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Abstract: This review lists the most important radiotracers described so far for imaging the cen-
tral serotoninergic system. Single-photon emission computed tomography and positron emission
tomography radiotracers are reviewed and critically discussed for each receptor.
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1. Introduction

In recent decades, the serotoninergic system constituting serotonin (5-HT) and its
receptors (5-HTR) has become a promising target in neuroscience. The many studies carried
out have shown its involvement in many brain functions and neuropsychiatric disorders
such as Alzheimer’s disease, Parkinson’s disease, schizophrenia, or depression [1].

Among the G protein-coupled receptors (GPCR), 5-HTRs appear to be the largest
family of receptors. Indeed, the physiological action of serotonin is carried by at least
14 subtypes of receptors: 5-HT1A,B,D,E,F, 5-HT2A-C, 5-HT3, 5-HT4, 5-HT5A, 5-HT6, and
5-HT7 [2,3]. This classification (IUPHAR) is based on their signal transduction pathways,
pharmacological effects, and molecular structures.

The significant variability of these receptors has led to the development of new tools,
allowing the selective in vivo exploration of each of them. This exploration is based in par-
ticular on the use of medical imaging techniques such as single-photon emission computed
tomography (SPECT) and positron emission tomography (PET). These non-invasive imag-
ing techniques are commonly used by researchers and clinicians to perform the mapping of
neurotransmitter systems in the living brain in healthy and sick patients. Thanks to the de-
velopment and use of new radiolabeled molecules (radiotracers or radiopharmaceuticals),
the precise quantification of the density of these receptors within different brain areas is
possible. Radiotracers, which are molecular scaffold containing a radioactive isotope, must
fulfill several criteria to be effective brain receptor imaging agents: a high selectivity and
high affinity (nM range) for the target receptor, a low or moderate lipophilicity (logD = 1–3)
for blood–brain barrier penetration and to avoid excessive nonspecific binding to brain
tissue, a slow metabolism (or non-interfering radioactive metabolites), and a high specific
activity to visualize weakly abundant biological targets.

In this review, for each 5-HTR subtype, we will focus on the central radiotracers of
interest mentioned in the literature, sorted by chemical families. Their interesting properties
will be discussed, and their uses in clinical or preclinical trials will be specified. Moreover,
the radiotracers used for the detection and quantification of 5-HT reuptake transporters
(SERTs) will be described as well. The SERT does not belong to the 5-HTR family, but its
involvement in the regulation of the serotonin concentration in the inter-synaptic space
makes it an important target in neuroscience and therapeutics [4].
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2. 5-HT1 Receptors

5-HT1R receptors are involved in many biological and physiological processes and
constitute a large family of receptors. Five different isoforms (5-HT1A, 5-HT1B, 5HT1D,
5-HT1E, and 5-HT1F) exist, all coupled to a Gαi/o protein which inhibits cAMP synthesis
and therefore potentially inhibits signal transduction. In the current classification, we can
note the absence of 5-HT1C because the latter has been reclassified as 5-HT2c following
numerous discoveries for GPCRs and their sequence homology with the 5-HT2R family [5].
To date, the description of efficient radiotracers of the 5-HT1R family have been restricted
to the 5-HT1AR and 5-HT1BR subtypes.

2.1. 5-HT1A Receptors

Among the 5-HTRs, 5-HT1AR is the first to have been cloned and characterized. In 1987,
its gene (G-21) was cloned and identified as a GPCR by structural homology with the β2-
adrenergic receptor [6]. However, this is the work of Fargin et al., which determined that G-
21 coded for 5-HT1AR [7]. In the mammalian brain, 5-HT1ARs are divided into two distinct
populations based on their location, including (1) presynaptic 5-HT1AR (autoreceptors)
located in the soma and dendrites of serotoninergic neurons in the raphe nucleus [8,9],
where their activation leads to a reduction in nerve impulses (Gαi/o), resulting in a decrease
in the release of 5-HT in the inter-synaptic space [10,11], and (2) postsynaptic 5-HT1AR
(heteroreceptors) localized in non-serotonergic neurons, mainly in limbic areas such as
on the dendrites and soma of glutamatergic neurons, the terminal axons of GABAergic
neurons, or on cholinergic neurons [12]. Their action is inhibitory and extends to the many
areas of the brain innervated by the serotoninergic system. It has to be noted that 5-HT1AR
heteroreceptors are expressed in a high density in the hippocampus (zone CA1, CA2, and
serrated gyrus), the septum pellucidum, layers II and VI of the frontal cortex, the lateral
and medial septum, and more moderately in the amygdala, the inferior colliculus, and
in the thalamic and hypothalamic nuclei [8]. The wide distribution of 5-HT1AR suggests
that they have a great variety of functions in the brain. Indeed, they are distinguished by
their influence in the phenomena of neurogenesis, neuroprotection, neuronal plasticity,
memorization, and learning, but also by their involvement in various behavioral disorders
such as anxiety and depression [13–15]. They are currently a target of choice in medical
therapy, research, and medical imaging via the development of antagonists, agonists, and
radiotracers specific to this target.

Many 5-HT1A receptor (5-HT1AR) radiotracers are described in the literature, but
very few of them are currently used in human studies [16]. Indeed, there is a significant
bias between the in vitro results and the different models (rodent, non-rodent, monkey,
etc.) used in pre-clinical trials due to a difference in the distribution of 5-HT1AR in the
cerebral areas of the species studied, the intensity of the signal collected compared with the
background noise, and the metabolization or distribution phenomena limiting the contact
between the radiotracer and its target.

2.2. N-Acetamide Pyridine Series: WAY-100635 Derivatives

[11C]WAY-100635 (Figure 1) is the first radioligand described as a potent antagonist,
presenting good affinity for 5-HT1AR (KD = 0.2–0.4 nM) [17]. This radioligand has shown a
partial selectivity, albeit it is also known as a dopamine D4 receptor agonist (KD = 2.4 nM).
This lack of selectivity is not really a problem because the 5-HT1AR receptor density in the
brain is significantly greater than the population of D4 receptors. Studies carried out on this
radiotracer have shown good correlation between the distribution of receptors compared to
that obtained previously using agonists and antagonists on human tissues (postmortem) [18].
The [O-methyl-11C]WAY-100635 analogous has been the first radioligand to be synthesized
for PET purposes, which led to 5-HT1AR images in rodents, monkeys, and humans [19,20].
However, a high level of nonspecific radioactivity has been detected in the brain due to the
easy crossing of BBB by radiometabolites. Then, [carbonyl-11C]WAY-100635 was synthesized,
which was degraded into polar radioactive metabolites that did not cross the BBB [21,22]. Since
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its first synthesis, [carbonyl-11C]WAY-100635 has become a reference radioligand, allowing
several studies to be performed first on healthy patients and then on patients presenting several
psychiatric conditions such as depression, anxiety, or anorexia [22–25]. Nevertheless, several
pharmacomodulations have been performed in order to mainly reduce its metabolization,
leading to the preparation of carbon-11 and fluorine-18 radioligands.
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[123I]MPPI, an iodinated analogous of [11C]WAY-100635, was prepared in 1994 by
Kung [26]. Nevertheless, due to the instability of the C-I bond in vivo, this compound
was radiolabeled with fluorine-18, as the C-F bond is known to be less metabolized. Then,
in 1997, the same group prepared [18F]MPPF, which has been proven to be a valuable
5-HT1AR radiotracer in monkeys [27]. [18F]MPPF is a selective antagonist of 5-HT1AR
used to measure the evolution of serotonin levels in vivo [28]. Studies realized in rodents,
cats, monkeys, and dogs led to a selective labeling of 5-HT1AR-rich cerebral regions (hip-
pocampus, entorhinal cortex, and raphe nuclei) [29,30]. [18F]MPPF has also been tested on
healthy patients [31] as well as patients presenting Alzheimer’s disease [32], depression,
and temporal lobe epilepsy [33,34].

[18F]FCWAY is a fluorinated analogue of WAY-100635 developed by Lang [35]. Its trans
isomer, [4-trans-18F]FCWAY, exhibits a 0.25 nM affinity toward 5-HT1AR, and its cis isomer,
[4-cis-18F]FCWAY, has a slightly weaker affinity of 1.2 nM. However, [4-trans-18F]FCWAY
showed the best pharmacological and pharmacokinetic properties, leading to the mea-
surement of the 5-HT1AR density in the hippocampus and cerebellum. [18F]FCWAY has
also been used to quantify 5-HT1AR in patients with behavioral disorders such as epilepsy,
post-traumatic stress, or panic attacks [36–38]. However, the accumulation of radiofluorine
in bones due to the metabolism of the radiotracer decreases the resolution of brain imaging.
The use of disulfiram, a cytochrome P450 isozyme 2E1 inhibitor which decreases defluori-
nation, limited this phenomenon and improved the visualization of these receptors, but it
was not sufficient to justify its use or its marketing [39].

[18F]MeFWAY is a derivative of [18F]FCWAY, possessing a fluoromethyl group at
cyclohexane’s position 4, thus limiting metabolization issues. In vivo assays in rodents
and primates showed that the [trans-18F]MeFWAY isomer presented good affinity and
specificity for 5-HT1AR and was suitable for in vivo imaging [40,41]. In 2014, the first
assays on six healthy volunteers allowed obtaining preliminary evidences of its potential
as a radiopharmaceutical [42]. In 2015, Choi et al. confirmed this conclusion by using a
comparative study with [18F]FCWAY associated with disulfirame [43]. Nevertheless, to
date, there is no publication demonstrating its usefulness in sick patients.
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[18F]DMPPF is the demethylated analogue of [18F]MPPF. This pharmacomodulation was
performed in order to increase the PET signal by improving the cerebral uptake of the compound.
[18F]DMPPF was crossing the BBB and leading to an efficient imaging contrast with a lower
clearance in rats than [18F]MPPF [44]. Despite this encouraging first result, this radiotracer has
not been used, probably due to the great interest of the community in [11C]WAY-100635.

[11C]DWAY is a putative metabolite of [11C]WAY-100635 which presents similar char-
acteristics but provides a twofold higher brain uptake than [11C]WAY-100635 in the human
brain [45]. However, despite these interesting results, this radiotracer has not been investi-
gated so far.

[11C]CPC-222 is a WAY-100635 analogue with good 5-HT1AR affinity (IC50 = 4.2 nM)
which crosses the BBB [46]. However, this molecule has not been used because of its too
weak signal-to-noise ratio.

[18F]6FPWAY and [11C]6BPWAY are halogenated (fluorinated and brominated, re-
spectively) analogues of WAY-100635 [47]. Halogen atoms have been introduced on this
scaffold in order to decrease the metabolism of the compound while allowing further radio-
labeling with fluorine-18 or bromine-76. [18F]6FPWAY was initially synthesized and tested
as [11C]6FPWAY in monkeys and then was prepared while incorporating fluorine-18 [48].
Assays have shown a moderate interest in these ligands due to faster metabolization of the
compound compared with [O-methyl-11C]WAY-100635. This phenomenon is probably due
to faster degradation of the amide bond of the 6-fluoropyridine group [49]. [18F]6FPWAY
and [11C]6BPWAY have not been further studied so far.

2.3. 1,2,4-Triazine-3,5-Dione Series: CUMI-101 Derivatives

[11C]CUMI-101 and its derivative [11C]FECUMI-101 are 5-HT1AR agonists (Figure 2).
Agonists are good candidates for estimating the level of 5-HT receptors present in the synap-
tic cleft, the receptor’s occupancy, and the determination of the internalization of autorecep-
tors after administration of the serotonin transporter’s (SERT) inhibitors, which are used
to treat depressive states. [11C]CUMI-101, also called [11C]MMP, is a 2-methoxyphenyl
analogous of a previous radiotracer (MPT) described by the same authors in 2006. This
former radiotracer has shown a promising agonist profile with good affinity for 5-HT1AR
(Ki = 1.36 nM) in baboons [50], but slow washout kinetics prompted the authors to perform
structure–activity relationship studies, leading to the preparation of [11C]CUMI-101. This
compound has been demonstrated to be a potent (Ki = 0.15 nM) and selective 5-HT1AR
agonist ligand, with a high uptake in 5-HT1AR-rich areas in baboons [51]. Used in healthy
volunteers, [11C]CUMI-101 led to determination of the distribution and quantification
of central and peripheral 5-HT1AR [52,53]. Notably, this radiotracer shows interesting
properties, as its metabolites are not crossing the BBB. In 2011, Hendry et al. investigated
the pharmalogical profile determination of [11C]CUMI-101 in rat brain tissue and demon-
strated that, while acting as an 5-HT1AR agonist in humans, it behaves as an antagonist in
the rat cortex and rat hippocampal tissue [54]. Thus, this compound may act as a partial ag-
onist, leading to interpretation difficulties from one model to another. In 2020, [11C]CUMI
was also used to assess the 5-HT1AR occupancies of brexpiprazole in adult subjects with
schizophrenia [55].
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[18F]FECUMI-101 is the ethylfluorinated analogue of [11C] CUMI-101 synthesized in
2013 by Kumar [56]. Studies carried out in baboons showed that this radiotracer crosses the
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BBB with good distribution of the radiotracer in the 5-HT1AR-rich brain regions, with the
exception of the thalamus. In 2016, autoradiographic studies carried out on human brain
sections confirmed this specific binding, along with some binding with α1 receptors [57].
A possible explanation is the difference in the concentration of α1 receptors in different
species in this brain region or a specific binding on an unknown target. In addition,
competition experiments in the presence of WAY-100635 have shown a binding blockade of
[18F]FECUMI-101 on the receptors present in the cerebellum, limiting its use as a reference
for in vivo PET applications.

[18F]FEMPT is a radiotracer synthesized in 2017 by Collier et al. via a continuous flow
microfluidic method [58]. The advantage of this technique lies mainly in the saving of
time and the reagent, allowing one to increase and optimize the parameters and the yield
of reactions for radiolabeling with fluorine-18. The first in vitro assays carried out with
this compound showed a strong affinity of [18F]FEMPT toward 5-HT1AR (Ki = 0.2 nM). In
addition, the affinity for α1 adrenergic receptors (Ki = 180 nM) was much lower than that
observed for [11C]CUMI-101. These initial results are very encouraging, and preclinical
studies are currently being carried out on this new radiotracer.

2.4. 2-Pyridinemethylamine Series: F15599 Derivatives

F15599 (Figure 3) is the first 5-HT1AR ligand described in the 2-pyrimidinemethylamine
series, presenting a strong affinity and very high specificity for 5-HT1AR. In vitro and
in vivo studies led to assessing its particular affinity for the postsynaptic 5-HT1AR present
in the cortical areas of the brain [44]. In vivo imaging with [18F]F15599 in rats and cats
demonstrated a rapid accumulation of this radioligand in the brain, suggesting good BBB
passage as well as good distribution in brain areas such as the raphe nucleus, the hippocam-
pus, and the side bridge [45]. However, the labeling intensity was considered insufficient
for further investigations as a radiopharmaceutical, probably due to its relatively low
affinity (Ki = 2.24 nM) [16]. Efforts have been therefore focused on pharmacomodulations
of [18F]F15599.
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[18F]F13714, a 2-pyridinemethylamine analogue of [18F]F15999, presented a partic-
ularly strong affinity for recombinant human 5-HT1AR (Ki = 0.04 nM) [59,60]. In vitro
autoradiography carried out on rats revealed significant radioactivity in the targeted brain
areas [61]. In addition, [18F]F13714 was shown to have very good resistance to metabolism.
Specific binding of this radiotracer in 5-HT1AR-dense areas was observed in in vivo PET
imaging (cats), with a particular tropism for the cortex compared with the hippocampus. In
2016, Yokoyama et al. published a comparative study between [18F]F13714 and [18F]MPPF
in awake and anesthetized marmosets, demonstrating the strong influence of anesthesia
on functional 5-HT1AR and therefore suggesting that caution is necessary when interpret-
ing results from agonists in PET imaging [62]. Although the results were encouraging,
[18F]F13714 was not optimal for in vivo imaging because of its irreversible binding.

F13640 (also known as befiradol or NLX-112) is a 5-HT1AR ligand that has recently
been investigated from the same series, presenting selectivity and efficacy for 5-HT1AR
along with strong analgesic properties [63]. Demonstrated on a large panel of animal models
presenting physiological or pathological acute pain, and in comparison with a large intake
of opioids, its analgesic action led to the development of a reverse tolerance [64]. In 2018,
Zimmer et al. carried out the first in vivo imaging assays in rats, cats, and primates [65].
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[18F]F13640 has been proven to cross the BBB (without formation of radioactive metabolites),
and its distribution has been observed in 5-HT1AR-rich areas, with notable differences in
comparison with the distribution observed using antagonist radiotracers so far. In addition,
[18F]F13640 has been used to determine the evolution of the number of these receptors
in the hippocampus in the prodromal stage of Alzheimer’s disease (post mortem) [66].
In 2019, [18F]F13640 was used in vivo in healthy humans, affording promising results
since the visualized distribution correlated with that of functional 5-HT1AR receptors [67].
[18F]F13640 is the first radiopharmaceutical that enables in vivo investigation of functional
5-HT1AR that is likely to be altered in pathological conditions such as neuro-degenerative
diseases or psychiatric disorders. Indeed, in 2021, [18F]F13640 was proven to be a valuable
tool to explore neurological or neuropsychiatric pathologies involving fluctuations in
extracellular serotonin. Indeed, Zimmer et al. have shown its sensitivity to detecting
in vivo 5-HT concentration fluctuations [68].

2.5. 5-HT1B Receptors

Like 5-HT1AR, 5-HT1BR exists at the pre- and postsynaptic level. However, their
locations are different; presynaptic 5-HT1AR is localized mainly in the cell body and the
dendrites of the serotoninergic neurons, while 5-HT1BR is expressed at the axonal endings.
The 5-HT1BR has an important influence in the regulation of the concentration of 5-HT in
the intersynaptic space and induces a negative feedback limiting 5-HT’s release (homore-
ceptors). All postsynaptic 5-HT1BR (heteroreceptors) receptors are located on the terminal
axons of non-serotonergic neurons (GABAergic, muscarinic, or dopaminergic) and will
influence the release of their neurotransmitters. There is a great homology between the
receptors present in humans and rats, with the only difference being a replacement of a
threonine by an asparagine on the seventh transmembrane domain. However, this slight
difference is responsible for significant variations during pharmacological studies. The
5-HT1BR receptors are present in a high density in different brain locations, such as the
globus pallidus, substance nigra, ventral pallidum, or dorsal subiculum and more mod-
erately in the cortex, the hippocampus, and the putamen [69]. The 5-HT1BR receptors are
involved in learning and memorization phenomena. Thus, the injection of antagonists into
knockout mice allowed the observation of an improvement in their cognitive performance,
with a probable involvement of the cholinergic system [70]. In addition, pharmacologi-
cal studies have demonstrated the interest of 5-HT1BR in aggression phenomena, with a
decrease of the latter in the presence of agonists [71].

2.6. Chromen-4-One Series: AZ10419369 Derivatives

[11C]AZ10419369 (Figure 4) is a partial 5-HT1BR agonist (KD = 0.37 nM). This com-
pound is considered a reference radiotracer for these receptors and has been used on
numerous occasions to assess the influence of 5-HT1BR in healthy volunteers as well
as in neuropsychiatric disorders. In 2008, Pierson et al. carried out the first studies in
macaques and observed a specific radiolabeling of 5-HT1BR-rich areas through a com-
petitive method in the presence of a reference antagonist: AR-A000002 [72]. In addition,
the interesting potential of this compound has been confirmed thanks to the intensity of
the collected signal and the absence of detection of any radiometabolite. In this same
study, [11C]AZ10419369 was tested in two human subjects, and good correlation in the
receptor’s distribution in both macaques and human brains was observed, as well as those
obtained previously by autoradiogram in guinea pig brains [73]. From 2010 to 2020, many
studies used [11C]AZ10419369 as a reference in PET imaging [74,75]. Used in patients with
depressive disorders and Parkinson’s disease, a decrease in 5-HT1BR in the targeted areas of
the brain was observed [76,77]. Very recently, pharmacomodulations of [11C]AZ10419369
have been performed by Lindberg et al. in order to replace carbon-11 with the longer
half-life fluorine-18, allowing them to increase the acquisition time in imaging [78,79].
Among the described radiotracers, [18F]AZ10419096, a radiotracer published in 2019 by
Lindberg et al. [80], revealed interesting properties. This compound is an antagonist of



Pharmaceuticals 2022, 15, 571 7 of 36

5-HT1BR presenting very good affinity (Ki = 0.13 nM). The first in vivo tests in monkeys
demonstrated a specific binding of this compound to 5-HT1BR-rich brain areas (e.g., the
occipital cortex or globus pallidus). Approximately 80% of this binding is inhibited in
the presence of a reference antagonist (pretreatment with AR-A000002). In addition, the
main metabolites of [18F]AZ10419096 seemed to be too polar to cross the BBB. The only
drawback of this compound lies in its synthesis, since the yield of radiolabeling from the
boronic precursor is very low (<5%) and needs to be optimized.
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[11C]P943, obtained through a structural simplification of [11C]AZ10419369, is a
5-HT1BR antagonist presenting a very strong affinity and specificity for these receptors
(Ki = 0.77 nM). A complete pharmacokinetic study was performed in baboons (Papio anubis)
in order to determine the BBB crossing, the presence of metabolites, and its affinity for
5-HT1BR. The specificity of [11C]P943 for 5-HT1BR was revealed by blocking the recep-
tors with a specific 5-HT1BR antagonist (SB-616234-S), while no significant change was
observed using a 5-HT1DR antagonist (SB-714786) [81]. Thanks to this radiotracer, the
implication of 5-HT1BR was evaluated in patients with various pathologies (e.g., depression
or post-traumatic stress) or drug addiction (cocaine), where a decrease in the binding
of [11C]P943 to 5-HT1BR was observed compared with the healthy patients [82,83]. This
phenomenon is reversed in people with alcohol addiction, where an increase in binding
was observed, especially in the ventral striatum [84].

3. 5-HT2 Receptors

5-HT2R receptors are among the first serotoninergic receptors to be identified with
5-HT1AR. Their identification was possible thanks to genetic cloning, allowing for distin-
guishing three different subtypes (5-HT2A, 5-HT2B, and 5-HT2C). Structural variations in
these 3 isomers with 471 amino acids for 5-HT2AR, 481 for 5-HT2BR, and 458 for 5-HT2CR (in
humans) can be noted. This variation in structure is not surprising, since each of them is en-
coded by different genes carried on three distinct chromosomes (chromosomes 13, 2, and X,
respectively). These receptors possess a wide area of localization and are mainly involved
in cell development and migration processes [85]. All these receptors are coupled to a Gq/11
protein, and their activation regulates an enzymatic cascade involving the phospholipase
C. This enzyme leads to the hydrolysis of membrane phosphatidylinositol biphosphate
into two intracellular secondary messengers: diacylglycerol and inositol-1,4,5-triphosphate
(IP3). IP3 plays an important role in the release of calcium ions by binding to the IP3
receptors on the membrane of the endoplasmic reticulum. This increase in Ca2+ ions in the
cytosol is completed by the action of ion pumps (allowing the passage of extracellular Ca2+

ions) which are activated by protein kinases C, themselves activated by the diacylglycerols
synthesized beforehand [86]. Currently, there are no potent and selective radioligands
commonly used in clinic or research facilities to quantify and characterize 5-HT2BR and
5-HT2CR. It is nevertheless interesting to note the recent development of promising new
molecules that are affine and selective for 5-HT2CR, specifically marking the choroid plexus
(cerebral area rich in 5-HT2CR) (Figure 5) [87,88]. These molecules could be the subject of
future clinical studies and could enhance the interest shown in these receptors via PET and
SPECT imaging.
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Conversely, numerous studies involving 5-HT2AR radioligands have been described in
the literature. In humans, 5-HT2AR was identified and cloned for the first time by Branchek
et al. in 1990 [89]. It quickly aroused the particular interest of the scientific community
because of its role in certain behavioral disorders and its psychomimetic effects when taking
psychotropic substances such as lysergic acid diethylamide (LSD), mescaline, or psilocybin [90].
Human 5-HT2AR radioligands are located mainly in the cortex and in a lower density in the
central brain structures such as the hippocampus or the caudate nucleus. In the cortex, they
are found mainly in layers II–III but also in lesser quantities in layers V and VI [91]. At the
cellular level, they are mainly postsynaptic receptors and are expressed in non-serotonergic
(cholinergic or GABAergic) neurons with the result of increasing cellular hyperexcitability
and promoting nerve impulses [92]. 5-HT2AR has been at the center of many studies on
the one hand for its involvement in many neuropsychiatric disorders such as depression,
anxiety, schizophrenia, and psychosis and on the other hand because it is the target of second-
generation antipsychotics (D1/D2 and 5-HT2A antagonists) such as Clozapine, Olanzapine,
or Risperidone [93]. To date, many efficient 5-HT2AR radiotracers have been developed in
several chemical series both for SPECT and PET.

3.1. Quinazoline-2,4-Dione and Thiazolo [3,2-a]Pyrimidin-5-One Series: Ketanserin Derivatives

The first evaluations of 5-HT2R radiotracers were carried out in 1985 using a very affine
and selective antagonist (in vitro and in vivo in rats): [11C]Ketanserin [94]. In humans, a
too rapid metabolization along with nonspecific binding rapidly stopped the development
of this molecule as a 5-HT2R radiotracer. However, these first trials were the starting
point for more specific studies of 5-HT2AR in PET imaging through the development of
ketanserin analogues (Figure 6).
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[18F]Setoperone is one of the reference radioligands for 5-HT2AR. It is a very potent
antagonist of these receptors (Ki = 0.2 nM) along with relative specificity since in baboons, it
also interacts with the dopaminergic D2 receptors present in the striatum [95]. Despite this
specificity issue, it has been used regularly as a radiotracer for 5-HT2AR in PET imaging,
especially in healthy subjects or subjects with various pathologies such as depression,
migraines, or Alzheimer’s disease [96–100]. [18F]Setoperone is not used anymore in human
studies due to the discovery of [18F]Altanserin, which has demonstrated a higher potential
in animal and human studies.
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As a 5-HT2AR antagonist (Ki = 0.3 nM), [18F]Altanserin was first evaluated in rats
in 1991 by Lemaire et al., and an important signal in the frontal cortex along with a more
moderate one in the striatum were detected [101]. The specificity of the signal was deter-
mined by prior blocking of the receptors in the presence of 5-HT2AR ligands (ketanserin,
pipampone, and methylsergide) and D2 receptor ligands (sulpiride and halopemide). Sub-
sequently, [18F]Altanserin was tested in healthy volunteers, and good distribution of the
radioligand was found despite the presence of nonspecific binding, particularly in the
cerebellum [102]. This off-target labeling was later attributed to the in vivo production of
radiometabolites [103,104]. A more recent study on 52 healthy volunteers demonstrated
the absence of a significant difference in [18F]Altanserin binding between the male and
female genders and a significant decrease in 5-HT2AR in the elderly and in patients with
high body mass indexes [105]. [18F]Altanserin has also been used to determine the density
of 5-HT2AR in subjects with various CNS-related disorders such as anorexia, schizophrenia,
obsessive-compulsive disorder, depression, and Alzheimer’s disease [105–109]. In light of
all these characteristics, numerous pharmacomodulations of [18F]Altanserin were consid-
ered in order to increase the resolution of PET imaging by limiting nonspecific binding and
by decreasing the production of lipophilic radioactive metabolites.

In 2001, in order to reduce metabolite production, a deuterated analogue was con-
sidered: [18F]Deuteroaltanserin. The main objective was to maintain the pharmacological
and pharmacokinetic properties while delaying the metabolization by inserting an isotope
of hydrogen: deuterium. Initially, a study was carried out in baboons and did not allow
observing any significant difference between the two radioligands (neither for radiolabeling
nor metabolization) [110]. Subsequently, a study on a healthy man was conducted and al-
lowed the observation of good distribution of the radiotracer as well as a modest decrease in
the production of radiometabolites in the plasma [111,112]. In 2009, Santhosh et al. carried
out a study with [18F]Deuteroaltanserin on nine subjects affected by Alzheimer’s disease
and concluded that there was a significant reduction in the binding of the radiotracer
to 5-HT2AR, mainly in the anterior, frontal, medial, parietal, and temporal cingulate cor-
tex [113]. Despite these promising results, no study has referred to [18F]Deuteroaltanserin
since then.

3.2. Piperidin-4-Ylmethanol Series: Volinanserin Derivatives

[11C]Volinanserin, or [11C]MDL100907 or [11C]MDL100,907 (Figure 7), is a very se-
lective and potent 5-HT2AR antagonist (Ki = 0.2 nM) [114]. Its interesting pharmacokinetic
properties, such as its moderate lipophilicity (logP = 2.7), allowed [11C]Volinanserin to
become a reference radiotracer in the study of the distribution of 5-HT2AR. First, its tritiated
analogue [3H]MDL10090 has been used in animals (rats and monkeys) to assess its strong
specificity, allowing the visualization, quantification, and direct characterization of these
receptors by autoradiography [115,116]. The monkey studies were enlarged to the use of
[11C]Volinanserin in PET imaging by Lundkvist et al. [117] and permitted the observation
of specific labeling of the frontal, temporal, and visual cortex through competition with
ketanserin. In 1998, Ito et al. confirmed these results in healthy humans (three volunteers),
where a specific labeling of the neocortex (occipital, frontal, and temporal cortex) with
moderate nonspecific labeling was observed [114]. In 2012, a comparative study on a
large cohort of healthy volunteers consolidated the interest in [11C]Volinanserin since, in
addition to obtaining good distribution of labeling of 5-HT2AR receptors, a decline in this
population with age for 5-HT2AR expression was evidenced. In addition, the analyses
carried out demonstrated a slow metabolization of the radiotracer limiting the presence
of radiometabolites, the main drawback encountered with ketanserin derivatives [118].
[11C]Volinanserin represents a reference 11C-radiotracer for the study of 5-HT2AR recep-
tors and has been used in numerous studies on humans and animals in order to observe
the influence of 5-HT2AR in various pathologies, such as depression, Huntington’s disease,
Asperger’s syndrome, as well as in obsessive-compulsive disorders [119–121]. Interesting
fluorinated analogues of Volinanserin have also been evaluated recently. [18F]MDL100907



Pharmaceuticals 2022, 15, 571 10 of 36

is a Volinanserin analogue labeled with fluorine-18 instead of carbon-11, and it was con-
sidered mainly for the benefit represented by the longer half-life of fluorine-18 compared
with carbon-11. Few publications refer to this radiotracer, mainly because of the diffi-
culty in achieving an efficient radiofluorination of Volinanserin [122]. In 2014, a study
carried out by Ren et al. identified a new method for obtaining [18F]MDL100907 using a
nickel-mediated fluorination strategy. In nonhuman primates, a comparison of binding
results between [18F]MDL100907 and [11C]Volinanserin concluded that [18F]MDL100907
was able to provide a better 5HT2AR distribution and density through PET imaging [123].
(R)-[18F]MH-MZ is an ethylfluorinated analogue of [11C]Volinanserin which exhibits very
good affinity and specificity for 5-HT2AR (Ki = 0.72 nM), along with easier radiosyn-
thetic access compared with [18F]MDL100907. In rats, the (R)-[18F]MH-MZ enantiomer
showed the best radiolabeling results, as the affinity of the racemic mixture [18F]MH-MZ
was quite lower (Ki = 3.0 nM) [124,125]. The comparative study between [18F]MH-MZ
and [18F]Altanserin demonstrated a more specific labeling of areas rich in 5-HT2AR by
[18F]MH-MZ. In addition, it revealed a low level of radiometabolites in the cortex extracts
compared with the plasma levels, thus confirming that the latter cannot pass the BBB [126].
Despite these encouraging results, to date, no publication refers to the use of this radiotracer
in humans.
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3.3. N-Benzylphenethylamine Series: CIMBI-5 Derivatives

The vast majority of radiotracers synthesized to radiolabel 5-HT2AR are antagonists of
these receptors. However, the development of a series of agonist compounds constitutes
a major interest, allowing for distinguishing the functional receptors involved in various
brain pathologies. It is in this context that [11C]CIMBI-5 was synthesized (Figure 8). In
2010, Ettrup et al. carried out the first studies on this compound, which revealed that
it was indeed a potent 5-HT2AR agonist with moderate specificity for these receptors
(Ki (5-HT2AR) = 2.2 nM; Ki (5-HT2BR) = 2,3 nM; Ki (5-HT2CR) = 7.0 nM) [127]. The ex
vivo study carried out on rat brains showed absorption of the radiotracer mainly in the
frontal cortex equivalent to that obtained with [18F]Altanserin. This binding is specific
to 5-HT2AR, as proven by a significant displacement of the radiotracer in the presence of
ketanserin. In vivo (pigs) imaging revealed significant cortical absorption as well as more
moderate absorption in the thalamic and striatal regions, thus evidencing the interest in
evaluating [11C]CIMBI-5 in humans. In 2019, additional tests carried out on nonhuman
primates (two baboons and two vervet monkeys) allowed observing a radiolabeling in
correlation with those obtained previously but with a lower intensity compared with
[11C]Volinanserin [128].
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Many derivatives of [11C]CIMBI-5 were synthesized and tested, with widely varying
radiolabeling results [129]. Among them, [11C]CIMBI-36, the brominated analogue of
[11C]CIMBI-5, demonstrated the most interesting results. [11C]CIMBI-36 possesses a
strong affinity and specificity toward 5-HT2AR (Ki = 1.01 nM) and afforded an intense
radiolabeling of the cerebral cortex in pigs [129]. In 2014, [11C]CIMBI-36 was evaluated
against a cohort of 29 healthy volunteers, and good distribution of the radiotracer was
demonstrated, particularly in the neocortex and the sensory cortex. The study suggested
a weak plasmatic stability of [11C]CIMBI-36, with a 50% decrease in plasma 10 min after
injection. This metabolism issue was not evidenced in the pig brain tissue but was the
subject of additional research [130,131]. Finally, in the presence of ketanserin, radiolabelling
was significantly reduced in the neocortex, confirming the binding selectivity toward
5-HT2AR. Additional studies were carried out on humans and animals with the aim of
observing the changes induced by the administration of substances that interact with the
serotonergic system [132–134]. The study on pigs and monkeys revealed a decrease in the
uptake of [11C]CIMBI-36 (46%) in the presence of a significant increase in 5-HT. In humans,
[11C]CIMBI-36 allowed assessing a decrease in radioemission in areas rich in 5-HT2AR
in the presence of D-amphetamine, thus evidencing the interest in this radiotracer as a
potential new tool for the evaluation of neuropathologies such as depression [135]. Finally,
in 2016, a study by Ettrup et al. revealed a probable binding of [11C]CIMBI-36 to 5-HT2CR
detected by radiolabeling of the hippocampus and choroid plexus greater than that in the
presence of [18F]Altanserin [136].

[18F]FECIMBI, an ethylfluorinated analogue of [11C]CIMBI-36, exhibited interesting
binding properties toward 5-HT2Rs (Ki (5-HT2AR) = 1 nM; Ki (5-HT2CR) = 1.7 nM) and
an agonist profile. [18F]FECIMBI was synthesized by Prabhakaran et al. in 2015 and was
able to radiolabel the temporal cortex, the hippocampus, and the choroidal plexus (an area
rich in 5-HT2CR) by autoradiography [137]. In 2017, a complementary study in monkeys
showed insufficient cerebral absorption and an insufficient volume of distribution for the
development of an in vivo quantification tool [138].

3.4. Miscellaneous Derivatives as SPECT Imaging Tracers

Over the past few decades, many SPECT radiotracers with an affinity for 5-HT2AR
have been synthesized (Figure 9). However, due to moderate selectivity, the presence of
radiometabolites interfering with imaging and signals that are too weak, very few of them
are currently used to quantify 5-HT2AR in humans. Discovered in the 1970s, [123I]DOI is a
mixed agonist of 5-HT2AR and 5-HT2CR which allowed the first scintigraphic explorations of
the brain even before the emergence of SPECT and PET imaging techniques [139]. [123I]DOI
was previously used in its racemic form, in particular in rats (Ki = 2.8 nM) [140]. In 1989,
Nazarali et al. published a comparative study highlighting the interest of (R)-[125I]DOI
(Kd = 1.2 nM) in its enantiomer (S)-[125I]DOI (Kd = 2.1 nM) [141]. Finally, the results obtained
for baboons did not conclude favorably with regard to its use as a specific radiotracer for
5-HT2AR and 5-HT2CR [142].
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[123I]R91150 or [123I]R93274 are the most popular radiotracers used to quantify and
characterize 5-HT2AR by SPECT imaging. [123I]R91150 is a potent (Kd = 0.12 nM) and
selective antagonist of 5-HT2AR which demonstrated its effectiveness through pronounced
radiolabeling of the frontal cortex (FC) compared with the cerebellum (CER, nonspecific),
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with an FC/CER ratio greater than 10 in rats (in vivo) [143]. In 1997, Abi-Dargham et al.
published the first complete preclinical study carried out on baboons and observed a
specific radiolabeling of the occipital and temporal cortex (reversible in the presence of
ketanserin) with a lower FC/CER ratio (1.5). The plasma study revealed a rapid metabo-
lization of [123I]R91150 (75% metabolized 3 h after the injection) with the presence of a less
lipophilic metabolic fraction which did not cross the BBB [144]. These observations were
confirmed by studies carried out on healthy volunteers who did not question the usefulness
of this radiotracer for the quantification and characterization of cerebral 5-HT2AR [145,146].
In 1998, [123I]R91150 was tested on a larger cohort of healthy volunteers (13 women and
13 men) and confirmed the results obtained with [18F]Altanserin (i.e., the absence of a
significant difference between genders and the significant decrease in 5-HT2AR with ag-
ing) [147]. During the last two decades, [123I]R91150 was used on numerous occasions
to study various neuropathologies such as Alzheimer’s disease, Parkinson’s disease, or
schizophrenia [148–150]. [123I]R91150 became a reference for evaluating the distribution
and the quantification of 5-HT2AR in subjects (humans and animals) presenting neuropsy-
chiatric disorders (with or without treatment) such as depression, anxiety, anorexia, or
having suicidal behaviors [151–157]. In 2009, a fluorinated analogue usable in PET imaging
was synthesized: [18F]R91150. Despite encouraging results, the difficulty of obtaining the
radiotracer did not encourage its development for further studies [158].

[123I]MSP is an iodinated derivative of spiperone, an atypical antipsychotic drug
belonging to the butyrophenone family used as a treatment for schizophrenia. [123I]MSP
was designed to maintain the affinity for 5-HT2AR of spiperone while decreasing its
affinity toward dopaminergic D2 and D3 receptors. The study carried out with [123I]MSP
evidenced a strong affinity and selectivity for 5-HT2AR, with a radiolabeling distribution
in correlation with those obtained with the reference radiotracers (intense labeling of the
mouse frontal cortex) [159]. Despite promising results, [123I]MSP has not been the subject
of recent studies.

[123I]-3-I-CO is a potent (Ki = 0.51 nM) and selective antagonist of 5-HT2AR which was
developed by Fu et al. in 2002. In 2008, a study on rodents showed good distribution of the
radiotracer with a moderate intensity and poorly specific signal. In addition, [123I]-3-I-CO
was the target of efflux mechanisms at the BBB level, demonstrated by a significant increase
in the intensity of the radiosignal after prior administration of a P-glycoprotein inhibitor
(cyclosporine A) [160]. The potential of this radioligand was therefore limited for clinical
development and was simply abandoned.

4. 5-HT3 Receptors

Among the 14 serotonin receptor subtypes, 5-HT3R is the only ionotropic receptor
which belongs to the pentameric ligand-gated ion channel (LGIC) superfamily [161]. In
humans, there are five 5-HT3R subtypes, from 5-HT3A to 5-HT3E. The subunits are encoded
by the HTR3 genes located on chromosome 11q23 (HTR3A and HTR3B) and 3q27 (HTR3C,
HTR3D, and HTR3E) [162]. 5-HT3R is found in both the CNS and peripheral nervous system.
It is mainly located in the dorsal vagal complex of the brainstem, regions involved in the
vomiting reflex, and in low levels in many forebrain areas, including the hippocampus,
amygdala, nucleus accumbens, putamen, and caudate nucleus [163,164]. The 5-HT3Rs
are involved in many physiological processes and neuropsychiatric disorders such as
schizophrenia, depression, bulimia, anxiety, pain, autism, bipolarity, and learning and
memory disorders [165–167]. A class of high-affinity 5-HT3R antagonists named “setrons”
has been established as antiemetic drugs, resulting from chemo- and radiotherapy and
general anesthesia [166,168]. Moreover, many selective agonists and antagonists are de-
scribed, thereby facilitating the development of promising radioprobes. However, to date,
no radiotracers have demonstrated useful applications in humans.
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4.1. Tropane Series: MDL7222 Derivatives

First, several antagonists labeled with carbon-11 (Figure 10) were designed as potential
PET radiotracers [169]. Thus, MDL72222, a selective 5-HT3R antagonist, was radiolabeled
with carbon-11 and further evaluated in rats and baboons. Despite [11C]MDL72222 quickly
crossing the BBB in preliminary studies, a heterogeneous diffusion in the brain was ob-
served, probably due to its high lipophilicity and low specificity [170]. A closely related
analogue of MDL72222 was radiolabeled by Ishiwata et al. for PET imaging: [11C]KF17643.
Nevertheless, [11C]KF17643 displayed nonspecific binding [171].
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4.2. Pyrrolo[1,2-a]Pyrazine Series: S21007 Derivatives

S21007 is a 5-HT3R partial agonist (Figure 11) which has also been evaluated as a
potential PET ligand in rats and baboons because of its strong affinity (Ki = 1.4 nM),
selectivity, and high brain uptake. However, [11C]S21007 was unable to detect the 5-HT3R
via a specific binding signal, as [11C]S21007 did not displace unlabeled S21007 in the brain
areas with 5-HT3 receptors, suggesting a lack of specific binding [172]. This series was
further investigated with the synthesis of [18F]MR18445, another pyrrolo[1,2-a]pyrazine
derivative radiolabeled with fluorine-18. Autoradiography and PET studies showed rapid
uptake in both rat and baboon brains, but no specific binding in 5-HT3R-rich brain regions
was detected with [18F]MR18445, probably due to its high lipophilicity [173]. All these
compounds were not successfully used for selective binding to 5-HT3R in vivo.
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4.3. (S)-Quinuclidin-3-Amine Series: Zacopride Derivatives

Zacopride, a 3-aminoquinuclidinyl derivative, is a well-known mixed 5-HT3R an-
tagonist and 5-HT4R agonist [174]. A series of Zacopride derivatives was developed by
Ebert et al. (Figure 12) [175,176]. [125I]DAIZAC exhibited high affinity (Ki = 0.19 nM)
and enhanced selectivity for the 5-HT3R. Autoradiographic studies also demonstrated
the usefulness of this ligand, but to date, despite these promising characteristics, the lig-
and has not yet been further developed for SPECT imaging [176]. Highly selective and
potent antagonists, such as granisetron and palonosetron, belong to a family of drugs
(the “setrons”) that is well established for clinical use, especially because of their effects
on Chemotherapy-Induced Nausea and Vomiting (CINV). Among them, [18F]Fesetron
was designed based on the model of [125I]MIZAC, a potent and selective radioligand of
5-HT3R [175]. [18F]Fesetron was shown to display a binding profile to rat brain regions
known to contain a high density of 5-HT3R. However, the in vivo rat brain uptake of
[18F]Fesetron was low, and a significant amount of activity was unable to cross the BBB.
This lack of brain permeability, which could be explained by low lipophilicity, limits the
usefulness of [18F]Fesetron as a PET radiotracer in this animal model [177].
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The second “setron” drug developed in 2016 was a fluorine analogue of the clinically
used palonosetron which also contained the 3-aminoquinuclidinyl moiety. In vitro au-
toradiography showed specific labeling in rodent brain slices, but in vivo PET studies in
rats with [18F]Fluoropalonosetron gave low and homogeneous radiotracer signals [178].
This could be related to the low expression of 5-HT3R in the brain combined with the
low lipophilicity of the radioligand and could explain why [18F]Fluoropalonosetron is not
suitable for in vivo PET imaging of 5-HT3 receptors.

4.4. Miscellaneous Derivatives as 5-HT3R Radiotracers

In 1995, [11C]YM060 was labeled with carbon-11 through N-methylation of indole
and revealed poor brain uptake in mice (Figure 13) [179]. N-methylquipazine (NMQ,
(2-[1-(4-methyl)-piperazinyl]quinoline) is an agonist with good affinity and selectivity for
5-HT3R (IC50 = 4.7 nM). Its biodistribution has been evaluated in vivo in rats and nonhu-
man primates using PET imaging [180]. The imaging results indicate that its uptake was
observed in structures known to contain 5-HT3R, although the radiotracer also interacted
with non-5-HT3R sites. In 2008, Gao et al. designed a new carbon-11-labeled benzisoxazole
derivative for PET imaging of 5-HT3 receptors [181]. These partial agonists exhibited high
binding affinity and could be promising for future in vivo biological evaluation.
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5. 5-HT4 Receptors

5-HT4R receptors were first described by Dumuis et al. in 1988 [182]. They are
GPCRs positively coupled to adenylyl cyclase and induce cyclic adenosine monophosphate
(cAMP) production [183]. 5-HT4Rs are located in the peripheral nervous system (PNS),
mainly being found in the heart, gastrointestinal tract, and enteric nervous system [184],
as well as in the CNS, where they are highly expressed in different brain regions like the
hippocampus, amygdala, and cerebral cortex, suggesting the involvement of the receptor
in brain physiological functions [185] such as learning and memory [186–188], eating
disorders [189], and mood behavior [190]. In order to further specify in vivo the 5-HT4R
physiological or pathological role, selective radioligands able to target 5-HT4R have been
developed for SPECT and PET applications.

5.1. Benzodioxane Series: SB207710 Derivatives

Kaumann et al. [191] reported on SB207710, a selective high-affinity benzodioxane
antagonist for 5-HT4R (Figure 14). Autoradiographic experiments on humans [192] and
on rat brains with its radiolabeled analogue, [125I]SB207710, confirmed its potency and
selectivity [193] and led Pike et al. to characterize its efficacy in vivo as a SPECT radioli-
gand [194]. A good brain uptake in rats was observed for [125I]SB207710, and the study
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revealed specific radiolabeling of regions rich in 5-HT4R (striatum, frontal, and temporal
cortex). [123I]SB207710 was then examined by SPECT imaging in nonhuman primates. The
radiotracer readily accumulated in 5-HT4R-rich areas. The specificity of this radiolabeling
was underlined through pretreatment with a selective 5-HT4R antagonist, SB204070, which
reduced the radioactivity in all brain regions. Even if [123I]SB207710 entered the brain, its
signal quickly disappeared in SPECT, thus proving rapid clearance. Since then, no further
investigations for SPECT studies in humans have been reported. Nevertheless, the use of
[123I]SB207710 in SPECT imaging provided the first demonstration of 5-HT4R imaging in
primate brains in vivo [194]. The antagonist SB207145 (Ki = 0.3 nM), structurally related
to SB207710, was radiolabeled with carbon-11 by Gee et al. in 2008 [195], and its potential
as a PET radioligand was evaluated for 5-HT4R imaging. The preliminary data in a few
healthy subjects indicated that [11C]SB207145 was distributed in the brain according to the
known 5-HT4R distribution. It was then successfully used for in vivo studies in animals
to evaluate the metabolism and binding kinetics in a minipig brain [196] and human sub-
jects [195,197–199]. To date, [11C]SB207145 remains the only 5-HT4R radiotracer that has
been evaluated in human studies [200–203]. However, the short half-life of the radioisotope
(t1/2 = 20.4 min) significantly restricted its use for more advanced clinical trials.
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In 2010, Xu et al. reported the first fluorine-18-radiolabeled 5-HT4R radiotracer
[18F]RX-2 [204] in which deuterium was incorporated to provide greater in vivo resis-
tance to defluorination [205]. PET studies with [18F]RX-2 were performed on monkeys
in 2014 and showed a high brain uptake, quantifiable distribution, and insignificant ra-
diometabolite detection [206]. The mild but stable 5-HT4R-specific signal validated the
potential use of [18F]RX-2 for mapping 5-HT4R, but no transposition to human PET studies
were published to date.

More recently, [18F]MNI-698 and [18F]MNI-699, two fluorinated analogues of SB207145
containing fluorine-18 in the terminal piperidine alkyl chain, were described [207]. These
radioligands have been shown to be affine with 5-HT4R (Ki = 0.2 nM and 0.07 nM, respectively).
In vivo PET studies on adult rhesus monkeys established that both radioligands displayed
suitable brain penetration and brain distribution consistent with the known 5HT4R densities.
The whole-body biodistribution and dosimetry of [18F]MNI-698 were then investigated and
supported that this radioligand could be used for investigation in humans [208,209]. All these
ligands belong to the same family of compounds and contain an ester function which can
generate short metabolic stability. Other chemical series deprived of ester functions have been
explored recently, such as azaphenanthrene derivatives [210].

5.2. 5-HT5 Receptors

Two subtypes of 5-HT5R are known—5-HT5AR and 5-HT5BR—but only 5-HT5AR is
expressed in the human brain. Because of the lack of a selective and potent ligand described
for this receptor to date, no potent radiotracer or even radioligand has been described.

5.3. 5-HT6 Receptors

The 5-HT6 receptor is one of the most recently identified members of the 5-HT receptor
family. First cloned in a rat, the 5-HT6R gene encodes a 438-aminoacid protein [211,212]
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which is well-conserved in humans [213], and 5-HT6R is a Gαs-coupled receptor (GPCR)
that is almost exclusively expressed in the CNS and is abundant in the brain regions in-
volved in cognitive functions, such as the prefrontal cortex, hippocampus, striatum, and nu-
cleus accubens [214–216]. Similar distribution patterns between rats, nonhuman primates,
and humans have been established [217,218]. In addition to the adenylyl cyclase signaling
pathway [219], 5-HT6R has been linked to cellular signaling cascades involved in cognitive
processes and neurogenesis, such as the mammalian target of the rapamycin (mTOR) path-
way [220]. Thus, 5-HT6R has emerged as a promising target for cognitive enhancement in
neurodegenerative or in psychiatric diseases and for antiobesity drugs [187,221–225].

5.4. Benzene Sulfonamide Derivatives: SB258585 Derivatives

Selective radioligands for in vitro autoradiographic studies are available, such as
[125I]SB258585 (Ki = 1 nM), but their development as in vivo imaging tools was restricted
due to poor brain uptake (Figure 15) [226]. Tang et al. [227] developed a series of 4-
(2-aminoethoxy)-N-(phenylsulfonyl)indoles based on the selective 5-HT6R antagonist
SB271046 [228]. This study led to the design of [18F]12ST05, presenting good affinity
for 5-HT6R (Ki = 4 nM). Ex vivo autoradiographic studies in rat brain slices established
high labeling in regions known to contain 5-HT6R. In vivo studies in cats failed to show
the specific binding of [18F]12ST05 to 5-HT6R in the cerebral regions, and hence, further
investigations were not undertaken for [18F]12ST05 as a PET radioligand.
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5.5. 5-(Piperazin-1-yl)Quinolone Derivatives: GSK215083 Derivatives

In 2012, Parker et al. published an interesting study presenting the in vivo evaluation
of [11C]GSK215083 (Ki (5-HT6R) = 0.16 nM and Ki (5-HT2AR) = 0.79 nM) in pigs, nonhuman
primates, and humans (4 healty volunteers) (Figure 16). They revealed a significant binding
of the radiotracer on the striatum and frontal cortex in correlation with the autoradiograms
carried out previously on cats. Two additional studies confirmed the interest shown in
this radiotracer and revealed a decrease in 5-HT6R with age. Moreover, its mixed action
(5-HT6R and 5-HT2AR) was effective in the study of neuropsychiatric diseases such as AD
and schizophrenia [229,230].
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In 2014, Rosse designed radiolabeled quinolone derivatives structurally related to
GSK215083 as 5-HT6R PET ligands [231]. In 2014, Colomb et al. developed a new chemical
series of compounds inspired by GSK215083 in order to maintain a strong affinity toward
5-HT6R and to optimize its specificity. The bioisosteric replacement of the sulfonyl part
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by sulfonamide led to a new ligand, 2FNQ1P, with high affinity and selectivity for 5-HT6
receptors [232]. The distribution of [18F]2FNQ1P in 5-HT6R-dense regions (i.e., the cortex
and striatum) was assessed by semiquantitative autoradiography in rat brains. Further-
more, the addition of SB2258585 (a specific 5-HT6R antagonist) displaced the binding of
[18F]2FNQ1P in a concentration-dependent manner, confirming its excellent specificity
for 5-HT6R [233]. The cerebral distribution of [18F]2FNQ1P was then studied in vivo in
various animal models, from rodents to nonhuman primates. The in vivo evaluation in
rats using microPET exhibited reduced brain uptake of [18F]2FNQ1P. By contrast, in vivo
PET imaging with [18F]2FNQ1P in feline and primate models showed high uptake and
distribution in the striatal regions particularly rich in 5-HT6R, suggesting that [18F]2FNQ1P
could be a suitable 5-HT6R PET tracer for quantification of the brain 5-HT6R in primates.
A recent in vitro study demonstrates a decrease in the caudate nucleus 5-HT6R density
with [18F]2FNQ1P in human brain tissue from patients with different stages of Alzheimer’s
disease [233]. Future in vivo exploration should be carried out to establish the relevance of
[18F]2FNQ1P to confirm an early decline in 5-HT6R expression during the progression of
the disease.

5.6. 5-HT7 Receptors

In 1993, 5-HT7R was independently cloned and discovered by several scientific teams
in different species including mice, rats, and humans [212,234,235]. In human, the protein
is encoded by the HTR7 gene located on the long arm of chromosome 10 (10q23.31), com-
prising 3 introns involved in alternative splicing phenomena. Splicing of intron 2 and 3 is
responsible for the existence of 3 distinct isoforms—5-HT7A, 5-HT7B and 5-HT7D—showing no
pharmacological difference. The 5-HT7R receptors are GPCRs (coupled to a Gs protein) that
will diffuse nerve impulses through the activation of adenylate cyclase and the production
of the secondary messenger: cAMP. In human CNS, 5-HT7Rs are localized mainly in the
anterior thalamus and in the dentate gyrus. The hypothalamus, anterior cingulate gyrus,
hippocampus, and amygdala constitute other human brain regions containing substantial
amounts of 5-HT7Rs [236].

The 5-HT7R receptors are involved in the phenomena of learning and memorization
as well as in the regulation of temperature and circadian rhythm. In addition, they play a
decisive role in the development of certain pathologies such as schizophrenia, migraines,
and Alzheimer’s disease [237]. Among the 14 known serotonergic receptors, 5-HT7R is
the most recently discovered and explored one. Its implication in the genesis of certain
pathologies such as depression, anxiety, and epilepsy make it a target of choice for the
development of curative and diagnostic tools [238]. The development of radiotracers
allowing their visualization and quantification has become a major axis of research in
medicinal chemistry.

5.7. Oxindoles Series: DR4004 Derivatives

DR4004 (Figure 17) is a selective and potent antagonist of 5-HT7 receptors (Ki = 2 nM)
discovered in 1999 by Kikuchi et al. [239]. In 2002, the same group proposed a N-methylated ana-
logue, DR4446, while maintaining the affinity and selectivity toward 5-HT7R (Ki = 9.7 nM) [240].
Radiolabeling through [11C]N-methylation, performed by Zhang et al., allowed obtaining the
first imaging study with the 5-HT7R antagonist radiotracer [241]. [11C]DR4446 showed good
diffusion through the BBB in vivo (rhesus monkeys), with a high brain uptake especially in the
5-HT7R-rich region: the thalamus. However, this study did not allow a favorable transfer to
human experiments due to the impossibility to observe a blocking effect in a self-block study,
probably due to off-target labeling of other CNS receptors.
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CIMBI-717 and CIMBI-712 (Figure 18) are potent 5-HT7R antagonists (Ki = 2.6 nM
and 1.1 nM, respectively) discovered in 2012 by Herth et al. [242]. In 2014, both of these
ligands, after radiolabeling with carbon-11, were evaluated in vivo (pigs) as 5-HT7R trac-
ers by Knudsen et al. A high brain uptake was observed for both [11C]CIMBI-712 and
[11C]CIMBI-717. Their specificity was demonstrated through blocking studies after the
injection of SB-269970, a 5-HT7R antagonist [243]. For [11C]CIMBI-717, a radiolabeling of
the thalamus, the striatum, the hippocampus, and the cortex in correlation with the in vitro
autoradiographs determined beforehand with [3H]SB-269970 was also observed. Despite
these encouraging results, no recent publication mentions its use in humans. However,
in the same series, Herth et al. proposed in 2019 a closely related analogue of CIMBI-717
and CIMBI-712: ENL10 [244] while overcoming the problematic short half-life of carbon-
11 through fluorine-18 labeling. [18F]ENL10, a potent and selective 5-HT7R antagonist
(Ki = 5.6 nM) demonstrated in vivo (rats) a very modest passage across the BBB due to
the efflux phenomena induced by a significant expression of the transporter P-gp in rats.
In the presence of Elacridar (P-gp inhibitor) and SB-269970, the study revealed specific
radiolabeling of 5-HT7R-rich areas, making this compound a serious candidate for possible
application of these tests to other species (e.g., pigs or nonhuman primates). This sugges-
tion is motivated mainly by recent observations, indicating a lower expression of P-gp in
non-rodents and making the use of Elacridar probably obsolete for these species.
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5.8. N-Sulfopyrrolidine Series: SB-269970 Derivatives

In 2011, Zimmer et al. developed a new chemical series of compounds inspired by the
N-sulfopyrrolidine structure from a 5-HT7R antagonist: SB-269970 [243] (Figure 19). Among
this first generation of radioligands, [18F]2FP3 proved to be the most promising. Indeed,
[18F]4FP3, [18F]4FPMP, and [18F]2FPMP exhibited nonspecific radiolabeling in the presence
of a reference antagonist (SB269970) in rats (ex vivo and in vivo). [18F]2FP3 is an affine and
selective 5-HT7R antagonist (KD = 8.4 nM) which was previously tested in rats (ex vivo
autoradiography) and in cats (in vivo) [243]. The first results were very promising, since
selective radiolabeling of the hippocampus, cingulate cortex, and thalamus was observed. In
addition, 95% of the collected signal was assigned to [18F]2FP3 and not from a radiometabolite.
In 2019, a complementary study on pigs and nonhuman primates was carried out [245]. Partial
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specificity of [18F]2FP3 for the cerebellum (in monkeys) was revealed, clearly reflecting the
difficulties in translating the results from one species to another. In addition, [18F]2FP3 was
found to be rapidly metabolized in pigs (50% metabolized 10 min after injection) and more
moderately in primates (50% in 60 min). This study did not provide a favorable conclusion
for its use in humans. This first approach was further completed by the evaluation of a
second generation of radioligands, where additional carbon between the pyrrole and the
piperidine or the piperazine was inserted [246]. These radioligands were optimized in terms
of radiolabeling specificity for 5-HT7R, but additional pharmacomodulations will be necessary
in order to improve the biodistribution and passage of the BBB.
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Still in the N-sulfopyrrolidine series, two radioligands were synthesized and tested
by Herth et al.: [18F]ENL30 [247] and [11C]CIMBI-701 [248] (Figure 20). These compounds
exhibited mixed labeling of the 5-HT7R and σ-receptors and added to a moderate signal in
the brain (probably linked to the mechanisms of efflux (P-gp substrate)), thus limiting their
use in humans.
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6. Serotonin Transporter

A serotonin transporter (SERT) is not a serotonergic receptor per se. However, it
is heavily involved in the regulation of 5-HT. The development of radioligands that are
affine and selective for these transporters constitutes an interesting axis of development in
clinical research.

SERTs are proteins consisting of 12 transmembrane helices whose main role is to
regulate the concentration of 5-HT in the inter-synaptic space. The reuptake of 5-HT
results from a complex catalytic reaction incorporating both symporter and antiporter
transport involving three distinct ions: Na+, Cl−, and K+. This transport takes place in four
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successive stages [249]. (1) A conformation change of SERTs, resulting in exposure of the
binding sites to the intracellular medium, takes place due to the extracellular stoichiometric
binding of 5-HT, Na+ ions, and Cl− ions. (2) The 5-HT, Na+, and Cl- ions are released in
the intracellular medium. (3) Intracellular binding of K+ ions leads to a conformational
modification of the SERT, which regains its original conformation. (4) K+ ions are released
into the extracellular medium. SERT expression is tightly regulated by the concentration
of 5-HT in the intersynaptic space. In the presence of an increased amount of 5-HT,
there is a decrease in the internalization of the transporter, resulting in an increase in its
density on the presynaptic membrane. On the contrary, SERTs are downregulated in the
presence of a small amount of 5-HT. In this context, a large panel of compounds has been
developed with the main objective of blocking the reuptake of serotonin by inhibiting these
transporters. The serotonin reuptake inhibitors (SSRI drug class), including fluoxetine
(Prozac®), sertraline (Zoloft®), and citalopram (Celexa®), are mainly prescribed to treat
major depressive disorders as well as obsessive-compulsive disorders.

During the last three decades, the development of new potent and selective radiotracers
of SERTs has become a major axis of development in clinical and preclinical research. Indeed,
their expression fluctuations, dependent on the endogenous 5-HT level, are an interesting
marker in various pathologies such as depression, bipolarity, and eating disorders. In addition,
these studies could allow assessing the impact of regular administration of SSRIs on the
serotonergic system, thus allowing a better understanding of their mode of action.

6.1. Isoquinoline Series: McN5652 Derivatives

McN5652 is the first SERT ligand evaluated as a radiotracer. The two evaluated di-
astereomers of McN5652—(+)-[11C]McN5652 and (−)-[11C]McN5655—present significant
differences in terms of affinity toward SERTs at Ki of 0.4 nM and 58.4 nM, respectively
(Figure 21) [250]. Preliminary studies carried out on mice allowed appreciating the differ-
ence in radiolabeling between the two enantiomers, with clearly more interesting results for
the (+) enantiomer. In 1995, a study on baboon brains revealed significant absorption of the
radiotracer in the midbrain, hypothalamus, thalamus, and striatum. This distribution corre-
lates with the results obtained for brain section autoradiography with [3H]paroxetine [251].
In 2000, Parsey et al. carried out a study on six healthy male volunteers and confirmed the
interest in (+)-[11C]McN5652 as a radiotracer, allowing the quantification of SERTs in the
limbic, striatal, and thalamic regions. However, the study revealed major limitations to its
use, in particular with the presence of a non-selective labeling in the neocortex area and
a specific or nonspecific binding ratio (satisfactory after 115 min) not being in adequacy
with the use of carbon-11 (t1/2 = 20.4 min) [251,252]. Nevertheless, (+)-[11C]McN5652 has
been used on numerous occasions to assess SERT biodistribution in various pathological
conditions such as depression and obsessive-compulsive and mood disorders [253–255].
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In order to improve its properties, a methylfluorinated analogue of (+)-[11C]McN5652
was synthesized: [18F]FMe-(+)-McN5652. Preliminary evaluations in a rat (ex vivo) re-
vealed intense and specific radiolabeling (competitive tests in the presence of fluoxetine,
nisoxetine, and GBR12909) of the amygdala, hypothalamus, raphe nuclei, thalamus, and
locus coeruleus compared with the cerebellum (nonspecific binding) [256]. A comple-
mentary study on a pig (in vivo) allowed concluding favorably regarding the use of this
radiotracer as an alternative to (+)-[11C]McN5652 [257]. However, as its affinity for SERTs
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was found to be more moderate (Ki = 2.3 nM) than (+)-[11C]McN5652, its binding parame-
ters were estimated to be less reliable [258]. Despite promising results, no publication to
date mentions the use of this tracer in humans.

6.2. Diarylthioether Series: [123I]IDAM Derivatives

[11C]DASB is probably the most used radiotracer to explore the distribution of SERTs
at the CNS level. This radiotracer was synthesized in the early 2000s as an analogue of
[123I]IDAM, the first radiotracer to be synthesized and evaluated in the diarylthioether
series [259], but quickly abandoned in favor of its analogues (Figure 22). [11C]DASB is very
affine and selective toward SERT (Ki = 1.1 nM) [260]. The first human study (nine healthy
volunteers) was performed by Wilson et al. and allowed observing an intense assimilation
of [11C]DASB in the midbrain, the thalamus, the hypothalamus, and the striatum [261]. The
specificity was confirmed by a prior oral intake of citalopram, decreasing the radioactivity
of these cerebral areas to equivalent values to those obtained in the cerebellum (nonspecific
labeling). In addition, comparative tests with (+)-[11C]McN5652 indicated a much more
interesting specific or nonspecific binding ratio for [11C]DASB [262,263]. Between 2002
and 2004, several studies were carried out on animals (rats, cats, and baboons), allowing
for evaluating the general distribution of [11C]DASB, and concluded favorably regarding
its use to determine the influence of SERTs in various psychiatric and neurological disor-
ders [264–266]. Thus, [11C]DASB was used on numerous occasions in patients presenting
various pathologies such as depression, schizophrenia, obsessive-compulsive disorder,
Parkinson’s disease, alcoholism, and bipolarity [267–273]. To date, [11C]DASB constitutes
a reference in the quantification and characterization of SERTs at the cerebral level.
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In 2001, [11C]MADAM, a methylated analogue of [11C]DASB exhibiting a very strong
affinity and specificity for SERTs (Ki = 0.013 nM), was described [274]. The first baboon
studies indicated consistent radiolabeling of SERT-rich areas of the brain [275]. In 2005,
imaging studies on healthy humans (nine volunteers) confirmed the previous observa-
tions, with a major absorption of [11C]MADAM in the raphe nuclei, the putamen, the
hippocampus, and more moderately in the frontal and cingulate cortex [276,277]. Finally,
[11C]MADAM has been used more recently to study the density of brain SERTs in people
with eating disorders and gambling addiction [278].

In 2000, the discovery of [123I]ADAM offered the possibility to perform human imag-
ing exploration of SERTs using SPECT imaging [279]. [123I]ADAM was first tested in mice,
rats, rabbits, and nonhuman primates and allowed observing intense and specific radio-
labeling of the midbrain [280–283]. In 2003 and 2004, two preliminary studies evaluated
the biodistribution of [123I]ADAM in humans (7 and 11 healthy volunteers) and allowed
observing the specific labeling of the midbrain [284,285]. These results were confirmed by
several additional studies which demonstrated a specific and reproducible labeling in the
midbrain, the thalamus, and the striatum, particularly in people with an SERT polymor-
phism [286–288]. Finally, a double-blind trial was carried out (12 healthy men volunteers)
in order to visualize the differences in radiolabeling with an administration of paroxetine
versus a placebo [289]. [123I]ADAM allows exploration of the variations of SERTs, particu-
larly in the presence of various pathologies such as depression, Parkinson’s disease, and
eating disorders [289–294]. In 2003, [18F]ADAM, a fluorinated analogue of [123I]ADAM
with good affinity and selectivity toward SERTs (Ki = 4.8 nM), was described [295,296].



Pharmaceuticals 2022, 15, 571 22 of 36

[18F]ADAM was first tested on monkeys and allowed observing an intense radiolabeling
of the striatum, thalamus, and midbrain. The selectivity was confirmed in the presence
of increasing doses of fluoxetine, allowing visualization of the displacement of the radi-
oligand [297]. [18F]ADAM was then further studied in humans with major depressive
disorders and allowed the observation of a significant decrease in radiolabeling in the
midbrain and the striatum in those who had attempted suicide recently. These contradic-
tory results are probably linked to a recent administration of an SSRI, which can induce
a decrease in the central SERTs [298,299]. The results obtained with [18F]ADAM are very
encouraging and place it as a future radiotracer for exploring and quantifying the central
SERTs using PET. A closely related analogue of [18F]ADAM was described in 2009 by Wang
et al., exhibiting high affinity and selectivity toward SERTs (Ki = 0.25 nM): [18F]FPBM [300].
The first studies in animals (rats) revealed specific labeling of the midbrain, cortex, striatum,
and thalamus. [18F]FPBM evaluation was recently supplemented by tests on monkeys,
which confirmed the interest of this compound as a new PET tracer of central SERTs [301].

6.3. Tropane Series: β-[123I]CIT Derivatives

β-[123I]CIT (Figure 23) is one of the first radiotracers to be synthesized and tested for
SPECT imaging in humans [302–304]. β-[123I]CIT has a mixed affinity for serotoninergic
and dopaminergic transporters, which is not a major drawback since there is a different
distribution within the brain for these two targets. However, its demethylated counterpart
Nor-β-[123I]CIT has an affinity 10 times higher for SERTs and has allowed the observa-
tion in humans of a very strong accumulation of radioactivity in the midbrain and the
striatum [305]. Since then, β-[123I]CIT and Nor-β-[123I]CIT have been used repeatedly to
determine the evolution of the SERT density in the presence of pathologies such as depres-
sion and autism and in people with obsessive-compulsive disorders [306–308]. Recently,
compounds exhibiting similar structures have been synthesized, particularly [11C]NS9762
and [11C]NS6417, which could provide promising alternatives in the coming years [309].
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7. Conclusions

As described in this review, several potent and selective radiotracers for 5-HTR and SERTs
have been developed in recent decades. Three radiotracers with good affinity to 5-HT1AR are
commonly used in clinical trials: [11C]WAY100635, [18F]MPPF, and [18F]FCWAY. The charac-
terization and distribution of 5-HT2AR is frequently performed by [123I]5-I-R91150 in SPECT
imaging, with that of [18F]Setoperone, [18F]Altanserine, and [11C]MDL100907 performed in
PET imaging. Moreover, the utilization of [123I]ADAM, [11C]DASB, and [11C]MADAM has
improved the exploration of SERTs. These radiotracers have greatly contributed to facilitating
the characterization, localization, and biological implication of the brain serotonin system in
normal and pathological conditions. Indeed, in vivo PET and SPECT studies carried out on
humans and animals allowed the observation of brain areas rich in 5-HTR by precise detection
of radioactive emission. The signal specificities were confirmed via radiotracer displacement
methods in the presence of reference ligands. Furthermore, these studies have shown the
importance of multiparametric approaches to designing a new radiotracer, since a lack of
selectivity, insufficient passage through the BBB, and fast metabolization can significantly
decrease its effectiveness. In addition, these investigations also revealed the difficult transpo-
sition of the results from one species to another due to the interspecies variation of 5-HTR
distribution, which could lead to misinterpretation. Overall, despite interesting results during
clinical trials, none of these radiotracers are approved as diagnostic tools for neuropsychiatric
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disorders in clinics. New radiolabel-capable, potent, and selective ligands of the 5-HTRs
allowing exploration of brain functions are thus still needed to fully understand the role of
these receptors in either healthy or sick individuals.
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