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Concurrencies in Reversible Concurrent Calculi

Clément Aubert[0000−0001−6346−3043]

School of Computer & Cyber Sciences, Augusta University, Augusta, USA
caubert@augusta.edu, https://spots.augusta.edu/caubert/

Abstract. The algebraic specification and representation of networks of
agents have been greatly impacted by the study of reversible phenomena:
reversible declensions of the calculus of communicating systems (CCSK

and RCCS) offer new semantic models, finer congruence relations, orig-
inal properties, and revisits existing theories and results in a finer light.
But much remains to be done: concurrency, a central notion in establish-
ing causal consistency–a crucial property for reversible systems–, was
never given a syntactical definition in CCSK. We remedy this gap by
leveraging a definition of concurrency developed for forward-only cal-
culi using proved transition systems, and prove that CCSK still enjoys
causal consistency for this elegant and syntactical notion of reversible
concurrency. We also compare it to a definition of concurrency inspired
by reversible π-calculus, discuss its relation with structural congruence,
and prove that it can be adapted to any CCS-inspired reversible sys-
tem and is equivalent—or refines—existing definitions of concurrency for
those systems.

Keywords: Formal semantics · Process algebras · Concurrency

1 Introduction: Reversibility, Concurrency–Interplays

Concurrency Theory is being reshaped by reversibility: fine distinctions be-
tween causality and causation [33] contradicted Milner’s expansion laws [26, Ex-
ample 4.11], and the study of causal models for reversible computation led to
novel correction criteria for causal semantics—both reversible and irreversible [13].
“Traditional” equivalence relations have been captured syntactically [4], while
original observational equivalences were developed [26]: reversibility triggered a
global reconsideration of established theories and tools, with the clear intent of
providing actionable methods for reversible systems [22], novel axiomatic foun-
dations [27] and original non-interleaving models [2, 13, 20].

Two Systems extend the Calculus of Communicating Systems (CCS) [30]—
the godfather of π-calculus [34], among others—with reversible features. Re-
versible CCS (RCCS) [14] and CCS with keys (CCSK) [33] are similarly the
source of most [1, 13, 28, 29]—if not all—of later systems developed to enhance
reversible systems with some respect (rollback operator, name-passing abilities,
probabilistic features, . . . ). Even if those two systems share a lot of similari-
ties [24], they diverge in some respects that are not fully understood—typically,
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2 Clément Aubert

it seems that different notions of “contexts with history” led to establish the exis-
tence of congruences for CCSK [26, Proposition 4.9] or the impossibility thereof
for RCCS [6, Theorem 2]. However, they also share some shortcomings, and we
offer to tackle one of them for CCSK: a syntactical definition of concurrency,
preferably easy to manipulate and satisfying the usual sanity checks.

Reversible Concurrency is of course a central notion in the study of
RCCS and CCSK, as it enables the definition of causal consistency—a principle
that, intuitively, states that backward reductions can undo an action only if its
consequences have already been undone—and to obtain models where concur-
rency and causation are decorrelated [33]. As such, it have been studied from mul-
tiple angles, but, in our opinion, never in a fully satisfactory manner. In CCSK,
sideways and reverse diamonds properties were proven using conditions on keys
and “joinable” transitions [33, Propositions 5.10 and 5.19], but to our knowledge
no “definitive” definition of concurrency was proposed. Ad-hoc definitions relying
on memory inclusion [21, Definition 3.1.1] or disjointness [14, Definition 7] for
RCCS, and semantical notions for both RCCS [2–4] and CCSK [20,32,36] have
been proposed, but, to our knowledge, none of those have ever been 1. compared
to each other, 2. compared to pre-existing forward-only definitions of concur-
rency.

Our Contribution introduces the first syntactical definition of concurrency
for CCSK (Sect. 3.1), by extending the “universal” concurrency developed for
forward-only CCS [15], that leveraged proved transition systems [18]. We make
crucial use of the loop lemma (Lemma 3) to define concurrency between coini-
tial traces in terms of concurrency between composable traces—a mechanism
that considerably reduces the definition and proof burdens: typically, the square
property is derived from the sideways and reverse diamonds. We furthermore
establish the correctness of this definition by proving the expected reversible
properties—causal consistency (Sect. 3.3), among others—and by discussing how
our definition relates to definitions of concurrency in similar systems—obtained
by porting our technique to RCCS [14,21] and its “identified” declensions [6], or
by restricting a notion of concurrency for π-calculus—and to structural congru-
ence (Sect. 4). With respect to this last point, we prove that our technique gives
a notion of concurrency that either match or subsumes existing definitions, that
sometimes lack a notion of concurrency for transitions of opposite directions.

Small technical lemmas, explained in the paper, are in Sect. A, and all proofs
are in Sect. B, with their main arguments sometimes in the paper. Sect. C jus-
tifies the claims made in Sect. 4 about the “universality” of our approach.

2 Finite and Reversible Process Calculi

2.1 Finite, Forward-Only CCS

Finite Core CCS We briefly recall the (forward-only) “finite fragment” of the
core of CCS (simply called CCS) following a standard presentation [10].

Definition 1 ((Co-)names and labels). Let N = {a, b, c, . . .} be a set of
names and N = {a, b, c, . . . } its set of co-names. The set of labels L is N∪N∪{τ},
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and we use α, β (resp. λ) to range over L (resp. L\{τ}). A bijection · : N → N,
whose inverse is also written ·, gives the complement of a name.

Definition 2 (Operators). CCS processes range over P,Q and are defined as
usual, using restriction (P\α), sum (P +Q), prefix (α.P ) and parallel composi-
tion (P | Q). The inactive process 0 is omitted when preceded by a prefix, and
the binding power of the operators, from highest to lowest, is \α, α., + and |, so
that e.g. α.P +Q\α | P + a is to be read as ((α.P ) + (Q\α)) | (P + (a.0)). In a
process P | Q (resp. P +Q), we call P and Q threads (resp. branches).

The labeled transition system for CCS, denoted −−→α , is reminded in Fig. 1.

Action and Restriction

act.
α.P −−→α P

P −−→α P ′

α /∈ {a, a} res.
P\a−−→α P ′\a

Parallel Group

P −−→α P ′

|L
P | Q−−→α P ′ | Q

P −−→λ P ′ Q−−→λ Q′

syn.
P | Q−−→τ P ′ | Q′

Q−−→α Q′

|R
P | Q−−→α P | Q′

Sum Group

P −−→α P ′

+L
Q+ P −−→α P ′

Q−−→α Q′

+R
Q+ P −−→α Q′

Fig. 1. Rules of the labeled transition system (LTS) for CCS

2.2 CCSK: A “Keyed” Reversible Concurrent Calculus

CCSK captures uncontrolled reversibility using two symmetric LTS—one for
forward computation, one for backward computation—that manipulates keys
marking executed prefixes, to guarantee that reverting synchronizations cannot
be done without both parties agreeing. We use the syntax of the latest paper
on the topic [26], that slightly differs [26, Remark 4.2] with the classical defini-
tion [33]. However, those changes have no impact since we refrain from using
CCSK’s newly introduced structural congruence, but discussed it in Sect. 4.

Definition 3 (Keys, prefixes and CCSK processes). Let K = {m,n, . . .}
be a set of keys, we let k range over them. Prefixes are of the form α[k]—we call
them keyed labels—or α. CCSK processes are CCS processes where the prefix
can also be of the form α[k], we let X, Y range over them.

The forward LTS for CCSK, that we denote −−−→
α[k]

, is given in Fig. 2—with

key and std defined below. The reverse LTS :::→
α[k]

is the exact symmetric of
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−−−→
α[k]

[26, Figure 2] (it can also be read from Fig. 3), and we write X −−−→→
α[k]

Y

if X :::→
α[k]

Y or X −−−→
α[k]

Y . For all three types of arrows, we sometimes omit
the label and keys when they are not relevant, and mark with ∗ their transitive
closures. As usual, we restrict ourselves to reachable processes, defined below.

Definition 4 (Standard and reachable processes). The set of keys occuring
in X is written key(X), and X is standard—std(X)—iff key(X) = ∅. If there
exists a process OX s.t. std(OX) and OX −−→→∗ X, then X is reachable.

The reader eager to see this system in action can fast-forward to Example 1,
p. 7, but should be aware that this example uses proved labels, introduced next.

Action, Prefix and Restriction

std(X) act.

α.X −−−−→
α[k]

α[k].X

X −−−−→
β[k]

X ′

k 6= k′ pre.

α[k′].X −−−−→
β[k]

α[k′].X ′

X −−−−→
α[k]

X ′

α /∈ {a, a} res.

X\a−−−−→
α[k]

X ′\a

Parallel Group

X −−−−→
α[k]

X ′

k /∈ key(Y ) |L
X | Y −−−−→

α[k]
X ′ | Y

Y −−−−→
α[k]

Y ′

k /∈ key(X) |R
X | Y −−−−→

α[k]
X | Y ′

X −−−−→
λ[k]

X ′ Y −−−−→
λ[k]

Y ′

syn.

X | Y −−−→
τ [k]

X ′ | Y ′

Sum Group

X −−−−→
α[k]

X ′

std(Y ) +L

X + Y −−−−→
α[k]

X ′ + Y

Y −−−−→
α[k]

Y ′

std(X) +R

X + Y −−−−→
α[k]

X + Y ′

Fig. 2. Rules of the forward labeled transition system (LTS) for CCSK

3 A New Causal Semantics for CCSK

The only causal semantics for CCS with replication we are aware of [15] re-
mained unnoticed, despite some interesting qualities: 1. it enables the definition
of causality for replication while agreeing with pre-existing causal semantics of
CCS and CCS with recursion [15, Theorem 1] 2. it leverages the technique of
proved transition systems that encodes information about the derivation in the
labels [18], 3. it was instrumental in one of the first result connecting implicit
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computational complexity and distributed processes [19], 4. last but not least,
as we will see below, it allows to define an elegant notion of causality for CCSK

with “built-in” reversibility, as the exact same definition will be used for forward
and backward transitions, without making explicit mentions of the keys or di-
rections. We believe our choice is additionally compact, elegant and suited for
reversible computation: defining concurrency on composable transitions first al-
lows not to consider keys in our definition, as the LTS guarantees that the same
key will not be re-used. Then, the loop lemma allows to “reverse” transitions
so that concurrency on coinitial transitions can be defined from concurrency on
composable transitions. This allows to carry little information in the labels—the
direction is not needed—and to have a definition insensible to keys and identi-
fiers for the very modest cost of prefixing labels with some annotation tracking
the thread(s) or branch(es) performing the transition.

3.1 Proved Labeled Transition System for CCSK

We adapt the proved transition system [11, 15, 16] to CCSK: this technique en-
riches the transitions label with prefixes that describe parts of their derivation,
to keep track of their dependencies or lack thereof. We adapt an earlier for-
malism [17]—including information about sums [15, footnote 2]—but extend the
concurency relation to internal (i.e. τ -) transitions, omitted from recent work [15,
Definition 3] but present in older articles [11, Definition 2.3].

Definition 5 (Enhanced keyed labels). Let υ, υL and υR range over strings
in {|L, |R,+L,+R}∗, enhanced keyed labels are defined as

θ := υα[k] ‖ υ〈|L υLα[k], |R υRα[k]〉

We write E the set of enhanced keyed labels, and define ℓ : E → L and k : E → K:

ℓ(υα[k]) = α ℓ(υ〈|L υLα[k], |R υRα[k]〉) = τ

k(υα[k]) = k k(υ〈|L υLα[k], |R υRα[k]〉) = k

We present in Fig. 3 the rules for the proved forward and backward LTS for
CCSK. The rules |R, |•R, +R and +•

R are omitted but can easily be inferred. This
LTS have its derivation in bijection with CCSK’s original LTS:

Lemma 1 (Adequation of the proved labeled transition system). The

transition X −−−−→→
α[m]

X ′ can be derived using Fig. 2 iff X −−→→θ X ′ with k(θ) = m
and ℓ(θ) = α can be derived using Fig. 3.

Definition 6 (Dependency relation). The dependency relation on enhanced
keyed labels is induced by the axioms of Fig. 4, for d ∈ {L,R}.

A dependency θ0 ⋖ θ1 means “whenever there is a trace in which θ0 oc-
curs before θ1, then the two associated transitions are causally related”. The
following definitions will enable more formal examples, but we can stress that
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Action, Prefix and Restriction

Forward
std(X) act.

α.X −−−−→
α[k]

α[k].X

X −−→θ X ′

k(θ) 6= k pre.
α[k].X −−→θ α[k].X ′

X −−→θ X ′

ℓ(θ) /∈ {a, a} res.
X\a−−→θ X ′\a

Backward
std(X) act.•

α[k].X ::::→
α[k]

α.X

X ′
::→θ X

k(θ) 6= k pre.•

α[k].X ′
::→θ α[k].X

X ′
::→θ X

ℓ(θ) /∈ {a, a} res.•

X ′\a ::→θ X\a

Parallel Group

Forward

X −−→θ X ′

k(θ) /∈ key(Y ) |L
X | Y −−−→

|Lθ
X ′ | Y

X −−−−−→
υLλ[k]

X ′ Y −−−−−→
υRλ[k]

Y ′

syn.

X | Y −−−−−−−−−−−−−−→
〈|LυLλ[k],|RυRλ[k]〉

X ′ | Y ′

Backward

X ′
::→θ X

k(θ) /∈ key(Y ) |•L
X ′ | Y :::→

|Lθ
X | Y

X ′
:::::→
υLλ[k]

X Y ′
:::::→
υRλ[k]

Y
syn.•

X ′ | Y ′
::::::::::::::→
〈|LυLλ[k],|RυRλ[k]〉

X | Y

Sum Group

Forward

X −−→θ X ′

std(Y ) +L

X + Y −−−−→
+Lθ

X ′ + Y

Backward

X ′
::→θ X

std(Y ) +•
L

X ′ + Y ::::→
+Rθ

X + Y

Fig. 3. Rules of the proved LTS for CCSK

1. the “action” rule enforces that executing or reversing a prefix at top level, e.g.

α.X −−−→
α[k]

α[k].X or α[k].X :::→
α[k]

α.X , makes the prefix (α[k]) a dependency of
all further transitions; 2. as the forward and backward versions of the same rule
share the same enhanced keyed labels, a trace where a transition and its reverse
both occur will have the first occurring be a dependency of the second, as ⋖

is reflexive; 3. no additional relation (such as a conflict or causality relation)
is needed to define concurrency; 4. this dependency relation matches the for-
ward-only definition for action and parallel composition, but not for sum: while
the original system [15, Definition 2] requires only +dθ ⋖ θ′ if θ⋖ θ′, this defini-
tion would not capture faithfully the dependencies in our system where the sum
operator is preserved after a reduction.

Definition 7 (Transitions and traces). In a transition t : X −−→→θ X ′, X is the
source, and X ′ is the target of t. Two transitions are coinitial (resp. cofinal) if
they have the same source (resp. target). Transitions t1 and t2 are composable,



Concurrencies in Reversible Concurrent Calculi 7

Action

α[k] ⋖ θ

Sum Group

+dθ ⋖+dθ
′ if θ ⋖ θ′

+Lθ ⋖+Rθ
′

+Rθ ⋖+Lθ
′

Palallel Group

|d θ⋖ |d θ′ if θ ⋖ θ′

〈θL, θR〉⋖ θ if ∃d s.t. θd ⋖ θ

θ ⋖ 〈θL, θR〉 if ∃d s.t. θ ⋖ θd

〈θL, θR〉⋖ 〈θ′L, θ
′
R〉 if ∃d s.t. θd ⋖ θ′d

Fig. 4. Dependency Relation on Enhanced Keyed Labels

t1; t2, if the target of t1 is the source of t2. The reverse of t : X ′
::→θ X is

t• : X −−→θ X ′, and similarly if t is forward, letting (t•)• = t.1

A sequence of pairwise composable transitions t1; · · · ; tn is called a trace,
denoted T , and ǫ is the empty trace.

Definition 8 (Causality relation). Let T be a trace X1 −−→→
θ1 · · ·−−−→→

θn Xn and
i, j ∈ {1, . . . , n} with i < j, θi causes θj in T (θi ⋖T θj) iff θi ⋖ θj.

Definition 9 ((Composable) Concurrency). Let T be a trace X1 −−→→
θ1 · · ·−−−→→

θn

Xn and i, j ∈ {1, . . . , n}, θi is concurrent with θj (θi ⌣T θj, or simply θi ⌣ θj)
iff neither θi ⋖T θj nor θj ⋖T θi.

Coinitial concurrency (Definition 11) will later on be defined using compos-
able concurrency and the loop lemma (Lemma 3).

Example 1. Consider the following trace, dependencies, and concurrent transi-
tions, where the subscripts to ⋖ and ⌣ have been omitted:

(a.b) | (b+ c)

−−−−−→
|La[m]

a[m].b | b+ c

−−−−→
|Lb[n]

a[m].b[n] | b+ c

−−−−−−−→
|R+Rc[n′]

a[m].b[n] | b+ c[n′]

::::→
|Lb[n]

a[m].b | b+ c[n′]

:::::::→
|R+Rc[n′]

a[m].b | b+ c

−−−−−−−−−−−→
〈|Lb[n],|R+Lb[n]〉

a[m].b[n] | b[n] + c

And we have, e.g.

|L a[m]⋖ |L b[n] as a[m]⋖ b[n]

|L b[n]⋖ |L b[n] as b[n]⋖ b[n]

and also

|L a[m]⋖ 〈|L b[n], |R +Rb[n]〉

|R +Rc[n
′]⋖ 〈|L b[n], |R +Lb[n]〉

but

|L b[n] ⌣|R +Rc[n
′]

since labels prefixed by |L and |R are never
causes of each others.

1 The existence and uniqueness of the reverse transition is immediate in CCSK. This
property, known as the loop lemma (Lemma 3) is sometimes harder to obtain.
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To prove the results in the next section, we need an intuitive and straight-
forward lemma (Lemma 6) that decomposes a concurrent trace involving two
threads into one trace involving one thread while maintaining concurrency, i.e.

proving that a trace e.g. of the form T : X | Y −−−→→
|Lθ

X ′ | Y −−−→→
|Lθ′

X ′′ | Y

with |L θ ⌣T |L θ′ can be decomposed into a trace T ′ : X −−→→θ X ′ −−→→θ
′

X ′′ with
θ ⌣T ′ θ′. A similar lemma is also needed to decompose sums (Lemma 7), and
their statements and proofs are in Sect. A: they both proceed by simple case
analysis and offer no resistance.

3.2 Diamonds and Squares: Concurrency in Action

Square properties and concurrency diamonds express that concurrent transitions
are actually independent, in the sense that they can be swapped if they are
composable, or “later on” agree if they are co-initial. That our definition of
concurrency enables those, and to allows inter-prove them, is a good indication
that it is resilient and convenient.

Theorem 1 (Sideways diamond). For all X −−→
θ1 X1 −−→

θ2 Y with θ1 ⌣ θ2,

there exists X2 s.t. X −−→
θ2 X2 −−→

θ1 Y .

The proof, sketched p. 9, requires a particular care when X is not standard.
Using pre. is transparent from the perspective of enhanced keyed labels, as no
“memory” of its usage is stored in the label of the transition. This is essentially
because—exactly like for act.—all the dependency information is already present
in the term or its enhanced keyed label. To make this more formal, we introduce
a function that “removes” a keyed label, and prove that it does not affect deriv-
ability.

Definition 10. Given α and k, we define rmα[k] by rmα[k](0) = 0 and

rmα[k](β.X) = β.X rmα[k](X | Y ) = rmα[k](X) | rmα[k](Y )

rmα[k](X\a) = (rmα[k] X)\a rmα[k](X + Y ) = rmα[k](X) + rmα[k](Y )

rmα[k](β[m].X) =

{

X if α = β and k = m

β[m]. rmα[k](X) otherwise

We let rmλ
k = rmλ[k] ◦ rmλ[k] if λ ∈ L\{τ}, rmτ

k = rmτ [k] otherwise.

The function rmα[k] simply looks for an occurrence of α[k] and removes it:
as there is at most one, there is no need for a recursive call when it is found.
This function preserves derivability of transitions that do not involve the key
removed:

Lemma 2. For all X, α and k, X −−→→θ Y with k(θ) 6= k iff rmα
k (X)−−→→θ rmα

k (Y ).

Proof. Assume α[k] or α[k] (if α 6= τ) occur in X (otherwise the result is
straightforward), as k(θ) 6= k, the same holds for Y . As keys occur at most
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twice, attached to complementary names, in reachable processes [26, Lemma
3.4], k /∈ key(rmα

k (X)) ∪ key(rmα
k (Y )). Then the proof follows by induction on

the length of the derivation for X −−→→θ Y : as neither pre. nor pre.• change the
enhanced keyed label, we can simply “take out” the occurrences of those rules
when they concern α[k] or α[k] and still obtain a valid derivation, with the same

enhanced keyed label, hence yielding rmα
k (X) −−→→θ rmα

k (Y ). For the converse
direction, pre. or pre.• can be reintroduced to the derivation tree and in the
appropriate location, as k is fresh in rmα

k (X) and rmα
k (Y ). ⊓⊔

Proof (of Theorem 1 (sketch)). The proof proceeds by induction on the length

of the deduction for the derivation for X −−→
θ1 X1, using Lemmas 6 and 7 to

enable the induction hypothesis if θ1 is not a prefix. The only delicate case is if

the last rule is pre.: in this case, there exists α, k, X ′ and X ′
1 s.t. X = α[k].X ′ −−→

θ1

α[k].X ′
1 = X1 and k(θ1) 6= k. As α[k].X ′

1 −−→
θ2 Y , k(θ2) 6= k [26, Lemma 3.4],

and since θ1 ⌣ θ2, we apply Lemma 2 twice to obtain the trace T :

rmα
k (α[k].X

′) = X ′ −−→
θ1 rmα

k (α[k].X
′
1) = X ′

1 −−→
θ2 rmα

k (Y )

with θ1 ⌣T θ2, and we can use the induction hypothesis to obtain X2 s.t. X ′ −−→
θ2

X2 −−→
θ1 rmα

k (Y ). Since k(θ2) 6= k, we can append pre. to the derivation of

X ′ −−→
θ2 X2 to obtain α[k].X ′ = X −−→

θ2 α[k].X2. Using Lemma 2 one last time,

we obtain that rmα
k (α[k].X2) = X2 −−→

θ1 rmα
k (Y ) implies α[k].X2 −−→

θ1 Y , which
concludes this case. ⊓⊔

Example 2. Re-using Example 1, since |L b[n] ⌣|R +Rc[n
′] in

a[m].b | b+ c−−−−→
|Lb[n]

a[m].b[n] | b+ c−−−−−−−→
|R+Rc[n′]

a[m].b[n] | b+ c[n′],

Theorem 1 allows to re-arrange this trace as

a[m].b | b+ c−−−−−−−→
|R+Rc[n′]

a[m].b | b+ c[n′]−−−−→
|Lb[n]

a[m].b[n] | b+ c[n′].

Theorem 2 (Reverse diamonds).

1. For all X −−→
θ1 X1 ::→

θ2 Y with θ1 ⌣ θ2, there exists X2 s.t. X ::→
θ2 X2 −−→

θ1 Y .

2. For all X ::→
θ1 X1 −−→

θ2 Y with θ1 ⌣ θ2, there exists X2 s.t. X −−→
θ2 X2 ::→

θ1 Y .

It should be noted that in the particular case of t; t• : X −−→
θ1 X1 ::→

θ1 X , or t•; t,
θ1⋖θ1 by reflexivity of ⋖ and hence the reverse diamonds cannot apply. The name
“reverse diamond” was sometimes used for different properties [33, Proposition
5.10; 32, Definition 2.3] that, in the presence of the loop lemma (Lemma 3), are
equivalent to ours, once the condition on keys is replaced by our condition on
concurrency. It is, however, to our knowledge the first time this property, stated
in this particular way, is isolated and studied on its own.

Proof (Sketch). We can re-use the proof of Theorem 1 almost as it is, since
Lemmas 2, 6 and 7 hold for both directions.
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For 1., the only case that diverges is if the deduction for X −−→
θ1 X1 have for

last rule pre. In this case, α[k].X ′ −−→
θ1 α[k].X ′

1 ::→
θ2 Y , but we cannot deduce that

k(θ2) 6= k immediately. However, if k(θ2) = k, then we would have α[k].X ′
1 :::→

α[k]

α.Y ′ = Y , but this application of act.• is not valid, as std(X ′
1) does not hold,

since X ′
1 was obtained from X ′ after it made a forward transition. Hence, we

obtain that key(θ2) 6= k and we can carry out the rest of the proof as before.
For 2., the main difference lies in leveraging the dependency of sum prefixes

between e.g. +Rθ1 and +Lθ2 in X +OY ::::→
+Rθ1 OX +OY −−−−→

+Lθ2 OX + Y . ⊓⊔

Example 3. Re-using Example 1, since |R +Rc[n
′] ⌣|L b[n] in

a[m].b[n] | b+ c−−−−−−−→
|R+Rc[n′]

a[m].b[n] | b+ c[n′] ::::→
|Lb[n]

a[m].b | b+ c[n′],

Theorem 2 allows to re-arrange this trace as

a[m].b[n] | b+ c ::::→
|Lb[n]

a[m].b | b+ c−−−−−−−→
|R+Rc[n′]

a[m].b | b + c[n′].

Concurrency on coinitial traces is defined using concurrency on composable
traces and the loop lemma, immediate in CCSK.

Lemma 3 (Loop lemma [33, Prop. 5.1]). For all t : X −−→θ X ′, there exists

a unique t• : X ′
::→θ X, and conversely. We let (t•)• = t.

Definition 11 (Coinitial concurrency). Let t1 : X −−→→
θ1 Y1 and t2 : X −−→→

θ2 Y2

be two coinitial transitions, θ1 is concurrent with θ2 (θ1 ⌣ θ2) iff θ1 ⌣ θ2 in the

trace t•1; t2 : Y1 −−→→
θ1 X −−→→

θ2 Y2.

To our knowledge, this is the first time co-initial concurrency is defined from
composable concurrency: while the axiomatic approach discussed on coinitial con-
currency [27, Section 5], it primarily studied independence relations that could
be defined in any way, and did not connect those two notions of concurrencies.

Theorem 3 (Square property). For all t1 : X −−→→
θ1 X1 and t2 : X −−→→

θ2 X2

with θ1 ⌣ θ2, there exist t′1 : X1 −−→→
θ2 Y and t′2 : X2 −−→→

θ1 Y .

Proof (sketch). By Definition 11 we have that θ1 ⌣ θ2 in t•1; t2 : X1 −−→→
θ1 X −−→→

θ2

X2. Hence, depending on the direction of the arrows, and possibly using the loop
lemma to convert two backward transitions into two forward ones, we obtain by

Theorems 1 or 2 t′′1 ; t
′′
2 : X1 −−→→

θ2 Y −−→→
θ1 X2, and we let t′1 = t′′1 and t′2 = t′′

•
2:

X

X1

θ1

X2

θ2
Definition 11
========⇒ X

X1

θ1

X2

θ2

Diamonds
======⇒ Y

X1

θ2

X2

θ1

Loop
===⇒

X

X1

θ1

X2

θ2

Y

θ2 θ1

⊓⊔

Example 4. Following Example 1, we can get e.g. from a[m].b[n] | b+c−−−−−−−→
|R+Lb[n′]

a[m].b[n] | b[n′] + c and a[m].b[n] | b + c ::::→
|Lb[n]

a[m].b | b + c the transitions
converging to a[m].b | b[n′] + c.
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3.3 Causal Consistency

Formally, causal consistency (Theorem 4) states that any two coinitial and cofi-
nal traces are causally equivalent:

Definition 12 (Causally equivalent). Two traces T1, T2 are causally equiva-
lent, if they are in the least equivalence relation closed by composition satisfying

t; t• ∼ ǫ and t1; t
′
2 ∼ t2; t

′
1 for any t1; t

′
2 : X −−→→

θ1 −−→→
θ2 Y , t2; t

′
1 : X −−→→

θ2 −−→→
θ1 Y .

Theorem 4. All coinitial and cofinal traces are causally equivalent.

The “axiomatic approach” to reversible computation [27] allows to obtain
causal consistency from other properties that are generally easier to prove.

Lemma 4 (Backward transitions are concurrent). Any two different coini-

tial backward transitions t1 : X ::→
θ1 X1 and t2 : X ::→

θ2 X2 are concurrent.

Proof (Sketch). The proof is by induction on the size of θ1 and leverages that
k(θ1) 6= k(θ2) for both transitions to be different. ⊓⊔

Lemma 5 (Well-foundedness). For all X there exists n ∈ N, X0, . . . , Xn s.t.
X ::→ Xn ::→ · · · ::→ X1 ::→ X0, with std(X0).

This lemma forbids infinite reverse computation, and is obvious in CCSK as
any backward transition strictly decreases the number of occurrences of keys.

Proof (of Theorem 4). We can re-use the results of the axiomatic approach [27]
since our forward LTS is the symmetric of our backward LTS, and as our con-
currency relation (that the authors call the independence relation, following
a common usage [35, Definition 3.7]) is indeed an irreflexive symmetric rela-
tion: symmetry is immediate by definition, irreflexivity follows from the fact
that ⋖ is reflexive. Then, by Theorem 3 and Lemma 4, the parabolic lemma
holds [27, Proposition 3.4], and since the parabolic lemma and well-foundedness
hold (Lemma 5), causal consistency holds as well [27, Proposition 3.5]. ⊓⊔

Example 5. Re-using the full trace presented in Example 1, we can re-organize
the transitions using the diamonds so that every undone transition is undone
immediately, and we obtain up to causal equivalence the trace

a.b | b+ c−−−−−→
|La[m]

a[m].b | b + c−−−−−−−−−−−→
〈|Lb[n],|R+Lb[n]〉

a[m].b[n] | b[n] + c

4 Structural Congruence, Universality and Other Criteria

Causality for a semantics of concurrent computation should satisfy a variety of
critera, the squares and diamonds being the starting point, and causal consis-
tency being arguably the most important. This section aims at briefly presenting
additional criteria and at defending the “universality” of our approach. Since this
last point requires to introduce two other reversible systems and four other defini-
tions of concurrency, the technical content is placed in Sect. C, but we would like
to stress that the results stated below are fairly routine to prove—introducing
all the material to enable the comparisons is the only lengthy part.
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Concurrency-Preserving Structural Congruences “Denotationality” [13, Section
6] is a criteria stating that structural congruence should be preserved by the
causal semantics. Unfortunately, our system only vacuously meets this criteria—
since it does not possess a structural congruence. The “usual” structural congru-
ence is missing from all the proved transition systems [11, 16, 18, 19], or miss-
ing the associativity and commutativity of the parallel composition [17, p. 242].
While adding such a congruence would benefits the expressiveness, making it
interact nicely with the derived proof system and the reversible features [26, Sec-
tion 4; 5] is a challenge we prefer to postpone.

Comparing with concurrency inspired by reversible π-calculus It is possible to re-
strict the definition of concurrency for a reversible π-calculus extending CCSK [28],
back to a sum-free version of CCSK. The structural causality [28, Definition
22]—for transitions of the same direction—and conflict relation [28, Definition
25]—for transitions of opposite directions—can then both be proven to match our
dependency relation in a rather straightforward way, hence proving the adequa-
tion of notions. However, this inherited concurrency relation cannot be straight-
forwardly extended to the sum operator, and requires two relations to be defined:
for those reasons, we argue that our solution is more convenient to use. It should
also be noted that this concurrency does not meet the denotationality criteria
either, when the congruence includes renaming of bound keys [26].

A similar work could have been done by restricting concurrency for e.g. re-
versible higher-order π-calculus [25, Definition 9], reversible π-calculus [12, Def-
inition 4.1] or croll-π [23, Definition 1], but we reserve it for future work, and
would prefer to extend our definition to a reversible π-calculus rather than pro-
ceeding the other way around.

Comparing with RCCS-inspired Systems In RCCS, the definition of concur-
rency fluctuated between a condition on memory inclusion for composable tran-
sitions [21, Definition 3.1.1] and a condition on disjointness of memories on coini-
tial transitions [14, Definition 7], both requiring the entire memory of the thread
to label the transitions, and neither been defined on transitions of opposite di-
rections. It is possible to adapt our proved system to RCCS, and to prove that
the resulting concurrency relation is equivalent to those two definitions, when
restricted to transitions of equal direction. A similar adaptation is possible for
reversible and identified CCS [6], that came with yet another definition of con-
currency leveraging its built-in mechanism to generate identifiers.

Optimality, Parabolic Lemma, and RPI The optimality criteria is the adequation
of the concurrency definitions for the LTS and for the reduction semantics [12,
Theorem 5.6]. While this criteria requires a reduction semantics and a notion of
reduction context to be formally proven, we believe it is easy to convince oneself
that the gist of this property—the fact that non-τ -transitions are concurrent
iff there exists a “closing” context in which the resulting τ -transitions are still
concurrent—holds in our system: as concurrency on τ -transitions is defined in
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terms of concurrency of its elements (e.g., 〈θ1R, θ
1
L〉 ⌣ 〈θ2R, θ

2
L〉 iff θ1d ⌣ θ2d for at

least one d ∈ {L,R}), this criteria is obtained “for free”.
Properties such as the parabolic lemma [14, Lemma 10]—“any trace is equiv-

alent to a backward trace followed by a forward trace”—or “RPI” [27, Definition
3.3]—“reversing preserves independence”, i.e. t ⌣ t′ iff t• ⌣ t′–follow immedi-
ately, by our definition of concurrencies for this latter. We furthermore believe
that “baking in” the RPI principle in definitions of reversible concurrencies should
become the norm, as it facilitates proofs and forces to have t1 ⌣ t2 iff t•1 ⌣ t•2,
which seems a very sound principle.

5 Conclusion and Perspectives

We believe our proposal to be not only elegant, but also extremely resilient and
easy to work with. It should be stressed that it does not require to observe the
directions, but also ignore keys or identifiers, that should in our opinion only
be technical annotations disallowing processes that have been synchronized to
backtrack independently. We had previously defended that identifier should be
considered only up to isomorphisms [4, p. 13], or explicitly generated by a built-
in mechanism [6, p. 152], and re-inforce this point of view here. From there,
much can be done. A first interesting line of work would be to compare our
syntactical definition with the semantical definition of concurrency in models
of RCCS [2–4] and CCSK [20, 20, 32, 36]. Of course, as we already mentioned,
extending this definition to reversible π-calculi, taking inspiration from e.g. the
latest development in forward-only π [19], would allow to re-inforce the interest
and solidity of this technique.

Another interesting track would be to consider infinite extensions of CCSK,
since infinite behaviors in the presence of reversibility is not well-understood
nor studied: some attempts to extend algebras of communicating processes [9],
including recursion, seems to have been unsuccessful [37]. A possible approach
would be to define recursion and iteration in CCSK, to extend our definition of
concurrency to those infinite behaviors, and to attempt to reconstruct the sep-
aration results from the forward-only paradigm [31]. Whether finer, “reversible”,
equivalences can preserve this distinction despite the greater flexibility provided
by backward transitions is an open problem. Another interesting point is the
study of infinite behaviors that duplicate past events, including their keys or
memories: whether this formalism could preserve causal consistency, or what
benefits there would be in tinkering this property, is also an open question.

Last but not least, this last investigations would require to define and under-
stand relevant properties, or metrics, for reversible systems. In the forward-only
world, termination or convergence were used to compare infinite behaviors [31],
and additional criteria were introduced to study causal semantics [13]. Those
properties may or may not be suited for reversible systems, but it is difficult to
decide as they sometimes even lack a definition. This could help in solving the
more general question of deciding what it is that we want to observe and assess
when evaluating reversible, concurrent systems [7, 8].
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A Decomposing Processes

Lemma 6 (Decomposing concurrent parallel transitions). Let i ∈ {1, 2}
and θi ∈ {|L θ′i, |R θ′′i , 〈|L θ′i, |R θ′′i 〉}, define πL(XL | XR) = XL, πL(|L θ) = θ,
πL(〈|L θL, |R θR〉) = θL, πL(|R θ) = undefined, and define similarly πR.

Whenever T : XL | XR −−→→
θ1 YL | YR −−→→

θ2 ZL | ZR with θ1 ⌣T θ2, then for
d ∈ {L,R}, if πd(θ1) and πd(θ2) are both defined, then, πd(θ1) ⌣πd(T ) πd(θ2)

with πd(T ) : πd(XL | XR)−−−−−→→
πd(θ1)

πd(YL | YR)−−−−−→→
πd(θ2)

πd(ZL | ZR).

Proof. The trace πd(T ) exists by virtue of the rule |d, syn. or their reverses.
What remains to prove is that πd(θ1) ⌣πd(T ) πd(θ2) holds.

The proof is by case on θ1 and θ2, but always follows the same pattern. As
we know that both πd(θ1) and πd(θ2) need to be defined, there are 7 cases:

θ1 |L θ′1 |L θ′1 |R θ′1 |R θ′1 〈|L θ′1, |R θ′′1 〉 〈|L θ′1, |R θ′′1 〉 〈|L θ′1, |R θ′′1 〉

θ2 |L θ′2 〈|L θ′2, |R θ′′2 〉 |R θ′2 〈|L θ′2, |R θ′′2 〉 |L θ′2 |R θ′2 〈|L θ′2, |R θ′′2 〉

By symmetry, we can bring this number down to three:

(case letter) a) b) c)
θ1 |L θ′1 〈|L θ′1, |R θ′′1 〉 〈|L θ′1, |R θ′′1 〉}
θ2 |L θ′2 |L θ′2 〈|L θ′2, |R θ′′2 〉}

In each case, assume πL(θ1) = θ′1 ⌣πL(T ) θ′2 = πL(θ2) does not hold. Then it
must be the case that either θ′1 ⋖πL(T ) θ

′
2 or θ′2 ⋖πL(T ) θ

′
1, and since both can be

treated the same way thanks to symmetry, we only need to detail the following
three cases:

a) If θ′1⋖πL(T ) θ
′
2, then θ′1⋖ θ′2, and it is immediate that θ1 =|L θ′1⋖T |L θ′2 = θ2,

contradicting θ1 ⌣T θ2.
b) If θ′1 ⋖πL(T ) θ

′
2, then θ′1 ⋖ θ′2, |L θ′1⋖ |L θ′2 and 〈|L θ′1, |R θ′′1 〉⋖ |L θ′2, from

which we can deduce θ1 ⋖T θ2, contradicting θ1 ⌣T θ2.
c) If θ′1 ⋖πL(T ) θ

′
2, then θ′1 ⋖ θ′2, |L θ′1⋖ |L θ′2 and 〈|L θ′1, |R θ′′1 〉 ⋖ 〈|L θ′2, |R θ′2〉,

from which we can deduce θ1 ⋖T θ2, contradicting θ1 ⌣T θ2.

Hence, in all cases, assuming that πd(θ1) ⌣πd(T ) πd(θ2) does not hold leads to
a contradiction. ⊓⊔

Lemma 7 (Decomposing concurrent sum transitions). Let i ∈ {1, 2}
and θi ∈ {+Lθ

′
i,+Rθ

′′
i }, define ρL(XL + XR) = XL, ρL(+Lθ) = θ, ρL(+Rθ) =

undefined, and define similarly ρR.

Whenever T : XL +XR −−→→
θ1 YL + YR −−→→

θ2 ZL + ZR with θ1 ⌣T θ2, then for
d ∈ {L,R}, if ρd(θ1) and ρd(θ2) are both defined, then, ρd(θ1) ⌣πd(T ) ρd(θ2)

with ρd(T ) : ρd(XL +XR)−−−−→→
ρ(θ1)

ρd(YL + YR)−−−→→
(θ2)

ρd(ZL + ZR).

Proof. The trace ρd(T ) exists by virtue of the rule +d or its reverse. What
remains to prove is that ρd(θ1) ⌣ρd(T ) ρd(θ2) holds.
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The proof is by case on θ1 and θ2, but always follows the same pattern. As
we know that both ρd(θ1) and ρd(θ2) need to be defined, there are 2 cases:

θ1 +Lθ
′
1 +Rθ

′
1

θ2 +Lθ
′
2 +Rθ

′
2

In each case, assume ρL(θ1) = θ′1 ⌣ρL(T ) θ
′
2 = ρL(θ2) does not hold, then it

is immediate to note that θ1 ⌣T θ2 cannot hold either, a contradiction. ⊓⊔

B Sketched and Omitted Proofs

Lemma 1 (Adequation of the proved labeled transition system). The

transition X −−−−→→
α[m]

X ′ can be derived using Fig. 2 iff X −−→→θ X ′ with k(θ) = m
and ℓ(θ) = α can be derived using Fig. 3.

Proof. The proof is by induction on the length of the derivation: since the only
axiom rule (act.) is identical, it easily follow by an inspection of Fig 2 and 3. ⊓⊔

Theorem 1 (Sideways diamond). For all X −−→
θ1 X1 −−→

θ2 Y with θ1 ⌣ θ2,

there exists X2 s.t. X −−→
θ2 X2 −−→

θ1 Y .

Proof. The proof proceeds by induction on the length of the deduction for the

derivation for X −−→
θ1 X1.

Length 1 In this case, the derivation is a single application of act., and θ1 is of
the form α[k]. But α[k] ⌣ θ2 cannot hold, as α[k]⋖ θ2 always holds, and this
case is vacuously true.

Length > 1 We proceed by case on the last rule.

pre. There exists α, k, X ′ and X ′
1 s.t. X = α[k].X ′ −−→

θ1 α[k].X ′
1 = X1 and

that k(θ1) 6= k. As α[k].X ′
1 −−→

θ2 Y we know that k(θ2) 6= k [26, Lemma 3.4],
and we can apply Lemma 2 twice to obtain

rmα
k (α[k].X

′) = X ′ −−→
θ1 rmα

k (α[k].X
′
1) = X ′

1 −−→
θ2 rmα

k (Y )

As θ1 ⌣ θ2 by hypothesis, we can use the induction hypothesis to obtain

that there exists X2 s.t. X ′ −−→
θ2 X2 −−→

θ1 rmα
k (Y ). Since k(θ2) 6= k, we can

append pre. to the derivation of X ′ −−→
θ2 X2 to obtain α[k].X ′ = X −−→

θ2

α[k].X2. Using Lemma 2 one last time, we obtain that rmα
k (α[k].X2) =

X2 −−→
θ1 rmα

k (Y ) implies α[k].X2 −−→
θ1 Y , which concludes this case.

res. This is immediate by induction hypothesis.

|L There exists XL, XR, θ′1, X1L , and YL, YR s.t. X −−→
θ1 X1 −−→

θ2 Y is

XL | XR −−−−→
|Lθ′

1 X1L | XR −−→
θ2 YL | YR.

Then, XL −−→
θ′

1 X1L and the proof proceeds by case on θ2:
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θ2 is |R θ′2 Then XR −−→
θ′

2 YR, X1L = YL and the occurrences of the rules |L
and |R can be “swapped” to obtain

XL | XR −−−−→
|Rθ′

2 XL | YR −−−−→
|Lθ′

1 YL | YR.

θ2 is |L θ′2 Then, XL −−→
θ′

1 X1L −−→
θ′

2 YL and XR = YR. As |L θ′1 = θ1 ⌣ θ2 =|L

θ′2, it is the case that θ′1 ⌣ θ′2 in XL −−→
θ′

1 X1L −−→
θ′

2 YL by Lemma 6, and we

can use induction to obtain X2 s.t. XL −−→
θ′

2 X2 −−→
θ′

1 YL, from which it is

immediate to obtain XL | XR −−−−→
|Lθ′

2 X2 | XR −−−−→
|Lθ′

1 YL | XR = YL | YR.
θ2 is 〈|L θ2L, |R θ2R〉 Since |L θ′1 = θ1 ⌣ θ2 = 〈|L θ2L, |R θ2R〉, we have

that θ′1 ⌣ θ2L in XL −−→
θ′

1 X1L −−−→
θ2L YL by Lemma 6. Hence, we can

use induction to obtain XL −−−→
θ2L X2 −−→

θ′

1 YL. Since we also have that

XR −−−→
θ2R YR, we can compose both traces using first syn., then |L to

obtain

XL | XR −−−−−−−−−−→
〈|Lθ2L,|Rθ2R〉

X2 | YR −−−−→
|Lθ′

1 YL | YR.

|R This is symmetric to |L.

syn. There exists XL, XR, θ1L, θ1L, X1L , X1R , YL and YR s.t. X −−→
θ1 X1 −−→

θ2 Y
is

XL | XR −−−−−−−−−−→
〈|Lθ1L,|Rθ1R〉

X1L | X1R −−→
θ2 YL | YR.

Then, XL −−−→
θ1L X1L , XR −−−→

θ1R X1R and the proof proceeds by case on θ2:

θ2 is |R θ2R Then X1R −−−→
θ2R YR, X1L = YL and 〈|L θ1L, |R θ1R〉 ⌣|R θ2R

implies θ1R ⌣ θ2R in XR −−−→
θ1R X1R −−−→

θ2R YR by Lemma 6. We can then

use the induction hypothesis to obtain XR −−−→
θ2R X2R −−−→

θ1R YR from which

it is immediate to obtain XL | XR −−−−−→
|Rθ2R XL | X2R −−−−−−−−−−→

〈|Lθ2L,|Rθ1R〉
X1L |

YR = YL | YR.
θ2 is |L θ2L This is symmetric to the previous one.
θ2 is 〈|L θ2L, |R θ2R〉 This case is essentially a combination of the two pre-

vious cases. Since 〈|L θ1L, |R θ1R〉 = θ1 ⌣ θ2 = 〈|L θ2L, |R θ2R〉, Lemma 6
gives two traces

XL −−−→
θ1L X1L −−−→

θ2L YL and XR −−−→
θ1R X1R −−−→

θ2R YR

where θ1L ⌣ θ2L and θ1R ⌣ θ2R, respectively. By induction hypothesis,
we obtain two traces

XL −−−→
θ2L X2L −−−→

θ1L YL and XR −−−→
θ2R X2R −−−→

θ1R YR

that we can then re-combine using syn. twice to obtain, as desired,

XL | XR −−−−−−−−−−→
〈|Lθ2L,|Rθ2R〉

X2L | X2R −−−−−−−−−−→
〈|Lθ1L,|Rθ1R〉

YL | YR.
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+L There exists XL, XR, θ′1, θ
′
2, X1L, and YL s.t. X −−→

θ1 X1 −−→
θ2 Y is

XL +XR −−−−→
+Lθ

′

1 X1L +XR −−−−→
+Lθ

′

2 YL +XR.

Note that we know all transitions happen on “XL’s side” and XR remains
unchanged as otherwise we could not sum two non-standard terms, so that
θ2 must be of the form +Lθ

′
2. Then, we can use Lemma 7 to obtain

XL −−→
θ′

1 X1L −−→
θ′

2 YL

and as θ′1 ⌣ θ′2 in this transition as well, we can use the induction hypothesis

to obtain X2 s.t. XL −−→
θ′

2 X2 −−→
θ′

1 YL. From this, it is easy to obtain XL +

XR −−−−→
+Lθ

′

2 X2 +XR −−−−→
+Lθ

′

1 YL +XR and this concludes this case.
+R This is symmetric to +L.

⊓⊔

Theorem 2 (Reverse diamonds).

1. For all X −−→
θ1 X1 ::→

θ2 Y with θ1 ⌣ θ2, there exists X2 s.t. X ::→
θ2 X2 −−→

θ1 Y .

2. For all X ::→
θ1 X1 −−→

θ2 Y with θ1 ⌣ θ2, there exists X2 s.t. X −−→
θ2 X2 ::→

θ1 Y .

Proof. The proof is very similar to the proof of Theorem 1 in both cases. The
proof of the first part is sketched in the body of the paper, and we detail below
the complete proof of the second part, for completeness, and also because the
sum case diverges and exposes the design choices made in Definition 6 for the
sum group.

It proceeds by induction on the length of the deduction for the derivation for

X ::→
θ1 X1:

Length 1 In this case, the derivation is a single application of act.•, and θ1 is
of the form α[k]. But α[k] ⌣ θ2 cannot hold, as α[k] ⋖ θ2 always holds, and
this case is vacuously true.

Length > 1 We proceed by case on the last rule.

pre.• There exists α, k, X ′ and X ′
1 s.t. X = α[k].X ′

::→
θ1 α[k].X ′

1 = X1 and

that k(θ1) 6= k. As α[k].X ′
1 −−→

θ2 Y we know that k(θ2) 6= k [26, Lemma 3.4],
and we can apply Lemma 2 twice to obtain

rmα
k (α[k].X

′) = X ′
::→
θ1 rmα

k (α[k].X
′
1) = X ′

1 −−→
θ2 rmα

k (Y )

As θ1 ⌣ θ2 by hypothesis, we can use the induction hypothesis to obtain

that there exists X2 s.t. X ′ −−→
θ2 X2 ::→

θ1 rmα
k (Y ). Since k(θ2) 6= k, we can

append pre. to the derivation of X ′ −−→
θ2 X2 to obtain α[k].X ′ = X −−→

θ2

α[k].X2. Using Lemma 2 one last time, we obtain that rmα
k (α[k].X2) =

X2 ::→
θ1 rmα

k (Y ) implies α[k].X2 ::→
θ1 Y , which concludes this case.

res.• This is immediate by induction hypothesis.
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|•L There exists XL, XR, θ′1, X1L , and YL, YR s.t. X ::→
θ1 X1 −−→

θ2 Y is

XL | XR ::::→
|Lθ′

1 X1L | XR −−→
θ2 YL | YR.

Then, XL ::→
θ′

1 X1L and the proof proceeds by case on θ2:

θ2 is |R θ′2 Then XR −−→
θ′

2 YR, X1L = YL and the occurrences of the rules |L
and |R can be “swapped” to obtain

XL | XR −−−−→
|Rθ′

2 XL | YR ::::→
|Lθ′

1 YL | YR.

θ2 is |L θ′2 Then, XL ::→
θ′

1 X1L −−→
θ′

2 YL and XR = YR. As |L θ′1 = θ1 ⌣ θ2 =|L

θ′2, it is the case that θ′1 ⌣ θ′2 in XL ::→
θ′

1 X1L −−→
θ′

2 YL by Lemma 6, and

we can use induction to obtain X2 s.t. XL −−→
θ′

2 X2 ::→
θ′

1 YL, from which it

is immediate to obtain XL | XR −−−−→
|Lθ′

2 X2 | XR −−−→
|Lθ

YL | XR = YL | YR.
θ2 is 〈|L θ2L, |R θ2R〉 Since |L θ′1 = θ1 ⌣ θ2 = 〈|L θ2L, |R θ2R〉, we have

that θ′1 ⌣ θ2L in XL ::→
θ′

1 X1L −−−→
θ2L YL by Lemma 6. Hence, we can

use induction to obtain XL −−−→
θ2L X2 ::→

θ′

1 YL. Since we also have that

XR −−−→
θ2R YR, we can compose both traces using first syn., then |•L to

obtain

XL | XR −−−−−−−−−−→
〈|Lθ2L,|Rθ2R〉

X2 | YR ::::→
|Lθ′

1 YL | YR.

|•R This is symmetric to |•L.

syn.• There exists XL, XR, θ1L, θ1R, X1L , X1R , YL and YR s.t. X ::→
θ1 X1 −−→

θ2

Y is
XL | XR ::::::::::→

〈|Lθ1L,|Rθ1R〉
X1L | X1R −−→

θ2 YL | YR.

Then, XL :::→
θ1L X1L , XR :::→

θ1R X1R and the proof proceeds by case on θ2:

θ2 is |R θ2R Then X1R −−−→
θ2R YR, X1L = YL and 〈|L θ1L, |R θ1R〉 ⌣|R θ2R

implies θ1R ⌣ θ2R in XR :::→
θ1R X1R −−−→

θ2R YR by Lemma 6. We can then

use the induction hypothesis to obtain XR −−−→
θ2R X2R :::→

θ1R YR from which

it is immediate to obtain XL | XR −−−−−→
|Rθ2R XL | X2R ::::::::::→

〈|Lθ1L,|Rθ1R〉
X1L |

YR = YL | YR.
θ2 is |L θ2L This is symmetric to the previous one.
θ2 is 〈|L θ2L, |R θ2R〉 This case is essentially a combination of the two pre-

vious cases. Since 〈|L θ1L, |R θ1R〉 = θ1 ⌣ θ2 = 〈|L θ2L, |R θ2R〉, Lemma 6
gives two traces

XL :::→
θ1L X1L −−−→

θ2L YL and XR :::→
θ1R X1R −−−→

θ2R YR

where θ1L ⌣ θ2L and θ1R ⌣ θ2R, respectively. By induction hypothesis,
we obtain two traces

XL −−−→
θ1L X2L :::→

θ1L YL and XR −−−→
θ2R X2R :::→

θ1R YR

that we can then re-combine using syn. twice to obtain, as desired,

XL | XR −−−−−−−−−−→
〈|Lθ2L,|Rθ2R〉

X2L | X2R ::::::::::→
〈|Lθ1L,|Rθ1R〉

YL | YR.
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+•
L There exists XL, XR, X1L, and YL s.t. X ::→

θ1 X1 −−→
θ2 Y is

XL +XR ::::→
+Lθ

′

1 X1L +XR −−→
θ2 YL + YR.

Then, XL ::→
θ′

1 X1L and we proceed by case on θ2:

θ2 is +Lθ
′
2 Then, X1L −−→

θ′

2 YL and XR = YR. Since +Lθ
′
1 ⌣ +Lθ

′
2, we can

use Lemma 7 to obtain

XL ::→
θ′

1 X1L −−→
θ′

2 YL

with θ′1 ⌣ θ′2, and by induction hypothesis there exists X2 such that

XL −−→
θ′

2 X2 ::→
θ′

1 YL

from which it is easy to obtain

XL +XR −−−−→
+Lθ

′

2 X2 +XR ::::→
+Lθ

′

1 YL +XR

θ2 is +Rθ
′
2 Since +Lθ

′
1 ⋖+Rθ

′
2, it cannot be the case that θ1 ⌣ θ2, so this

case is vacuously true.

⊓⊔

Theorem 3 (Square property). For all t1 : X −−→→
θ1 X1 and t2 : X −−→→

θ2 X2

with θ1 ⌣ θ2, there exist t′1 : X1 −−→→
θ2 Y and t′2 : X2 −−→→

θ1 Y .

Proof. The proof proceeds by case on the direction of t1 and t2.

If t1 : X ::→
θ1 X1 and t2 : X −−→

θ2 X2 Since t1 and t2 are concurrent, by Definition 11

we have that θ1 ⌣ θ2 in t•1; t2 : X1 −−→
θ1 X −−→

θ2 X2. Hence, by the sideways

diamond (Theorem 1) we obtain t′′1 ; t
′′
2 : X1 −−→

θ2 Y −−→
θ1 X2, and letting t′1 = t′′1

and t′2 = t′′
•
2, we obtain t′1 : X1 −−→

θ2 Y and t′2 : X2 ::→
θ1 Y as desired.

If t1 : X −−→
θ1 X1 and t2 : X ::→

θ2 X2 Since t1 and t2 are concurrent, t2 and t1 also

are, and by Definition 11 we have that θ2 ⌣ θ1 in t•2; t1 : X2 −−→
θ2 X −−→

θ1 X1.

Hence, by the sideways diamond (Theorem 1) we obtain t′′2 ; t
′′
1 : X2 −−→

θ1 Y −−→
θ2

X1, and letting t′2 = t′′2 and t′1 = t′′
•
1, we obtain t′1 : X1 ::→

θ2 Y and t′2 : X2 −−→
θ1

Y as desired.
If t1 : X ::→

θ1 X1 and t2 : X ::→
θ2 X2 Since t1 and t2 are concurrent, by Definition 11

we have that θ1 ⌣ θ2 in t•1; t2 : X1 −−→
θ1 X ::→

θ2 X2. Hence, by the first part of

the reverse diamonds (Theorem 2), we obtain t′′1 ; t
′′
2 : X1 ::→

θ2 Y −−→
θ1 X2, and

letting t′1 = t′′1 and t′2 = t′′
•
2, we obtain t′1 : X1 ::→

θ2 Y and t′2 : X2 ::→
θ1 Y as

desired.
If t1 : X −−→

θ1 X1 and t2 : X −−→
θ2 X2 Since t1 and t2 are concurrent, by Definition 11

we have that θ1 ⌣ θ2 in t•1; t2 : X1 ::→
θ1 X −−→

θ2 X2. Hence, by the second part

of the reverse diamonds (Theorem 2) we obtain t′′1 ; t
′′
2 : X1 −−→

θ2 Y ::→
θ1 X2, and

letting t′1 = t′′1 and t′2 = t′′
•
2, we obtain t′1 : X1 −−→

θ2 Y and t′2 : X2 −−→
θ1 Y as

desired.
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⊓⊔

Lemma 4 (Backward transitions are concurrent). Any two different coini-

tial backward transitions t1 : X ::→
θ1 X1 and t2 : X ::→

θ2 X2 are concurrent.

Proof. The first important fact to note is that k(θ1) 6= k(θ2): by a simple
inspection of the backward rules in Fig. 3, it is easy to observe that if a reachable
process X can perform two different backward transitions, then they must have
different keys.

We proceed by induction on the length of the deduction for the derivation

for X ::→
θ1 X1:

Length 1 In this case, the derivation is a single application of act.•, and θ1 is
of the form α[k], with X = α[k].X ′ and std(X ′). Hence, X cannot perform
two different transitions, and this case is vacuously true.

Length > 1 We proceed by case on the last rule.

pre.• There exists α, k, X ′ and X ′
1 s.t. X = α[k].X ′

::→
θ1 α[k].X ′

1 = X1, hence

it must be the case that X ′
::→
θ1 X ′

1 and X ′ is not standard. Since X ′ is

not standard, the last rule for the derivation of X ::→
θ2 X2 cannot be act.•,

and since X = α[k].X ′, it must be pre.•, hence it must be the case that

X = α[k].X ′
::→
θ2 α[k].X ′

2 = X2, X ′
::→
θ2 X ′

2, and we conclude by using
the induction hypothesis on the two backward transitions of X ′ and the
observation that pre.• preserves concurrency.

res.• This is immediate by induction hypothesis.

|•L There exists XL, XR, θ′1 and X1L s.t. X ::→
θ1 X1 is

XL | XR ::::→
|Lθ′

1 X1L | XR.

Then, XL ::→
θ′

1 X1L and the proof proceeds by case on θ2, using Lemma 6 to
decompose the traces:
θ2 is |R θ′2 Then this is immediate, as |L θ′1⋖ |R θ′2 never holds.

θ2 is |L θ′2 Then there exists X2L such that XL ::→
θ′

2 X2L , and we conclude
by induction on XL’s backward transitions.

θ2 is 〈|L θ2L, |R θ2R〉 Then we know that XL | XR ::::::::::→
〈|Lθ2L,|Rθ2R〉

X2L |
X2R , and we know that |L θ′1 and 〈|L θ2L, |R θ2R〉 are concurrent if θ′1

and θ2L are. By induction hypothesis on XL ::→
θ′

1 X1L and XL :::→
θ2L X2L ,

we know that those two transitions are concurrent, which concludes this
case.

|•R This is symmetric to |L.
syn.• This case is very similar to the two previous ones and does not offer

any insight nor resistance.

+•
L There exists XL, XR, and X1L s.t. X ::→

θ1 X1 is

XL +XR ::::→
+Lθ

′

1 X1L +XR.
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Then, note that θ2 must also be of the form +Lθ
′
2, as XR must be standard.

Hence, this follows by a simple induction hypothesis on the transitions XL ::→
θ′

1

X1L and XL ::→
θ′

2 X2L, using Lemma 7 to decompose the trace.

⊓⊔

C Comparing Concurrencies Accross Calculi

We detail in this section how the concurrency we defined is “universal”, in the
following senses:

– It is equivalent to the restriction to CCSK of the definition of concurrency
for a reversible π-calculus extending CCSK [28] (Sect. C.1),

– Our definition, when adapted to RCCS (Sect. C.3), yields a concurrency
that extends (Sect. C.4) existing definitions for RCCS (Sect. C.2),

– Our definition can similarly be adapted to an “identified” declension of
RCCS and proven equal to its definition of concurrency (Sect. C.5).

It should be noted, with respect to this second point, that existing defini-
tions for RCCS do not define concurrency on transitions of opposite directions,
whereas ours does: in this sense, recognizing more transitions as concurrent is an
interesting improvement. We also briefly illustrate, p. 27, that the concurrency
stemming from the first item does not satisfy the “denotationality” [13, Section
6] criteria, i.e. that it is not preserved by CCSK’s structural congruence.

C.1 Comparing With Concurrency Stemming From Reversible
π-Calculus

A definition of concurrency was introduced for a reversible π-calculus extending
CCSK [28], but without sum. We offer to restrict it to CCSK (without sum),
to compare the resulting relation with our definition using proved labels, and to
assess how it fares with respect to structural equivalence for CCSK.

Causalities: Definitions and Adequations The following definitions can
easily be extended to CCSK with sum, so we preserves the “full” system for this
study of the adequation of causality.

Definition 13 (Context). A context is a CCSK process with a slot ·:

C[·] := · ‖ C[·] +X ‖ X + C[·] ‖ C[·]|X ‖ X |C[·] ‖ α[k].C[·] ‖ C[·]\α

Definition 14 (Structural cause [28, Definition 21]). For all X, m1,m2 ∈
key(X), the prefix with key m1 is a structural cause of the prefix with key m2,
denoted m1 <X m2, if ∃C[·] s.t. X = C[α[m1].Y ] with m2 ∈ key(Y ).

Definition 15 (Structural causality [28, Definition 22]). In t1; t2 : X −−−−−→→
α1[m1]

X1 −−−−−→→
α2[m2]

X2, t1 is a structural cause of t2, denoted t1 < t2, if
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– i1 <X2
i2, if t1 and t2 are both forward,

– i2 <X i1, if t1 and t2 are both backward.

Below, we let f be the function that maps keyed labels to proved labels
obtained from Lemma 1.

Lemma 8 (Adequation of the causalities). In t1; t2 : X −−−−−→→
α1[m1]

X1 −−−−−→→
α2[m2]

X2, if t1 and t2 have the same directions, then t1 < t2 iff f(α1[m1])⋖f(α2[m2]).

Proof. First, observe that t1 < t2 iff t•2 < t•1, and since similarly θ1 ⋖ θ2 in

t1; t2 : X −−→
θ1 X1 −−→

θ2 X2 iff θ2 ⋖ θ1 in t•2; t
•
1 : X2 −−→

θ2 X1 −−→
θ2 X , it suffices to

prove the statement for both t1 and t2 forward.
We prove the statement from right to left first, proceeding by induction on

the length of the deduction for the derivation for X −−−−−→
α1[m1]

X1.

Length 1 In this case, the derivation is a single application of act., and it is
easy to see that f(α1[m1]) is α1[m1], and since α1[m1]⋖ f(α2[m2]) and X2 =
α1[m1].Y with m2 ∈ k(Y ), both causality relations coincide.

Length > 1 We proceed by case on the last rule.
pre., res., +L, +R This is immediate by induction hypothesis, once noted

that the derivation for X1 −−−−−→
α2[m2]

X2 must also end with the same rule.

|L Then we know that X −−−−−→→
α1[m1]

X1 is of the form

XL | XR −−−−−→→
α1[m1]

CL[α1[m1].YL] | XR

and there are three cases, depending on the last rule in the deduction for

the derivation for X1 −−−−−→
α2[m2]

X2:
|L Then we proceed by induction hypothesis, observing that, for i ∈ {1, 2},
f(αi[ki]) is of the form |L θi, and that |L θ1⋖ |L θ2 if θ1 ⋖ θ2.

|R Then it cannot be the case that f(α1[m1]) ⋖ f(α2[m2]) by definition,
and and it cannot be the case that t1 < t2, since X2 = CL[α1[m1].YL] |
CR[α2[m2].YR].

syn. Then X2 = Y ′
L | CR[α2[m2].YR], with m2 ∈ k(X2), and it suffices to

reason by induction on the derivations of CL[α1[m1].YL] | XR and Y ′
L.

|R and syn. are similar to |L.

We now prove the statement from left to right, by induction on the length of
f(α1[m1]) and f(α2[m2]), and by case analysis on the rules of Fig. 7:

Action If f(α1[m1]) = α1[m1]⋖ f(α2[m2]), then t1 < t2 is immediate.
Sum First, note that since both t1 and t2 are forward, it cannot be the case

that f(α1[m1]) and f(α2[m2]) are prefixed with different + symbols, since a
forward trace cannot execute the right operand of a sum then its left operand
(or reciprocally). Hence, f(α1[m1]) = +dθ1⋖f(α2[m2]) = +dθ2 holds iff θ1⋖θ2,
which is necessary and sufficient for t1 < t2 to hold by induction hypothesis.

Parallel Each of those four rules state that f(α1[m1])⋖ f(α2[m2]) holds if and
only if a dependency exists in “the same thread” of the process, which is exactly
the notion captured by the requirement on the existence of a context of the
form C[α1[i1].Y ], hence both notions coincide.

⊓⊔
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Conflict and Concurrencies For reversible π-calculus, the causality relation
requires to account for names previously shared, using an object causality [28,
Definition 23], that is not meaningful nor required in CCSK. However, transi-
tions of opposite direction need to be accounted for with a conflict relation [28,
Definition 25] that we restate below:

Definition 16 (Conflict relation [28, Definition 25]). In t1; t2 : X −−−−−→→
α1[m1]

X1 −−−−−→→
α2[m2]

X2, t1 and t2 are in conflict if

– t1 is a forward transition, and t2 = t•1,
– t1 is a backward transition, t2 is a forward one, and t2 consumes a prefix

freed by t1.

Note that the conflict relation falls short on detecting conflict in the presence

of sum: indeed, taking e.g. t1; t2 : a[k] + b :::→
a[k]

a + b −−−→
b[k]

a + b[k], t1 and t2
would not be in conflict according to Definition 16, as t2 does not “consume” a
prefix freed by t1. However, it would not be correct to declare them concurrent
(as would [28, Definition 26] do), since they cannot be swapped and are, indeed,
dependent. This is fine in the sum-free reversible π-calculus, but also illustrates
how concurrency cannot be defined by “simply” restricting the π’s calculus defi-
nition to CCSK, in the presence of sum.

Lemma 9 (Adequation of conflict and causality on transitions of op-

posite directions). In a sum-free CCSK, in t1; t2 : X −−−−−→→
α1[m1]

X1 −−−−−→→
α2[m2]

X2, if t1 and t2 have opposite directions, then t1 and t2 are in conflict iff
f(α1[m1])⋖ f(α2[m2]).

Proof. If t2 = t•1, then note that t2 consumes a prefix freed by t1 if t1 was
backward, so t2 and t1 are in confilct no matter their directions. In this case, it
is immediate that f(α1[m1])⋖ f(α2[m2]), so both relations coincide.

If t2 6= t•1, then we need to proceed by case on the direction of t1:

If t1 is forward Then observe that t1 and t2 are never in conflict. We need
to prove that f(α1[m1]) ⋖ f(α2[m2]) never holds, but it follows easily from
Lemma 4: since t2 6= t•1, we know that the co-initial backward transitions t•1
and t2 are different, and hence by Lemma 4 that they are concurrent, proving
that f(α1[m1])⋖ f(α2[m2]) does not hold.

If t1 is backward Then we have to prove that f(α1[m1])⋖f(α2[m2]) iff t2 con-
sumes a prefix freed by t1. Proving this statement from left to right is easy: it is
immediate that if t2 consumes a prefix freed by t1, then f(α1[m1])⋖f(α2[m2])
will hold. For the reverse direction, inspecting the Action and Parallel rules
of Fig. 7 suffices to prove that f(α1[m1]) ⋖ f(α2[m2]) implies that t2 have
consumed a prefix freed by t1.

⊓⊔

Hence, in the absence of sum, both notions coincide. It should be noted that
our definition of concurrency based on proved labels offers a couple of benefits:
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1. It requires only one relation to define concurrency, while the concurrency
stemming from reversible π-calculus requires two relations (structural causal-
ity and conflict).

2. By our definition, it is obvious that t1 and t2 are concurrent iff t•2 and t•1 are,
whereas this result is not by definition for this latter definition of concurrency.

Interplay Between Concurrency and Structural Congruence Last, but
not least, we prove that this concurrency stemming from reversible π-calculus
does not fare well with CCSK’s structural congruence.

Definition 17 (Free and bound keys [26, Definition 2.1]). A key k is
bound in X iff it occurs either twice, attached to complementary prefixes, or
once, attached to a τ prefix, in X. A key k is free in X if it occurs once in X,
attached to a non-τ prefix.

Definition 18 (Structural equivalence [26, p. 133]). The structural equiva-
lence of CCSK is the smallest equivalence relation (that is, reflexive, symmetric,
and transitive relation) closed under the following rule:

X ≡ X [n/m] m bound in X, n /∈ key(X)

where [n/m] denotes the substitution of all the occurrences of key m with key n.

The labeled transition system of CCSK is then endowed with the following
rule and its reverse:

Y ≡ X X −−−−→
α[m]

X ′ X ′ ≡ Y ′

equiv.

Y −−−−→
α[m]

Y ′

For technical reasons beyond the scope of this exposition, this rule can only
be used last when proving a derivation. However, taken as defined, this relation
does not play well with the concurrency relation inherited from the reversible
π-calculus:

Theorem 5. The conflict relation inherited from the reversible π-calculus is not
adequate for CCSK endowed with structural congruence.

Proof. Consider the following two equations and derivation:

a[k].c|a[k] ≡ a[k].c|a[k] (1)

a[k].c[k′]|a[k] ≡ a[h].c[k′]|a[h] (2)

(1)

act.

c−−−−→
c[k′]

c[k′]
pre.

a[k].c−−−−→
c[k′]

a[k].c[k′]
|L.

a[k].c|a[k]−−−−→
c[k′]

a[k].c[k′]|a[k] (2)
equiv.

a[k].c[k′]|a[k]−−−−→
c[k′]

a[h].c[k′]|a[h]
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Then, it is clear that t1; t2 : a.c | a −−−→
τ [k]

a[k].c|a[k] −−−−→
c[k′]

a[h].c[k′]|a[h]
and yet since k /∈ key(a[h].c[k′]|a[h]), t1 is not seen as a structural cause of t2
according to Definition 14, even if it should based on intuitive understanding of
concurrency. ⊓⊔

We conjecture that the structural causality could be adapted to account for
the substitution of bound keys, but that it will make the definitions quite tedious,
since the structural cause relation is purely local.

C.2 Recalling RCCS’s Concurrencies

It is relatively easy to adapt our proved labeled to RCCS, no matter which
declension of the calculus you look at [3,4,14,21,24]. Below, we look at the “early”
version of RCCS [14, 21] because, to our knowledge, it is the only version that
received a syntactical definition of concurrency, relying on memory inclusion [21,
Definition 3.11] or disjointness [14, Definition 7]. This version is fairly “heavy”,
since transitions are labeled with the memory of the thread executing, but it is
immediate to add prefixes to those labels. We briefly remind this system below,
and refer to their original presentations [14, 21] for more details. We do not
consider recursive definitions, briefly discussed in this versions of RCCS.

Syntax and Semantics of RCCS The CCS processes used to build RCCS

processes follow a slightly different presentation from Sect. 2.1, since the prefix
operator can appear only below a n-ary sum: this allows to combine two rules
into one, to recover the classical prefix by letting n = 1, but also to represent
0 by letting n = 0. But we generally use binary sum, written +, write α.P for
α.P +0 [4, Sect. 2.2], and define the structural equivalence using this binary sum
(Definition 20).

Definition 19 (RCCS Processes). The set of reversible processes R is built
on top of the set of CCS processes by adding memories to the threads:

P,Q := P | Q |
∑

i>0λi.Pi | P\a (CCS Processes)

m := 〈〉 | 〈1〉 ·m | 〈2〉 ·m | 〈m′, a, P 〉 ·m | 〈⋆, α, P 〉 ·m (Memory)

T := m� P (Reversible Threads)

R,S := T | R | S | R\a (RCCS Processes)

We let nm(m) = {α | α ∈ N or α ∈ N occurs in m} be the set of (co-)names
occurring in m.

Definition 20 (Structural equivalence). We write ≡+,\,α the congruence
on CCS terms obtained by the symmetric and transitive closure of the following
equations, letting =α being the usual α-equivalence on labels:

P + 0 ≡ P P +Q ≡ Q+ P

(P1 + P2) + P3 = P1 + (P2 + P3) P ≡ Q if P =α Q
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Structural equivalence on R is the smallest equivalence relation generated by
the following rules:

R|S ≡ S|R (Composition Symmetry)

(R1|R2)|R3 ≡ R1|(R2|R3) (Composition Associativity)

P ≡+,\,α Q

m� P ≡ m�Q
(CCS congruence)

m� (P | Q) ≡ (〈1〉.m� P ) | (〈2〉.m�Q) (Distribution of Memory)

m� P\a ≡ (m� P )\a with a /∈ nm(m) (Scope of Restriction)

The (Distribution of Memory) rule is the reason why this formalism has often
been dubbed “dynamic” [24], since the memory can “move” during execution.

Notation 1. We let ζ = α | α− be a directed action and µ ranges over mem-
ories and memory pairs. We write m ∈ µ if µ = m or if µ = {m,m′}, and,
accordingly, m1 ∩m2 = m if m ∈ m1 and m ∈ m2. Finally, given two memories
m1, m2, we write m1 < m2 if ∃m such that m ·m1 = m2.

Definition 21 (Replacement operator). The operation @ is defined as fol-
lows:

(R|S)m2@m1
= Rm2@m1

|Sm2@m1

(R\a)m2@m1
= (Rm2@m1

)\a (If a /∈ m2)

(〈⋆, α,Q〉 ·m1 � P )m2@m1
= 〈m2, α,Q〉 ·m1 � P

Rm2@m1
= R (In all the remaining cases)

The forward and backward LTS for RCCS, that we denote−−−→→
µ:ζ

=−−−→
µ:ζ

∪ :::→
µ:ζ

,
is given in Fig. 5.

Concurrency on Co-initial Transitions

Definition 22 (Concurrency on co-initial transitions in RCCS [14, Def-

inition 7]). Let t1 = R −−−−→
µ1:ζ1

S1 and t2 = R −−−−→
µ2:ζ2

S2 be two coinitial transi-
tions, t1 and t2 are said to be concurrent if µ1 ∩ µ2 = ∅, and we write t1 ⌣o t2.

Even if the original definition does not make any explicit requirement about
the direction of the transitions, and could be read as valid if t1 and t2 had
opposite directions, it actually requires t1 and t2 to be both forward or backward.
Indeed, taking

t1 : 〈⋆, a,Q′〉 · 〈〉� (b.P +Q)−−−−−−−−→
〈⋆,b,0〉·〈〉:b

〈⋆, b,Q〉 · 〈⋆, a,Q′〉 · 〈〉� P

t2 : 〈⋆, a,Q′〉 · 〈〉� (b.P +Q) :::→
〈〉:a

〈〉� a.(b.P +Q) +Q′

would give t1 ⌣o t2, since 〈⋆, a, 0〉 · 〈〉 ∩ 〈〉 = ∅, but the intuitive understanding
of concurrency shows that those two transitions should actually not be concur-
rent. The definition also does not require that t1 and t2 should be different, but
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act.
(m� λ.P +Q)−−−−→m:λ 〈⋆, λ,Q〉 ·m� P

R−−−→→
µ:ζ

R′

par.
R | S −−−→→

µ:ζ
R′ | S

act.−

〈⋆, λ,Q〉 ·m� P :::::→m:λ−

m� (λ · P +Q)

R−−−→→
µ:ζ

R′ ζ /∈ {a, a, a−, a−}
res.

R\a−−−→→
µ:ζ

R′\a

R−−−−→
m1:λ R′ S −−−−→

m2:λ S′

syn.
R | S −−−−−−−→

m1,m2:τ R′
m2@m1

| S′
m1@m2

R :::::→
m1:λ−

R′ S :::::→
m2:λ

−

S′

syn.−

Rm2@m1
| Sm1@m2

::::::::→
m1,m2:τ−

R′ | S′

R1 ≡ R R−−−→→
µ:ζ

R′ R′ ≡ R′
1

≡
R1 −−−→→

µ:ζ
R′

1

Fig. 5. Rules of the labeled transition system (LTS) for RCCS

we assume that they must be, since otherwise transitions would not be concur-
rent with themselves. We will make those requirements explicit when proving
the adequacy result with our definition of concurrency relying on proved labels
(Theorem 6).

Concurrency on Composable Transitions

Definition 23 (Precedence [21, Definition 3.1.1]). Given t = R −−−→→
µ:ζ

R′

and t′ = R′ −−−−→→
µ′:ζ′

R′′ two composable transitions, we say that t precedes t′ if

– t and t′ are forward, and ∃m ∈ µ, ∃m′ ∈ µ′, and m < m′,
– t and t′ are backward, and ∃m ∈ µ, ∃m′ ∈ µ′, and m′

< m.

Definition 24 (Concurrency on composable transitions in RCCS). Two
composable transitions t, t′ with the same direction are concurrent if t does not
precedes t′, and we write t ⌣o t′.

Note that we use the same symbol ⌣o in Definitions 22 and 24, but that
there is no ambiguity, since the transitions needs to be either composable or
co-initial for the relations to be defined for them.

Composable transitions of opposite directions are neither concurrent nor not
concurrent: precedence is not defined on those transitions, and so neither is con-
currency. In RCCS, the loop lemma [21, Lemme 2.2.1] also holds, and we write
t− the reverse of t. Note that, given t1; t2 two composable transition, it is not
possible to ask whenever t1 and t2 are concurrent w.r.t. composable concurrency
iff t−1 and t2 are concurrent w.r.t. to the co-initial concurrency: since both no-
tions requires both transitions to have the same direction, one cannot compare
the two relations.
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C.3 Defining Proved RCCS

We define a proved declension of RCCS exactly like we did for CCSK in
Sect. 3.1, by enriching the labels and letting the proved LTS propagate them.
Many optimizations could be done (ignoring direction, replacing memories with
identifiers as frequently done in subsequent versions of RCCS, etc.), but we fo-
cus on proving how enriched labels give a notion of concurrency equivalent to
the previous ones.

We begin by defining the enhanced labels and the proved LTS first. Note
that since action and prefixes are mixed, and since sum are not “preserved” as
primary connector after a reduction, as opposed to CCSK, there is no need for
the +L and +R annotations anymore.

Definition 25 (Enhanced labels). Let υ, υL and υR range over strings in
{|L, |R}∗, enhanced labels are defined as

θ := υζ ‖ υζ ‖ υ〈|L υLζ, |R υRζ〉

And we let ℓ(υζ) = ζ, ℓ(υζ) = ζ, and ℓ(〈|L υLζ, |R υRζ〉) = τ .

In this particular case, since the congruence relation is needed because of the
(Distribution of Memory) rule, we keep it, but remove the (Composition Symmetry)
and (Composition Associativity) rules, as they do not fare well with proved la-
bels (Sect. 4). As a consequence, we also need to replace the par. rule with
two rules, par.L and par.R, as presented in Fig. 6. And, from now on, we will
assume that the structural congruence used by both systems does not contain
(Composition Symmetry) and (Composition Associativity).

Definition 26 (Dependency relation). The dependency relation on enhanced
keyed labels is induced by the axioms of Fig. 7, for d ∈ {L,R}.

It should be noted that this relation is the same as in the forward-only CCS,
further illustrating how resilient the proved label technique is.

Transitions, traces, causality relation and concurrency are defined as in Def-
initions 7–9 and 11.

Exactly like for CCSK with Lemma 1, it is easy to prove the adequation of
the proved system w.r.t. the original one:

Lemma 10 (Adequation of the proved labeled transition system). The

transition R −−−→→
µ:ζ

S can be derived using Fig. 5 iff R −−−→→
µ:θ

S with ℓ(θ) = ζ can
be derived using Fig. 6.

Proof. This is obvious, and we write f the mapping from ζ to θ. ⊓⊔

C.4 Adequacies of RCCS’s Concurrencies

We now prove that the original two definitions of concurrency coincide with the
one resulting from adopting proved labels for RCCS.
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act.
(m� λ.P +Q)−−−−→m:λ 〈⋆, λ,Q〉 ·m� P

R−−−→→
µ:θ

R′

par.L
R | S −−−−→→

µ:|Lθ
R′ | S

act.−

〈⋆, λ,Q〉 ·m� P :::::→m:λ−

m� (λ · P +Q)

S −−−→→
µ:θ

S′

par.R
R | S −−−−−→→

µ:|Rθ
R | S′

R−−−→→
µ:θ

R′ ℓ(θ) /∈ {a, a, a−, a−}
res.

R\a−−−→→
µ:θ

R′\a

R−−−−−−→
m1:θLλ

R′ S −−−−−−→
m2:θRλ

S′

syn.

R | S −−−−−−−−−−−−−−−→
m1,m2:〈|LθLλ,|RθRλ〉

R′
m2@m1

| S′
m1@m2

R :::::→
m1:λ−

R′ S :::::→
m2:λ

−

S′

syn.−

Rm2@m1
| Sm1@m2

::::::::::::::::::→
m1,m2:〈|LθLλ−,|RθRλ−〉

R′ | S′

R1 ≡ R R−−−→→
µ:θ

R′ R′ ≡ R′
1

≡
R1 −−−→→

µ:θ
R′

1

Fig. 6. Rules of the proved labeled transition system (LTS) for RCCS

Action

ζ ⋖ θ

ζ ⋖ θ

Palallel Group

|d θ⋖ |d θ′ if θ ⋖ θ′

〈θL, θR〉⋖ θ if ∃d s.t. θd ⋖ θ

θ ⋖ 〈θL, θR〉 if ∃d s.t. θ ⋖ θd

〈θL, θR〉⋖ 〈θ′L, θ
′
R〉 if ∃d s.t. θd ⋖ θ′d

Fig. 7. Dependency Relation on Enhanced Keyed Labels
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On Co-initial Traces

Theorem 6. For all different co-intial transitions with the same direction t1 =

R−−−−→
µ1:ζ1

S1 and t2 = R−−−−→
µ2:ζ2

S2, t1 ⌣o t2 iff ¬(f(ζ1)⋖ f(ζ2)).

Proof. We start by proving the left-to-right direction first, by case on the struc-
ture of R:

m ⊲ P Then we proceed by induction on the size of P , and by case on the
structure of P :
0 This is vacuously true, since 0 cannot reduce.
∑

αi.Pi Then for all i, m ⊲

∑

αi.Pi −−−−→
m:αi Pi, and since m ∩m = m, those

transitions are not pairwise concurrent. Since αi ⋖ θ, we have that f(ζ1)⋖
f(ζ2).

P |Q Then m ⊲ P |Q cannot reduce, without using (Distribution of Memory)
to become of the form R1|R2, that we study next.

R1|R2 Then, every transition that R1|R2 can perform has its memory compo-
nent either be a pair, or it is prefixed by 〈1〉 or by 〈2〉. If at least one memory
is a pair, then we simply reason on its elements, exactly like the rules of Fig. 7
concerned with tuples 〈θL, θR〉 decompose them to assess whenever they are
dependent of other labels. Hence, we reason below on 2, 3 or 4 memories,
depending on the number of synchronizations between the two transitions
concerned.
If memories in both transitions are prefixed by the same 〈i〉, then since |dθ⋖|dθ′

if θ ⋖ θ′, we can proceed by induction. If memories in both transitions are
prefixed by different 〈i〉, then the transitions will be concurrent, and since
|Lθ ⋖ |Rθ′ (and reciprocally) never holds, we are done with this case.

(a)R Then this is immediate by induction.

For the converse direction, it suffices to observe the rules of Fig. 7 and to note
that all the rules imply that the memories of the process initiating the two
transitions must have a non-empty intersection, hence providing the desired
result. ⊓⊔

On Composable Transitions

Theorem 7. For all different composable transitions with the same direction

t1 = R−−−−→
µ1:ζ1

S1 and t2 = S1 −−−−→
µ2:ζ2

S2, t1 ⌣o t2 iff 6= (f(ζ1)⋖ f(ζ2))

Proof. We need to prove that t1 precedes t2 iff f(ζ1)⋖ f(ζ2). We can prove only
the forward case, since if both transitions are backward, t1 precedes t2 iff t−2
preceeds t−1 . We reason by case on the last rule of the derivation for t1:

act. Then, letting µ = m, µ2 = 〈⋆, λ,Q〉 · m for some λ and Q, and hence
m1 < m2 and t1 precedes t2. That f(ζ1)⋖ f(ζ2) is also immediate.

par.L Then R = R1|R2, S1 = T1|T2, S2 = T3|T4 and we proceed by case on the
last rule in the derivation of t2:

par.L Then we proceeds by induction on the trace R1 −−−−→
µ1:ζ1

T1 −−−−→
µ2:ζ2

T3.
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par.R Then t1 cannot precede t2, and f(ζ1)⋖ f(ζ2).

syn. Then t1 precedes t2 (resp. f(ζ1)⋖ f(ζ2)) iff t′1 precedes t′2 (resp. f(ζ1)⋖

f(ζ′2)) in t′1; t
′
2 : R1 −−−−→

µ1:ζ1
T1 −−−−→

µ′

2
:ζ′

2 T3, and we proceed by induction

syn. and par.L Those two cases are similar to the previous one.
res. and ≡ are immediate by induction hypothesis.

⊓⊔

C.5 Reversible and Identified CCS

We refer to the original paper [6] for the precise definition of (this declension
of) RCCS, and only recall the strict minimum below. In a nutshell, this calcu-
lus endows RCCS processes with a seed [6, Definition 4], which is an identifier
patterns [6, Definition 1] that dynamically generates the identifiers for each tran-
sition, and that can get split [6, Definition 3] between threads if needed. Being
able to know ahead of time the identifer generated for each transition was lever-
aged to offer an original definition of concurrency, where identifiers need to be
compatible [6, Definition 12]—written i1 ⊥ i2—or not downstream, both condi-
tions essentially stating that the transition involved different threads.

This calculus also explored different types of sums, but we restrict ourselves
to the “classical one”, denoted + as usual.

Definition 27 (Concurrency). Two different coinitial transitions t1 : s ◦m�

P −−−−−→→
α1[i1]

s1 ◦m1 �P1 and t2 : s ◦m�P −−−−−→→
α2[i2]

s2 ◦m2 �P2 are concurrent iff

– t1 and t2 are forward transitions and i1 ⊥ i2;
– t1 is a forward and t2 is a backward transition and i1 (or i11 and i21 if i1 =

i11 ⊕ i21) is not downstream of ipt2 (or ip1t2 nor ip2t2);
– t1 and t2 are backward transitions.

It is easy to similarly adjust the system to use proved labels, and then to
prove its adequation in the sense of Lemma 10—we will also write f the mapping
from labels to proved labels. Note that the dependency relation is defined as with
RCCS here: since the sum operator is not preserved, it is not needed to account
for it in the proved label.

Theorem 8. For all s ◦ P −−−−−→
α1[i1]

s1 ◦ P1 and s ◦ P −−−−−→
α2[i2]

s2 ◦ P2, i1 ⊥ i2 are
concurrent iff f(α1)⋖ f(α2) does not hold.

Proof. For forward transition, it is not difficult to observe that, given two differ-

ent coinitial transitions s ◦ P −−−−−→
α1[i1]

s1 ◦ P1 and s ◦ P −−−−−→
α2[i2]

s2 ◦ P2, i1 ⊥ i2 iff
¬(f(i1 : α1)⋖ f(i2 : α2)):

– both transitions cannot come from reducing the very same action, which
means that P must have a different operator at top level,



Concurrencies in Reversible Concurrent Calculi 35

– if they result from the execution of the left- and right-hand-side of the same
sum operator, then they get assigned the same identifier, and since they will
both be labeled with actions, they will not be concurrent according to both
definitions,

– if they result from the execution of a multi-threaded process, then it is easy
to observe that the condition on the incompatibility of the identifiers match
the definition of dependencies, as transitions resulting from synchronizations
are concurrent iff their components are in both cases.

For transitions with opposite directions, the “downstream” condition essentially
ensures that the identifiers originate from different seeds, e.g. from different
threads. That this condition is equivalent to the inexistence of a dependency
between proved labels on transitions of opposite direction is a direct, though
tedious, result of the unfolding of both definitions.

For backward transitions, it is immediate: any two backward transitions are
concurrent according to Definition 27, and we have this result as well for proved
labels, by adapting the proof for proved CCSK (Lemma 4) to this proved iden-
tified RCCS. ⊓⊔
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