(v)− Ĩa,ion(v′)
)

(v − v′) ≥ 1

C
(1 + |v|+ |v′|)r−2 |v − v′|2 ,(8d)

with (v, w) :=
(
vk, wk

)
for k = 1, 2.

Now, we represent the gap junction Γ1,2
ε between intra-neighboring cells by a passive membrane:

(9) Igap(s) = Ggap × s,

where Ggap = 1
Rgap

is the conductance of the gap junctions. A discussion of the modeling of the gap

junctions is given in [14].

Assumptions on the source term. There exists a constant C independent of ε such that the
source term Ikapp,ε satisfies the following estimation for k = 1, 2:

(10)
∥∥∥ε1/2Ikapp,ε

∥∥∥
L2(Γkε,T )

≤ C.
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Assumptions on the initial data. The initial condition vk0,ε, s0,ε and wk0,ε satisfy the following
estimation:

(11)
∑
k=1,2

∥∥∥ε1/rvk0,ε

∥∥∥
Lr(Γkε )

+
∥∥∥ε1/2s0,ε

∥∥∥
L2(Γ1,2

ε )
+
∑
k=1,2

∥∥∥ε1/2wk0,ε

∥∥∥
L2(Γkε )

≤ C,

for some constant C independent of ε. Moreover, vk0,ε, s0,ε and wk0,ε are assumed to be traces of

uniformly bounded sequences in C1(Ω) with k = 1, 2.
Finally, we observe that the equations in (4) are invariant under the change of uki,ε, k = 1, 2 and

ue,ε into uki,ε + c, ue,ε + c, for any c ∈ R. Therefore, we may impose the following normalization
condition:

(12)

∫
Ωe,ε

ue,ε dx = 0, for a.e. t ∈ (0, T ).

3. Main results

In this part, we highlight the main results obtained in our paper. Based on the a priori estimates
and unfolding homogenization method, we can pass to the limit in the microscopic equations and
derive the following homogenized problem:

Theorem 1 (Macroscopic Tridomain Model). Assume that conditions (6)-(12) hold. Then, a se-

quence of solutions
(
u1
i,ε, u

2
i,ε, ue,ε, w

1
ε , w

2
ε

)
ε

of the microscopic tridomain model (4) converges as

ε→ 0 to a weak solution
(
u1
i , u

2
i , ue, w

1, w2
)

satisfying the following conditions:

(A) (Algebraic relation).

vk = uki − ue for k = 1, 2, a.e. in ΩT ,

s = u1
i − u2

i a.e. in ΩT .

(B) (Regularity).

uki , ue ∈ L2(0, T ;H1(Ω)),∫
Ω

ue(t, x) dx = 0, for a.e. t ∈ (0, T ),

vk ∈ L2(0, T ;H1(Ω)) ∩ Lr(ΩT ), r ∈ (2,+∞),

s ∈ L2(0, T ;H1(Ω)),

wk ∈ C(0, T ;L2(Ω)),

∂tv
k ∈ L2(0, T ; (H1(Ω))′) + Lr/(r−1)(ΩT ),

∂ts, ∂tw
k ∈ L2(ΩT ), k = 1, 2.

(C) (Initial conditions).

vk(0, x) = vk0 (x), wk(0, x) = wk0 (x), k = 1, 2 a.e. in Ω,

and s(0, x) = s0(x) a.e. in Ω.

(D) (Boundary conditions).(
M̃e∇ue

)
· n =

(
M̃i∇uki

)
· n = 0 on ΣT := (0, T )× ∂extΩ,
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(E) (Differential equations).

(13)

∑
k=1,2

µk∂tv
k +∇ ·

(
M̃e∇ue

)
+
∑
k=1,2

µkIion(vk, wk) =
∑
k=1,2

µkIkapp in ΩT ,

µ1∂tv
1 + µg∂ts−∇ ·

(
M̃i∇u1

i

)
+ µ1Iion(v1, w1) + µgIgap(s) = µ1I1

app in ΩT ,

µ2∂tv
2 − µg∂ts−∇ ·

(
M̃i∇u2

i

)
+ µ2Iion(v2, w2)− µgIgap(s) = µ2I2

app in ΩT ,

∂tw
k −H(vk, wk) = 0 in ΩT ,

where µk =
∣∣Γk∣∣ / |Y | , k = 1, 2,

(
resp. µg =

∣∣Γ1,2
∣∣ /2 |Y |) is the ratio between the surface mem-

brane (resp. the gap junction) and the volume of the reference cell. Furthermore, n represents
the outward reference normal to the boundary of Ω. Herein, the homogenized conductivity matrices

M̃j =
(
m̃pq
j

)
1≤p,q≤d for j = i, e are respectively defined by:

m̃pq
i :=

1

|Y |

d∑
`=1

∫
Y ki

(
mpq
i + mp`

i

∂χqi
∂y`

)
dy,(14a)

m̃pq
e :=

1

|Y |

d∑
`=1

∫
Ye

(
mpq
e + mp`

e

∂χqe
∂y`

)
dy,(14b)

where the components χqj of χj for j = i, e are respectively the corrector functions, solutions of the
ε-cell problems:

(15a)


−∇y · (Me∇yχqe) = ∇y · (Meeq) in Ye,

χqe y-periodic,

Me∇yχqe · ne = −(Meeq) · ne on Γk, k = 1, 2

(15b)


−∇y · (Mi∇yχqi ) = ∇y · (Mieq) in Y ki ,

χqi y-periodic,

Mi∇yχqi · nki = −(Mieq) · nki on Γk, k = 1, 2

Mi∇yχqi · nki = −(Mieq) · nki on Γ1,2,

for eq, q = 1, . . . , d, the standard canonical basis in Rd.

The proof of Theorem 1 is proved rigorously in Section 4.2 using unfolding homogenization
method. The uniqueness of the solutions to the macroscopic model can be proved similar as that
of the microscopic model with minor changes (see [5]). This implies that all the convergence results
remain valid for the whole sequence. Furthermore, it is easy to verify that the macroscopic conduc-
tivity tensors of the intracellular and extracellular spaces are symmetric and positive definite (see
Remark 14).

Remark 2. The authors in [6] treated the microscopic bidomain problem where the gap junction is
ignored. They considered that there are only two intra- and extracellular media separated by a single
membrane (sarcolemma). Comparing to [6], the microscopic tridomain model in our work consists
of three elliptic equations coupled through three boundary conditions, two on each cell membrane
and one on the gap junction which separates between two intracellular media. The macroscopic
tridomain model is more general and complex than the classical monodomain and bidomain models.
Using periodic unfolding homogenization method, we derive a new approach of the homogenized model
(13) from the microscopic tridomain problem (4).
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Remark 3. Regarding the classical bidomain model [9, 6], we can derive this model from our trido-
main problem if we take u1

i = u2
i .

4. Time-depending unfolding operators

4.1. Unfolding operator and some basic properties. Under the notation (3), we begin with
introducing the unfolding operator and describe some of its properties. For more properties and
proofs, we refer to [7, 8]. First, we present the unfolding operators defined for perforated domains
on the domain (0, T ) × Ω. Then we define boundary unfolding operators one on the membrane
(0, T )× Γk, k = 1, 2 and the other on the gap junction (0, T )× Γ1,2.

In order to define an unfolding operator, we first introduce the following sets in Rd (see Figure 3)

• Ξε = {h ∈ Zd, ε(h` + Y ) ⊂ Ω},

• Ω̂ε = interior {
⋃

h∈Ξε

ε
(
h` + Y

)
},

• Ω̂e,ε = interior {
⋃

h∈Ξε

ε
(
h` + Ye

)
},

• Ω̂ki,ε = interior {
⋃

h∈Ξε

ε
(
h` + Y ki

)
}, k = 1, 2,

• Γ̂kε = {y ∈ Γk : y ∈ Ω̂ε}, k = 1, 2,

• Γ̂1,2
ε = {y ∈ Γ1,2 : y ∈ Ω̂ε},

• Λε = Ω \ Ω̂ε,

• Ω̂ε,T = (0, T )× Ω̂ε,

• Ω̂ki,ε,T = (0, T )× Ω̂ki,ε, k = 1, 2, Ω̂e,ε,T = (0, T )× Ω̂e,ε,

• ΛεT = (0, T )× Λε,

where h` := (h1`
mic
1 , . . . , hd`

mic
d ). For all w ∈ Rd, let [w]Y be the unique integer combination of the

periods such that w− [w]Y ∈ Y. We may write w = [w]Y +{w}Y for all w ∈ Rd, so that for all ε > 0,
we get the unique decomposition:

x = ε
([x
ε

]
Y

+
{x
ε

}
Y

)
, for all x ∈ Rd.

Based on this decomposition, we define the unfolding operator in intra- and extracellular domains.

Definition 4 (Domain and boundary unfolding operator [7, 8]).

1. For any function φ Lebesgue-measurable on the intracellular medium Ωki,ε,T := (0, T )× Ωki,ε
for k = 1, 2, the unfolding operator T i,kε is defined as follows:

(16) T i,kε (φ)(t, x, y) =

{
φ
(
t, ε
[x
ε

]
Y

+ εy
)

a.e. for (t, x, y) ∈ Ω̂εT × Y ki ,

0 a.e. for (t, x, y) ∈ ΛεT × Y ki ,

where [·] denotes the Gauβ-bracket. Similarly, we define the unfolding operator T eε on the
domain Ωεe,T := (0, T )× Ωεe. We readily have that:

∀x ∈ Rd, T i,kε (φ)
(
t, x,

{x
ε

}
Y

)
= φ(t, x), with k = 1, 2.
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Figure 3. The sets Ω̂ki,ε for k = 1, 2 (in blue), Ω̂εe (in red), Λki,ε (in dark cyan) and
Λe,ε (in green).

2. For any function ϕ Lebesgue-measurable on the membrane Γkε := (0, T ) × Γkε for k = 1, 2,
the boundary unfolding operator T b,kε is defined as follows:

(17) T b,kε (ϕ)(t, x, y) =

{
ϕ
(
t, ε
[x
ε

]
Y

+ εy
)

a.e. for (t, x, y) ∈ Ω̂εT × Γk,

0 a.e. for (t, x, y) ∈ ΛεT × Γk.

Similarly, we define the boundary unfolding operator T b,1,2ε on the gap junction Γ1,2
ε,T :=

(0, T )× Γ1,2
ε .

4.1.1. Properties of the unfolding operator. In the following proposition, we state some basic
properties of the unfolding operator which will be used frequently in the next sections.

Proposition 5 (Some properties of the unfolding operator [7, 8]).

(1) The operator T i,kε : Lp
(
Ωki,ε,T

)
−→ Lp(ΩT × Y ki ) and T b,kε : Lp(Γkε,T ) −→ Lp(ΩT × Γk) are

linear and continuous for p ∈ [1,+∞) and k = 1, 2. Similarly, we have the same properties
for the unfolding operator T eε and for the boundary unfolding operator T b,1,2ε .

(2) For u, u′ ∈ Lp
(
Ωki,ε,T

)
and v, w ∈ Lp

(
Γkε,T

)
, it holds that T i,kε (uu′) = T i,kε (u)T i,kε (u′) and

T b,kε (vw) = T b,kε (v)T b,kε (w), with p ∈ (1,+∞) and k = 1, 2.

(3) For u ∈ Lp
(
Ωki,ε,T

)
, p ∈ [1,+∞), we have∥∥T i,kε (u)

∥∥
Lp(ΩT×Y ki )

= |Y |1/p
∥∥∥u1Ω̂ki,ε,T

∥∥∥
Lp(Ωki,ε,T )

≤ |Y |1/p ‖u‖Lp(Ωki,ε,T ) .

(4) For v ∈ Lp
(
Γkε,T

)
, with p ∈ [1,+∞) and k = 1, 2. Then we have∥∥T b,kε (v)

∥∥
Lp(ΩT×Γk)

= ε1/p |Y |1/p ‖v‖Lp(Γ̂kε,T ) ≤ ε
1/p |Y |1/p ‖v‖Lp(Γkε,T ) .
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(5) Let φε ∈ Lp
(
0, T ;W 1,p (Ω)

)
, with p ∈ [1,+∞) and k = 1, 2. If φε → φ strongly in

Lp(0, T ;W 1,p(Ω)) as ε→ 0, then

T i,kε (φε)→ φ strongly in Lp(ΩT × Y ki ),

T b,kε (φε)→ φ|Γk strongly in Lp(ΩT × Γk) as ε→ 0.

(6) For u ∈ Lp
(
0, T ;W

(
Ωki,ε

))
, p ∈ [1,+∞), it holds that ∇yT i,kε (u) = εT i,kε (∇xu) with k =

1, 2.

Remark 6. The unfolding operators T b,kε and T i,kε for k = 1, 2 are related in the following sense:

T b,kε (u|Γkε ) = T i,kε (u)|Γk , u ∈ Lp
(
0, T ;W 1,p(Ωki,ε)

)
, k = 1, 2,

for p ∈ (1,+∞) and a.e. t ∈ (0, T ). In particular, by the standard trace theorem in Y ki , there is a
constant C independent of ε and t such that∥∥T b,kε (u)

∥∥p
Lp(ΩT×Γk)

≤ C
(∥∥T i,kε (u)

∥∥p
Lp(ΩT×Y ki ) +

∥∥∇yT i,kε (u)
∥∥p
Lp(ΩT×Y ki )

)
.

From the properties of T i,kε (·) in Proposition 5, it follows that∥∥T b,kε (u)
∥∥p
Lp(ΩT×Γk)

≤ C
(
‖u‖p

Lp(Ωki,ε,T )
+ εp ‖∇u‖p

Lp(Ωki,ε,T )

)
.

Similarly, the trace theorem in Ye holds for u ∈ Lp
(
0, T ;W 1,p(Ωe,ε)

)
(which can be found as Remark

4.2 in [8]).

In the sequel, we will define W 1,p
# the periodic Sobolev space as follows:

Definition 7. Let O be a reference cell and p ∈ [1,+∞). Then, we define

(18) W 1,p
# (O) = {u ∈W 1,p(O) such that u is periodic with MO(u) = 0},

where MO(u) =
1

|O|

∫
O
u dy. Its duality bracket is defined by

F (u) = (F, u)(W 1,p
# (O))′,W 1,p

# (O) = (F, u)(W 1,p(O))′,W 1,p(O), ∀u ∈W 1,p
# (O).

Furthermore, by the Poincaré-Wirtinger’s inequality, the Banach space W 1,p
# has the following norm:

‖u‖W 1,p
# (O) = ‖∇u‖Lp(O) ,∀u ∈W

1,p
# (O).

Notation: We denote W 1,2
# (O) by H1

#(O) for p = 2.

4.2. Microscopic tridomain model. We start by stating the weak formulation of the microscopic
tridomain model as given in the following definition.

Definition 8 (Weak formulation of microscopic system). A weak solution to problem (4)-(7) is a
collection (u1

i,ε, u
2
i,ε, ue,ε, w

1
ε , w

2
ε) of functions satisfying the following conditions:

(A) (Algebraic relation).

vkε = (uki,ε − ue,ε)|Γkε,T a.e. on Γkε,T , for k = 1, 2,

sε = (u1
i,ε − u2

i,ε)|Γ1,2
ε,T

a.e. on Γ1,2
ε,T .
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(B) (Regularity).

uki,ε ∈ L2
(
0, T ;H1

(
Ωki,ε

))
, uεe ∈ L2

(
0, T ;H1(Ωe,ε)

)
,∫

Ωe,ε

ue,ε(t, x) dx = 0, for a.e. t ∈ (0, T ),

vkε ∈ L2
(

0, T ;H1/2
(
Γkε
))
∩ Lr

(
Γkε,T

)
, r ∈ (2,+∞)

sε ∈ L2
(

Γ1,2
ε,T

)
, wkε ∈ L2(Γkε,T ), k = 1, 2,

∂tv
k
ε , ∂tw

k
ε ∈ L2(Γkε,T ) for k = 1, 2, ∂tsε ∈ L2(Γ1,2

ε,T ).

(C) (Initial conditions).

vkε (0, x) = vk0,ε(x), wkε (0, x) = wk0,ε(x) a.e. on Γkε,T ,

and sε(0, x) = s0,ε(x) a.e. on Γ1,2
ε,T .

(D) (Variational equations).

(19)

∑
k=1,2

∫∫
Γkε,T

ε∂tv
k
εψ

k
i dσxdt+

∫∫
Γ1,2
ε,T

ε

2
∂tsεΨ dσxdt+

∑
k=1,2

∫
Ωki,ε,T

Mε
i∇uki,ε · ∇ϕki dxdt

+
∑
k=1,2

∫∫
Γkε,T

εIion
(
vkε , w

k
ε

)
ψki dσxdt+

1

2

∫∫
Γ1,2
ε,T

εIgap(sε)Ψ dσxdt

=
∑
k=1,2

∫∫
Γkε,T

εIkapp,εψki dσxdt

(20)

∑
k=1,2

∫∫
Γkε,T

ε∂tv
k
εψ

k
e dσxdt−

∫
Ωe,ε,T

Mε
e∇ue,ε · ∇ϕe dxdt

+
∑
k=1,2

∫∫
Γkε,T

εIion
(
vkε , w

k
ε

)
ψke dσxdt =

∑
k=1,2

∫∫
Γkε,T

εIkapp,εψke dσxdt

(21)

∫∫
Γkε,T

∂tw
k
ε e
k dσxdt =

∫∫
Γkε,T

H
(
vkε , w

k
ε

)
ek dσxdt

for all ϕki ∈ L2
(
0, T ;H1

(
Ωki,ε

))
, ϕe ∈ L2

(
0, T ;H1(Ωe,ε)

)
with

• ψk = ψki − ψke :=
(
ϕki − ϕe

)
|Γkε,T ∈ L

2
(
0, T ;H1/2

(
Γkε
))
∩ Lr

(
Γkε,T

)
for k = 1, 2,

• Ψ = Ψ1
i −Ψ2

i :=
(
ϕ1
i − ϕ2

i

)
|Γ1,2
ε,T
∈ L2(Γ1,2

ε,T ),

• ek ∈ L2(Γkε,T ) for k = 1, 2.

Then, the existence of the weak solution for the microscopic tridomain problem (4)-(7) is given in
the following theorem whose proof is the main issue of the article [5], by using the Faedo-Galerkin
method.

Theorem 9 (Microscopic Tridomain Model). Assume that the conditions (6)-(11) hold. Then,
System (4)-(7) possesses a unique weak solution in the sense of Definition 8 for every fixed ε > 0.

Furthermore, this solution verifies the following energy estimates: there exists constants C1, C2, C3, C4

independent of ε such that:

(22)
∑
k=1,2

∥∥√εvkε∥∥2

L∞(0,T ;L2(Γkε ))
+
∑
k=1,2

∥∥√εwkε∥∥2

L∞(0,T ;L2(Γkε ))
+
∥∥√εsε∥∥2

L∞(0,T ;L2(Γ1,2
ε )) ≤ C1,
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(23)
∑
k=1,2

∥∥uki,ε∥∥L2(0,T ;H1(Ωki,ε))
+ ‖uεe‖L2(0,T ;H1(Ωe,ε))

≤ C2,

(24)
∑
k=1,2

∥∥∥ε1/rvkε

∥∥∥
Lr(Γkε,T )

≤ C3 and
∑
k=1,2

∥∥∥ε(r−1)/rIa,ion(vkε )
∥∥∥
Lr/(r−1)(Γkε,T )

≤ C4.

Moreover, if vkε,0 ∈ H1/2(Γkε) ∩ Lr(Γkε), k = 1, 2, then there exists a constant C5 independent of ε
such that:

(25)
∑
k=1,2

∥∥√ε∂tvkε∥∥2

L2(Γkε,T )
+
∑
k=1,2

∥∥√ε∂twkε∥∥2

L2(Γkε,T )
+
∥∥√ε∂tsε∥∥2

L2(Γ1,2
ε,T )
≤ C5.

By summing the two first equations in (19)-(21) and since Iion(vkε , w
k
ε ) = Ia,ion(vkε ) + Ib,ion(wkε ),

we can rewrite the weak formulation as follows:

(26)

∑
k=1,2

∫∫
Γkε,T

ε∂tv
k
εψ

k dσxdt+
1

2

∫∫
Γ1,2
ε,T

ε∂tsεΨ dσxdt

+
∑
k=1,2

∫∫
Ωki,ε,T

Mε
i∇uki,ε · ∇ϕki dxdt+

∫∫
Ωe,ε,T

Mε
e∇ue,ε · ∇ϕe dxdt

+
∑
k=1,2

∫∫
Γkε,T

εIa,ion
(
vkε
)
ψk dσxdt+

∑
k=1,2

∫∫
Γkε,T

εIb,ion
(
wkε
)
ψk dσxdt

+
1

2

∫∫
Γ1,2
ε,T

εIgap (sε) Ψ dσxdt =
∑
k=1,2

∫∫
Γkε,T

εIkapp,εψk dσxdt,

(27)

∫∫
Γkε,T

∂tw
k
ε e
k dσxdt =

∫∫
Γkε,T

H
(
vkε , w

k
ε

)
ek dσxdt.

5. Unfolding Homogenization Method

Our derivation of the tridomain model is based on a new approach describing not only the electrical
activity but also the effect of the cell membrane and gap junctions in the heart tissue. Our goal in
this section is to describe the asymptotic behavior, as ε→ 0, of the solution (u1

i,ε, u
2
i,ε, ue,ε, w

1
ε , w

2
ε)

given by System (4)-(7). We do this by following a three-steps procedure: In Step 5.1, the weak
formulation of the microscopic tridomain model (4)-(7) is written by another one, called ”unfolded”
formulation, based on the unfolding operators stated in the previous part. As Step 5.2, we can pass
to the limit as ε → 0 in the unfolded formulation using some a priori estimates and compactness
argument to get the corresponding homogenization equation. In Step 5.3, we take a special form of
test functions to obtain finally the macroscopic tridomain model.

5.1. Unfolded formulation of the microscopic tridomain model. Based on the properties of
the unfolding operators, we rewrite the weak formulation (26)-(27) in the ”unfolded” form. First,
we denote by Ei with i = 1, . . . , 5 the terms of the equation (26) which is rewritten as follows (to
respect the order):

E1 + E2 + E3 + E4 + E5 + E6 + E7 = E8.
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Using property (4) of Proposition 5, then the first and second term of (26) is rewritten as follows:

E1 =
∑
k=1,2

∫∫
Γ̂kε,T

ε∂tv
k
εψ

k dσxdt+
∑
k=1,2

∫∫
Γkε,T∩Λε,T

ε∂tv
k
εψ

k dσxdt

=
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

T b,kε (∂tv
k
ε )T b,kε (ψk) dxdσydt+

∑
k=1,2

∫∫
Γkε,T∩Λε,T

ε∂tv
k
εψ

k dσxdt

:= J1 +R1.

E2 =
1

2

∫∫
Γ̂1,2
ε,T

ε∂tsεΨ dσxdt+
1

2

∫∫
Γ1,2
ε,T∩Λε,T

ε∂tsεΨ dσxdt

=
1

2 |Y |

∫∫∫
ΩT×Γ1,2

T b,1,2ε (∂tsε)T b,1,2ε (Ψ) dxdσydt+
1

2

∫∫
Γ1,2
ε,T∩Λε,T

ε∂tsεΨ dσxdt

:= J2 +R2.

Similarly, we rewrite the third and fourth term using the property (3) of Proposition 5:

E3 =
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Y ki

T i,kε (Mε
i )T i,kε (∇uki,ε)T i,kε (∇ϕki ) dxdydt

+
∑
k=1,2

∫∫
Λki,ε,T

Mε
i∇uki,ε · ∇ϕki dxdt

:= J3 +R3

E4 =
1

|Y |

∫∫∫
ΩT×Ye

T eε (Mε
e)T eε (∇ue,ε)T eε (∇ϕe) dxdydt

+

∫∫
Λe,ε,T

Mε
e∇ue,ε · ∇ϕe dxdt

:= J4 +R4

Due to the form of I`,ion, we use the property (2)-(4) of Proposition 5 to obtain T b,kε (I`,ion(·)) =
I`,ion

(
T b,kε (·)

)
for ` = a, b and k = 1, 2. Thus, we arrive to:

E5 =
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

T b,kε

(
Ia,ion(vkε )

)
T b,kε (ψk) dxdσydt+

∑
k=1,2

∫∫
Γkε,T∩Λε,T

εIa,ion(vkε )ψk dσxdt

=
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

Ia,ion
(
T b,kε (vkε )

)
T b,kε (ψk) dxdσydt+

∑
k=1,2

∫∫
Γkε,T∩Λε,T

εIa,ion(vkε )ψk dσxdt

:= J5 +R5

E6 =
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

T b,kε (Ib,ion(wkε ))T b,kε (ψk) dxdσydt+
∑
k=1,2

∫∫
Γkε,T∩Λε,T

εIb,ion(wkε )ψk dσxdt

=
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

Ib,ion
(
T b,kε (wkε )

)
T b,kε (ψk) dxdσydt+

∑
k=1,2

∫∫
Γkε,T∩Λε,T

εIb,ion(wkε )ψk dσxdt

:= J6 +R6

Similarly, we can rewrite the last two terms of (26) by taking account the form of Igap as follows:

E7 =
1

2 |Y |

∫∫∫
ΩT×Γ1,2

Igap
(
T b,1,2ε (sε)

)
T b,1,2ε (Ψ) dxdσydt+

1

2

∫∫
Γ1,2
ε,T∩Λε,T

εIgap(sε)Ψ dσxdt

:= J7 +R7
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E8 =
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

T b,kε (Ikapp,ε)T b,kε (ψk) dxdσydt+
∑
k=1,2

∫∫
Γkε,T∩Λε,T

εIkapp,εψk dσxdt

:= J8 +R8

Collecting the previous estimates, we readily obtain from (26) the following ”unfolded” formula-
tion:
(28)

1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

T b,kε (∂tv
k
ε )T b,kε (ψk) dxdσydt+

1

2 |Y |

∫∫∫
ΩT×Γ1,2

T b,1,2ε (∂tsε)T b,1,2ε (Ψ) dxdσydt

+
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Y ki

T i,kε (Mε
i )T i,kε (∇uki,ε)T i,kε (∇ϕki ) dxdydt

+
1

|Y |

∫∫∫
ΩT×Ye

T eε (Mε
e)T eε (∇ue,ε)T eε (∇ϕe) dxdydt

+
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

Ia,ion
(
T b,kε (vkε )

)
T b,kε (ψk) dxdσydt

+
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

Ib,ion
(
T b,kε (wkε )

)
T b,kε (ψk) dxdσydt

+
1

2 |Y |

∫∫∫
ΩT×Γ1,2

Igap
(
T b,1,2ε (sε)

)
T b,1,2ε (Ψ) dxdσydt

=
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

T b,kε (Ikapp,ε)T b,kε (ψk) dxdσydt

+R8 −R7 −R6 −R5 −R4 −R3 −R2 −R1

Similarly, the ”unfolded” formulation of (27) is given by:

(29)

1

|Y |

∫∫∫
ΩT×Γk

T b,kε (∂tw
k
ε )T b,kε (ek) dxdσydt

− 1

|Y |

∫∫∫
ΩT×Γk

H(T b,kε (vkε ), T b,kε (wkε ))T b,kε (ek) dxdσydt

= −ε
∫∫

Γkε,T∩Λε,T

∂tw
k
ε e
k dσxdt+ ε

∫∫
Γkε,T∩Λε,T

H(vkε , w
k
ε )ek dσxdt

:= R9 +R10

5.2. Convergence of the unfolded formulation. In this part, we pass to the limit in (28)-(29).
First, we prove that:

R1, · · · , R10 −→
ε→0

0,

by making use of estimates (22)-(25). So, we prove that R3 → 0 when ε→ 0 and the proof for the
other terms is similar. First, by Cauchy-Schwarz inequality, one has

R3 =
∑
k=1,2

∫∫
Λki,ε,T

Mε
i∇uki,ε · ∇ϕki dxdt ≤

∑
k=1,2

∥∥Mε
i∇uki,ε

∥∥
L2(Ωki,ε,T )

(∫∫
Λki,ε,T

∣∣∇ϕki ∣∣2 dxdt

)1/2

.
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In addition, we observe that
∣∣Λki,ε∣∣→ 0 and ∇ϕki ∈ L2(Ωki,ε). Consequently, by Lebesgue dominated

convergence theorem, one gets for k = 1, 2 :∫∫
Λki,ε

∣∣∇ϕki ∣∣2 → 0, as ε→ 0.

Finally, by using Hölder’s inequality, the result follows by making use of estimate (23) and assumption
(6) on Mε

i .
Let us now elaborate the convergence results of J1, · · · , J8. Using property (5) of Proposition 5

and due to the regularity of test functions, we know that the following strong convergence hold:

T b,kε (ψk)→ ψk and T b,kε (ek)→ ek strongly in L2(ΩT × Γk)

T b,1,2ε (Ψ)→ Ψ strongly in L2(ΩT × Γ1,2)

and

T i,kε (ϕki )→ ϕki strongly in L2(ΩT × Y ki ),

T eε (ϕe)→ ϕe strongly in L2(ΩT × Ye).

Next, we want to use the a priori estimates (22)-(25) to verify that the remaining terms of the
equations in the unfolded formulation (28)-(29) are weakly convergent. Using estimation (23), we

deduce that there exist uki , ue ∈ L2
(
0, T ;H1(Ω)

)
, ûki ∈ L2

(
0, T ;L2

(
Ω, H1

#(Y ki )
))

for k = 1, 2 and

ûe ∈ L2
(

0, T ;L2
(

Ω, H1
#(Ye)

))
such that, up to a subsequence (see for instance Theorem 3.12 in

[8]), the following convergences hold as ε goes to zero:

T i,kε (uki,ε) ⇀ uki weakly in L2
(
0, T ;L2

(
Ω× Y ki

))
,

T i,kε (∇uki,ε) ⇀ ∇uki +∇yûki weakly in L2(ΩT × Y ki ),

and

T eε (ue,ε) ⇀ ue weakly in L2
(
0, T ;L2 (Ω× Ye)

)
,

T eε (∇ue,ε) ⇀ ∇ue +∇yûe weakly in L2(ΩT × Y ki ),

with the space H1
# given by (18). Thus, since T i,kε (Mε

i ) → Mi a.e. in Ω × Y ki for k = 1, 2 and

T eε (Mε
e)→ Me a.e. in Ω× Ye, one obtains:

J3 −→
ε→0

1

|Y |
∑
k=1,2

∫∫∫
ΩT×Y ki

Mi

[
∇uki +∇yûki

]
∇ϕki dxdydt,

J4 −→
ε→0

1

|Y |

∫∫∫
ΩT×Ye

Me [∇ue +∇yûe]∇ϕe dxdydt.

Furthermore, we need to establish the weak convergence of the unfolded sequences that corre-
sponds to vkε , w

k
ε , sε and Ikapp,ε for k = 1, 2. In order to establish the convergence of T b,kε (∂tv

k
ε ), we

use estimation (25) to get for k = 1, 2∥∥T b,kε (∂tv
k
ε )
∥∥
L2(ΩT×Γk)

≤ ε1/2 |Y |1/2
∥∥∂tvkε∥∥L2(Γkε,T )

≤ C.

So there exists V k ∈ L2 (ΩT ) such that T b,kε (∂tv
k
ε ) ⇀ V k weakly in L2(ΩT × Γk) with k = 1, 2. By

a classical integration argument, one can show that V k = ∂tv
k. Therefore, we deduce that

T b,kε (∂tv
k
ε ) ⇀ ∂tv

k weakly in L2(ΩT × Γk).
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Thus, we obtain

J1 =
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

T b,kε (∂tv
k
ε )T b,kε (ψk) dxdσydt

−→
ε→0

1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

∂tv
kψk dxdσydt.

By the same strategy for the convergence of J1, there exits S ∈ L2 (ΩT ) such that T b,1,2ε (∂tsε) ⇀ S
weakly in L2(ΩT × Γ1,2). Similarly, we get S = ∂ts. Thus, one has

J2 =
1

2 |Y |

∫∫∫
ΩT×Γ1,2

T b,1,2ε (∂tsε)T b,1,2ε (Ψ) dxdσydt

−→
ε→0

1

2 |Y |

∫∫∫
ΩT×Γ1,2

∂tsΨ dxdσydt.

Now, making use of estimate (22) with property (4) of Proposition 5, one has∥∥T b,kε (wkε )
∥∥
L2(ΩT×Γk)

≤ ε1/2 |Y |1/2
∥∥wkε∥∥L2(Γkε,T )

≤ C,∥∥T b,1,2ε (sε)
∥∥
L2(ΩT×Γ1,2)

≤ ε1/2 |Y |1/2 ‖sε‖L2(Γ1,2
ε,T ) ≤ C.

Then, up to a subsequences,

T b,kε (wkε ) ⇀ wk weakly in L2(ΩT × Γk),

T b,1,2ε (sε) ⇀ s weakly in L2(ΩT × Γ1,2).

So, by linearity of Ib,ion and of Igap we have respectively:

J6 =
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

Ib,ion
(
T b,kε (wkε )

)
T b,kε (ψk) dxdσydt

−→
ε→0

1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

Ib,ion(wk)ψk dxdσydt,

J7 =
1

2 |Y |

∫∫∫
ΩT×Γ1,2

Igap
(
T b,1,2ε (sε)

)
T b,1,2ε (Ψ) dxdσydt

−→
ε→0

1

2 |Y |

∫∫∫
ΩT×Γ1,2

Igap(s)Ψ dxdσydt.

Similarly, exploiting assumption (10) on Ikapp,ε, we obtain the following convergence:

J8 =
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

T b,kε (Ikapp,ε)T b,kε (ψk) dxdσydt

−→
ε→0

1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

Ikappψk dxdσydt.

Remark 10. Proceeding exactly as in [4], we prove that the limits vk and s coincide respectively with
uki −ue for k = 1, 2 and u1

i−u2
i . Furthermore, since we have assumed that the initial data vk0,ε, w

k
0,ε for

k = 1, 2 and s0,ε introduced in (7), are also uniformly bounded in the adequate norm (see assumption
(11)). Then, using the weak formulation (28)-(29), we prove similarly that vk(0, x) = vk0 (x) a.e. on
Ω, since, by construction, vkε (0, x) = vk0,ε(x) a.e. on Γkε for k = 1, 2. The same argument holds for

the initial condition of wkε for k = 1, 2 and of sε.
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It remains to obtain the limit of J5 containing the ionic function Ia,ion. By the regularity of ψk,
it sufficient to show the weak convergence of Ia,ion

(
T b,kε (vkε )

)
to Ia,ion(vk) in L2(ΩT × Γk). Due to

the non-linearity of Ia,ion, the weak convergence will not be enough. It is difficult to pass to the
limit of this term on the microscopic membrane surface. Therefore, we need the strong convergence
of T b,kε (vkε ) to vk in L2(ΩT × Γk) for k = 1, 2 that we obtain by using Kolmogorov-Riesz type
compactness criterion that can be found as Corollary 2.5 in [11]:

Proposition 11 (Kolmogorov-Riesz type compactness result). Let Ω ⊂ Rd be an open and bounded
set. Let F ⊂ Lp(Ω, B) for a Banach space B and p ∈ [1; +∞). For f ∈ F and ξ ∈ Rd, we define
τξf(x) := f(x+ ξ). Then F is relatively compact in Lp(Ω, B) if and only if

(i) for every measurable set A ⊂ Ω the set {
∫
A
fdx : f ∈ F} is relatively compact in B,

(ii) for all λ > 0, ξ ∈ Rd and ξi ≥ 0, i = 1, . . . , d, there holds

sup
f∈F
‖τξf − f‖Lp(Ωξλ,B) → 0, for h→ 0,

where Ωξλ := {x ∈ Ωλ : x+ ξ ∈ Ωλ} and Ωλ := {x ∈ Ω : dist(x, ∂Ω) > λ},
(iii) for λ > 0, there holds sup

f∈F

∫
Ω\Ωλ |f(x)|p dx→ 0 for λ→ 0.

To cope with this, in the following lemma, we derive the convergence of the nonlinear term Ia,ion :

Lemma 12. The following convergence holds for k = 1, 2:

T b,kε (vkε )→ vk strongly in L2(ΩT × Γk),

as ε→ 0. Moreover, we have for k = 1, 2:

Ia,ion
(
T b,kε (vkε )

)
→ Ia,ion(vk) strongly in Lq(ΩT × Γk), ∀q ∈ [1, r/(r − 1)),

as ε→ 0.

Proof. We follow the same idea to the proof of Lemma 5.3 in [6]. The proof of the first convergence
is based on the Kolmogorov compactness criterion 11. So, we want to verify that the sequence
{T b,kε (vkε )}ε>0 of unfolded membrane potentials satisfies the assumptions of Proposition 11 with
B = L2

(
0, T ;L2(Γk)

)
for k = 1, 2 and p = 2. It is carried out by proving three conditions:

(i) Let A ⊂ Ω a measurable set. We define the sequence {vkA,ε}ε>0 as follows:

vkA,ε(t, y) :=

∫
A

T b,kε (vkε )(t, x, y) dx, for a.e. (t, y) ∈ (0, T )× Γk (k = 1, 2).

It remains to show that the sequence vkA,ε ∈ L2
(
0, T ;H1/2(Γk)

)
is relatively compact in the space

L2
(
0, T ;L2(Γk)

)
for k = 1, 2. Since the embedding H1/2(Γk) ↪→ L2(Γk) is compact, we have to

show that the sequence vkA,ε is bounded in L2
(
0, T ;H1/2(Γk)

)
∩H1

(
0, T ;L2(Γk)

)
with k = 1, 2.

We first observe that for k = 1, 2

∥∥vkA,ε∥∥2

H1/2(Γk)
=

∫
Γk

∣∣∣∣∫
A

T b,kε (vkε )(t, x, y) dx

∣∣∣∣2 dσy
+

∫∫
Γk×Γk

∫
A

∣∣T b,kε (vkε )(t, x, y1)− T b,kε (vkε )(t, x, y2)
∣∣2

|y1 − y2|d+1
dxdσy1dσy2

:=
∥∥vkA,ε∥∥2

L2(Γk)
+
∥∥vkA,ε∥∥2

H
1/2
0 (Γk)

.
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In view of Fubini theorem, Cauchy-Schwarz inequality and estimate (22), it follows that for k = 1, 2

∥∥vkA,ε∥∥2

L2(ΓkT )
≤ C

∫ T

0

∫
Ω

∫
Γk

∣∣T b,kε (vkε )(t, x, y)
∣∣2 dσydxdt

≤ C
∥∥√εvkε∥∥2

L2(Γkε,T )
≤ C.

Next, we only need to bound the H
1/2
0 semi-norm and this is done as follows. Since vε = (uεi − uεe) |Γkε

for k = 1, 2, we use again Fubini theorem and Jensen inequality together with the trace inequality
in Remark 6 to obtain

∥∥vkA,ε∥∥2

H
1/2
0 (Γk)

≤ C
[∫

Ω

∥∥T b,kε (vkε )
∥∥2

H
1/2
0 (Γy)

dxdt

]
≤ C

[∥∥uki,ε∥∥2

L2(Ωki,ε)
+ ε2

∥∥∇uki,ε∥∥2

L2(Ωki,ε)
+ ‖ue,ε‖2L2(Ωe,ε)

+ ε2 ‖∇ue,ε‖2L2(Ωe,ε)

]
.

Hence, integrating over (0, T ) and using the a priori estimates (23), we have showed that the sequence
vkA,ε is bounded in L2

(
0, T ;H1/2(Γk)

)
for k = 1, 2.

By a similar argument and making use of the estimate (25) on ε1/2∂tv
k
ε , we can also show that∥∥∂tvkA,ε∥∥L2(ΓkT )

≤ C, with k = 1, 2.

Finally, we deduce that the sequence vkA,ε is bounded in L2
(
0, T ;H1/2(Γk)

)
∩H1

(
0, T ;L2(Γk)

)
and

due to the Aubin-Lions Lemma the sequence is relatively compact in L2
(
0, T ;L2(Γk)

)
with k = 1, 2.

(ii) Due to the decomposition of the domain given in Subsection 4.1, Ω can always be represented
by a union of scaled and translated reference cells. Fix ε > 0 and let k ∈ Ξε, be an index set such
that

Ω̂ε =
⋃
h∈Ξε

ε(h` + Y ), with h` := (h1`
mes
1 , . . . , hd`

mes
d ).

Note that x ∈ ε(h` + Y )⇔
[x
ε

]
Y

= h`. For every fixed h ∈ Ξε, we subdivide the cell ε(h` + Y ) into

subsets ε (h` + Y )
σ

with σ ∈ {0, 1}d , defined as follows

ε(k` + Y )σ :=

x ∈ ε(k` + Y ) : ε

x+ ε

{
ξ

ε

}
Y

ε


Y

= ε(h` + σ)

 ,

for a given ξ ∈ Rd. It holds ε(h` + Y ) =
⋃

σ∈{0,1}d
ε(h` + Y )σ.

We use the same notation as in Proposition 11. Now, we compute for k = 1, 2 the following norm∥∥τξT b,kε (vkε )− T b,kε (vkε )
∥∥2

L2((0,T )×Ωξλ×Γk) =
∥∥τξT b,kε (vkε )− T b,kε (vkε )

∥∥2

L2((0,T )×(Ωξλ∩Ω̂ε)×Γk)

+
∥∥τhT b,kε (vkε )− T b,kε (vkε )

∥∥2

L2((0,T )×(Ωξλ\Ω̂ε)×Γk)

:= Eξa,ε + Eξb,ε.
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Proceeding in a similar way to [10, 18], we first estimate Eξ1,ε using the above decomposition of the
domain as follows:

Eξa,ε =
∑
h∈Ξε

∫ T

0

∫
ε(h`+Y )

∫
Γk

∣∣∣∣vkε (t, ε [x+ ξ

ε

]
Y

+ εy

)
− vkε

(
t, ε
[x
ε

]
Y

+ εy
)∣∣∣∣2 dσydxdt

=
∑
h∈Ξε

∑
σ∈{0,1}d

∫ T

0

∫
ε(h`+Y )σ

∫
Γk

∣∣∣∣vkε (t, ε(h` + σ +

[
ξ

ε

]
Y

)
+ εy

)
− vkε (t, εh` + εy)

∣∣∣∣2 dσydxdt
≤
∑
h∈Ξε

∑
σ∈{0,1}d

∫ T

0

∫
ε(h`+Y )

∫
Γk

∣∣∣∣vkε (t, ε(h` + σ +

[
ξ

ε

]
Y

)
+ εy

)
− vkε (t, εh` + εy)

∣∣∣∣2 dσydxdt
≤

∑
σ∈{0,1}d

∫ T

0

∫
Ω̂ε

∫
Γk

∣∣∣∣T b,kε vkε

(
t, x+ ε

(
σ +

[
ξ

ε

]
Y

)
, y

)
− T b,kε vkε (t, x, y)

∣∣∣∣2 dσydxdt,
which by using the integration formula (4) (for p = 2) of Proposition 5 is equal to∑

σ∈{0,1}d
ε |Y |

∫ T

0

∫
Γkε

∣∣∣∣vkε (t, x+ ε

(
σ +

[
ξ

ε

]
Y

))
− vkε (t, x)

∣∣∣∣2 dσydt.
For a given small γ > 0, we can choose an ε small enough such that

∣∣∣∣εσ + ε

[
ξ

ε

]
Y

∣∣∣∣ < γ. This

amounts to saying that in order to estimate Eξa,ε, it is sufficient to obtain estimates for given ` ∈ Zd,
|ε`| < γ of

(30)
∥∥vkε (t, x+ ε`)− vkε (t, x)

∥∥2

L2((0,T )×Γkε,Q) ,

where Γε,Q = Γε ∩Q with Q ⊂ Ω an open set.
In order to estimate the norm (30), we test the variational equation the weak formulation (26)

with ϕki = η2
(
τε`u

ε
i,ε − uki,ε

)
for k = 1, 2 and ϕe = η2 (τε`ue,ε − ue,ε) , where η ∈ D(Q) is a cut-off

function with 0 ≤ η ≤ 1, η = 1 in Q and zero outside a small neighborhood Q′ of Q. Proceeding
exactly as Lemma 5.2 in [6], Gronwall’s inequality and the assumptions on the initial data give the
following result:

ε ‖vε (t, x+ ε`)− vε (t, x)‖2L2((0,T )×Γε,Q) ≤ Cε |`| ,

where C is a positive constant. Then, we obtain by using the previous estimate

(31) Eξa,ε ≤ C (|ξ|+ ε) .

Hence, we can deduce that Eha,ε → 0 as ξ → 0 uniformly in ε, as in [12]. Indeed, to prove that

(32) ∀ρ > 0,∃µ > 0 such that for every ε tends to 0+, ∀ξ, |ξ| ≤ µ⇒ Eξa,ε < ρ,

one identifies two cases:

(a) For 0 < ε <
ρ

2C
: take µ =

ρ

2C
, then, from (31), we get that condition (32) holds for |ξ| ≤ µ.

(b) For
ρ

2C
< ε < 1 : we remark that since ε tends to 0+, there are only finitely many elements

ε in the interval ( ρ
2C , 1), say {εn}Nn=1 with N ∈ N, N < ∞. Moreover, by the continuity of

translations in the mean of L2-functions, for every n, ∃µn = µ(εn) such that ∀ξ, |ξ| ≤ µn,
condition (32) holds. Thus choosing µ = min{ ρ

2C , µ1, . . . , µN} together with the argument
for the translation with respect to time, property (32) is proved.
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It easy to check that

Eξb,ε =
∥∥τξT b,kε (vkε )

∥∥2

L2((0,T )×(Ωξλ\Ω̂ε)×Γk) ≤
∥∥τξT b,kε (vkε )

∥∥2

L2((0,T )×(Ωλ\Ω̂ε)×Γk) .

Hence, we can deduce that Eξb,ε → 0 as ξ → 0 uniformly in ε. Indeed, to prove that

(33) ∀ρ > 0,∃µ > 0 such that ∀ε > 0, ∀ξ, |ξ| ≤ µ⇒ Eξb,ε < ρ,

one identifies two cases:

(a) For ε small enough, say ε < ε0, Ωλ ⊂ Ω̂ε, then Eξb,ε = 0.

(b) For ε0 < ε < 1 : we remark that since ε tends to 0+, there are only finitely many elements
ε in the interval (ε0, 1), say {εn}Nn=1 with N ∈ N, N < ∞. Moreover, by the continuity of
translations in the mean of L2-functions, for every n, ∃µn = µ(εn) such that ∀ξ, |ξ| ≤ µn,
condition (33) holds. Thus choosing µ = min{ ρ

2C , µ1, . . . , µN} together with the argument
for the translation with respect to time, property (33) is proved.

This ends the proof of the condition (ii) in Proposition 11.
(iii) The last condition follows from the a priori estimate (24). Indeed, we have for k = 1, 2:

∫ T

0

∫
Ω\Ωλ

∣∣T b,kε (vkε )
∣∣2 dxdt ≤ |Ω \ Ωλ|

r−2
r

(∫
ΩT

∣∣T b,kε (vkε )
∣∣r dxdt) 2

r

≤ C |Ω \ Ωλ|
r−2
r .

The conditions (i)-(iii) imply that the Kolmogorov criterion for T b,kε (vε) holds true in L2(ΩT × Γk)
for k = 1, 2. This concludes the proof of the first convergence in our Lemma.

It remains to prove the second convergence which will be done as follows. Note that from the
structure of Ia,ion and using property (2) in Proposition 5, we have

T b,kε

(
Ia,ion(vkε )

)
= Ia,ion

(
T b,kε (vkε )

)
, for k = 1, 2.

Due to the strong convergence of T b,kε (vkε ) in L2(ΩT ×Γy), we can extract a subsequence, such that
T b,kε (vkε )→ vk a.e. in ΩT × Γk with k = 1, 2. Since Ia,ion is continuous, we have

Ia,ion
(
T b,kε (vkε )

)
→ I1,ion(vk) a.e. in ΩT × Γy.

Further, we use estimate (24) with property (4) of Proposition 5 to obtain for k = 1, 2

∥∥T b,kε

(
Ia,ion(vkε )

)∥∥
Lr/(r−1)(ΩT×Γy)

≤ |Y |(r−1)/r
∥∥∥ε(r−1)/rIa,ion(vkε )

∥∥∥
Lr/(r−1)(Γε,T )

≤ C.

Hence, using a classical result (see Lemma 1.3 in [16]):

Ia,ion
(
T b,kε (vkε )

)
⇀ Ia,ion(vk) weakly in Lr/(r−1)(ΩT × Γk) with k = 1, 2.

Moreover, we obtain, using Vitali’s Theorem, the strong convergence of Ia,ion
(
T b,kε (vkε )

)
to Ia,ion(vk)

in Lq(ΩT × Γk), ∀q ∈ [1, r/(r − 1)) and k = 1, 2. This finishes the proof of our Lemma. �
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Finally, we pass to the limit when ε→ 0 in the unfolded formulation (28) to obtain the following
limiting problem:

(34)

1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

∂tv
kψk dxdσydt+

1

2 |Y |

∫∫∫
ΩT×Γ1,2

∂tsΨ dxdσydt

+
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Y ki

Mi

[
∇uki +∇yûki

]
∇ϕki dxdydt

+
1

|Y |

∫∫∫
ΩT×Ye

Me [∇ue +∇yûe]∇ϕe dxdydt

+
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

Ia,ion(vk)ψk dxdσydt+
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

Ib,ion(wk)ψk dxdσydt

+
1

2 |Y |

∫∫
ΩT×Γ1,2

Igap(s)Ψ dxdσydt

=
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Γk

Ikappψk dxdσydt,

Similarly, we can prove also that the limit of (29) for k = 1, 2 as ε tends to zero, is given by:

(35)
1

|Y |

∫∫∫
ΩT×Γk

∂tw
kek dxdσydt−

1

|Y |

∫∫∫
ΩT×Γk

H(vk, wk)ek dxdσydt = 0.

Remark 13. Since the linear term H is not varying at the micro scale and since vk does not depend
on y, it can be proven, using Assumption (8b), that the solution wk of{

∂tw
k = H(vk, wk) in ΩT × Γk,

wk(0, x) = wk0 (x) on Ω,

is unique for all y ∈ Γk for k = 1, 2 hence it is independent of the variable y.

5.3. Derivation of the macroscopic tridomain model. The convergence results of the pre-
vious part allow us to pass to the limit in the microscopic equations (19)-(21) and to obtain the
homogenized model formulated in Theorem 1.

To this end, we choose a special form of test functions to capture the microscopic informations
at each structural level. Then, we consider that the test functions have the following form:

(36)

{
ϕe,ε = φe(t, x) + εθe(t, x)Θe,ε(x),

ϕki,ε = φki (t, x) + εθki (t, x)Θk
i,ε(x),

with functions Θe,ε and Θk
i,ε for k = 1, 2 defined by:

Θe,ε(x) = Θe

(x
ε

)
and Θk

i,ε(x) = Θk
i

(x
ε

)
, for k = 1, 2,

where φe, φ
k
i , θe and θki are in D(ΩT ), Θe in H1

#(Ye) and Θk
i in H1

#(Y ki ) for k = 1, 2. Then, we have:{
∇ϕe,ε = ∇xφe + ε∇xθeΘe,ε + θe∇yΘe,ε,

∇ϕki,ε = ∇xφki + ε∇xθki Θk
i,ε + θki∇yΘk

i,ε.
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Due to the regularity of test functions and using property (5) of Proposition 5, there holds for
k = 1, 2, when ε→ 0 :

T i,kε (ϕki,ε)→ φki strongly in L2
(
ΩT × Y ki

)
,

T i,kε (θki Θk
i,ε)→ θki (t, x)Θk

i (y) strongly in L2
(
ΩT × Y ki

)
,

T i,kε
(
∇ϕki,ε

)
→ ∇xφki + θki∇yΘk

i,ε strongly in L2
(
ΩT × Y ki

)
,

T eε (ϕe,ε)→ φe strongly in L2 (ΩT × Ye) ,
T eε (θeΘe,ε)→ θe(t, x)Θe(y) strongly in L2 (ΩT × Ye) ,
T eε (∇ϕe,ε)→ ∇xφe + θe∇yΘe,ε strongly in L2 (ΩT × Ye) .

Since ψkε :=
(
ϕki,ε − ϕe,ε

)
|Γkε,T for k = 1, 2 and Ψε :=

(
ϕ1
i,ε − ϕ2

i,ε

)
|Γ1,2
ε,T
, then it holds also:

T b,kε (ψkε )→ ψk strongly in L2(ΩT × Γk),

T b,1,2ε (Ψε)→ Ψ strongly in L2(ΩT × Γ1,2),

where ψk :=
(
φki − φe

)
|ΩT×Γk for k = 1, 2 and Ψ :=

(
φ1
i − φ2

i

)
|ΩT×Γ1,2 .

Collecting all the convergence results of J1, . . . , J8 obtained in Section 4.2, we deduce the following
limiting problem:

(37)

∑
k=1,2

∣∣Γk∣∣
|Y |

∫∫
ΩT

∂tv
kψk dxdt+

∣∣Γ1,2
∣∣

2 |Y |

∫∫
ΩT

∂tsΨ dxdt

+
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Y ki

Mi

[
∇uki +∇yûki

] [
∇xφki + θki∇yΘk

i,ε

]
dxdydt

+
1

|Y |

∫∫∫
ΩT×Ye

Me [∇ue +∇yûe] [∇xφe + θe∇yΘe,ε] dxdydt

+
∑
k=1,2

∣∣Γk∣∣
|Y |

∫∫
ΩT

Ia,ion(vk)ψk dxdt+
∑
k=1,2

∣∣Γk∣∣
|Y |

∫∫
ΩT

Ib,ion(wk)ψk dxdt

+

∣∣Γ1,2
∣∣

2 |Y |

∫∫
ΩT

Igap(s)Ψ dxdt

=
∑
k=1,2

∣∣Γk∣∣
|Y |

∫∫
ΩT

Ikappψk dxdt.

Similarly, we can prove also that the limit of the coupled dynamic equation for k = 1, 2 as ε tends
to zero, which is given by:

(38)

∣∣Γk∣∣
|Y |

∫∫
ΩT

∂twe
k dxdt−

∣∣Γk∣∣
|Y |

∫∫
ΩT

H(vk, wk)ek dxdt = 0.

Now, we will find first the expression of ûki in terms of the homogenized solution uki for k = 1, 2.
Then, we derive the cell problem from the homogenized equation (37). Finally, we obtain the weak
formulation of the corresponding macroscopic equation.

We first take φe, θe and φki for k = 1, 2 are equal to zero, to get:

(39)
1

|Y |
∑
k=1,2

∫∫
ΩT×Y ki

Mi

(
∇uki +∇yûki

) (
θki∇yΘk

i,ε

)
dxdydt = 0.



24 FAKHRIELDDINE BADER∗, MOSTAFA BENDAHMANE, MAZEN SAAD, AND RAAFAT TALHOUK

Since uki , k = 1, 2 is independent on the microscopic variable y then the formulation (39) corresponds
to the following microscopic problem:

(40)


−∇y ·

(
Mi∇yûki

)
=

d∑
p,q=1

∂mpq
i

∂yp

∂uki
∂xq

in Y ki ,

ûki y-periodic,(
Mi∇yûki + Mi∇xuki

)
· nki = 0 on Γk,(

Mi∇yûki + Mi∇xuki
)
· nki = 0 on Γ1,2.

Hence, by the y-periodcity of Mi and the compatibility condition, it is not difficult to establish the
existence of a unique periodic solution up to an additive constant of the problem (40) (see [3] for
more details).
Thus, the linearity of terms in the right-hand side of (40) suggests to look for ûki under the following
form in terms of uki :

(41) ûki (t, x, y, z) = χi(y) · ∇xuki + ûk0,i(t, x, y),

where ûk0,i, k = 1, 2 is a constant with respect to y and each element χqi of χi satisfies the following
ε-cell problem:

(42)


−∇y · (Mi∇yχqi ) =

d∑
p=1

∂mpq
i

∂yp
in Y ki ,

χqi y-periodic,

Mi∇yχqi · nki = −(Mieq) · nki on Γk, k = 1, 2

Mi∇yχqi · nki = −(Mieq) · nki on Γ1,2,

for q = 1, . . . , d. Moreover, the compatibility condition is imposed to guarantee the existence and
uniqueness of solution χqi ∈ H1

#(Y ki ) to problem (42) with H1
# is given by (18).

Finally, inserting the form (41) of ûki into (37) and setting θki , θe φe to zero, one obtains the weak
formulation of the homogenized equation for the intracellular problem:

(43)

∑
k=1,2

µk

∫∫
ΩT

∂tv
kφki dxdt+ µg

∫∫
ΩT

∂tsφ
1
i dxdt

+
1

|Y |
∑
k=1,2

∫∫∫
ΩT×Y ki

M̃i∇uki · ∇φki dxdydt

+
∑
k=1,2

µk

∫∫
ΩT

Ia,ion(vk)φki dxdt+
∑
k=1,2

µk

∫∫
ΩT

Ib,ion(wk)φki dxdt

+ µg

∫∫
ΩT

Igap(s)φ1
i dxdt =

∑
k=1,2

µk

∫∫
ΩT

Ikappφki dxdt,

with µk =
∣∣Γk∣∣ / |Y | , k = 1, 2, µg =

∣∣Γ1,2
∣∣ /2 |Y | and the coefficients of the homogenized conductivity

matrices M̃i = (m̃pq
i )1≤p,q≤d defined by:

(44) m̃pq
i :=

1

|Y |

d∑
`=1

∫
Y ki

(
mpq
i + mp`

i

∂χqi
∂y`

)
dy.

Similarly, we can decouple the cell problem in the extracellular domain and define the homogenized

matrix M̃e. This completes the proof of Theorem 1 using periodic unfolding method.

Remark 14.
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1. Since the conductivity matrices Mj for j = i, e are symmetric then the homogenized conduc-

tivity matrices M̃j defined by (14a)-(14b) are also symmetric for j = i, e.

2. We can rewrite the homogenized conductivity matrices M̃i = (m̃pq
i )1≤p,q≤d as follows

(45) m̃pq
i :=

1

|Y |

d∑
`,`′=1

∫
Y ki

m``′

i

∂ (yq + χqi )

∂y`′

∂ (yp + χpi )

∂y`
dy.

Indeed, we recall that χqi is the solution of (42). Choosing χpi as test function in (42), one
has

d∑
`,`′=1

∫
Y ki

m``′

i

∂χqi
∂y`′

∂χpi
∂y`

dy = −
d∑
`=1

∫
Y ki

m`q
i

∂χpi
∂y`

dy = −
d∑

`,`′=1

∫
Y ki

m``′

i

∂yq
∂y`′

∂χpi
∂y`

dy.

Hence, one obtains

(46)
1

|Y |

d∑
`,`′=1

∫
Y ki

m``′

i

∂ (yq + χqi )

∂y`′

∂χpi
∂y`

dy = 0.

On the other hand, since∫
Y ki

mpq
i dy =

d∑
`,`′=1

∫
Y ki

m``′

i

∂yq
∂y`′

∂yp
∂y`

dy,

d∑
`=1

∫
Y ki

mp`
i

∂χqi
∂y`

dy =

d∑
`,`′=1

∫
Y ki

m``′

i

∂χqi
∂y`′

∂yp
∂y`

dy,

formula (44) can be written as follows:

(47) m̃pq
i =

1

|Y |

d∑
`,`′=1

∫
Y ki

m``′

i

∂ (yq + χqi )

∂y`′

∂yp
∂y`

dy, ∀p, q = 1, . . . , d.

Summing (46) from (47) gives (45). Similarly, we can rewrite the other matrix M̃e in terms
of the corresponding corrector function χe.

3. Since the conductivity matrices Mj for j = i, e satisfy the elliptic conditions defined by

(6), then the homogenized conductivity matrices M̃j , j = i, e verify the following elliptic
conditions: there exits α0, β0 > 0 such that

M̃jλ · λ ≥ α0 |λ|2 ,(48a) ∣∣∣M̃jλ
∣∣∣ ≤ β0 |λ| , for any λ ∈ Rd.(48b)

Indeed, let λ ∈ Rd and j = i. To prove (48a), then from (45) it follows that

d∑
p,q=1

m̃pq
i λpλq =

1

|Y |

d∑
p,q=1

d∑
`,`′=1

∫
Y ki

m``′

i λp
∂ (yp + χpi )

∂y`
λq
∂ (yq + χqi )

∂y`′
dy.

Setting ζi =
d∑
p=1

λp (yp + χpi ) and using the ellipticity of Mi defined by (6), we get

(49)

d∑
p,q=1

m̃pq
i λpλq ≥

α

|Y |

∫
Y ki

|∇ζi|2 dy ≥ 0, for any λ ∈ Rd.
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Let us show that this inequality implies that

d∑
p,q=1

m̃pq
i λpλq > 0, for any λ ∈ Rd, λ 6= 0.

If this were not true. In view of (49), one would have some λ 6= 0 such that

|∇ζi| = 0.

This means that

ζi =

d∑
p=1

λp (yp + χpi ) = constant.

Thus, one has
d∑
p=1

λpyp = −
d∑
p=1

λpχ
p
i + C,

and this impossible since the right-hand side function is y-periodic by definition and λ 6= 0.

To end the proof of ellipticity, we know that the function
d∑

p,q=1
m̃pq
i ξpξq is continuous on the

unit sphere Sd−1 which is a compact set of Rd. Hence, this function achieves its minimum
on Sd−1 and, due to the previous result, this minimum is positive. So, there exists α0 > 0
such that

d∑
p,q=1

m̃pq
i ξpξq ≥ α0, ∀ξ ∈ Sd−1.

Consequently,
d∑

p,q=1

m̃pq
i

λp
|λ|

λq
|λ|
≥ α0, for any λ ∈ Rd, λ 6= 0,

since the vector

(
λ1

|λ|
, . . . ,

λd
|λ|

)
belongs to Sd−1. This ends the proof of inequality (48a) and

by the same way we obtain the second inequality.
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