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Abstract 

 
The antisymmetric exchange, also known as the Dzyaloshinskii-Moriya interaction (DMI), is an 

effective interaction that may be at play in isolated complexes (with transition metals or lanthanides for 

instance), nanoparticles and highly correlated materials with adequate symmetry properties. While many 

theoretical works have been devoted to the analysis of single-ion zero-field splitting and to a lesser 

extent to symmetric exchange, only a few ab initio studies concern the DMI. Actually, it originates from 

a subtle interplay between weak electronic interactions and spin-orbit couplings. This article aims to 

highlight the origin of this interaction from theoretical grounds in a real tri-copper(II) complex, 

capitalizing on previous methodological studies on bi-copper(II) model complexes. By tackling this 

three-magnetic-center system, we will first show that the multi-spin model Hamiltonian is appropriate 

for trinuclear (and likely for higher nuclearity) complexes, then that the correct application of the 

permutation relationship is necessary to explain the outcomes of the ab initio calculations, and finally 

that the model parameters extracted from a binuclear model transfer well to the trinuclear complex. For 

a more theory-oriented purpose, we will show that the use of a simplified structural model allows one 

to perform more demanding electronic structure calculations. On this simpler system, we will first check 

that the previous transferability is still valid, prior to perform more advanced calculations on the derived 

two-magnetic-center model system. To this end, we will explain in details the physics of the DMI in the 

copper triangle of interest, before advocating further theory/experiment efforts. 
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1 Introduction 
 

The interpretation of low-temperature magnetic properties of transition metal complexes for 

long relies on the use of simple model Hamiltonians, in particular spin Hamiltonians1. 

Implicitly, this means that the orbital parts of the wave functions of the states of interest are 

very similar and can be factorized. Both the low energy spectrum and the corresponding wave 

functions can be well reproduced by a simple spin Hamiltonian. This appealing simplification 

is in fact very powerful and can be used to explain most of the molecular magnetism 

observations. This description may fail, however, if at least one magnetic site exhibits first-

order spin-orbit coupling (SOC), which requires local orbital degeneracy (the converse is not 

necessarily true, i.e. one can have orbital degeneracy without exhibiting first-order SOC2). 

Putting aside the first-order SOC case and focusing exclusively on standard magnetic systems 

whose low-temperature magnetic behaviors can be consistently described by a spin 

Hamiltonian, a key issue in molecular magnetism is the theory behind the use of a spin 

Hamiltonian, whether based on (old-fashion) analytical derivations3,4 and/or on sophisticated 

quantum mechanical calculations,5 and also of course on the interplay between theory and 

experiment. Establishing a fruitful dialogue between theorists and experimentalists first 

requires the ability to reproduce experimental data reasonably well. In the field of anisotropic 

spin Hamiltonians, one may quote the pioneering DFT work of Pederson and Khanna on giant 

spin (GS) Hamiltonians of polynuclear TM complexes6 and further applications,7–9 many DFT 

and wave function theory (WFT) works related to mononuclear complexes,10–30 and a few WFT 

works on dinuclear complexes31–34 and beyond.35 In short, theoretical chemists have clearly 

shown many times that the computation of symmetric anisotropic tensors belonging to GS or 

multi-spin (MS) models, is generally possible with satisfactory accuracy. 

 

The case of the antisymmetric exchange, known as the Dzyaloshinskii-Moriya interaction 

(DMI),36–38 is much less straightforward from both experimental and theoretical points of view. 

Indeed, it is difficult to have reliable experimental values of the DMI, because on the one hand 

the experimental fitting procedures are essentially based on the reproduction of energy 

differences, and on the other hand when DMI is at play, many other parameters (isotropic 

exchange, symmetrical exchange, local splitting of the energy levels in the absence of the 

magnetic field, i.e. local zero-field splitting –ZFS–, etc.) also affect these energies. Two recent 

papers 39,40 were dedicated to the identification of the main chemical ingredients that govern 

both the magnitude and orientation of the DMI through analytical derivations and ab initio 

calculations. An analytical formula was proposed that reproduces very well the magnitude of 

the DMI components far from the first-order SOC regime. One important conclusion of 

reference39 was that an efficient way to increase the DMI is to approach the first-order SOC 

regime, i.e. to design complexes where some on-site d orbitals are almost degenerate. The 

description of the underlying physics governing the DMI close to the first-order SOC regime 

was then described in a follow-up article.40 To this end, we have developed a simple electronic 

and spin-orbit model, used ab initio calculations to conduct a thorough methodological study 

and show the importance of the use of the effective Hamiltonian theory to accurately extract 

DMI. One can also mention some other theoretical chemistry studies that have been devoted to 

DMI.41–46 However, in all these works either model coordination complexes unrelated to real 

complexes or fragments of solids were studied. Thus, although methodological conclusions 

could be drawn, comparisons with reliable experimental data were impossible in practice. 

 

In order to achieve a decent comparison between theoretical and experimental data, several 

issues need to be addressed, severely limiting the choice of molecular systems. From a 

theoretical point of view, we want the calculations to be as simple as possible, since ab initio 
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calculations of DMI are still in their infancy. For this, it is necessary to have a minimal number 

of magnetic centers and to stick to local S = ½ spins, such as copper(II) centers. Indeed, larger 

local spins quickly give rise to a multitude of energy levels (or microstates) in the dn manifold, 

and generate higher order interactions such as rank 4 tensors, biquadratic interactions, local 

anisotropies, etc.32,47,48 From an experimental point of view, it would be quite simple to describe 

the coupling of two local spins S = ½ using the multispin Hamiltonian. However, the 

interpretation of the experimental data is problematic since the parameters of the multispin 

Hamiltonian cannot be extracted independently from the energy spectrum using fitting 

procedures. Therefore, the system should be at least trinuclear. Note however that the same 

problem of extraction from experiment occurs in a non-equilateral triangular complex (vide 

infra). In contrast, in our calculations, the DMI is extracted from the off-diagonal elements of 

the spin-orbit configuration interaction matrix and is not ambiguous. Nevertheless, as shown 

previously40 these off-diagonal elements are very sensitive to the quality of the ab initio wave 

functions. Therefore, a system exhibiting a large DMI is necessary to validate at least semi-

quantitatively a computational approach and also to reach robust conclusions, without critical 

problems of numerical accuracy.49–52 

 

In this work, we will focus on a trinuclear systems, the tris(-hydroxy)tri-copper(II) complex53 

that involves N,N'-di-tert-butyl-ethylenediamine (DBED) ligands (see Figure 1, left), here after 

denoted 1(3Cu) for which the appearance of a very large DMI has been clearly shown 

experimentally. In this complex, a strict D3 symmetry was reported in the crystal structure.53 

Actually, experimental fits were performed by including (i) one isotropic coupling constant (J), 

one antisymmetric exchange constant (G) and one intermolecular isotropic coupling term (J')53 

or (ii) considering two different magnetic couplings 𝐽 and 𝐽 −
𝛿

2
  and a single antisymmetric 

exchange constant (G), with actually a large G term in both cases (values ranging from 35 to 

37 cm-1 depending on the technique and model Hamiltonian used).54 In other words, despite 

confirmation for a symmetry lowering (𝛿 ≠ 0), the introduction of a symmetry lowering 

parameter 𝛿 hardly reduces the extracted value of the G constant. Therefore, notwithstanding 

potential structural issues that will be discussed at the end of the article, we can be confident in 

the fact that a large DMI occurs in this real system, which we recall matters for our 

computational purposes. We chose to use the experimental geometry (of D3 symmetry point 

group) for two main reasons: i) experience has shown us that the ab initio values of the magnetic 

parameters are very sensitive to the geometric structures55,56 and we usually achieve good 

accuracy for experimental geometries; ii) a geometry optimization would necessarily have been 

performed using a broken symmetry DFT approach for which the optimized solution would not 

correspond to a pure doublet spin state.  

 

In this paper, we will calculate the DMI in the tri-copper(II) complex and in a simplified di-

copper(II) model system where one Cu(II) ion is substituted by a diamagnetic Zn(II) one. In 

order to apply more correlated methods, we will study a structurally simplified model system 

also involving either three or two Cu(II) where NH3 groups replace the DBED ligands (see 

Figure 1, right). After a section on theory and methods, we will divide the discussion of the 

results into two main items: i) validity of the model Hamiltonian, permutation relationship and 

transferability of the parameters from two Cu(II) systems to three Cu(II) ones ii) impact of 

electron correlation on DMI values (content of the active space and use of “decontracted” wave 

functions), prior to conclude on the necessity for further theoretical and experimental efforts. 

 

2 Theory and Methods of Calculation 
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2.1 Extraction of Model Hamiltonians Parameters 

 
The use of the effective Hamiltonian theory57,58 for the extraction of model parameters has 

proved to be particularly useful in the study of magnetic systems.2,16,33–35,59 As this approach 

has already been presented several times,5,55,60 we will only recall its main features. The 

objective of the method is to determine an effective Hamiltonian spanned on a small model 

space, typically the space of the model spin Hamiltonian for which we want to extract the 

interactions (here the MS Hamiltonian). The method imposes that the model energies are 

exactly the same as those calculated ab initio with the all-electron Hamiltonian and that the 

model wave functions are the ab initio wave functions projected onto the model space. To 

satisfy these requirements, we compute the numerical matrix of the effective Hamiltonian 

defined as follows: 

 

𝐻̂𝑑𝑒𝑠 𝐶𝑙𝑜𝑖𝑧𝑒𝑎𝑢𝑥 = ∑ |Ψ̃𝑘⟩𝐸𝑘⟨Ψ̃𝑘|𝑁
𝑘=1         (1) 

 

where Ek are the ab initio energies, Ψ̃𝑘 are the orthonormalized projections58 of the ab initio 

wave functions onto the model space and N is the both the size of the model space and the total 

number of target states. The comparison between the matrix of the model Hamiltonian 

expressed in terms of the analytical interactions and the numerical matrix of the effective 

Hamiltonian allows in general to assign values to all interactions. It should be remembered that 

beyond its numerical utility, this method allows us to check the appropriateness of the model 

and to propose new models when necessary.32,33,43,47,48,61–67 Indeed, the norm of the projections 

informs us about the relevance of the model space and the comparison of the analytical and 

numerical matrices allows us to check the coherence of the interactions and thus of the model 

operators. As we will extract the model interactions for both two-magnetic-site and three-

magnetic-site Hamiltonians, let us detail the procedure in both cases. 

 

 

2.1.1 Complexes With Two S = ½ Magnetic Sites 

 

For two active S = ½ magnetic sites, the MS model Hamiltonian, which includes operators 

acting on both local spins 𝑺̂𝐴 and 𝑺̂𝐵, is: 

 

𝐻̂𝑀𝑆 = 𝐽𝑎𝑏𝑺̂𝑎 . 𝑺̂𝑏 + 𝑺̂𝑎. 𝑫𝑎𝑏 . 𝑺̂𝑏 + 𝒅𝑎𝑏 . 𝑺̂𝑎 × 𝑺̂𝑏      (2) 

 

where 𝐽𝑎𝑏  is the isotropic coupling constant between the two a and b sites,68–71 𝑫𝑎𝑏  is the 

symmetric exchange tensor72 and 𝒅𝑎𝑏 is the DM vector37,38 (resulting from the reduction of the 

antisymmetric component of the second-rank exchange tensor, obtained after separation of its 

symmetric and antisymmetric components). 

By definition, this model Hamiltonian works on the basis73 of the |𝑆𝑎, 𝑀𝑆𝑎, 𝑆𝑏 , 𝑀𝑆𝑏⟩ uncoupled 

functions, which may be denoted as |𝑀𝑆𝑎, 𝑀𝑆𝑏⟩ for the sake of simplicity. This model 

Hamiltonian may then be transformed in the coupled |𝑆, 𝑀𝑆⟩  basis as follows: 

 

𝐻̂MS(𝑐𝑜𝑢𝑝𝑙𝑒𝑑) = 𝑼−𝟏𝐻̂MS(𝑢𝑛𝑐𝑜𝑢𝑝𝑙𝑒𝑑)𝑼       (3) 

 

where the basis is indicated in brackets, and the 𝑼 matrix is given by the Clebsch-Gordan 

coefficients.73 
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The general expression of 𝐻̂𝑀𝑆(𝑐𝑜𝑢𝑝𝑙𝑒𝑑) is available elsewhere.39,43 In this 4×4 matrix, 𝐽𝑎𝑏  

discriminates the diagonal elements of the triplet components from that of the singlet. The axial 

parameter D potentially affects differently the diagonal elements of all components (singlet and 

triplet) in the magnetic axes frame while the rhombic E parameter couples the 𝑀𝑆 = ±1 

components) and 𝒅𝑎𝑏 couples the components of the triplet with the singlet, e.g., the z-

component of the DM vector couples the 𝑀𝑆 = 0 component of the triplet with the singlet. 

Actually, the three components (x, y and z) are obtained in the coordinate frame that is used for 

the calculations, even if we put special emphasis on the z-component for the sake of 

understanding the properties of the native tricopper(II) complex and simplicity. This is an asset 

of our theoretical approach: we do not need to assume any symmetry properties to perform 

extractions of effective parameters.  

 

Symmetry rules for the occurrence of the DMI were initially proposed by Moriya.38 Note that 

a complete picture for symmetry rules is available in the context of the nuclear spin-spin 

coupling tensor.74 Typically, this term vanishes with the occurrence of a symmetry center, as in 

the famous copper acetate monohydrate complex.34,75,76 

 

The extraction of both GS and MS Hamiltonians parameters from the effective Hamiltonian 

theory has been practiced many times and has proven to be particularly efficient for binuclear 

complexes. The validity of the MS model for two S = ½ spins has already been demonstrated 

by comparing the analytical and numerical matrices and all parameters, J, D and |dz| could easily 

be extracted.39,40 We will therefore not further detail the procedure here. 

 

 

2.1.2 Complexes with Three S = ½ Magnetic Sites 

 

For three S = ½ magnetic sites, the MS model can be built in a similar way by considering 

the three (independent) pairs of magnetic centers (ab, bc and ac): 

 

𝐻̂𝑀𝑆 = 𝐽𝑎𝑏𝑺̂𝑎. 𝑺̂𝑏 + 𝑺̂𝑎. 𝑫𝑎𝑏 . 𝑺̂𝑏 + 𝒅𝑎𝑏 . 𝑺̂𝑎 × 𝑺̂𝑏 + 𝐽𝑏𝑐𝑺̂𝑏. 𝑺̂𝑐 + 𝑺̂𝑏. 𝑫𝑏𝑐. 𝑺̂𝑐 + 

𝒅𝑏𝑐. 𝑺̂𝑏 × 𝑺̂𝑐+𝐽𝑎𝑐𝑺̂𝑎. 𝑺̂𝑐 + 𝑺̂𝑎. 𝑫𝑎𝑐. 𝑺̂𝑐 − 𝒅𝑎𝑐. 𝑺̂𝑎 × 𝑺̂𝑐      (4) 

 

where a minus sign applies to the last term because of the permutation relationship that is 

specific to the DMI77 (𝒅𝑎𝑐 = −𝒅𝑐𝑎), while obviously 𝐽𝑎𝑐 = 𝐽𝑐𝑎 and 𝑫𝑎𝑐 = 𝑫𝑐𝑎. As noted by 

Boča and Herchel, missing this permutation relationship (i.e. by affecting a plus sign to the last 

term of Eq. 3) may lead to severe errors. 

 

Symmetry rules apply at two different levels, (i) the local symmetry of each pair of magnetic 

sites rules the occurrence and orientation of the DM vector and (ii) the global (molecular) 

symmetry imposes relationships between the effective parameters of the different pairs (from 

trivial to complex, depending on the situation). For instance, if one considers a strict D3 

symmetry for the trinuclear complex (as in the reported experimental structure), the molecular 

C3 symmetry axis imposes the three isotropic coupling constants to be equal (𝐽𝑎𝑏 = 𝐽𝑏𝑐 = 𝐽𝑎𝑐 =
𝐽) and symmetry-related DM vectors between the three pairs of magnetic centers (these have 

equal norms and symmetry-related directions when expressed in the molecular frame).  

 

One may introduce further simplifications which will be justified later on the basis of the 

outcomes of our calculations (see Section 3.1). We assume that: 
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- the main anisotropy axis (z by convention) of the three symmetric exchange tensors are 

parallel to the C3 symmetry axis. This plus the occurrence of a C3 axis leads to equal 

axial parameters for the symmetric exchange tensors: Dab = Dbc = Dac = D. Note that 

although we use the notation D for the sake of simplicity, it is truly a MS Hamiltonian 

parameter that must not be confused with the GS Hamiltonian DS=3/2 parameter for the 

quartet state (in fact, here D=2DS=3/2). 

- the rhombic terms for the symmetric exchange tensors which are usually very small (Eab 

= Ebc = Eac = E) can be neglected. 

- the x and y components of the DM vectors are much smaller than the z ones, as was 

assumed in the experimental extraction.54 In fact, the local C2 symmetry axis for a given 

pair of magnetic sites imposes that the component of the DM vector is strictly zero along 

this C2 axis (it corresponds to the case for which the C2 axis exchanges the two nuclei 

in the Buckingham et al. paper74). Then, out of the two remaining components, the 

largest one is along the molecular C3 axis (here denoted z), and the small one is 

orthogonal to both the C2 and C3 axes (depending on the pair of magnetic sites that is 

considered, it may correspond to the x or y orientation or to a combination of both). In 

fact, one may even assume that the x and y components of the DM vectors are negligible 

(or, to be more precise, that their impact on the model spectrum is negligible). Lastly, if 

one further considers the C3 symmetry, the z components of the DM vectors must also 

be equal, i.e. dab;z = dbc;z= –dac;z = dz (using the correct permutation relationship). 

 

The simplified model Hamiltonian matrix expressed in the uncoupled basis only involves three 

unknown parameters (J, D and dz) and is given in Table S1 while that expressed in the coupled 

basis is provided in Table 1 (the transformation matrix is given in Supporting Information). In 

fact, with this simplified model, the quartet and doublet components are not coupled, i.e. the 

matrix is block-diagonal, with a diagonal block for the quartet and a block of doublets 

components which are coupled through the DMI.  Finally, it is worth mentioning that this 

Hamiltonian has simple analytical eigenvalues, actually four doubly degenerate (Kramers' 

doublets) ones: 

 

𝐸1
3

= 𝐸2
4

= −
3𝐽

4
∓

√3𝑑𝑧

2
;  𝐸5 

7 
= 𝐸6 

8 
=

3𝐽

4
∓

𝐷

2
       (5) 

 where the upper indices for the energies correspond to the upper signs in the expressions. 
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3
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3
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3
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| 0 0 0 

3
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𝐽 +

1

2
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<
1

2
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1
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| 0 0 0 0 −

1

4
𝐽 0 𝑖

√3

2
𝑑𝑧 0 

<
1

2
,
1

2
| 0 0 0 0 0 −

1

4
𝐽 0 −𝑖

√3

2
𝑑𝑧 

<
1

2
, −

1
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| 0 0 0 0 −𝑖

√3

2
𝑑𝑧 0 −

1
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<
1

2
,
1

2
| 0 0 0 0 0 𝑖

√3

2
𝑑𝑧 0 −

1

4
𝐽 

Table 1: Simplified Model Interaction Matrix obtained in the coupled Basis for tri-copper(II) 

Complexes of High Symmetry (Equilateral Triangles, i.e. C3 Symmetry or Higher) 

 

It is therefore possible to directly extract the |𝑑𝑧| value from the energy difference Δ𝐸 between 

the two spin-orbit states essentially spanned on the doublet spin-orbit free states:  

 

|𝑑𝑧| =
Δ𝐸

√3
           (6) 

 

Note that |𝑑𝑧| directly corresponds to the G antisymmetric exchange constant in reference 54. 

One may note that one can also extract a value of |𝑑𝑧| (which can be different from the previous 

one) from the ab initio SOSI matrix elements between the two spin-orbit free doublet states: 

 

|𝑑𝑧| =
2

√3
|𝐼𝑚 (⟨

1

2
, ±

1

2
|𝐻𝑆𝑂|

1

2
, ±

1

2
⟩)|       (7) 

 

The value of the axial parameter of the symmetric exchange tensor can be extracted as follows: 

 

D = E[3/2,±3/2]–E[3/2,±1/2]         (8) 

 

where E[3/2,±3/2] and E[1/2,±1/2] are the energy of the spin-orbit states with a large projection 

on the MS = ±3/2 and MS = ±1/2 components of the quartet, respectively. 

 

Finally, the isotropic magnetic coupling J value can be extracted from the energy difference 

between the mean energies of the quartet block and those of the doublet ones:  

 

𝐽 =
2

3
(E[3/2, Ms]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − E[1/2, Ms]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )        (9) 

 

It is also possible to extract the pure electronic magnetic coupling from the energy difference 

between the quartet and degenerate doublets spin-orbit free states.  

 

   

 

2.2 Strategy of calculation and computational information 
 

The tris(- hydroxy)tri-copper(II) complex is represented on Figure 1. Its reported experimental 

structure displays a D3 molecular symmetry point group.53 The copper ions and the hydroxo 

groups are coplanar and the C2 axes are directed along the O-H bonds of the hydroxo groups. 

The Cu-Cu distances are 3.64 Å and the 𝐶𝑢𝑂𝐶𝑢̂  angles are 144°. The full complex is not planar 

and the deviation to this planarity is introduced by the BDED (N,N'-di-tert-butyl-

ethylenediamine) bidentate ligands. The corresponding coordinates are given in Table S2.  
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As this complex is of relatively large size, we had to choose a computational strategy allowing 

to introduce both non-dynamic and dynamic correlation effects which are known to be crucial 

for the study of magnetic anisotropy. The strategy includes three kinds of calculations: 

- We first performed the less computationally demanding calculations (see below for 

details) on the complete molecule denoted 1(3Cu) as it contains three Cu(II)magnetic 

centers. 

- Since the model Hamiltonian involves only bicentric interactions and in order to verify 

that there are no interactions involving more than two magnetic centers, we replaced 

one of the Cu(II) with a Zn(II), thus introducing a diamagnetic center. This system is 

called 1(2Cu,1Zn). Beyond the interest of this substitution for the validation of the 

model, this also allowed us to perform more sophisticated calculations on the simplified 

system and to check the transferability of the extracted parameters from 1(2Cu,1Zn) to 

1(3Cu). 

- Finally, we studied a model complex in which the BDED ligands were replaced by NH3 

groups. The corresponding XYZ coordinates are given in Table S3. This smaller model 

system allowed us to perform calculations accounting for more correlation effects, on 

both the tri-magnetic-site system 2(3Cu) and on the bi-magnetic-site system 

2(2Cu,1Zn).  

 

As we will see in the section dedicated to the results, the comparison of the extracted parameters 

at all levels of calculations and for all systems demonstrates the relevance of this strategy.   

 

 

 

 

 
Figure 1: Ball and stick representations of the two parent structural modecules, namely 1(3Cu) 

and 2(3Cu) (see text). Color code: dark blue stands for Cu, red for O, light blue for N and light 

pink for H. 

 

As the magnetic anisotropy has a relativistic origin, the spin-orbit coupling (SOC) must be 

computed. A two-step procedure of calculations that has successfully been used for the study 

of many similar transition metal complexes16 has been used. In a first step, a set of non-

relativistic or scalar-relativistic states, i.e. spin-orbit free states, is computed. For the DMI 

calculation, the minimal set consists of the states that best matches the spin eigenstates of the 

Heisenberg-Dirac-van Vleck Hamiltonian. For instance, for a system involving two Cu(II) sites, 
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this set consists of one triplet and one singlet,35 while in the case of three Cu(II) sites it consists 

of one quartet and two doublets. Computing the symmetric exchange tensors requires to 

calculate additional electronic states still generated by the d9-d9-d9 configuration, i.e. d 

orbitally-excited states.34 In the second step, the SOC78 between all Ms components of these 

electronic states is computed and the so-obtained Spin-Orbit State-Interaction (SOSI)79,80 

matrix is diagonalized to get the spin-orbit states and their energies. The diagonal elements of 

the SOSI matrix will be obtained at two different levels: i) the Complete-Active-Space Self-

Consistent Field (CASSCF) level which simultaneously optimizes the coefficients of the 

various determinants of the spin-orbit free states and the molecular orbitals for all these states 

in an average manner (SA-CASSCF),81 ii) the n-electron valence state perturbation theory 

(NEVPT2)82–84 level which adds the energetic effects of dynamic correlation up to the 2nd order 

of perturbations. Usually the spin-orbit free states in which the SOSI matrix is spanned are the 

CASSCF ones. However, and as it will be shown here, quasi-degenerate NEVPT2 (QD-

NEVPT2)85 states can be used to account for effects of dynamic correlations on the wave 

functions. Unless specified otherwise by a “QD” flag in the tables, the standard strongly-

contracted version of NEVPT2 has been employed to compute the correlated electronic 

energies. Also, note that when QD-NEVPT2 is explicitly mentioned (“QD” flag), both the QD-

NEVPT2 correlated electronic energies and decontracted wave functions are used to compute 

the SOCI matrix. Depending on the studied systems, several active spaces have been 

considered. For the two-magnetic-site systems, either 1(2Cu,1Zn) or 2(2Cu,1Zn), we have 

defined three different active spaces: i) the minimal active space contains 2 electrons in 2 

orbitals i.e. CAS(2,2) generating one singlet and one triplet magnetic states, ii) the intermediate 

active space distributes 6 electrons in 4 orbitals i.e. CAS(6,4) generating 4 singlet and 4 triplet 

magnetic states (which can be reduced to 3 and 3, respectively, if only the ground and singly-

excited configurations are considered), iii) the extended active space spreads all d electrons in 

all d orbitals i.e. CAS(18,10) generating 25 triplet and 25 singlet magnetic states. Note that here 

the magnetic states denote the open-shell states belonging to the d9–d9 configuration (i.e. the 

open-shell “neutral” states). For the three-magnetic-site systems, either 1(3Cu) or 2(3Cu), we 

have considered two active spaces: i) the minimal active space contains 3 electrons in 3 orbitals 

CAS(3,3) generating one quartet and two doublet magnetic states, ii) the extended active space 

distributes 27 electrons in 15 orbitals i.e. CAS(27,15) generating 125 quartet and 250 doublet 

magnetic states. 

 

All the calculations reported in this article have been performed with ORCA v. 4.2.1.86 The 

Douglas-Kroll-Hess Hamiltonian87–90 has been applied to account for scalar relativistic effects. 

Consequently, specific basis sets, have been used, namely of the DKH-def2 type (these are 

actually recontracted versions of the non-relativistic def2 basis sets91): DKH-def2-TZVP for Cu 

and Zn atoms, DKH-def2-SVP for O, N and C atoms and DKH-def2-SV for H atoms. The def-

TZVP/C auxiliary basis sets92 have been used for all the atoms. Note that the corresponding 

SOC Hamiltonian has been used (in other words, the ORCA picture change keyword93 has been 

used). 

 

3 Results and Discussion 
 

3.1 Validity of the Model Hamiltonian and Transferability of the Extracted 

Parameters  

 
It is interesting to check both the validity of the model Hamiltonian and the transferability of 

the extracted parameters in the 1(3Cu) and 1(2Cu, 1Zn) models for several reasons: i) the 
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Hamiltonian proposed in Equations       (2) and  

   (4) has only two-center operators. The extraction of the Hamiltonian 

matrix from ab initio calculations will allow to validate this assumption, ii) the transferability 

of the parameters will ensure that the ab initio description is correct or at least well balanced 

and if so, more advanced calculations will be performed on the smaller system, iii) finally, and 

as mentioned earlier, there is an additional subtlety when extracting the DMI from calculations 

performed on trinuclear systems: the permutation relationship. If it is correctly applied, one 

may extract |dz| according to Equations        
  (6) or      (7). Otherwise, if for instance one considers 

that dab,z= dbc;z = dac;z = dz,  then |𝑑𝑧| = √3∆𝐸, in contradiction to Eq.    

      (6) (|𝑑𝑧| =
∆𝐸

√3
) . As a matter of fact, a correct 

application of the permutation relation is expected to coincide with a good transferability of the 

extracted parameters because of the locality of the underlying interactions.  

The validation of the Hamiltonian will also allow us to check the relevance of the 

simplifications introduced in section 2.1.2 based on symmetry considerations. For this, we used 

the SOSI results obtained with the extended CAS(27,15)SCF (27 electrons within 15 orbitals) 

energies, in the 1(3Cu) molecule to build the effective Hamiltonian matrix given in  

Table 2. Comparing the simplified analytical model matrix (Table 1) to the numerical effective 

matrix ( 

Table 2) shows that the main features of the effective Hamiltonian can be accounted for by only 

three model parameters, namely J, D and |dz|. The model Hamiltonian and our simplifications 

are therefore perfectly appropriate as well as the use of Equations     

 (5),          (6) and  

     (8). 

 

𝐻𝑀𝑆  |
3

2
, −

3

2
> |

3

2
, −

1

2
> |

3

2
,
1

2
> |

3

2
,
3

2
> |

1

2
, −

1

2
> |

1

2
,
1

2
> |

1

2
, −

1

2
> |

1

2
,
1

2
> 

<
3

2
, −

3

2
| 46.26 0.00 0.00 0.00 –0.09–0.15i 0.02+0.01i –0.15+0.09i –0.01+0.02i 

<
3

2
, −

1

2
| 0.00 44.29 0.00 0.00 0.00 –0.09–0.15i 0.00 –0.15+0.09i 

<
3

2
,
1

2
| 0.00 0.00 44.29 0.00 –0.09+0.15i 0.00 –0.15–0.09i 0.00 

<
3

2
,
3

2
| 0.00 0.00 0.00 46.26 –0.02+0.01i –0.09+0.15i 0.01+0.02i –0.15–0.09i 

<
1

2
, −

1

2
| –0.09+0.15i 0.00 –0.09–0.15i –0.02–0.01i 10.79 0.00 –10.79i 0.00 

<
1

2
,
1

2
| 0.02–0.01i –0.09+0.15i 0.00 –0.09–0.15i 0.00 10.79 0.00 10.79i 

<
1

2
, −

1

2
 | –0.15–0.09i 0.00 –0.15+0.09i 0.01–0.02i 10.79i 0.00 10.79 0.00 

<
1

2
,
1

2
| –0.01–0.02i –0.15–0.09i 0.00 –0.15+0.09i 0.00 –10.79i 0.00 10.79 

 

Table 2: Effective interaction matrix obtained for the 1(3Cu) complex at the SOCI Level 

based on the CASSCF(27/15) electronic energies and states (elements are in cm-1). 
 

Let us now comment the results reported in Table 3. In the 1(3Cu) molecule, two active spaces 

were considered, i) the extended active space CAS(27,15) and ii) the minimal active space 

CAS(3,3). In the first case, all states resulting from the d9-d9-d9
 configuration, i.e. 125 quartets 

and 250 doublets, have been computed. From this calculation, since orbitally-excited states are 

considered, the D parameter is accessible. With the minimal active space, only the states 

reproduced by the model Hamiltonian (Eq. 3), i.e. one quartet and two doublets, are included 

in the SOSI calculation; hence the D value that comes from the interactions with neglected 

excited states is not relevant and has not been reported (in fact, the value is forced to zero with 

this setup). In both cases, the isotropic coupling parameter J and the |dz| component of the DM 

vector can be extracted. For J and |dz|, two values appear in Table 3: J is extracted both after 

the SOSI calculation and at the spin-orbit free level (value in brackets) and |dz| is extracted 
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either from the effective Hamiltonian theory40 or directly from the SOSI matrix (Equation 

     (7), value in brackets).39  

 

 

With the minimal active space, the two values for both J and |dz| are strictly identical. This is 

expected because both the SOC polarization of the J value and the second-order SOC 

contribution to |dz| require the introduction of higher-energy excited states and/or the use of an 

extended active space. When using the extended active space and considering in the SOSI 

calculation 125 quartets and 250 doublets, one can observe two effects: 

- SOC slightly affects the effective parameter J with a magnitude that is similar to what 

has been observed in dinuclear dicopper(II)43 and dinickel(II)35 model systems. 

- Orbitally excited states moderately modify the value of |dz|, which is in fact reduced in 

this case. In a previous study, we have shown that this effect can be much more 

pronounced in the case of on-site first-order SOC.40 In the system under study, the first 

orbitally-excited state is about 1eV higher in energy than the doublet ground state. 

Hence, it is not that surprising to observe here a smaller effect on the magnitude of the 

axial component of the DMI, especially given the expected range of acceptable SOC 

constants of a copper(II) ion (a stronger effect could always occur for a much heavier 

ion). 

 

As demonstrated in reference39, the use of a minimal active space with a common set of orbitals 

(SA-CASSCF) for the three lowest states should lead to zero values of the DMI. Nevertheless, 

these values have been reported here (i) to illustrate the transferability of the extracted 

parameters from 1(2Cu, 1Zn) to 1(3Cu) and more importantly (ii) to warn the community about 

this issue. 

 

A final point that deserves comments before discussing the transferability of the extracted 

parameters concerns the role of dynamic correlation on J. According to the experiment (beware 

of the –2 factor!), a value of J of about 210 cm-1 is expected.53,54  It is clear that the SA-CASSCF 

method fails to achieve the correct order of magnitude. NEVPT2 improves the picture, but still 

provides significantly underestimated values (about 30% of the experimental value). This is 

something that is often observed,34,35 and has been rationalized in detail by Calzado et al.94–96 

(see also the review by Malrieu et al.55).  

 

Table 3 shows that the extracted parameters transfer well from 1(2Cu, 1Zn) to 1(3Cu), which 

makes us confident in the results obtained for 1(2Cu, 1Zn). This is important for the discussion 

regarding the value of |dz|, especially with respect to the correct application of the permutation 

relation. With the extended active spaces, CAS(27,15) or CAS(18,10) (depending on the studied 

model), transferability is indeed ensured by the correct application of the relation. Nevertheless, 

it is amusing to note that if we do not apply it correctly we obtain for the complex 1(3Cu) (with 

the large active space) a |dz| value of 37.5 cm-1, in perfect agreement with experiment:54 |dz|=36 

cm-1 ! At this stage, however, we have unfortunately only reached one third of the experimental 

value. Further calculations, in particular including dynamic correlations on the extended CAS 

are necessary but unfortunately impossible on the compound 1(3Cu). Note that for 1(2Cu, 1Zn) 

though, additional calculations are reported in Table S4. However, the set of calculations that 

could be performed is not sufficient to make a complete methodological study and validate a 

computational strategy to compute the DMI. Therefore, we have chosen to make a structural 

simplification, allowing us to test more calculation setups (vide infra). Table S4 is thus 

essentially of interest for computational chemists. 
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1(3Cu)                                                            1(2Cu, 1Zn) 

 
CASSCF       Statesa            Eel             J          D        |dz |      CASSCF      States      Eel             J         D   |dz | 
 

3/3 1Q, 2D SCF 27.7 NAb 0.8 2/2 1T, 1S SCF 33.8 NA 0.8 

   (27.7)  (0.8)    (33.8)  (0.8) 

  PT2 58.5 NA 0.8   PT2 65.6 NA 0.8 

   (58.5)  (0.8)    (65.6)  (0.8) 
27/15 125Q, 250D SCF 23.0 2.0 12.5 18/10 25T, 25S SCF 24.2 1.8 12.3 

   (23.7)  (13.4)    (25.0)  (13.2) 

a Q, D, T and S respectively stand for quartet, doublet, triplet and singlet.  

b NA stands for not applicable. 

 

Table 3: Values of J, D and |dz| (in cm-1) extracted from the effective Hamiltonian theory and 

SOSI calculations performed either using the CASSCF (noted SCF) or NEVPT2 (noted PT2) 

electronic energies (𝐄el) for both 1(3Cu) and 1(2Cu,1Zn). The spin-orbit free J value and the 

|dz| value extracted directly from the SOSI matrix appear in brackets.  

 

3.2 Towards more advanced calculations on a model complex and 

methodological study 
 
 
As already mentioned, in the real complex, it is quite difficult to push the calculations much 

further than what has been done. Therefore, it may make sense to simplify the ligands, compare 

the extracted parameters to those of the real complex, and then perform more demanding 

calculations on the simpler structural model with NH3 groups instead of BDED ligands by (two 

NH3 per DBED unit). The results are reported in Table 4. Calculations being less demanding in 

this smaller system than in the real complex, NEVPT2 calculations which account for dynamic 

correlations could be performed on the extended active space for both the tri-copper(II) 

structural model and the corresponding model system with only two actual magnetic sites. The 

comparison of the results on 1(3Cu) vs. 1(2Cu, 1Zn) and 2(3Cu) vs. 2(2Cu, 1Zn) , shows as 

before a good transferability of the parameters from the bi-magnetic-center system to the tri-

magnetic-center one. Moreover, the values obtained for the simpler model complex are in very 

good agreement with those of the real complex. One can therefore conclude that both 2(3Cu) 

and 2(2Cu, 1Zn) are good models to extract the parameters of 1(3Cu). 

The results obtained show that dynamic correlations brought by NEVPT2 have a very limited 

impact on the value of |dz|. From a methodological point of view, the next step consists in 

correcting the well-known error of PT2 methods linked to the wave function contraction. We 

have indeed shown in the paper39 that the use, in the SOSI step, of functions resulting from a 

variational calculation could dramatically affect the DMI value. Multi-Reference Configuration 

Interaction (MRCI) type calculations are unfortunately not feasible for the moment on the 

studied system. Hence, we have used an alternative method: the “decontracted” QD-NEVPT285 

approach which revises the CASSCF wave functions by taking linear combinations of them. 

The results, reported in Table 5, (see in particular the last two lines that can be considered as 

our most accurate results), show an increase in |dz| of around 50% (by comparison which the 

appropriate values reported in Table 4), demonstrating again the important role of the wave 

functions in the calculation of DMI. Besides, one may note that the decontraction provided by 

QD-NEVPT2 is not of any help in the calculation of J’s. As discussed elsewhere, a variational 

treatment is indeed required.55,94–96   
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CASSCF       Statesa 
2(3Cu) 

Eel 
 

J 
 

D 
 

|dz | 
 

CASSCF 
 

States 
2(2Cu, 1Zn) 

Eel 
 

J 
 

D 
 

|dz | 
3/3 1Q, 2D SCF 26.0 NAb 0.8 2/2 1T, 1S SCF 32.0 NA 0.8 

   (26.0)  (0.8)    (32.0)  (0.8) 

  PT2 55.2 NA 0.8   PT2 62.1 NA 0.8 

   (55.2)  (0.8)    (62.1)  (0.8) 
27/15 125Q, 250D SCF 21.5 2.2 12.8 18/10 25T, 25S SCF 22.7 2.0 12.7 

   (22.3)  (13.7)    (23.6)  (13.6) 

  PT2 55.9 1.9 13.2   PT2 58.2 1.6 13.0 

   (56.5)  (13.7)    (59.2)  (13.6) 

Table 4: Values of J, D and |dz| (in cm-1) extracted from the effective Hamiltonian theory and 

SOSI calculations performed either using the CASSCF (noted SCF) or NEVPT2 (noted PT2) 

electronic energies (Eel.) for both 2(3Cu) and 2(2Cu,1Zn). The spin-orbit free J value and the 

|dz| value extracted directly from the SOSI matrix appear in brackets. 

 

 

Finally, for the theorist reader, it is interesting to note that an intermediate active space, in this 

case CAS(6,4) which includes in the active space only the d orbitals which are strongly mixed 

in the magnetic orbitals, allows one obtain results of comparable quality to those of the extended 

active space. The results obtained for compound 2(2Cu,1Zn) with the two active spaces 

CAS(6,4) and CAS(18,10) are reported in Table 5 for comparison. This procedure reduces the 

computational cost of DMI and seems very promising for the study of large systems. Moreover, 

it must be noted that convergence of intermediate active spaces for systems with multiple 

magnetic centers can be tricky (we have not been able to converge the analogous active space 

correctly for the 2(3Cu) complex). We therefore want to emphasize here that the use of model 

systems with fewer magnetic sites is particularly interesting for converging intermediate active 

spaces. A more detailed discussion is provided in Supporting Information. 

 

 

 
2(2Cu, 1Zn) 

CASSCF 

6/4 
Statesa

 

3T, 3S 
Eel 

SCF 
Ψel 

SCF 
J 

27.0 
D 

2.0 
|dz | 

13.1 

    (27.8)  (13.5) 
6/4 3T, 3S PT2 SCF 58.1 1.7 13.3 

    (58.9)  (13.5) 
6/4 3T, 3S PT2 QD 58.1 1.7 20.7 

    (58.9)  (21.1) 
18/10 25T, 25S PT2 QD 58.1 2.0 19.4 

    (59.2)  (19.9) 

Table 5: Values of J, D and |dz| (in cm-1) extracted from the effective Hamiltonian theory and 

SOSI calculations performed either using the CASSCF (SCF) or CASPT2 (PT2) electronic 

energies (Eel.) and the and the CASSCF or QD-NEVPT2 decontracted wavefunction for 

2(2Cu,1Zn). The spin-orbit free J value and the |dz| value extracted directly from the SOSI 

matrix appear in brackets. 

Last but not least, one can represent the orientations of the DM vectors, allowing one to 

visualize their actual deviations with respect to the C3 (pseudo-)symmetry axes (here chosen as 

the z Cartesian axis). In practice, the three components of the DMI can be extracted in any 

coordinate frame from ab initio calculations that are performed with two active copper(II) sites. 

Locally, a C2 symmetry axis allows exchange of the two copper(II) centers. Therefore, 
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according to symmetry, the DMI component along this axis is zero. If this local C2 axis 

corresponds to the x Cartesian axis, only the y and z components of the DMI are non-zero. Once 

one DMI vector is defined, the remaining two are generated by symmetry. For representation 

purposes, we have depicted arrows whose origins are arbitrarily set at the middle of the 

corresponding Cu-Cu segments. The extraction performed on the different systems or by means 

of different calculations (except the minimal CAS) produces vectors orientations that are not 

distinguishable by the naked eye. Figure 2 represents those obtained on the 2(2Cu,1Zn) model 

by means of the SOSI method using CAS(18,10)NEVPT2 energies. Clearly, the z-component 

dominates, which justifies our special focus on this component. One should stress again that 

this is a strong argument in favor of theoretical studies of the DMI: we can determine its 

orientation and not only its magnitude. 

 

 
Figure 2: Representation of the orientations of the Dzyaloshinskii-Moriya vectors (green 

arrows) based on a SOSI calculation using the QD-NEVPT2 CAS(18/10)SCF states and 

energies for 2(2Cu, 1Zn). The two other vectors are generated by symmetry. Left: the C3 axis 

is perpendicular to the paper plane and the C2 axes are in it. Right: the C3 axis is vertical in the 

paper plane and one C2 axis is perpendicular to it. 

 

4. Summary and perspective 
 

Capitalizing on recent studies,39,40 we proposed a computational approach to study the DMI 

in a real trinuclear copper complex based on state-of-the-art ab initio calculations. By 

assessing the role of specific computational degrees of freedom (e.g. the active space, the 

use of contracted vs. uncontracted wave functions for computing the SOCI matrix), we have 

paved the way for future methodological studies of interest for the theoretical chemistry 

community. Even if we have used the idealized D3 structure provided by X-Ray performed 

at 140K, we have already reached three important general conclusions for the extraction of 

the MS Hamiltonian parameters in molecular complexes: 

 

- The standard MS Hamiltonian that involves only bicentric operators is perfectly 

suited to capture all the features of the effective Hamiltonian. In other words, the 

MS Hamiltonian (equation 4) has now been validated based on subtle and 

demanding ab initio calculations. 
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- We have demonstrated the transferability of the computed DMI parameters from 

clusters with only two active copper(II) sites to the ones with three active ones. This 

has two main implications, (i) the local nature of the DMI is confirmed and (ii) the 

permutation relationship has now been validated based on ab initio calculations. Of 

course, this opens the way for fragment calculations of even larger polynuclear 

systems. More importantly and also more generally, one should definitely apply the 

permutation relationship in the interpretation of experimental data, which also 

means that one should treat with care the contracted expressions of the MS 

Hamiltonian based on a summation of the DMI terms (e.g. ∑ 𝒅𝑖𝑗 . 𝑺̂𝑖 × 𝑺̂𝑗𝒊𝒋 ≠

𝒅𝑎𝑏. 𝑺̂𝑎 × 𝑺̂𝑏 + 𝒅𝑏𝑐 . 𝑺̂𝑏 × 𝑺̂𝑐 − 𝒅𝑎𝑐 . 𝑺̂𝑎 × 𝑺̂𝑐 in triangular systems).” 

 

- The orientation and the large amplitude of the DMI in this complex have been 

rationalized. As shown in the analytical derivation presented in our previous articles 

concerning the physical origin of the DMI, it is the mixing of the dx2-y2 and dxy 

orbitals that triggers i) the occurrence of the dZ component and ii) the large 

magnitude of the DMI. Indeed, this hybridization of the spherical harmonics d2+ and 

d2- leads to the largest lZsZ coupling (which is proportional to the |ml| values) 

between the ground and first excited states that can be obtained by mixing these two 

orbitals. In this respect, the triangular geometry which forces this mixing is in fact 

responsible for the large DMI. Moreover, as the mixing with the other d orbitals is 

particularly small, the other components, dx and dy, are particularly weak.  

 

Concerning the comparison between experimental and theoretical values of the DMI, we 

believe that we have reached a reasonable agreement. As this complex is likely to be non-

equilateral, as pointed out in ref 54 to explain NMR spectrum, the experimental estimate is in 

fact an upper bound of the DMI. Indeed, the experimental value comes from the doublets energy 

difference which would analytically contain both the difference between the two magnetic 

couplings of an isosceles triangle and the DMI. On the other hand, the decontraction of the 

wavefunction which has shown to increase the DMI, is not complete at the QD-NEVPT2 level 

of calculation and it is likely that a variational method (as DDCI) would lead to a slightly 

enlarged value of the DMI. In other words, our best estimate is a lower bound of the DMI, 

meaning that both current experimental and theoretical data are actually compatible. 

 

In fact, our approach is general and does not require any symmetry of the triangle nor any 

specific type of isotropic magnetic couplings for consistent and independent extraction of all 

the effective parameters of the MS Hamiltonian. Note that we have illustrated its power based 

on a D3 symmetric structure for the sake of pedagogy. The results obtained are in reasonable 

agreement with the experimental value (orientation and order of magnitude). Therefore, we 

confirm by theory the occurrence of a large DMI in this system, even though two points still 

deserve to be discussed for reaching finer theoretical and experimental estimates of the DMI in 

this system: 

 

- The extraction of the experimental value relies on the splitting of the doublet energies.54 

The crystal structure is considered to be of symmetry D3, while it could be that by 

averaging effects, a lowering of the symmetry would not be detected.30 Furthermore, 

the attempts of experimentalists to extract the DMI with a broken symmetry model only 

considered the breaking on J and not on the DMI. Test calculations based on density 

functional theory (DFT) have shown that in the gas phase, even the high spin state 
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spontaneously lowers its symmetry to form an isosceles triangle instead of an equilateral 

one. Then, one can strongly expect that a low spin state will do so as well (geometry 

optimization becoming problematic for the doublet since the DFT solution is spin 

symmetry broken). In any case, if such a symmetry lowering occurs, part of the splitting 

of the doublet energies would come from this effect leading to a lower value of the DMI 

in comparison to the one currently extracted from experiments, i.e. part of the splitting 

attributed to |dz| would come from the energy difference between the spin-orbit free 

doublets. Note that the |dz| value is expected to be less critically dependent on the 

symmetry lowering, unlike J, which has been confirmed by test calculations (not 

reported). A complete structural study would require to account for environment effects 

and maybe even dynamics, which is clearly out of the scope of the present paper. 

 

- The dependence of the theoretical results on the level of computation, in particular the 

importance of accounting for correlation effects on wave functions, suggests that 

additional studies of real compounds are needed to firmly establish the level of 

computation required to address DMI. To date, there are very few molecular compounds 

for which experimental information on DMI are available, yet these values are necessary 

to produce benchmark calculations. 

 

Finally, we strongly believe that further joint theoretical/experimental efforts are needed at this 

stage to accurately determine the DMI in real complexes, with tri-copper(II) complexes most 

likely being excellent showcases for this purpose. The extension of this work to Cr3 or Fe3 

triangular systems, although theoretically possible, is not at all straightforward in practice 

because of the size of the model space of the MS Hamiltonian on the one hand and because of 

the number and ranks of the anisotropy tensors on the other hand.32,73,97 For this reason, we 

consider that research on S = 1/2 spin triangles should be pursued before tackling these even 

more difficult cases, which we hope to be able to handle in a reasonable time. 

 

Supporting information available. Simplified model matrix in the uncoupled basis, XYZ 

coordinates of the 1(3Cu) and 2(3Cu) systems, additional calculations on the 1(2Cu,1Zn) model 

system and discussion on the intermediate active space for the bi-magnetic-center models 

(PDF). 
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The description of the magnetic properties of copper(II) triangles is often ambiguous. In this 

article, we show that the combination of spin-orbit configuration interaction and the effective 

Hamiltonian theory leads to a non-ambiguous extraction of key terms of the multispin 

Hamiltonian: isotropic exchange, symmetric exchange and more importantly antisymmetric 

exchange. Several computational and structural biases may occur and while we actually report 

state-of-the-art ab initio calculations, we conclude by formulating current challenges for the 

community. 


